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Abstract

We present an architecture for a Distributed Online Mea-
surement Environment (DOME) which is a passive mea-
surement system that correlates network information be-
tween several measurement nodes placed at different loca-
tions in the network to offer a large scale view of network
operation. The system is capable of capturing packet traces
and pre-processing them on the measurement node itself.
Real-time queries are implemented by breaking them down
into standard statistics that are updated during run-time.
We present details of a prototype implementation of our
architecture on an Intel IXP2400 network processor. The
prototype is deployed on the main Internet access link of
the University of Massachusetts and measurement results
are validated against those obtained from an Endace DAG
card. Performance of the prototype is compared to that of
a conventional post processing system for an application to
detect network anomalies.

1 Introduction

Measurements are becoming an increasingly important
tool for managing and understanding computer networks.
The increasing complexity of networks in terms of topol-
ogy, traffic patterns, routing behavior, and throughput per-
formance is due to a rising number of diverse and het-
erogeneous end-systems and network equipment. The re-
sults from measurement can give an insight into correct and
faulty network behavior, provide the basis for traffic and
performance models, as well as being the only means of
seeing what is happening inside a network.

A number of different measurement techniques have
been developed, and in this work we focus on distributed
passive real-time measurements. Passive measurements ob-
serve and collect information from some or all traffic on
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certain links or nodes. The observed traffic is what is ac-
tually transmitted by network users and no synthetic traf-
fic is injected into the network. The key challenge in pas-
sive measurement is the enormous amount of data that can
be generated by measurement nodes collecting traces from
high-speed data links. Traditionally, such traces have been
stored in large databases and post-processed to extract rele-
vant measurement metrics.

In many cases, measurements are performed only to ex-
tract a few performance metrics (e.g., average link utiliza-
tion, heavy-hitter flows, or presence of TCP SYN floods)
and long-term storage of measurement data is of only minor
importance (or not necessary at all). Real-time measure-
ment (or online measurement) addresses this goal by pro-
cessing data traces on the measurement node itself before
(or instead of) storing traces in a database. This requires
that a measurement node have enough processing power to
handle user queries on the node itself.

The distributed aspect of measurement aims at correlat-
ing packet instances, network metrics, and events across
multiple measurement nodes placed at different locations
in a network. Such a system expands the view of the mea-
surement beyond a single node or link and helps understand
large-scale network behavior and performance. The goal of
our measurement architecture is to enable measurement ca-
pabilities and interchange of measurement results between
a diverse and heterogeneous set of measurement devices by
defining a common DOME (“Distributed Online Measure-
ment Environment”) architecture.

The design and implementation of such a measurement
system poses a number of interesting challenges in terms of
functionality, scalability, interoperability, and performance.
In our work, we develop a suitable measurement system ar-
chitecture and present the results of a network-processor
based prototype implementation. In particular, our contri-
butions are:

¢ A node architecture for collecting real-time passive
measurements

e A query interface for specifying measurement tasks



e A representation of statistics that allow the reuse of
measurement data across queries

e A prototype implementation based on the Intel
IXP2400 network processor [12] to demonstrate the
feasibility of this architecture.

Network processors have continued to steadily evolve
into highly integrated components which, more recently, are
being used as the basic building blocks of a large number of
packet processing devices. While our prototype system is
based on a network processor, it is important to note that
the proposed system architecture can be implemented on
any system with sufficient I/O bandwidth and processing
power. Depending on hardware choices, there is a trade-
off between the line rate at which packets can be measured
and processing power. Network processors are ideal for
such tasks since they are optimized for packet processing
tasks and exploit the parallelism found in packet process-
ing. Compared to general purpose hardware, network pro-
cessors offer increased performance and better scalability as
line rates increase.

One can expect that more and more devices will support
some sort of measurement functionality (e.g., NICs, low-
end routers, end-systems). In order to harness the power of
these systems into a single, coherent network measurement
infrastructure, it is important to define a common architec-
ture, query interface, and ways by which measurement data
can be reused by a single node, or exchanged between mul-
tiple nodes. This is the topic of this paper.

Section 2 briefly discusses related work. In Section 3, we
introduce the system architecture of the measurement node.
Section 4 discusses queries in more detail. The prototype
implementation and results are presented in Section 5, and
Section 6 summarizes and concludes this paper.

2 Related Work

Network measurements can be performed using active
and passive measurement techniques [5]. In active mea-
surement, synthetic traffic is injected into the network and
the sender and/or receiver collect performance statistics on
the traffic they generate and/or receive (e.g., NLANR’s Ac-
tive Measurement Project [17] and Surveyor [25]). The ob-
tained results yield information on end-to-end performance
characteristics [20, 21, 27]. In passive measurement, per-
formance statistics are derived from locally observed traffic
traces.

Several passive measurement projects aim at large scale
monitoring of the backbone (e.g., NLANR PMA (Pas-
sive Measurement and Analysis) [18], Sprint IPMON [9],
and AT&T GigaScope [7]). These projects utilize custom
hardware (ASICs, FPGAs) to obtain the performance re-
quired for monitoring high speed links. Other measurement

projects use off the shelf components for monitoring edge
and access links (e.g., NProbe [16]). SMARTxAC [1] is
a passive measurement system with real time analysis ca-
pabilities which works on packet headers provided by a
DAG 4.3E card [8]. SCAMPI [6] is a joint European ef-
fort to develop a scalable monitoring platform. None of
these projects, however, leverage the use of network pro-
cessors for processing measurement results on the measure-
ment node itself. Instead, it is common to store the col-
lected network traces in large databases. Measurement re-
sults are obtained by searching through the databases and
post-processing the packet traces.

A distributed passive measurement infrastructure is pre-
sented in [3], which is generic with respect to the underlying
hardware used. The capture node in this system performs
very little post processing of the data and lacks a real-time
query capability similar to what we propose. Instead, query-
ing is implemented by post processing traces in real-time
and streaming packet data through a measurement area net-
work to several software “consumers.” Additionally, there
is no centralized trace collection database in this infrastruc-
ture.

ATMEN [14] is another distributed measurement infras-
tructure which uses Gigascopes[7] as its packet capture de-
vice. It also has a real-time query capability, and the abil-
ity to reuse measurement data, all of which are features of
our DOME architecture. However, ATMEN is distributed in
nature with its components (applications and data sources)
communicating via the Internet using a communication pro-
tocol. Our DOME architecture was designed to be imple-
mented on a single measurement system with several such
systems communicating with each other. The CoMo Project
[11] has developed a measurement architecture that can cal-
culate generic metrics on the traffic stream in the form of
queries.

Several software based network monitoring and analy-
sis tools exist. These tools utilize packet capture libraries
such as libpcap to monitor network traffic and extract var-
ious metrics of interest. Examples of such tools include
SNORT [24] for intrusion detection and Netsniff [13] for
traffic capture and analysis. The capabilities of these tools
can be extended easily since they are software based. How-
ever, their performance is limited by the characteristics of
the underlying hardware on which they are executed.

3 Capture Node Architecture

Figure 1 shows the overall system architecture. The pri-
mary components of the system are a set of DOME architec-
ture based capture nodes (shown as “measurement enabled
DOME end-system/router” in the figure). These nodes can
be deployed in two ways. They can be added as a standalone
passive device to those links that need to be monitored, or
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Figure 1. System View of Measurement Nodes and Interchange of Measurement Results.

they can be integrated into the functionality of a router. The
capture nodes perform the collection, archiving, and mea-
surement of packet traces. Each capture node is equipped
with a query interface (discussed in Section 4) which is ac-
cessible via a local end-system based on the DOME archi-
tecture. All capture nodes transfer measurement traces and
query results to a centralized trace collection database. A
query can be issued to the entire measurement infrastruc-
ture from the centralized database. Additionally, the cap-
ture nodes can also exchange query information between
themselves in order to provide better results to queries that
require a distributed view of the network.

3.1 Design Challenges

The capture node needs to process incoming packets at
line speed. Since the PCI bus on a commodity workstation
can easily become a bottleneck at Gigabit data rates, it is not
feasible to simply employ a high-performance server sys-
tem for this task. Additionally, a single processor presents a
bottleneck in terms of scalability as measurement tasks and
online queries become more complex.

We propose to employ network processors for imple-
menting the capture node. Network Processors (NPs) are
ideal candidates for this domain as they are single-chip
multi-processors, specifically designed for simple, high-
bandwidth processing tasks. Further, network processors
have sufficient I/O and processing capacities to scale to link
speeds of 10Gbps. Commercial examples of such network
processors are the Intel family of IXP systems [12] and the
Hifn PowerNP [2]. Another benefit of employing network
processors for network measurements is that packets can
be monitored and measurement results can be pushed to
the user in real-time. An important question arising from
the multiprocessor nature of NPs is how to distribute vari-

ous pre-processing and measurement tasks onto the differ-
ent processing resources available on the NP.

3.2 DOME Architecture

Our Distributed Online Measurement Environment
(DOME) architecture presented in Figure 2 is one possi-
ble solution to partition measurement tasks on an NP. The
software architecture on a node is divided into two domains:

1. High data rate / low processing requirements
2. Low data rate / high processing requirements

This is similar to the conventional fast-path and slow-path
division in a network router. The high data rate domain
shown on the left handles the processing of each individ-
ual packet which involves packet capture, filtering, metric
extraction and statistics collection.

The low data rate domain deals with functionality related
to the online query subsystem. These tasks are fairly pro-
cessing intensive and are performed at a frequency that is far
less than the rate of packet arrival. In particular, this domain
deals with decomposing a given query into its constituent
parts and mapping them to the filters, metrics, and statis-
tics maintained in the high data rate domain. Additionally,
this domain also interfaces with the run-time management
component in order to install new queries and export query
results to the end user.

3.3 Packet Capture and Anonymization

The first step in the measurement process is to capture
packet headers. A fixed number of bytes of packet head-
ers can be collected or we can parse sequences of packet
headers to capture a variable number of bytes. The second
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Figure 2. Distributed Online Measurement Environment (DOME) Node Architecture.

approach has the advantage that encapsulated headers and
headers with options can be captured in their entirety.

Depending on the operational environment of the mea-
surement system, it may be necessary to anonymize fields
in the packet header. Several techniques for anonymizing
various header fields are described in [19]. A typical ex-
ample is IP address anonymization, which provides a level
of privacy to network users as traces cannot be correlated
back to a particular host computer. In general, it is desir-
able to use an anonymization mechanism that preserves as
much of the relevant properties of the data field as possible.
For IP address anonymization it is common to use “prefix-
preserving” anonymization that maintains the subnet rela-
tionship between addresses while assigning pseudo-random
network addresses [15, 26, 23]. The latter two anonymiza-
tion algorithms can be initialized to generate a consistent
anonymization across different nodes and thus are partic-
ularly suitable for distributed measurement. We have also
shown in [23] that such anonymization can be performed at
Gigabit data rates. Thus this feature can be integrated into
an online measurement platform.

It is important that the anonymization step is placed
early in the measurement process. This ensures that the
following measurement steps do not accidentally collect
data that should be protected. Once header collection and
anonymization is complete, this measured data is sent out
of the measurement node to the centralized trace collection
database. This stage is always performed for all link data.

3.4 Online Traffic Analysis

In the filter stage in Figure 2, packets are classified ac-
cording to filters that match the queries in the system. The
filtering ensures that the statistics collection component of
the measurement system only collects data from the desired
subset of observed traffic (e.g., a header field value or flow
identifier). The filtering stage can also be used to augment
packets with meta-information (e.g., flow classification re-
sult).

The metrics extraction step in Figure 2 is responsible
for identifying the data fields of the packet that are used
to collect statistics. It is important to note that these fields
can be different from the fields used for filtering. Example
metrics include counts, header fields and meta information.

The statistics collection component in Figure 2 identi-
fies and collects the actual data that is used for answering
user queries. There are a large number of potential types
of statistics (e.g., counter, sliding window, histogram). This
results in a tradeoff between the amount of information that
is retained in a statistic and the amount of memory and pro-
cessing that is required to maintain it.

The accuracy at which these statistics are maintained de-
pends on the amount of memory that can be provided for
a particular query. Multi-resolution counters can be used to
maintain statistics over different time windows (e.g., several
counters that keep track of a value over the last second, the
last minute, etc.).



3.5 Storage of Packet Headers

In addition to real-time traffic monitoring, our monitor-
ing platform also archives packet headers for future queries.
Traditional post processing of this archived data can be used
to extract measurements that are not feasible to be per-
formed via real-time querying due to resource constraints.
The tradeoff here is that post processing is more time con-
suming than real-time monitoring. Querying of archival
data is necessary for many applications such as data mining
of packet headers to detect unusual trends, analysis of his-
torical trends (e.g., growth in P2P traffic), and port-mortem
analysis of certain events (e.g., traceback of security at-
tacks).

Our current system assumes that each NP-based capture
card is connected to a high performance server over a ded-
icated point-to-point Gigabit Ethernet link. Packet headers
and other meta-data such as the GPS timestamp and other
flow-level statistics are streamed to the server over this link.
The server stores the incoming stream of packet headers and
the associated meta-data to local high-performance storage
system (such as a RAID array).

3.6 Run-Time Management

The run-time management component in Figure 2 is pri-
marily responsible for resource management of queries.
The resource management block is required if a query needs
a new filter, metric, or statistic to be installed. This block
ensures that sufficient computing resources are available in
order to install a new query component. The statistics ex-
port block extracts the data stored in various statistics that
are required to answer a query.

One main issue in designing an online measurement sys-
tem is the limitation in resources that can be dedicated to
queries. Not only is processing limited due to real-time con-
straints, but memory is also a scarce resource on embedded
network systems. In order to respond to queries over differ-
ent time scales, the system needs to maintain a history of all
collected statistics. We have chosen to decompose queries
into many smaller components (filters, statistics, etc.) so
that they can be used across multiple queries. The sharing
of filters and statistics between queries allows the system to
support a large number of queries while limiting the number
of distinct filters, metrics, and statistics. In order to reduce
the number of measurements that need to be made, ATMEN
[14] also attempts to reuse metrics along the time, space and
application axes.

Due to resource constraints, it is infeasible to maintain
statistics at full resolution for extended periods of time.
Therefore, it is necessary to aggregate the statistics col-
lected at different resolutions. We introduce a hierarchy
of statistics that is maintained by our system in Figure 3.

‘ full trace }—»‘ window H histogram H average }—»‘ counter }—b{ existence‘

h-w-n bits w-n bits b-n bits 2:n bits n bits 1 bit

Figure 3. Hierarchy of Statistics Maintained
by Query System. The required memory
size of each statistics is shown for »n values
(header size h, window size w, histogram with
b buckets).

Different levels of resolution require different amounts of
memory for storage.

At the highest level the existence statistic provides in-
formation regarding the occurrence of a particular event or
value and provides the least information. This requires the
least amount of storage space (1 bit). This statistic can be
extracted from the counter statistic which counts the num-
ber of occurrences of a certain event or value. If the counter
value is non-zero, it implies that a certain event has oc-
curred. The counter requires n bits of storage. The counter
statistic can be derived from the average of a particular
value. To compute the average, we require only two val-
ues — the sum of all samples, and the number of samples
seen. Similarly, a histogram contains all the information re-
quired to compute an average. The histogram is assumed
to have b buckets, each of size n bits. The window statistic
stores the last w samples and contains the necessary infor-
mation to construct a histogram. Finally, the lowest level
of the statistic is the full trace headers which contains the
most information, but also require the maximum amount of
storage space. Parameter A is used to specify the size of the
header.

This kind of spatial aggregation can be performed to
adapt the statistic to the type of query that is requested. For
example, if a new query that requires the average packet
size is input to the system, the system needs to check if
a pre-existing query maintains a statistic that is higher in
the hierarchy that the average statistic. If this is the case,
then a statistic does not need to be stored and the required
information can be obtained by aggregating samples that
have already been collected.
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Figure 4. Aggregation of Statistic Samples
over Different Time Scales by Query System.



Similar to spatial aggregation, Figure 4 shows an ex-
ample of temporal aggregation (or “aging”). This is per-
formed to aggregate samples along the time domain by av-
eraging multiple samples that were collected at short time
intervals into a single sample that represents a coarser time
interval. The example in Figure 4 shows two levels of tem-
poral aggregation. The first level shows how ten 1-second
samples are aggregated into one 10-second sample. The
second level shows how ten 10-second samples are aggre-
gated into one 100-second sample. The term base refers to
the number of samples that we aggregate (the base in this
particular example is 10). In general, to limit the overall
memory use of a single statistic, an upper bound on the res-
olution is enforced.

The choice of a base has a significant impact on the
amount of processing and memory required to perform tem-
poral aggregation. If the base is too low, less memory is re-
quired since fewer samples need to be stored, but more pro-
cessing is required since aggregation needs to be performed
more frequently. As base increases, processing require-
ments decrease, but memory requirements increase since
more samples need to be stored. This trend is shown in
Figure 5. Ideal choices for the value of base depend on the
processing capabilities of the run-time management system
and the resolution at which query results need to be pro-
vided.

processing ./

memory —m .+

1 J.-J—'i"l'i—l‘l—‘ 1 1 I 11111
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Figure 5. Cost of Aggregating Samples. The
two plots show the variation in processing
and memory requirements as the aggrega-
tion frequency (base) changes.

4 Queries
4.1 Design Tradeoffs

While a rule-based interface has been traditionally em-
ployed for monitoring network packet streams, it is not
a priori evident whether such an interface is sufficiently
expressive for instantiating arbitrary continuous queries.
In contrast, continuous query systems [4] designed in the
database community employ SQL-like query languages.

The online query system described in Section 4.2 draws on
many of the concepts used in this domain, but separates the
components of the system so that they map onto distinct
parts of the DOME architecture.

A more radical approach is to eliminate the query in-
terface altogether and to allow high-level applications to
download arbitrary code to perform queries on a capture
node. Assuming that the security implications of download-
able code can be addressed using sandboxing techniques,
the approach raises a different flexibility versus efficiency
tradeoff. Clearly, the ability to download and execute ar-
bitrary code is less limiting than a pre-defined query inter-
face. However, the approach is also potentially less effi-
cient, since it requires the application designer to hand-craft
query optimizations — an effort that is likely to be less effi-
cient than a highly optimized query engine. The issue of
whether the additional flexibility warrants this loss in per-
formance is still an open issue.

The DOME architecture supports two types of queries—
queries on live data and queries on stored data. Live queries
are typically continual queries which are run on the mea-
surement node, while stored queries are typically one time
queries over archived data present at the trace collection
databases.

4.2 Online Queries

In many cases, queries about network traffic character-
istics go beyond simple packet counts. Answers to such
queries can be composed by combining the results of indi-
vidual statistics that are collected on the microengines. Live
queries need to be structured in such a way that they can be
easily parsed and mapped to the different components of
the DOME system. The basic component of a query is a
querylet which has the form shown below:

<Querylet>=<Filter>" <Metric> <Statistics

A querylet is a request sent to the capture node to collect
data and process it. The labels correspond to the compo-
nents of the high data rate domain of the DOME architec-
ture shown in Figure 2.

The sequence of <Filters> specifications determine
what subset of the traffic is considered for a particular query.
The subset of traffic to be queried can be filtered based on
the type of header (e.g. IP, TCP), and optionally, a cer-
tain bit or a range of bits of that header matching a partic-
ular value. Multiple filters can be combined together. The
<Metric> label specifies what aspect of each packet is
considered in the query. The header fields specified here
can be different from the header fields specified in the filter.
The <Statistic> label determines how the packet data
(specified by the <Metric> label) is stored with respect to
the query.
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We currently define six types of statistic collection data
structures — a single bit flag to check for existence, a basic
counter, an average, a histogram, a window, and a full trace.
Some of these data structures require further parameters to
be specified which determine how much memory is required
(see Figure 3).

A querylet by itself contains all the information required
to collect and process data for a query. However, it does not
inform the capture node as to how the query data is to be
exported to the end user. In order to handle this, two more
labels are added to complete the query specification:

<Querys>=<Querylet >t <Actions <Report>

The <Actions> label is used to combine the results of two
or more querylets. For example, it can instruct the query
system to return the ratio of two querylets which count spe-
cific types of packets. <Report> specifies how to report
the result of the query to the user (e.g., single summary, pe-
riodic reports).

4.2.1 Query Types

There are two types of queries that can be performed on
the measurement system: (1) Pull Queries and (2) Push
Queries. Queries that “pull” information from the measure-
ment node are comparable to those done on conventional
packet trace collection systems. The query is sent to the
system, the appropriate information is retrieved and sent in
response. With the online operation of our system, another
type of query is possible. “Push” queries are such that they
continuously monitor the packet stream. At periodic inter-
vals or when a particular condition is matched, a response
is generated by the system.

To achieve sharing between queries, the run-time man-
agement component needs to keep track of all installed fil-
ters, metrics, and statistics. When a new query is presented
to the system, it is first decomposed into its components.
The run-time management component checks if existing
components can be reused. This can happen at several lev-
els. For example, a query may reuse a filter that was in-

stalled as part of a previous query, but may need to install a
new statistic and/or metric. As another example, the query
may match existing filters and metrics and the statistic could
be computed using existing statistics utilizing the hierarchy
shown in Figure 3. In case a new component has to be in-
stalled, the run-time management system needs to check if
enough resources are available. The memory requirements
of various statistics are well defined using the parameters
shown in Figure 3.

To illustrate the decomposition process, we discuss a
simple example query. “What is the fraction of TCP SYN
packets to other TCP packets?” This query would translate
into two querylets: (1) a count of TCP SYN packets and (2)
a count of all TCP packets. In order to do this, two filters
are necessary: one that filters TCP packets out of the stream
of all packets and a second one that checks for the SYN
bit in the TCP header. This example requires only a count
of packets and does not need a particular metric. The ac-
tion between the querylets is a simple division of the values
from both counts. The statistics component keeps counters
for both querylets.

S Prototype

We have implemented a prototype with basic measure-
ment functions and query capability to illustrate the feasi-
bility of the proposed architecture. The prototype is able
to collect packet traces, perform anonymization, and de-
termine several basic statistics, which can then be queried
through a command line interface. This system is currently
operational on the main Internet access link of the Univer-
sity of Massachusetts.

The prototype implementation is based on the IXP2400
network processor platform which can be found in the
Radisys ENP-2611 [22] card. The IXP2400 contains eight
microengines which are highly optimized for packet pro-
cessing in the data plane. Each microengine contains eight
threads with a zero overhead context swap. Additionally,
an XScale processor is present for performing control plane
related tasks. The data flow and allocation of tasks to the
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Figure 7. Prototype Measurement Results.

underlying NP components is shown in Figure 6. The “mea-
surement path” in Figure 6 is how we have chosen to imple-
ment the architecture shown in Figure 2. The implementa-
tion allows the measurement process to be present as a stan-
dard function in future routers through an additional “fast
path” shown in Figure 6. The fast path is responsible for
performing any packet processing that is done by the router
(e.g. IPv4 forwarding).

The system has 3 ports — Port 0, Port 1, and Port 2. Ports
0 and 1 are used for handling normal packet traffic along
the fast path. Port 2 is exclusively used for transmitting
measurement traffic. In our prototype, the fast path simply
bumps incoming traffic from Port O to Port 1 and vice versa.
An entire microengine is allocated for each of the packet
receive, packet bump and packet transmit (on Port O and
Port 1) tasks. Once a packet has successfully proceeded
through the fast path, it is enqueued to the measurement part
of the system. If this queue is full, the packet is dropped
and no measurement tasks are performed on it. Thus, the
measurement path has a minimal impact on the performance
of the network processor in the fast path.

The measurement path consists of three microengines
which perform the tasks contained in the “high data rate do-
main” in Figure 2. The first microengine performs a filter-
ing operation on the packet since only certain types of pack-
ets may need to be measured as discussed previously. Then,
the packet headers are parsed and collected, and the IP ad-
dresses are anonymized. This microengine corresponds to
the IP address anonymization and filtering stages shown in
Figure 2. The second microengine performs any measure-
ment related processing and collects statistics that may be
required. This microengine corresponds to the metrics and
statistics collection stages in Figure 2.

Currently, a number of common statistics are collected
that include basic packet counts (e.g., IP, TCP, UDP, etc.)
and distributions of layer 3 protocols, packet size, and TCP
port numbers. For every packet that enters the measure-

ment path, a “measurement packet” is generated which con-
tains a trace of the packet headers and some meta data. The
transmit processing for this packet is done by the third mi-
croengine in the measurement path. These packets are col-
lected by a central trace collection database.

All query related processing is performed on the XScale
control processor. The query system consists of three com-
ponents shown in Figure 6. The Query Interface is the fron-
tend for the whole system and is used to input queries into
the system and obtain the results for queries. The Query
Decomposition block parses the query and splits it into its
constituent filters, metrics and statistics. Our prototype is
installed with a set of predefined filters and statistics which
the query system is aware of. Additionally, the temporal ag-
gregation technique described in Section 3.6 is performed
on samples. Since the network processor is software pro-
grammable, we have the capability to dynamically install
query components when needed. This is currently work
in progress. The microengines maintain the statistics col-
lection data structures in high speed SRAM memory. The
Statistics Export component in Figure 6 is responsible for
extracting the required values from this memory and report-
ing them to the Query Interface.

5.1 Evaluation

5.1.1 Simulation Performance

The measurement system was simulated on the simulator
for the IXP2400 network processor. The prototype parsed
packet headers, anonymized IP addresses, encapsulated the
trace into an UDP/IP packet for transmission and performed
basic statistics collection. Simulation traffic consisted of
unidirectional 60 byte TCP/IP packets over Ethernet. We
were able to sustain a transmit rate of up to 1120Mbps (ap-
proximately 900,000 packets per second) on the measure-
ment port (Port 2). In practice, this rate is not feasible due
to the bandwidth limitations on the interface (1Gbps), but it



Table 1. Comparison of measurement reports of IXP2400-based DOME node and DAG card for a 24

hour period.
[ Measurement | DAG 4.3GE | IXP-based DOME | Difference ||
up-link 3,558,914,492 3,558,914,492 0
Packet count down-Tink 3.677.879,928 3.677.879,928 0
Byte count up-link 1,576,830,624,304 1,576,830,624,304 0
down-link 1,430,657,109,468 1,430,657,109,468 0
IP packets 7,236,735,411 7,236,735,411 0
1P statistics IP options 11 11 0
non-IP packets 59,009 59,009 0
TCP packets 6,576,779,992 6,576,779,992 0
TCP options 835,325,139 835,325,139 0
TCP statistics TCP SYN 178,529,684 178,529,684 0
TCP FIN 93,456,130 93,456,130 0
TCP RST 38,633,106 38,633,106 0
UDP stats UDP packets 629,678,683 629,678,683 0

gives a rough estimate of the processing limitations on the
system.

5.1.2 Operational Results

The measurement hardware was also tested on the Internet
access link of the University of Massachusetts. The node
was observed to be functional at data rates of up to 140,000
packets per second. No higher data rates were observed
during the test.

In a lab experiment, synthetic traffic of up to 1Gbps
was generated with various packet sizes. The measurement
throughput results are shown in Figure 7. With large packets
(1510 bytes), the full 1Gbps of observed traffic can be pro-
cessed and “measured.” Sustained trains of very small pack-
ets (60 bytes) cause congestion on the measurement output
port because measurement packets contain additional infor-
mation (meta data) that needs to be sent to the database.
We are currently looking at changing the node-database in-
terface to transmit packet headers in aggregated fashion to
solve this problem.

5.2 Verification

In order to verify the proper operation of our prototype,
we ran our IXP based capture node in parallel with an En-
dace GIGEMON system which contains a DAG 4.3GE [8]
card. Both measurement systems were used to monitor the
same link by means of an optical splitter. In one set of ex-
periments, both monitoring systems were setup to count the
same statistics on the packet stream over a 24 hour period.
The results are shown in Table 1 and show no differences
between the numbers reported by both systems. In another
set of experiments, the actual packet headers captured by
both measurement systems were compared byte-by-byte to
ensure that our measurement node performs packet capture
without any errors.

Table 2. Comparison of Post-Processing Mea-
surement to Online Measurement for 1-Hour
Anomaly Detection Experiment.

|| { Post-Processing { Online Measurement ||

Trace storage requirement 26 GB N/A
Average data rate 58 Mbps 64 kbps
Anonymization 42 min online
Anomaly detection 7 min online
Minimum time to detection 49 min real-time

5.3 Comparison to Post-Processing Mea-
surement Systems

The main benefit of our proposed architecture is high-
lighted when comparing the performance of online mea-
surement to that of measurement by post-processing. We
have implemented a recently published anomaly detection
algorithm by Gu et al. [10]. The processing consists of clas-
sifying packets by their port numbers and traffic type (UDP,
TCP data, TCP SYN, etc.) and counting their occurrence
in a 1-second time interval. The results are compared to a
baseline distribution by computing the relative entropy for
each packet count. If the entropy exceeds a given threshold
30 or more times in a 1-minute window, traffic is considered
anomalous for this particular category of traffic.

In the post-processing scenario, a packet trace is col-
lected, then anonymized, and then processed to extract
packet counts. In the online scenario, packet counts and
entropy values are computed on the online measurement
node. Table 2 shows a comparison of both approaches for
a 1-hour experiment. The amount of data that needs to be
transferred is three orders of magnitude less in the online
system and anomalies can be detected without delay (or at
user specified intervals). These results clearly show that on-
line measurement is preferable in cases where results can be
computed by the measurement node.



6 Summary

In summary, we have presented an architecture for a
passive distributed measurement system. The capability to
correlate measurement information from different measure-
ment nodes in the network provides a deeper insight into
large-scale network behavior. The ability to process traces
on the measurement node itself is the key enabler to an-
swer queries in real-time which in turn reduces load on the
trace collection end-system. The decomposition of queries
into simple measurement statistics and filters provides an
extensible way to answer complex questions regarding net-
work operation. Our prototype system shows the feasibility
of this design and the significant performance benefits that
can be achieved over post-processing network measurement
systems.
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