
404 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 3, MARCH 2001

Design Issues for High-Performance Active Routers
Tilman Wolf and Jonathan S. Turner, Fellow, IEEE

Abstract—Modern networks require the flexibility to support
new protocols and network services without changes in the under-
lying hardware. Routers with general-purpose processors can per-
form data path packet processing using software that is dynam-
ically distributed. However, custom processing of packets at link
speeds requires immense computational power. This paper pro-
poses a design of a scalable, high-performance active router. Mul-
tiple network processors with cache and memory on a single ap-
plication specific integrated circuit are used to overcome the lim-
itations of traditional single processor systems. The proposed de-
sign is used as a vehicle for studying the key issues that must be
resolved to allow active networking to become a mainstream tech-
nology. Benchmark measurements are used to put the design in
relation to actual application demands.

Index Terms—Active networks, multiprocessor system-on-a-
chip, programmable network benchmark, router design.

I. INTRODUCTION

T HE GROWING sophistication of networked applications
and the need for more complex network services to sup-

port them are creating a growing demand for programmable net-
work components. At the same time, continuing advances in in-
tegrated circuit technology are making it possible to implement
several complete processor subsystems on a single chip. Active
networking is one response to this convergence of application
pull and technology push [1], [2]. By increasing the programma-
bility of network components, it promises to dramatically sim-
plify the deployment of new protocols and new network ser-
vices.

However, the price of flexible packet handling lies in the in-
herently lower performance of software processing compared
to specialized hardwired logic. Additionally, active networks
implement more complex network services than just plain for-
warding, which results in even higher requirements for compu-
tational power. Another important factor comes from develop-
ments in data transmission and switching technology that in-
dicate that link speeds and router capacities will keep growing
rapidly. Terabit capacity routers with 2.4- and 10-Gb/s links are
becoming commercially available now. Active routers must pro-
vide comparable performance levels, in order to keep pace with
the rapid growth in bandwidth. As a result, it is important to
develop router architectures that can provide enough computa-
tional resources to meet these increasing demands.

To put things in perspective, a single processor capable of ex-
ecuting 500 million instructions per second can perform only

Manuscript received April 15, 2000; revised November 14, 2000. This work
was supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. N66001-98-C-8510.

The authors are with the Department of Computer Science, Wash-
ington University, St. Louis, MO 63130 USA (e-mail: wolf@arl.wustl.edu;
jst@arl.wustl.edu).

Publisher Item Identifier S 0733-8716(01)01875-3.

about 25 instructions per byte when processing data from a
150-Mb/s link. It is clear that such a single processor system
is insufficient to support active processing for even one 2.4- or
10-Gb/s link. This gap can be expected to widen in the future
since link speeds grow faster than processor speeds.

In our approach, we combine active processing clusters with
a scalable, high-performance interconnection network to sup-
port large numbers of gigabit links. These processing units can
exploit the inherent independence among different traffic flows
and process many packets in parallel without the need for com-
plex synchronization mechanisms.

This paper explores issues associated with such a multipro-
cessor port design for a high-performance active router. To en-
able a concrete examination of these issues, we propose a spe-
cific design for an active router that can support hundreds of
2.4-Gb/s links. We use a set of benchmark applications that im-
plement active functionality to determine the computational and
IO requirements of such programs. Based on these results, we
evaluate the proposed router design.

Section II introduces the overall system design. Sections III
and IV explain in more detail the design of the port processor
and the active processing engine. Scalability issues are ad-
dressed in Section V, and Section VI shows the benchmark
results. Section VII describes related work and Section VIII
contains a brief summary and conclusions.

II. SYSTEM ORGANIZATION

Traditional routers can be augmented to support active pro-
cessing in different ways. One approach is to add a processing
engine at each router port. Another is to provide a shared pool of
processing engines that can be used to process traffic from any
port. These two baseline system designs are shown in Fig. 1.
The routers are based on a scalable cell-switching fabric, which
connects to external links throughport processors(PP). In the
first design, all ports are augmented by aprocessing engine(PE)
that can perform active processing. In the second design, a set
of router ports is dedicated to active processing. These ports are
equipped with PEs but do not have external interfaces.

The first approach is more appropriate when all ports have
comparable requirements for active processing. The second
makes sense when ports have widely varying needs. One can
also combine these approaches by having both per port PEs and
a shared pool used to augment the processing power of ports
with particularly high processing needs.

Packets belonging topassive flows(that is, flows that do not
require active processing) are passed directly from the input port
at which they first arrive to the output port where they are to be
forwarded. Such packets encounter no added overhead or delay,
compared to a conventional router. Packets belonging toactive
flows are received by the input port and sent to a processing

0733–8716/01$10.00 © 2001 IEEE

WOLF AND TURNER: DESIGN ISSUES FOR HIGH-PERFORMANCE ACTIVE ROUTERS 405

Fig. 1. System organization of active router.

engine (either on the same port or on a dedicated processing
port), where they are enqueued and eventually processed. After
processing, the packets are forwarded to the proper output port.
If there are PEs on all ports, processing may also be done at the
output port. To provide the maximum flexibility, an input port
can distribute packets to various PEs to achieve systemwide load
balancing.

The switching fabric can be implemented in a variety of ways.
For concreteness, we assume a multistage network, such as de-
scribed in [3]. That system supports external link rates up to
2.4 Gb/s and can be configured to support hundreds or even
thousands of such ports. The active router’s PPs perform packet
classification, active processing, and fair queuing. Thesystem
controller (SC) provides a control and management interface to
the outside world and implements routing algorithms and other
high-level operations.

III. PORT DESIGN

The PP and the PE consist of several components. A detailed
picture of a router port equipped with a PE is shown in Fig. 2.

A. Port Processor

Thepacket classification and queuing chip(PCQ) performs
classification of packets arriving from thetransmission inter-
face(TI) to determine how they are to be processed and where
they are to be sent. It also manages queues on both the input
and output sides of the system. The PCQ has two memory inter-
faces, one to afilter memory(FM) used for packet classification
and one to aqueue memory(QM) used to store packets awaiting
processing or transmission.

Fig. 2. Port processor and processing engine.

As packets are received from the TI, the headers are passed
to the packet classifier(PC), which performs flow classifica-
tion and assigns a tag to the packet. At the same time, the entire
packet is passed to thequeue controller(QCTL), which seg-
ments the packet into cells and adds it to the appropriate queue.
Packets can be assigned to queues in a fully flexible fashion
(e.g., per flow or aggregate). The queues can be rate-controlled
to provide guaranteed quality of service (QoS). The filter data-
base determines whether flows are aggregated or handled sep-
arately. To provide the required flexibility, a fast general flow
classification algorithm is required, such as the one described
in [4].

B. Processing Engine

Active processing is provided by one or moreactive pro-
cessor chips(APC), each containing several on-chip processors
with local memory. Each APC also has an external memory in-
terface, providing access to additional memory, which is shared
by the processors on the chip. The APC processors retrieve ac-
tive packets from the QM, process them, and write them back
out to the proper outgoing queue. They are arranged in a daisy-
chain configuration to eliminate the need for multiple APC in-
terfaces to the PCQ. Since the bandwidth required between the
QCTL and the entire set of APC chips can be bounded by the
link bandwidth (assuming each active packet passes from the
QCTL chip to an APC once and is returned once), this arrange-
ment does not create a bandwidth bottleneck.

The design can be scaled in a couple ways. First, the number
of ports can be increased by configuring the multistage inter-
connection network to have a larger number of stages. For the
design in [3], a three-stage network can support up to 64 ports
and has an aggregate capacity of 154 Gb/s, while a five-stage
network can support up to 512 ports and has an aggregate ca-
pacity of 1.2 Tb/s. One can increase (or decrease) the active
processing capacity by incorporating more or fewer APC chips
at each port. For systems with only a small amount of active
processing, APCs can be omitted from most ports, and packets
requiring active processing can be forwarded from the ports at
which they arrive to one of the ports containing an APC.

A key design variable for any router is the amount of
memory to provide for queues and how to use that memory
to best effect. The usual rule of thumb is that the buffer size

406 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 3, MARCH 2001

should be at least equal to the bandwidth of the link times
the expected round trip time for packets going through the
network. For 2.4-Gb/s links in wide area networks, this leads to
buffer dimensions of roughly 100 MB. Such large buffers are
needed in IP networks because of the synchronous oscillations
in network traffic produced by TCP flow control and the long
time constants associated with these oscillations. In the context
of large buffers, per flow queuing and sophisticated queuing
algorithms are needed to ensure fairness and/or provide QoS.
Flow control is also needed within a router, which has hundreds
of high-speed ports. Without flow control, output links can ex-
perience overloads that are severe enough to cause congestion
within the switch fabric, interfering with traffic destined for
uncongested outputs. Fortunately, the large buffers required
by routers make it possible for cross-switch flow control to be
implemented with a relatively coarse time granularity. Using
explicit rate control, output PPs can regulate the rate at which
different input PPs send them traffic, so as to avoid exceeding
the bandwidth of the interface between the switch fabric and
the output PP. By adjusting the rates in response to periodic
rate adjustment requests from the input PPs, the output PPs can
provide fair access to the output links on a systemwide basis or
can allocate the bandwidth so as to satisfy QoS guarantees.

IV. A CTIVE PROCESSINGCHIP

The APC provides the general purpose computational
resources needed to implement active networking applications.
A set ofactive processing units(APU), which consist of RISC
processor cores, cache, and DRAM memory combined on a
single application specific integrated circuit (ASIC) to provide
a fast and flexible packet processing engine.

A. Design

In order to arrive at a suitable design for the APC, it is impor-
tant to understand the relative complexity of the different design
elements that go into the APC. In 0.25-m CMOS technology, a
single RISC CPU core can be implemented in an area of two to
four square mm [5], [6]. This represents just 1%–2% of a chip
with a core area of 200 mm, a fairly typical size for high-perfor-
mance ASICs. However, processors require memory for storage
of programs and data. In 0.25-m technology, dynamic RAM
requires about 25 mmper Mbyte, while SRAM requires about
175 mm per Mbyte.

Our baseline APC design contains four APUs, as shown in
Fig. 2. Each APU includes a processor, a memory controller
(MC), a cache, and an on-chip dynamic RAM (DRAM). These
are linked to the PCQ and each other through an IO channel
(IOC). The IOC also provides an interface to an external DRAM
and an extension interface, used for linking multiple APCs in
a daisy-chain configuration. This design can be readily scaled
to larger numbers of processors, as technology improvements
make this feasible.

For efficient processing of active flows, the processors should
have enough memory to store both a small operating system
kernel and the code for the active applications being used. In
addition, they need to be able to store per flow state information
for perhaps a few hundred flows, and the packets currently being

processed. Since the packets can be brought in from the QM as
needed, then promptly written back out, not too much on-chip
memory is needed for the packets themselves but the program
code and per flow state could easily consume hundreds of kilo-
bytes of memory. This suggests a minimum memory configu-
ration per processor of one MB of DRAM. To allow the pro-
cessor to operate at peak efficiency, this should be augmented
by a cache implemented with SRAM. A one-MB DRAM and a
32-kB cache together consume about 30 mmof area. Adding a
processor and memory controller yields an area of 35–40 mm
for an entire APU. This allows four to be combined on a single
chip in 0.25- m technology.

The required IO bandwidth is another key consideration. As
noted above, the bandwidth required for the interface to–from
the PCQ can be bounded by the link bandwidth. For 2.4-Gb/s
links, this implies a bandwidth of 300 MB/s in each direction.
To allow for loss of efficiency due to packet fragmentation ef-
fects (caused by packets being divided into cells) and to reduce
contention at this interface, it is advisable to increase the band-
width at this interface to 1 GB/s. This can be achieved with a
32-bit interface in each direction, operating at a clock rate of
250 MHz, which is feasible in 0.25-m technology.

The IO channel connecting the APUs to the QCTL and ex-
ternal memory is another crucial element of the APC. As dis-
cussed above, it should support one-GB/s data transfers to and
from the QCTL chip. This leads naturally to a design comprising
a crossbar with eight inputs and outputs, each of which is 32 bits
wide and clocked at 250 MHz. A central arbiter accepts con-
nection requests from the various “clients” of the crossbar and
schedules the requested data transfers to deliver optimal perfor-
mance. To allow clients to quickly send short control messages
to one another, the IOC includes a separatesignal dispatcher
that accepts four byte “signals” from clients and transfers them
to per client output queues, where they can be read by the des-
tination client as it is ready. When the destination client reads a
signal from its queue, the sending client is informed. This allows
clients to regulate the flow of signals to avoid exceeding the ca-
pacity of a destination client’s queue. Signals are used by the
QCTL chip to inform an APU that new data has arrived for it.
They are also used by APUs to request transfers of data from the
QCTL chip. It is also possible to implement the IOC as a ring.
This can give a simpler implementation but may yield larger de-
lays.

The bandwidth required between an APC and its external
memory is determined by the number of APUs on the chip, the
instruction-processing rate of those APUs and the fraction of
instructions that generate requests to the external memory. For
example, assuming four 32-bit processors operating at a clock
rate of 400 MHz with each APU requiring an average of one
external memory access for every twenty clock ticks, we get an
external memory bandwidth of 320 MB/s. To reduce contention
at this interface, this should be increased to say 500 MB/s. Cur-
rently, high-performance memory interfaces such as RAMBUS
[7] can provide a bandwidth of 1.6 GB/s using just 30 pins.

V. SCALING ISSUES

The need for scalability in the active router is addressed in
two ways. First, the performance of a single active processing
element increases as technology advances. Second, the system

WOLF AND TURNER: DESIGN ISSUES FOR HIGH-PERFORMANCE ACTIVE ROUTERS 407

TABLE I
APC TECHNOLOGY SCALING

can be equipped with multiple processing chips to handle in-
creasing link bandwidth.

A. Technology Scaling

Continuing ASIC technology improvements can be expected
to contribute to further increases in density and performance.
This will allow the next generations of APCs to have more pro-
cessors and more memory. To estimate this development, the
following relations are used.

• The number of gates on an ASIC doubles every 18 months
(Moore’s Law). Thus, the feature size decreases by a
factor of two every three years.

• The clock speed of the processor is inversely proportional
to the feature size.

Table I shows the resulting APC configurations. With the
above assumptions, a total of 16 processors with 256 kB of
cache and eight MB of DRAM each could be implemented on a
single APC by 2005. Thus, even memory intensive applications
can be executed efficiently without the need to constantly access
off-chip memory. With respect to computational complexity, a
single APC will provide sufficient processing power to perform
almost a hundred instructions for every byte received from the
external link, allowing implementation of fairly complex active
processing.

The table shows the link speed to remain constant over time
to easily compare different APC configurations. Of course, the
link speeds will increase significantly over that period of time.
Therefore, it is important to also consider scalability of the
overall design.

B. Design Scalability

The design of the APC also allows scalability with respect of
the number of processing chips in the system. This is important
since the scaling of chip performance due to Moore’s Law is
not enough to close the growing gap between link speeds and
processor and memory speeds.

The IO channels of multiple APCs can be connected via the
extension port to form a chain of processing chips. Each inter-
face that connects to another processing chips acts as a gateway
and routes data to other APCs further down in the chain. This
design requires that the IO Channel be able to handle the total
bandwidth between the QCTL and the APCs. It can be assumed
that this requirement can be met even for faster link rates. Note,
that the total amount of bandwidth between the QCTL and the
APCs is at most twice the external link bandwidth since each
packet is sent at most once to the processing chips and sent
at most once back to the QCTL. Since each processing chip

TABLE II
SIZE AND COMPUTATIONAL COMPLEXITY OF BENCHMARK APPLICATIONS

has its own off-chip memory interface, the traffic from off-chip
memory accesses is restricted to the individual APC and does
not aggregate over multiple chips. Finally, only data traffic that
requires active processing needs to be sent to APUs. While we
expect active processing to be an important element of future
routers, we expect most packets to be forwarded without active
processing for the foreseeable future.

VI. A PPLICATION REQUIREMENTS

To put the router design in relation to requirements of ac-
tual applications, we use an application benchmark to determine
computational complexity and IO demands.

A. Benchmark

We have assembled a set of applications to serve as a bench-
mark for active processing. They range from fairly complex en-
cryption and compression programs to simple IP address lookup
and packet scheduling. Table II lists the programs in the bench-
mark set, along with some characteristic data.

The object code size is the size of the compiled but unlinked
code. This size varies significantly over the different appli-
cations since it is highly dependent on the implementation.
Commercial strength implementations contain large amounts
of error-handling code, support for various input formats, and
other code that is rarely executed. Simple proof-of-concept
implementations on the other hand just focus on the basic
functionality of the program. To discount this variation, the
amount of actually executed code is shown in the next column.
This counts all the instruction code that is executed at least
once including library code. The remaining “dead code”
can be ignored when implementing those applications on an
active router. For DRR and FRAG, the library code increases
the amount of executed code but for the other applications
this is less than the object code. In general, no applications
executes more than 30 kB of code which indicates that small,
computationally intense program “kernels” make up for most
of the computations. Still, an amount between six and 30 kB
per program is fairly large and will consume a significant part
of an APU’s on-chip cache space. This suggests that it may be
necessary to “specialize” the different APUs by limiting each
one to a small set of distinct programs.

The computational complexity shown in the last column gives
the number of instructions executed per byte of data in a packet.
For applications that process only the packet header (i.e., RTR,
FRAG, DRR, and TCP), a 64-byte packet is assumed. For ap-
plications that process the payload of a packet, a one-Mbyte
data stream is assumed. The table shows that these programs

408 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 3, MARCH 2001

TABLE III
INSTRUCTIONMIX AND CACHE PERFORMANCE OFBENCHMARK APPLICATIONS

TABLE IV
IO TRANSFERRATES OF BENCHMARK APPLICATION WITH 16-kB

INSTRUCTIONCACHE, 16 kB DATA CACHE, AND 1 mB ON-CHIP DRAM ON

A 400-MHz PROCESSOR

are computationally demanding. CAST, for example, requires
about 100 instructions per byte. Consulting Table I, we see that
this implies that a single APC will be able to encrypt all the data
on a 2.4-Gb/s link only sometime after 2005. Even this is based
on the combined efforts of 16 APUs. Of course, versions of these
applications tailored specifically for the active network environ-
ment could well provide significantly better performance. How-
ever, it seems clear that to support substantial amounts of active
processing, routers will need to configured with enough com-
putational power to execute hundreds of instructions per byte
of data processed, a fairly demanding requirement for current
technology. More details on the benchmark can be found in [8].

Another important measure that can be obtained from the
benchmark is the amount of IO traffic generated on the different
interfaces of the APUs and APCs. The results are based on the
application instruction mix and the cache miss rates shown in
Table III. Table IV shows the IO rates for a configuration with
a 400-MHz processor, a 32-kB cache that is logically split into
a 16-kB instruction cache and a 16-kB data cache, and on-chip
DRAM of one MB. The table shows the amount of traffic gen-
erated on the interface between cache and on-chip DRAM, as
well as between the on-chip memory and external memory. For
these simulations, it was assumed that cache misses do not intro-
duce stall cycles. This is a worst case assumption since IO rates
only decrease when stall cycles are introduced. It can clearly
be seen that an external memory interface of 500 MB/s, as sug-
gested in Table I, is sufficient for any type of application, even
if the interface is shared among four APUs. As on-chip cache
and memory sizes and IO bandwidth increase, the contention
on this interface becomes even less. This measurement assumes
that one APU processes only one application. It has to be in-
vestigated how much the IO rate increases when on-chip cache
and memory is shared among different applications due to ad-
ditional capacity cache misses. Still, it is important to provide
significantly more bandwidth than just the average IO rate since

memory access patterns are often bursty and thus lead to peaks
in IO usage.

These measurements of computational and IO requirements
of our benchmark applications show that the proposed router
design will be able to accommodate such programs and process
them efficiently.

VII. RELATED WORK

Programmable packet processing engines for routers have
recently become available commercially. So-called “network
processors” perform processing from the data link layer to the
application layer. The following list of products gives a brief
overview over available and publicly announced systems and
some of their basic characteristics:

• IBM PowerNP [9]: 16 processing units, one control pro-
cessor, 133-MHz clock rate, 1.6-GB/s DRAM bandwidth,
eight-Gb/s line speed, two threads per processor.

• Intel IPX1200 [10]: six processing engines, one control
processor, 200-MHz clock rate, 0.8-GB/s DRAM band-
width, 2.6-Gb/s line speed, four threads per processor.

• Lexra NetVortex [11]: 16 processing units, 450-MHz
clock rate, four threads per processor.

• Lucent Fast Pattern Processor [12]: three VLIW pro-
cessing units, one control processor, 133-MHz clock
rate, 1.1-GB/s DRAM bandwidth, five-Gb/s link rate, 64
threads per processor.

• MMC nP3400 [13]: two processing units, 220-MHz clock
rate, 0.5-GB/s DRAM bandwidth, five-Gb/s aggregate
throughput, eight threads per processor.

• Motorola C-5 [14]: 16 processing units, one control pro-
cessor, 200-MHz clock rate, 1.6-GB/s DRAM bandwidth,
five-Gb/s line speed, four threads per processor.

• Tsqware TS704 [15]: four processing units, 90-MHz clock
rate, 0.3-Gb/s DRAM bandwidth.

• Vitesse Prism IQ2000 [16]: four processing units,
200-MHz clock rate, 1.6-GB/s DRAM bandwidth,
6.4-Gb/s aggregate throughput, five threads per processor.

All network processors are system-on-a-chip designs that
combine processors, memory, and IO on a single ASIC. The
processing engines in these network processors are typically
RISC cores, for example, MIPS [17] and [18], or PowerPC
[6], which are augmented by specialized instruction, multi-
threading, and zero-overhead context switching mechanisms.
The on-chip memory of these processors is in the range of 100
to 500 kB.

Another approach is to use SIMD (single instruction, mul-
tiple data) processors, which are mainly used for media pro-
cessing and scientific applications, and adapt them to the net-
work environment. PixelFusion uses their Fuzion 150 [19] for
this purpose. It has 1500 simple processing units clocked at 200
MHz with 24 MB on-chip DRAM memory and 6.4 Gb/s ex-
ternal bandwidth. It has yet to be shown, though, that network
processing can be parallelized in a fashion that allows parallel
processing with a single instruction stream.

Today’s commercial network processors are mainly opti-
mized for packet header processing applications. The active
router that we propose is different insofar that it is not geared

WOLF AND TURNER: DESIGN ISSUES FOR HIGH-PERFORMANCE ACTIVE ROUTERS 409

toward processing of independent packets but toward true gen-
eral purpose processing of data streams that span many packets.
This requires the ability to store per-flow state information
(e.g., encryption keys or partial video frames) and make the
accessible to all packets of one flow.

Software environments for packet processing on pro-
grammable routers have received much attention in recent
years and many such systems have been developed [20]–[24].
Most prototypes are implemented on workstations that act as
routers but the basic concepts apply to multiport, multipro-
cessor routers, too. In principle, any such system could be
used to handle operating system, code distribution, and control
operations in a network processor.

VIII. C ONCLUSION

Active networking is an important new direction in net-
working research and potentially for commercial networks.
This paper is an attempt to determine how a practical high-per-
formance active router might be built. We use multiple
processing clusters that operate in parallel to provide in
computational power that is required for active applications.
Developments in chip technology will allow configurations
that can handle even complex applications that touch every
byte of payload at link rates of 2.4 Gb/s. Our proposed design
provides a concrete reference point that can help focus more
detailed studies of specific design issues. It also provides a
useful basis for extrapolation, as underlying IC technologies
continue their inexorable progress to ever smaller geometries
and higher performance levels.

REFERENCES

[1] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,”IEEE Commun.
Mag., vol. 35, pp. 80–86, Jan. 1997.

[2] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. V. Vin-
cente, and D. Villela, “A survey of programmable networks,”Comput.
Commun. Rev., vol. 29, no. 2, pp. 7–23, Apr. 1999.

[3] T. Chaney, A. Fingerhut, M. Flucke, and J. Turner, “Design of a gigabit
ATM switch,” in Proc. IEEE INFOCOM, Kobe, Japan, Apr. 1997.

[4] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” inProc. ACM SIGCOMM, Cambridge, MA, Sept. 1999.

[5] “ARC architecture,” ARC Inc., http://www.arccores.com/product/fea-
tures.htm, 1999.

[6] “The power PC 405™ core,” IBM Microelectronics Division, http://
www.chips.ibm.com/products/powerpc/cores/405cr_wp.pdf, 1998.

[7] “Rambus (R) technology overview,” Rambus Inc., http://www.rambus.
com/docs/techover.pdf, Feb. 1999.

[8] T. Wolf and M. A. Franklin, “CommBench—a telecommunications
benchmark for network processors,” inProc. IEEE Int. Symp. Perfor-
mance Analysis Systems Software, Austin, TX, Apr. 2000, pp. 154–162.

[9] “IBM power network processors 2000,” IBM Corp., http://www.chips.
ibm.com/products/wired/communications/network_processors.html.

[10] “Intel IXP 1200 network processor,” Intel Corp., http://devel-
oper.intel.com/design/network/ixp1200.htm, 2000.

[11] “Net vortex network communications system multiprocessor NPU,”
Lexra Inc., http://www.lexra.com/products.html, 2000.

[12] “Payload plus™ fast pattern processor,” Lucent Technologies Inc.,
http://www.agere.com/support/nonnda/docs/FPPProductBrief.pdf, Apr.
2000.

[13] “nP3400,” MMC Networks, Inc., http://www.mmcnet.com/.
[14] “C-5™ digital communications processor,” C-Port Corporation,

http://www.cportcorp.com/solutions/docs/c5-brief.pdf., 1999.
[15] “TS 704 edge processor product brief,” T.sqware Inc.,

http://www.tsqware.com/., 1999.
[16] “Prism IQ 2000 network processor family,” Sitera Inc.,

http://www.sitera.com/products/iq2000.pdf., 2000.
[17] “JADE—Embedded MIPS processor core,” MIPS Technologies, Inc.,

http://www.mips.com/products/Jade1030.pdf., 1998.
[18] “ARM9E-S Technical reference manual,” ARM Ltd.,

http://www.arm.com., Dec. 1999.
[19] “Fuzion 150 product overview,” PixelFusion Ltd., http://www.pixelfu-

sion.com/products/FUZION150A4ProductOverview.pdf., 2000.
[20] D. Decasper, G. Parulkar, S. Choi, J. De Hart, T. Wolf, and B. Plattner,

“A scalable, high performance active network node,”IEEE Network,
vol. 31, pp. 8–19, Jan. 1999.

[21] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith,
“The SwitchWare active network architecture,”IEEE Network, vol. 12,
pp. 29–36, Aug. 1998.

[22] S. Merugu, S. Bhattacharjee, E. W. Zegura, and K. Calvert, “Bowman:
A node OS for active networks,” inProc. IEEE INFOCOM, Tel Aviv,
Israel, Mar. 2000.

[23] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for
building and dynamically deploying network protocols,” inProc. IEEE
OPENARCH, San Francisco, CA, Apr. 1998.

[24] J. J. Hartman, P. A. Bigot, P. Bridges, B. Montz, R. Piltz, O. Spatscheck,
T. A. Proebsting, L. L. Peterson, and A. Bavier, “Joust: A platform for
liquid software,”IEEE Computer, vol. 32, pp. 50–56, Apr. 1999.

Tilman Wolf received the Diplom in computer science from the Universität
Stuttgart, Germany in 1998. He received the M.S. degree in computer science
in 1998 and the M.S. degree in computer engineering in 2000, both from Wash-
ington University, St. Louis, MO. Currently, he is working toward the Ph.D.
degree at the Department of Computer Science, Washington University.

His research interests are high-performance programmable routers, network
processor design, active networking, and benchmarking.

Jonathan S. Turner (M’77–SM’88–F’90) received the M.S. and Ph.D. degrees
in computer science from Northwestern University, Evanston, IL in 1979 and
1981.

He holds the Henry Edwin Sever Chair of Engineering at Washington
University, and is Director of the Applied Research Laboratory. He served
as Chief Scientist for Growth Networks, a startup company that developed
scalable switching components for Internet routers and ATM switches. The
company was bought by Cisco Systems for $355 million in early 2000. Pro-
fessor Turner’s primary research interest is the design and analysis of switching
systems, with special interest in systems supporting multicast communication.
The Applied Research Laboratory is currently engaged in a variety of projects
ranging from active networking, to network management and visualization, to
WDM burst switching. He has been awarded more than 20 patents for his work
on switching systems and has many widely cited publications. His research
interests also include the study of algorithms and computational complexity,
with particular interest in the probable performance of heuristic algorithms for
NP-complete problems.

Dr. Turner received the Koji Kobayashi Computers and Communications
Award from the IEEE in 1994 and the IEEE Millennium Medal in 2000.He is a
Member of the ACM and SIAM.

