
Journal of Systems Architecture 55 (2009) 421–433
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Analysis of network processing workloads

Ramaswamy Ramaswamy a, Ning Weng b, Tilman Wolf c,*

a Cisco Systems Inc., San Jose, CA, USA
b Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA
c Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
a r t i c l e i n f o

Article history:
Received 17 March 2009
Received in revised form 10 August 2009
Accepted 3 September 2009
Available online 15 September 2009

Keywords:
Network processor
Workload characterization
Router design
1383-7621/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.sysarc.2009.09.001

* Corresponding author. Address: Department of E
neering, University of Massachusetts, 151 Holdswort
USA. Tel.: +1 413 545 0757.

E-mail addresses: ramramas@cisco.com (R. Ra
(N. Weng), wolf@ecs.umass.edu (T. Wolf).
a b s t r a c t

Network processing is becoming an increasingly important paradigm as the Internet moves towards an
architecture with more complex functionality in the data path. Modern routers not only forward packets,
but also process headers and payloads to implement a variety of functions related to security, perfor-
mance, and customization. It is important to get a detailed understanding of the workloads associated
with this processing in order to be able to develop efficient network processing engines. We present a
tool called PacketBench, which provides a framework for implementing network processing applications
and obtaining an extensive set of workload characteristics. For statistics collection, PacketBench provides
the ability to derive a number of microarchitectural and networking related metrics. We show a range of
workload results that focus on individual packets and the variation between them. The understanding of
workload details of network processing has many practical applications. We discuss how PacketBench
results can be used to estimate network processing delay that are very close to those obtained from
measurement.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Internet has progressed from a simple store-and-forward
network to a more complex communication infrastructure. To
meet demands for security, flexibility, and performance in today’s
networks data packets not only need to be forwarded from router
to router, but also processed inside the network [1]. This trend to-
wards more complex data path processing continues in next-gen-
eration Internet architectures that are being considered [2]. Such
network processing is performed on routers, where port processors
can be programmed to implement a range of functions from simple
packet classification (e.g., for firewalls) to complex payload modi-
fications (e.g., encryption, content adaptation for wireless clients,
or ad insertion in web page requests).

To handle the constantly varying functional requirements of the
networking domain, router designs have moved away from hard-
wired ASIC forwarding engines. Instead, software-programmable
‘‘network processors” (NPs) have been developed in recent years
[3]. These NPs are typically multiprocessor systems on a chip
(MPSoC) with high-performance I/O components. They contain
several simple processor cores which are optimized for handling
ll rights reserved.

lectrical and Computer Engi-
h Way, Amherst, MA 01003,

maswamy), nweng@siu.edu
packets along with a control processor, which handles higher level
functions. A network processor is usually located on a physical port
of a router. Packet processing tasks are performed on the network
processor before the packets are passed on through the router
switching fabric and through the next network link. This is illus-
trated in Fig. 1. Design space exploration of NP architectures,
development of novel protocols and network processing applica-
tions, and the creation of suitable programming abstractions for
such parallel embedded systems are current areas of research.
Therefore it is crucial to understand the processing workload char-
acteristics of this domain in more detail.

The processing workload on network nodes is unique and dif-
ferent from traditional workstation or server workloads, which
are dominated by a few large processing tasks. Network processing
is entirely limited to a large number of very simple tasks that oper-
ate on small chunks of data (i.e., packets). This implies that many
results derived from analyzing workstation or server benchmarks
(e.g., SPEC [4]), are not necessarily applicable to the NP domain.
Good examples are the dominance of I/O and the requirements
for the memory hierarchy, where smaller on-chip memories suffice
due to the nature of packet processing.

To explore and understand network processing workloads in
more detail, we present in this paper a novel tool called ‘‘Packet-
Bench” (a contraction of ‘‘packet workbench”). PacketBench pro-
vides a programming and simulation environment, where packet
processing functions can be implemented easily and quickly. These
applications can then be simulated using a variety of real packet

http://dx.doi.org/10.1016/j.sysarc.2009.09.001
mailto:ramramas@cisco.com
mailto:nweng@siu.edu
mailto:wolf@ecs.umass.edu
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Router

Back-plane

PortPort

Port

Port

Port

Network Processor

N
et

w
or

k
In

te
rfa

ce

Processor
Core

Processor
Core

Processor
Core

Processor
Core

I/O

packets

Fig. 1. Router system with network processor. Packets are processed by one of multiple processing cores in the network processor.

422 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
traces. The simulation environment is set up to collect statistics
only for the packet processing application and not for the support-
ing PacketBench framework. Thus, numerous workload character-
istics that reflect the processing on the network processor can be
derived. These include traditional microarchitectural statistics
(since PacketBench uses SimpleScalar [5] for simulating processor
cores), as well as statistics that are very specific to the networking
environment (e.g., number of memory accesses per packet).

Most importantly, PacketBench allows the collection of work-
load information on a per-packet basis. Rather than examining
averaged metrics, we can explore the detailed processing of each
packet and explore the differences between individual packets.
This is important for network processing environments as most
packets exhibit very similar processing demands, but special cases
need to be processed on the control processor of the router system.

Compared to other network processing simulators and bench-
marks, PacketBench is novel and different in several ways. First,
PacketBench applications can be programmed easily with just a
bit of background in networking. Real network processors (which
occasionally provide similar system simulators) require in-depth
knowledge of the system architecture and are difficult to use. Sec-
ond, it allows applications to operate on actual packets in the same
fashion as it is done inside the network processor. Third, the sim-
ulation environment is able to hide the overhead for packet pre-
processing in the PacketBench framework. We do not wish to
characterize this processing since it is handled by specialized hard-
ware components in real systems. This provides the basis for real-
istic program behavior and accurate workload characterization.
Finally, note that PacketBench is not a benchmark suite. Instead, Pac-
ketBench is a tool to implement any packet processing applica-
tions. The user may choose which are considered representative.

The workload statistics that are derived from PacketBench can
be used in a number of ways. A few examples are:

� Application optimization. A detailed analysis of the run-time
behavior of an application is useful for application developers
to optimize its performance. Particularly in the NP domain there
are many real-time constraints that require a clear understand-
ing of application run-time statistics. Due to a lack of operating
system support on NPs, applications are typically fine-tuned off-
line for a given system.
� Allocation of processing tasks. On a network router, there are
several levels of processing resources (data-path processors
and co-processors, port control processors, and system control
processors). Processing tasks can be allocated to any of these
levels. Understanding the performance requirements of each
task allows system designers make correct choices.

� Developing novel NP architectures. NP architectures are based
on exploiting the inherent packet-level parallelism in the net-
working domain. Understanding the processing and memory
access statistics is important when developing novel designs.

The remainder of this paper is organized as follows. Section 2
discusses related work. We present an overview of PacketBench
in Section 3. We introduce several sample applications for Packet-
Bench in Section 4. Workload characteristics of these applications
are presented and discussed in Section 5. Section 6 describes
how the results obtained from PacketBench can be used in a prac-
tical scenario. A summary and conclusions are presented in Section
7.
2. Related work

There are numerous examples of processing packets on network
nodes that extend the basic packet forwarding paradigm. Routers
can perform firewalling [6], network address translation (NAT)
[7], web switching [8], IP traceback [9], and many other functions.
With increasingly heterogeneous end-systems (e.g., mobile devices
and ‘‘thin” clients), computationally demanding services have been
moved into the network. Examples for these are content transcod-
ing, advertisement insertion, and cryptographic processing. It can
be expected that this trend towards more functionality on the rou-
ter continues.

In practice, these processing functions can be implemented in a
variety of ways, ranging from software-based routers (workstation
acting as a specialized router) to specialized hardware (ASIC imple-
mentation on router line card). In recent years, programmable
network processors have become available for performing gen-
eral-purpose processing on high-bandwidth data links. These net-
work processors are system-on-a-chip multiprocessors that are
optimized for high-bandwidth I/O and highly parallel processing

PacketBench

Packet
trace

 Processor simulator
 (modified SimpleScalar)

Processed
trace

Network processing
application
(e.g., IPv4

forwarding, packet
classification, or

encryption)

Packet
Preprocessing

Packet
Memory

Management

 Application
 processing
 statistics

Selective
accounting

Pa
ck

et
Be

nc
h

AP
I

Fig. 2. PacketBench architecture. The selective accounting component ensures that
only statistics from the application are collected. Instructions that are executed as
part of the PacketBench framework are ignored.

R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433 423
of packets. A few examples are A few examples are the Intel
IXP2400 [10], AMCC np7300 [11], Cisco QuantumFlow [12], and
EZchip NP-3 [13]. The design spaces of such network processors
have been explored in several ways. Crowley et al. have evaluated
different processor architectures for their performance under net-
working workloads [14]. This work mostly focuses on the tradeoffs
between RISC, superscalar, and multithreaded architectures. A
modeling framework is proposed that considers the data flow
through the system [15]. Thiele et al. have proposed a performance
model for network processors [16] that considers the effects of the
queuing system. In our previous work, we have developed a quan-
titative performance and power consumption model for a range of
design parameters [17]. These models require detailed workload
parameters to obtain realistic results.

Several network processor benchmarks have captured various
characteristics of network processing. Crowley et al. have defined
simple programmable network interface workloads in [18]. In
our previous work, we have defined a network processor bench-
mark called CommBench [19]. Memik et al. have proposed a simi-
lar benchmark more recently [20]. Lee and John have extended
these benchmarks to also consider control plane applications
[21]. Embedded systems benchmarks from the Embedded Micro-
processor Benchmark Consortium [22] and the MiBench suite
[23] contain some typical network applications. All these bench-
marks are useful since they define a realistic set of applications,
but are limited in the detail of workload characteristics which
can be derived. We try to address this shortcoming with Packet-
Bench. PacketBench allows a very detailed and network-proces-
sor-specific analysis of such benchmark applications that goes
beyond simple microarchitectural metrics and yields information
on the processing steps for each individual packet. PacketBench
is based on SimpleScalar [5], a tried and tested microarchitectural
simulator. Other network processor simulators exist, but these are
not programmable in C (e.g., NePSim [24], Intel workbench [25]).

The results obtained from PacketBench can be used to parame-
terize performance models used in the early stages of network pro-
cessor design (e.g., [26]). It is also conceivable that the workload is
used in models of programmable processor systems that support
automatic generation of simulators and compilers (e.g., Tensilica
[27], CoWare [28]). The use of multi-core embedded processors
in the networking domain is an example of a broader trend to-
wards throughput-oriented computing (e.g., graphics processing,
data analysis).

3. PacketBench

PacketBench is a tool with which packet processing applications
can easily be implemented. It provides the support functions to
read and write packets from and to packet traces, manage packet
memory, and implement a simple API. The details of PacketBench
are discussed in this section.1

3.1. PacketBench system

The goal of PacketBench is to emulate the functionality of a net-
work processor. The conceptual outline of the tool is shown in
Fig. 2. The main components are:

� PacketBench framework. The framework provides functions
that are necessary to read and write packets, and manage mem-
ory. This involves reading and writing trace files and placing
packets into the memory data structures used internally by Pac-
1 The PacketBench source code and installation instructions can be found at:
http://www.ecs.umass.edu/ece/wolf/nsl/software/pb/.
ketBench. On a network processor, many of these functions are
implemented by specialized hardware components and there-
fore should not be considered part of the application.

� PacketBench API. PacketBench provides an interface for appli-
cations to receive, send, or drop packets as well as doing other
high-level operations. Using this clearly defined interface makes
it possible to distinguish between PacketBench and application
operations during simulation.

� Network processing application. The application implements
the actual processing of the packets. This can range from simple
forwarding to complex payload processing. Several such appli-
cations are discussed in Section 4. The workload characteristics
of these applications are most relevant and need to be collected
separately from workload generated by the PacketBench
framework.

� Processor simulator. To get instruction-level workload statis-
tics, we use a full processor simulator. In our current prototype
we use SimpleScalar [5], but in principle any processor simula-
tor could be used. Since we want to limit the workload statistics
to the application and not the framework, we modified the sim-
ulator to distinguish operations accordingly. The Selective
Accounting component does that and thereby generates work-
load statistics as if the application had run by itself on the pro-
cessor. This corresponds to the actual operation of a network
processor, where the application runs by itself on one of the pro-
cessor cores. Additionally, it is possible to distinguish between
accesses to various types of memory (instruction, packet data,
and application state, see Section 5).

The key point about this system design is that the application
and the framework can be clearly distinguished – even though
both components need to be compiled into a single executable in
order to be simulated. This is done by analyzing the instruction ad-
dresses and sequence of API calls. This separation allows us to ad-
just the simulator to generate statistics for the application
processing and ignore the framework functions. Another key ben-
efit of PacketBench is the ease of implementing new applications.
The architecture is modular and the interface between the applica-
tion and the framework is well defined. New applications can be
developed in C, plugged into the framework, and run on the simu-
lator to obtain processing characteristics.

http://www.ecs.umass.edu/ece/wolf/nsl/software/pb/

424 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
3.2. PacketBench API

The PacketBench API defines how applications can receive,
send, or drop packets. PacketBench makes no restrictions on the
application other than that it needs to adhere to the API. The three
main functions that are defined in the API are:

� void *init() – This function is implemented by the application
and called by the framework before any packets are processed.
It allows the application to initialize any data structures that
are required for packet processing (e.g., routing table). The pro-
cessing that occurs as part of init() is not counted towards packet
processing.

� void (*process_packet_function)(packet *) – This function is
the packet handler that is implemented by the application. It
is called once for each packet that is processed by the frame-
work. A pointer to the packet is passed as an argument. The
packet processing function has access to the contents of the
packet from the layer 3 header onwards.

� void write_packet_to_file(packet*, int) – This function is
implemented by the framework and called by the application
when processing is complete. It writes the packet to the trace
file (specified by the second parameter).

3.3. PacketBench prototype

PacketBench is simulated on a typical processor simulator to
obtain processing statistics. For this purpose, we use the ARM
[29] target of the SimpleScalar [5] simulator to analyze our appli-
cations. We chose this simulator because the ARM architecture is
very similar to the architecture of the core processor and the mic-
roengines found in the Intel IXP 2400 network processor [10]. Also,
SimpleScalar is freely available with source code and can easily be
modified. PacketBench supports packet traces in the tcpdump [30]
format and the Time Sequenced Header (TSH) format from NLANR
[31]. PacketBench generates a very small overhead and does not
significantly reduce the performance of SimpleScalar.

4. Application workload

We illustrate the capabilities of PacketBench by using it with an
example set of application and network traces. The results of the
workload evaluation are presented in Section 5.

4.1. Network processing applications

We have chosen eight applications for gathering workload sta-
tistics using PacketBench. An overview of the applications is shown
in Table 1. Applications are implemented using custom code and
open source libraries. Applications are classified as either header
processing applications (HPA) or payload processing applications
(PPA) as defined in [19]. HPAs process a limited amount of data
Table 1
Applications analyzed using PacketBench.

Application name Function Processing type

IPv4-radix Table lookup Header
IPv4-trie Table lookup Header
Flow Classification Table lookup and update Header
TSA IP address anonymization Header
IPSec-AES Payload encryption with AES Payload
IPSec-DES Payload encryption with DES Payload
String matching IDS pattern detection Payload
Fingerprinting Worm signature generation Payload
in the packet headers and their processing requirements are inde-
pendent of packet size. PPAs perform computations over the pay-
load portion of the packet and are more demanding in terms of
computational power as well as memory bandwidth.

The specific applications are:

� IPv4-radix. IPv4-radix is an application that performs RFC1812-
compliant packet forwarding [32] and uses a radix tree structure
to store entries of the routing table. The routing table is accessed
to find the interface to which the packet must be sent, depend-
ing on its destination IP address. The radix tree data structure is
based on an implementation in the BSD operating system [33].

� IPv4-trie. IPv4-trie is similar to IPv4-radix and also performs
RFC1812-based packet forwarding and was derived from [34].
This application uses a trie data structure with both path and
level compression to store the routing table, which is more effi-
cient in terms of storage space and lookup complexity.

� Flow Classification. Flow classification is a common part of var-
ious applications such as firewalling, NAT, and network moni-
toring. The packets passing through the network processor are
classified into flows which are defined by a 5-tuple consisting
of the IP source and destination addresses, source and destina-
tion port numbers, and transport protocol identifier. The 5-tuple
is used to compute a hash index into a hash data structure that
uses link lists to resolve collisions.

� TSA. Top-hashed subtree-replicated anonymization (TSA) [35] is
an algorithm to scramble IP addresses in network traces to
ensure the privacy of users and is a high-speed optimization
to prefix-preserving anonymization [36]. In addition to anony-
mizing the IP addresses, layer 3 and layer 4 headers are collected
for each packet that is encountered in the trace.

� IPSec-AES. IPSec-AES is an implementation of the IP Security
Protocol [37], where the packet payload is encrypted using the
Rijndael Advanced Encryption Standard (AES) [38] algorithm.

� IPSec-DES. IPSec-DES is also an implementation of the IP Secu-
rity Protocol, but uses the Data Encryption Standard (DES) [39]
algorithm for packet payload encryption. The DES algorithm is
employed in several VPN devices.

� String matching. String matching is an application where
packet payloads are searched for occurrences of patterns. This
application contains the implementation of the search algorithm
used in the SNORT [40] intrusion detection system.

� Fingerprinting. Fingerprinting is an application that identifies
commonly occurring patterns in packet payloads using Rabin
fingerprints [41]. This kind of processing is performed in worm
signature generation systems [42][43] and caching systems [44].

This selection of applications covers a broad space of typical
network processing. They vary in terms of both processing com-
plexity and data memory requirements as the results in Section 5
show.

4.2. Network traces and routing tables

To characterize workloads accurately, it is important to have
realistic packet traces that are representative of the traffic that
would occur in a real network. Table 2 shows the packet traces that
we used to evaluate the applications. Traces MRA, COS, and ODU
are obtained from the NLANR repository [31] and were collected
on different access and backbone links. The LAN trace was col-
lected on our local intranet.

We have run our experiments using traces of 1000 to 100,000
packets extracted from the traces shown in Table 2. While very
large traces are important for conventional workstation bench-
marks, network processing is dominated by small repetitive tasks.
Even with traces of only a few thousand packets, almost all

Table 2
Packet traces used to evaluate applications.

Trace name Type Packets

MRA OC-12c (PoS) 4,643,333
COS OC-3c (ATM) 2,183,310
ODU OC-3c (ATM) 904,668
LAN 100 Mbps (Ethernet) 100,000

R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433 425
possible execution paths of the application are considered (as
shown in Section 5). For this reason, the results that we have pre-
sented based on these traces can be considered representative.

To provide privacy, IP addresses in the NLANR traces are num-
bered incrementally starting at 10.0.0.1 in the order of their occur-
rence. This leads to a non-uniform coverage of destination
addresses in the address space. As a result, lookups into typical
routing tables (e.g., MAE-WEST [45] which we use for IPv4-radix)
lead almost always to the same prefix. To avoid this bias, we
scrambled the IP address in the packet preprocessing stage to
achieve more uniform coverage. Additionally, the NLANR traces
do not contain packet payloads. Random packet payloads are gen-
erated for these traces in the packet preprocessing stage of
PacketBench.
Table 3
Average number of instructions per packet executed for header processing
applications.

Trace name IPv4-radix IPv4-trie Flow Classification TSA

MRA 4438 206 162 903
COS 4388 206 164 906
ODU 4378 207 161 906
LAN 4972 200 152 900
Average 4544 205 160 904

Table 4
Average number of instructions per packet executed for payload processing
applications.

Trace name IPSec-AES IPSec-DES String matching Fingerprinting

MRA 40,533 191,960 7597 48,148
COS 39,865 188,723 7470 47,233
ODU 39,001 184,584 7312 46,242
LAN 23,990 111,922 5411 25,519
Average 35,847 169,297 6948 41,786
5. Results

There are a number of workload characteristics that can be gen-
erated with PacketBench. In general, there are three classes of re-
sults that can be derived:

� Microarchitectural results. Most processor simulators provide
a range of statistics that are related to the simulated processor
core. Examples are instruction mix, branch misprediction rates,
and instruction-level parallelism.

� Network processing results. In the context of network process-
ing there are a number of statistics that can be gathered, which
combine microarchitectural metrics (e.g., instruction count and
memory bandwidth) with packet metrics (e.g., packet size). This
leads to novel metrics that are specific to the network process-
ing environment (e.g., packet processing complexity and packet
memory access pattern).

� Per-packet analysis. The differences in the execution path of
packets highlight the dynamic variations in network processing.
While most packets follow the same processing steps, it is
important to identify the percentages of other cases in order
to decide how to implement them most efficiently.

Microarchitectural results for network processing have been
covered in our own previous work [19] as well as by other related
work [18,20,21]. Gathering similar workload characteristics is a
straightforward exercise and is not considered further (although
they can be obtained from PacketBench). Instead, we explore novel
network processing statistics. These statistics are divided into
three categories:

� averaged statistics,
� variation across packets, and
� individual packet analysis.

In particular, we focus on processing complexity and memory
accesses. The memory accesses and coverage statistics distinguish
not only between instruction and data memory, but further sepa-
rate data memory into packet data and program data. This is an
important distinction as packet data is handled differently in net-
work processors. The detailed packet processing analysis (com-
plexity variation, basic block coverage, and memory accesses)
explores the instruction execution path and memory access differ-
ences between packets. These metrics can help us to achieve effi-
cient operation of an application on a network processor.
5.1. Average statistics

5.1.1. Processing complexity
The average number of instructions executed per packet can be

expressed as the application complexity as we have defined in our
previous work [19]. We show the processing complexity for header
processing applications in Table 3 and the processing complexity
for payload processing applications in Table 4. The following obser-
vations can be made:

� The average number of instructions executed by payload pro-
cessing applications exceeds the average number of instructions
executed by header processing applications by several orders of
magnitude. This is an expected result since payload processing
involves more complex computation than header processing.

� Payload processing applications show a lot more variation in the
number of instructions executed per packet due to the fact that
they are dependent on the size of the packet payload.

� There is little variation in the number of instructions per packet
for header processing applications. This indicates that header
processing applications incur a fixed processing cost irrespective
of the size of the packet.

� Any variation in the number of instructions is application spe-
cific. For example, in IPv4 forwarding (IPv4-radix), the number
of instructions can vary depending on the destination address
of the packet (which may be at different locations in the routing
table). The variation in Flow Classification is caused by packets
hashing to different locations in the flow table.

� Different implementations of the same application have varying
complexities depending on the data structures and algorithms
that are used. For example, IPv4-radix forwarding requires more
instructions to execute than IPv4-trie forwarding. Most of the
instruction difference can be attributed to the overhead of main-
taining and traversing the radix tree. Moreover the implementa-
tion of IPv4-radix is a not particularly optimized as compared to
IPv4-trie. Similarly, IPSec-AES uses a newer more computation-
ally efficient algorithm than IPSec-DES and executes fewer
instructions per packet.

426 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
5.1.2. Memory accesses
As discussed previously, PacketBench can distinguish between

different memory regions which are in the same address space
but are semantically different. For the memory statistics, we distin-
guish between instructions, packet data, and program data (i.e.,
program state).

We have analyzed the test applications in terms of accesses to
packet memory (which contains the packet header and the pay-
load), and accesses to non-packet memory (e.g. routing tables, flow
tables). The analysis was performed for the first 10,000 packets of
each trace using 32-bit wide memory access. The results are sum-
marized in Table 5 for header processing applications and Table 6
for payload processing applications. The following observations
can be made:

� Header processing applications (Table 5) require only a few (18–
32) accesses to packet memory. Non-packet memory is used
much more heavily (17–842) and shows accesses to large data
structures maintained in memory.

� The number of memory accesses for payload processing applica-
tions (Table 6) is several orders of magnitude more than header
processing applications. This indicates that payload processing
applications access both packet data and program data more fre-
quently than header processing applications.

� Similar to the processing complexity, header processing applica-
tions show little variation in the amount of memory accesses
made between packets of different traces. Payload processing
applications exhibit a lot more variation in memory accesses
made (both to packet and non-packet memory) due to their data
dependent nature.

5.1.3. Memory coverage
We have estimated the size of the active memory regions for

both instructions and data by post-processing the instruction and
data traces returned by SimpleScalar. The analysis was performed
on the first 1000 packets of the MRA trace and for all eight sample
Table 5
Average number of accesses to packet memory and non-packet memory for header
processing applications.

Trace
name

IPv4-radix IPv4-trie Flow
classification

TSA

Pkt. Non-
pkt.

Pkt. Non-
pkt.

Pkt. Non-
pkt.

Pkt. Non-
pkt.

MRA 32 842 32 19 23 58 19 89
COS 32 836 32 19 24 60 18 88
ODU 32 841 32 19 24 58 18 88
LAN 32 898 32 17 23 52 20 89
Average 32 854 32 19 24 57 19 89

Table 6
Average Number of accesses to packet memory and non-packet memory for payload
processing applications.

Trace
name

IPSec-AES IPSec-DES String
matching

Fingerprinting

Pkt. Non-
pkt.

Pkt. Non-
pkt.

Pkt. Non-
pkt.

Pkt. Non-
pkt.

MRA 841 23,844 1652 66,545 662 2860 1221 9740
COS 828 23,447 1625 65,422 650 2812 1198 9557
ODU 810 22,935 1590 63,986 636 2753 1173 9357
LAN 508 14,038 974 38,776 387 1988 648 5162
Average 747 21,066 1460 58,682 584 2603 1060 8454
applications. The results are shown in Table 7 for header and pay-
load processing applications.

The data memory size is quite large for most applications ex-
cept IPv4-trie (we use a small routing table for this particular
application) and TSA. This is again due to large data structures
and shows that the memory regions accessed are very different
for individual packets. Otherwise, an application cannot cover such
a large region of memory with few memory accesses. (e.g. Flow
Classification covers 43,344 memory locations with an average of
57 non-packet memory accesses per packet.)

The instruction memory sizes in Table 7 imply a small program
core which is executed several times, particularly for payload pro-
cessing applications. For example, in IPSec-AES, the instruction
memory size is only 2800 bytes (approximately 700 instructions
assuming 32 bit instructions), but the average number of instruc-
tions executed per packet is 35,847. This re-emphasizes one key
characteristic of network processing, which is the simplicity of
the code executed on network nodes. As a result, network proces-
sors can operate efficiently with instruction stores of only a few
kilobytes.

Memory optimization is a crucial task in the design of any appli-
cation that runs on a network system since the time taken to access
memory is the dominant factor in the overall processing time. The
data shown in Table 7 can be used to optimize an application for a
particular network processor or to design more efficient memory
hierarchies for next generation network processors.

These averaged statistics only give a glimpse into the workload
characteristics of network processing. We provide further details
by comparing the variation in processing behavior between indi-
vidual packets.
5.2. Variation across packets

The variation in processing across packets is an important char-
acteristic in network processing. Network processors are highly
parallel embedded systems with relatively simplistic processor
cores and hardly any operating system support. As a result, NP
applications are often fine-tuned off-line by hand. Variations in
processing behavior due to different packet characteristics can im-
pact such optimizations. Due to space constraints, we present de-
tailed plots for only two of the eight applications presented in
Section 4.1 – IPv4-radix and IPSec-AES.
5.2.1. Processing complexity
Fig. 3a and b show the processing complexity for the two appli-

cations. This analysis was performed for the first 500 packets of the
MRA trace. IPv4-radix shows some variation in the number of
instructions executed for individual packets. This is due to the fact
that different locations in the routing table are being searched
depending on the address prefixes encountered in the packet. For
IPSec-AES, the variation is even more significant since the applica-
tion is data dependent and hence varies with packet size. The data
Table 7
Instruction and data memory sizes (in bytes) for header and payload processing
applications.

Application Instr. memory size Data memory size

IPv4-radix 4420 18,004
IPv4-trie 584 2908
Flow classification 1584 43,344
TSA 836 2668
IPSec-AES 2800 9428
IPSec-DES 2444 8676
String Matching 1608 105,772
Fingerprinting 820 8016

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f I
ns

tru
ct

io
ns

Packet

(a) IPv4-radix

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 100 200 300 400 500

N
um

be
r o

f i
ns

tru
ct

io
ns

Packet

(b) IPSec-AES

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

Pa
ck

et
 M

em
or

y
Ac

ce
ss

es

Packet

(c) IPv4-radix

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500

Pa
ck

et
 M

em
or

y
Ac

ce
ss

es

Packet

(d) IPSec-AES

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

N
on

-P
ac

ke
t M

em
or

y
Ac

ce
ss

es

Packet

(e) IPv4-radix

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 100 200 300 400 500

N
on

-P
ac

ke
t M

em
or

y
Ac

ce
ss

es

Packet

(f) IPSec-AES

Fig. 3. Packet processing variation. The variation over different packets in the trace for instructions executed, packet memory accesses, and non-packet memory accesses are
shown for two applications (IPv4-radix and IPSec-AES).

R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433 427
points at the bottom of the graph indicate the processing for small
packets while the data points near the top of graph indicate the
processing for larger sized packets.

5.2.2. Memory accesses
The variation in the number of packet memory accesses is

shown in Fig. 3c and d for the IPv4-radix and IPSec-AES applica-
tions respectively. Since IPv4-radix is a header processing applica-
tion, the variation in the number of packet memory accesses is very
small. In most cases, the same number of header fields need to be
extracted or overwritten and this number is almost constant.
Fig. 3c shows this for IPv4-radix. For IPSec-AES, a trend similar to
the one seen for instructions is exhibited. The number of packet
memory accesses made depends on the size of packet payload
and shows a significant variation across packets.

When looking at non-packet memory (Fig. 3e and f), the varia-
tion follows roughly the variations in the number of instructions
executed. This is to be expected as most applications have a fairly
constant ratio of memory accesses to overall instructions executed.

Fig. 3 shows that there are differences in the total number of
instructions executed and memory accesses made for each packet.
From a practical point of view, it is also important to explore if

428 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
these instructions are generated from the same piece of code. If
they are, then locality in the instruction store can be exploited,
since the amount of instruction store available is limited. To under-
stand this aspect better, we explore the details of processing a sin-
gle packet.

5.3. Individual packet analysis

In this part of the analysis, we look at two different characteris-
tics of the instructions that are executed while processing a packet
– the basic blocks they belong to, and sequences of instructions
(such as loops) that are repeatedly executed. This type of analysis
is particularly important for network processors as it gives insight
into how to optimize application execution. Due to the highly
repetitive nature of network processing, any improvement in the
implementation will have considerable impact on the entire sys-
tem. Also, the simplicity of network processing makes such an
analysis feasible. Due to space constraints, detailed packet analysis
is performed only for the IPv4-radix and Flow Classification
applications.

5.3.1. Instruction pattern
Fig. 4 shows the instruction access patterns for the IPv4-radix

and flow classification applications while processing a packet. In
order to view the instruction patterns more clearly, the instruction
addresses were assigned a unique index depending on the order in
which they were executed (shown on the y-axis). The x-axis shows
0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

U
ni

qu
e

in
st

ru
ct

io
n

ad
dr

es
s

Instruction

(a) IPv4-radix

Fig. 4. Detailed packet processing of single packet. The y-axis sh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

ba
si

c
bl

oc
k

ex
ec

ut
io

n
pr

ob
ab

ili
ty

basic block

(a) IPv4-radix

Fig. 5. Basic block access frequency. A probability of 1 in
the instruction number of the instructions that are required to pro-
cess that particular packet. Overlaps of the graph on the y-axis rep-
resent sequences of instructions which are repeatedly executed
(such as loops). Flow classification exhibits very linear program
behavior with very little repetition of instructions. IPv4-radix
shows very regular patterns in which the instructions are accessed.
For example, there is a loop that is executed four times between
instructions 400 and 1800.

5.3.2. Basic block access frequency
To further illustrate the differences in the execution path for

different packets, Fig. 5 shows the probability that a basic block
will be executed while processing a packet for the IPv4-radix and
Flow Classification applications. For IPv4-radix most basic blocks
are executed for all cases (execution probability equals 1). Some
blocks (#30–#70) are executed less frequently (80% probability
down to almost 0%). These blocks are handling special cases of
packet processing and can potentially be left out of the fast path
of a router system thereby saving instruction store space and be
handled by the slow path. For Flow Classification, a similar pattern
can be observed with most blocks being executed frequently and a
few blocks with almost no usage.

5.3.3. Basic block coverage
The observation that some pieces of code are executed in rare

cases gives rise to the question of the minimum number of basic
blocks that need to be installed in the fast path of a network
0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

U
ni

qu
e

in
st

ru
ct

io
n

ad
dr

es
s

Instruction

(b) Flow Classification

ows unique instruction addresses. Overlaps indicate loops.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

ba
si

c
bl

oc
k

ex
ec

ut
io

n
pr

ob
ab

ili
ty

basic block

(b) Flow Classification

dicates the basic block is executed for every packet.

R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433 429
processor to efficiently process most packets. Minimizing this
number while being able to process a large percentage of packets
allows the system to achieve higher throughput and minimize
the amount of instruction store required for a given application.

Fig. 6 shows the percentage of packets that can be processed (y-
axis) with a given number of basic blocks (x-axis). The goal here is
to find a tradeoff between the number of basic blocks that can be
stored (in an instruction store for example) and the number of
packets that can be processed with those basic blocks. If too few
basic blocks are present, we risk being unable to process certain
types of packets. If more basic blocks are available, more types of
packets can be processed, but we risk using up too much storage
space. The ‘‘sweet spots” of these plots are the steps, where the
packet coverage increases by adding on more basic block (e.g.,
395 basic blocks for IPv4-radix and 32 for Flow Classification). In
both cases over 90% packet coverage can be achieved. Additional
basic blocks increase this value incrementally.
5.3.4. Memory access sequence
Memory access patterns while processing a single packet are

shown in Fig. 7, for the IPv4-radix and Flow Classification applica-
tions. Reads and writes to packet memory are plotted on the posi-
tive y-axis while accesses to non-packet memory are plotted on the
negative y-axis. IPv4-radix accesses the packet memory (reading IP
header fields) initially and then operates entirely on non-packet
data memory to search the routing data structure. In Flow Classifi-
cation, both packet data and program state are accessed continu-
ously. This kind of insight into application behavior can be useful
for optimizing applications and designing efficient memory hierar-
chies for network systems.

6. Analysis of network processing delay

The results shown above give some interesting insights into
packet processing workloads. While the set of applications used
 0

 0.2

 0.4

 0.6

 0.8

 1

 340 350 360 370 380 390 400 410 420

pa
ck

et
s

co
ve

ra
ge

number of basic block

(a) IPv4-radix

Fig. 6. Packet coverage. The coverage indicates what fraction of the pa

Packet

Non-Packet

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Instructions

(a) IPv4-radix

N

Fig. 7. Data memory access pattern. The graph indicate
does not consider all possible types of packet processing, a good
coverage of basic applications is achieved. In this section, we pres-
ent how we have used the results obtained from PacketBench to
obtain an analytical model for estimating network processing
delay.

A packet traversing the network incurs the following delays: (1)
transmission delay (the time it takes to send the packet onto the
wire), (2) propagation delay (the time it takes to transmit the pack-
et via the wire), (3) processing delay (the time it takes to handle
the packet on the network system), and (4) queuing delay (the
time the packet is buffered before it can be sent). In most cases,
the key contributors of delay are (2) and (4) and are therefore con-
sidered in simulations and measurements. The transmission delay
(1) is usually small for fast links and small packets and is therefore
not considered. Traditionally, the processing delay (3) has also
been negligible. However, this is not the case anymore as packet
processing on routers becomes more complex. Our measurements
and simulations have shown that packet processing can take con-
siderable time especially when payload modifications are involved.
This processing cost needs to be considered in network simulations
to provide results that are a closer match to real measurements.

Using the processing complexity and memory access character-
istics shown in Section 5, it is possible to derive an analytic model
to estimate the processing delay of a packet given an application.
This analytic model was originally presented in our previous work
[46] and is briefly discussed here. This work extends [46] by pre-
senting model parameters for a wider range of applications.
6.1. Analytical model

Our analytic model describes processing cost as a function of a
few parameters and is based on results that can be easily derived
from PacketBench. To estimate processing cost, we use two param-
eters, aa and ba, which are specific to each network processing
application a:
 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80

pa
ck

et
s

co
ve

ra
ge

number of basic block

(b) Flow Classification

cket trace can be processed with a given number of basic blocks.

Packet

on-Packet

0 20 40 60 80 100 120 140 160

Instructions

(b) Flow Classification

s the memory regions to which accesses are made.

430 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
� Per-packet processing cost aa. This parameter reflects the
instructions that need to be executed for each packet indepen-
dent of its size.

� Per-byte processing cost ba. This parameter reflects the pro-
cessing cost that depends on the packet size.

The total instructions processed, ia;l, by an application a for a packet
payload of length l can then be approximated by

iaðlÞ ¼ aa þ ba � l: ð1Þ

Using PacketBench simulation results for the eight applications con-
sidered here, we obtain the parameters shown in Table 8. Similarly,
we use two parameters to estimate the memory access cost for each
application a.

� Per-packet memory accesses ca.
� Per-byte memory accesses da.

The total number of memory accesses for an application a and a
packet payload of size l is

maðlÞ ¼ ca þ da � l: ð2Þ

The memory parameters that we derived from simulation are also
shown in Table 8. In order to derive an overall processing delay as
an expression of time, rather than instructions or memory accesses,
it is necessary to consider the network system on which the pro-
cessing is performed. The processing speed of the core and the
memory access speed determine the overall processing time.

To capture the processing performance of a RISC core, we use
the processor clock frequency, f . This metric is easily obtained
and is a good approximation for processing speed. The main prob-
lem with using processor clock speeds as performance indicators is
that the overall processing time also depends on the processor
architecture and other system components. Since basically all net-
work processors today use RISC processor cores, the architecture
across systems is very similar. In normal operation, a RISC proces-
sor executes one instruction per clock cycle. This yields a process-
ing time, tp;a, for application a and a packet payload of length l of

tp;aðlÞ ¼
iaðlÞ

f
: ð3Þ

However, the processing performance of a RISC processor can be re-
duced due to pipeline stalls, which occur during memory accesses.
There are also other causes for memory stalls, like control hazards,
but the impact on the overall performance is less severe than stalls
due to memory accesses and are therefore neglected. To integrate
the effect of memory delay into our model, we assume an average
memory access time of tmem and determine the additional memory
access delay, tm;a, as

tm;aðlÞ ¼ maðlÞ � tmem: ð4Þ
Table 8
Application statistics for delay model.

Application, a Type Instructions Memory

aa ba ca da

IPv4-radix Header 4493 0 868 0
IPv4-trie Header 205 0 50 0
Flow Classification Header 153 0 79 0
TSA Header 902 0 88 0
IPSec-AES Payload 1272 61 591 36
IPSec-DES Payload 3517 294 1212 104
String matching Payload 433 11 155 4
Fingerprinting Payload 52 78 16 16
The total packet processing time, ta, is the sum of both delays:

taðlÞ ¼ tp;aðlÞ þ tm;aðlÞ: ð5Þ

An example of these system parameters for a network processor
(Intel IXP2400 [10]) are: fIXP = 600 MHz and tmem = 4–170 ns
depending on the type of memory used (on-chip registers vs. off-
chip SDRAM). The workload characteristics shown in Table 8 can
also be used in other performance models of network processor sys-
tems [47].

6.2. Model verification

We present more detailed measurements on a network system
that show the quantitative impact of processing delay. The results
are compared to the simulation and model results from previous
sections. We use a commercial off-the-shelf router for this mea-
surement. We use the network setup shown in Fig. 8.

Traffic is sent from the source to the sink over 10 Mbps Ether-
net. The VPN router is a Linksys BEFVP41 system. The measure-
ment node operates both network interfaces in promiscuous
mode and can therefore observe the packets that are transmitted
on both sides of the VPN router using tcpdump [48]. Since the hubs
do not buffer the packets, they do not introduce any delay between
the VPN router and the measurement node.

The delay from the VPN router is measured by timestamping
packets on both sides of the router. The difference in the time-
stamp is the delay. It is crucial that both links are measured by
the same computer so that differences in system clocks do not bias
the measurement.

The traffic that is sent for the delay measurement is a stream of
UDP packets of varying size at a low data rate (a few kbps). For the
round trip time measurement, a TCP connection is used. This keeps
queues empty and ensures that we measure the processing delay
on the router and not the queuing delay.

We consider two different cases in our measurement:

(1) Simple packet forwarding. In this case processing is limited
to simple IP forwarding. The IPSec tunnel shown in Fig. 8
is not used.

(2) VPN termination. In this case all packets require crypto-
graphic processing when moving into and out of the IPSec
tunnel.

The results for both applications are shown in Fig. 9. The plot
shows the processing time in microseconds over the packet size.
We can observe that there is an increase in processing time with
larger packets – as expected. However, even packet forwarding,
which is a simple header processing application, shows this behav-
ior. This is probably due to the fact that the Linksys BEFVP41 oper-
ates on the store-and-forward paradigm while handling packets.
This causes larger packets to take additional time, which is not
something that is captured in PacketBench. Nevertheless, the over-
all trend regarding increasing processing delay is clearly visible.
VPN RouterSource

IPSec Tunnel

Measurement Node

SinkHub Hub

Fig. 8. Measurement setup. The VPN router is a Linksys BEFVP41 and all network
connections are 10 Mbps Ethernet.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 200 400 600 800 1000 1200 1400 1600

to
ta

l d
el

ay
 in

 m
ic

ro
se

co
nd

s

packet size in bytes

IPSec 3DES
IP forwarding

Fig. 9. Measurement results.

R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433 431
The model that we have developed for processing cost can be
used easily in network simulations. We show this by adding an
estimated delay as derived in Eq. (5) to a networking simulation
and comparing the results to the measurements we have
performed.

We integrated the delay model into the Network Simulator ns-2
[49] and simulated the topology shown in Fig. 8 (excluding the
measurement node). The metric that we are interested in is the
round-trip time (RTT) for a TCP connection that traverses the
VPN router. RTT is a good measure as it directly expresses the
end-to-end delay and has a significant impact on the performance
of TCP connections.

Fig. 10a shows the measured RTT for both IPSec and plain for-
warding. The RTT for IPSec averages 56.2 ms and is about 12 ms
larger than the 44.1 ms RTT for IP forwarding. This is an expected
result and confirms the observations from Fig. 9.

Fig. 10b shows the ns-2 simulation result for the same setup.
The x-axis shows time instead of TCP sequence number due to
the way ns-2 reports RTT values. The average RTT for
baseline IP forwarding is 42.0 ms and thus very close to the mea-
sured value of 44.1 ms. The RTT increases to 56.9 ms for IPSec.
This value is also very close to the RTT observed in the
measurement.

These results clearly show that:

� The processing delay on a router has a direct impact on the per-
formance of TCP connections. The processing delay increases the
overall RTT and decreases the throughput.
0

20

40

60

80

100

0 100000 200000 300000 400000 500000

R
T

T
 in

 m
ill

is
ec

on
ds

relative sequence number

IPSec 3DES
IP Forwarding

(a) Measurement

Fig. 10. RTT for TCP connection. The simulation, which uses the process
� By extending the network simulator with our simple model for
determining processing delay, we can achieve results that cap-
ture the measured network behavior.

On the average, a 2–5% error is introduced by using a simple
linear model for the instruction counts and memory accesses.
There are some limitations to this model that we wish to point
out. First, the performance model in Section 6.1 is only one of
many ways of approximating processing cost. Not all applications
match the linear behavior that is observed in IP forwarding and
IPSec. Examples of this are flows where processing is unevenly
distributed among packets (e.g., HTTP load balancers or web
switches [8] where most processing is performed on transmis-
sion of the initial URL). However, our model captures two key
factors that are characteristic for packet processing: the per-
packet delay, and the per-byte delay. Many applications process
the headers, which incurs a fixed cost, and some process the pay-
load, which incurs a packet length dependent cost. Therefore we
expect that a large number of processing applications fall into
the category that can be estimated by our model. Second, the
derivation of system parameters is difficult for network systems
where detailed specifications are not available. Also, the use of
co-processors and other hardware accelerators leads to heteroge-
neous architectures that cannot be easily calibrated with a few
metrics.

The processing cost model that we have derived is very simple
and only requires two parameters. There is a tradeoff between sim-
plicity and accuracy. We feel that it is important to derive a simple
model that can easily be integrated into network simulations (as
shown above). If the model requires a large number of parameters
that are hard to derive and understand, it is unlikely that it will
find broad usage. The results from Fig. 10a–b also show that even
this simple model can improve the accuracy of simulations
significantly.
7. Conclusion

In this paper, we have presented PacketBench, a tool for ana-
lyzing network processing workloads. PacketBench provides a
simple platform for developing network processing applications
and simulating them in a realistic way using real packet traces.
We presented results for eight different networking applications.
The workload characteristics derived with PacketBench focus
mostly on novel, packet processing related characteristics. In par-
ticular, we are able to combine microarchitectural statistics (e.g.,
0

20

40

60

80

100

0 1 2 3 4 5

R
T

T
 in

 m
ill

is
ec

on
ds

time in seconds

IPSec 3DES
IP Forwading

(b) Simulation

ing delay model, matches closely the measured network behavior.

432 R. Ramaswamy et al. / Journal of Systems Architecture 55 (2009) 421–433
instruction count) with networking metrics (e.g., packet size).
The detailed analysis of processing characteristics of individual
packets and the variation between them helps to gain a better
understanding of network processing workloads. We have also
presented an analytical model for the estimation of network pro-
cessing delay which uses workload characteristics derived from
PacketBench. Use of this delay model improves the quality of
network simulation results by providing accurate parameters.
We believe that the availability of such a tool to analyze network
processing workloads is an important aspect of designing and
operating packet processing systems.

References

[1] W. Eatherton, The push of network processing to the top of the pyramid, in:
Keynote Presentation at ACM/IEEE Symposium on Architectures for
Networking and Communication Systems (ANCS), Princeton, NJ, 2005.

[2] A. Feldmann, Internet clean-slate design: what and why?, SIGCOMM Computer
Communication Review 37 (3) (2007) 59–64.

[3] T. Wolf, Challenges and applications for network-processor-based
programmable routers, in: Proceedings of the IEEE Sarnoff Symposium,
Princeton, NJ, 2006.

[4] Standard Performance Evaluation Corporation, SPEC CPU2000 – Version 1.2,
December 2001.

[5] D. Burger, T. Austin, The SimpleScalar tool set version 2.0, Computer
Architecture News 25 (3) (1997) 13–25.

[6] J.C. Mogul, Simple and flexible datagram access controls for UNIX-based
gateways, in: USENIX Conference Proceedings, Baltimore, MD, 1989, pp. 203–
221.

[7] K.B. Egevang, P. Francis, The IP Network Address Translator (NAT), RFC 1631,
Network Working Group, May 1994.

[8] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, D. Saha, Design,
implementation and performance of a content-based switch, in:
Proceedings of the IEEE INFOCOM 2000, Tel Aviv, Israel, 2000, pp. 1117–
1126.

[9] A.S. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio, S.T. Kent, W.
T. Strayer, Hash-based IP traceback, in: Proceedings of the ACM SIGCOMM
2001, San Diego, CA, 2001, pp. 3–14.

[10] Intel Corporation, Intel Second Generation Network Processor, 2002, <http://
www.intel.com/design/network/products/npfamily/ixp2400.htm>.

[11] AMCC, np7300 10 Gbps Network Processor, 2006, <http://www.amcc.com>.
[12] Cisco Systems Inc., San Jose, CA, The Cisco QuantumFlow Processor: Cisco’s

Next Generation Network Processor, Febuary 2008.
[13] EZchip Technologies Ltd., Yokneam, Israel, NP-3 – 30-Gigabit Network

Processor with Integrated Traffic Management, May 2007, <http://
www.ezchip.com/>.

[14] P. Crowley, M.E. Fiuczynski, J.-L. Baer, B.N. Bershad, Characterizing processor
architectures for programmable network interfaces, in: Proceedings of the
2000 International Conference on Supercomputing, Santa Fe, NM, 2000, pp.
54–65.

[15] P. Crowley, J.-L. Baer, A modelling framework for network processor systems,
in: Proceedings of the First Network Processor Workshop (NP-1) in
Conjunction with Eighth IEEE International Symposium on High Performance
Computer Architecture (HPCA-8), Cambridge, MA, 2002, pp. 86–96.

[16] L. Thiele, S. Chakraborty, M. Gries, S. Künzli, Design space exploration of
network processor architectures, in: Proceedings of the First Network
Processor Workshop (NP-1) in Conjunction with Eighth IEEE International
Symposium on High Performance Computer Architecture (HPCA-8),
Cambridge, MA, 2002, pp. 30–41.

[17] T. Wolf, M. Franklin, Performance models for network processor
design, IEEE Transactions on Parallel and Distributed Systems 17 (6) (2006)
548–561.

[18] P. Crowley, M. E. Fiuczynski, J.-L. Baer, B. N. Bershad, Workloads for
programmable network interfaces, in: IEEE Second Annual Workshop on
Workload Characterization, Austin, TX, 1999.

[19] T. Wolf, M. A. Franklin, CommBench – a telecommunications benchmark for
network processors, in: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Austin, TX, 2000, pp.
154–162.

[20] G. Memik, W.H. Mangione-Smith, W. Hu, NetBench: a benchmarking suite for
network processors, in: Proceedings of the International Conference on
Computer-Aided Design, San Jose, CA, 2001, pp. 39–42.

[21] B.K. Lee, L.K. John, NpBench: a benchmark suite for control plane and data
plane applications for network processors, in: Proceedings of the IEEE
International Conference on Computer Design (ICCD ’03), San Jose, CA, 2003,
pp. 226–233.

[22] Embedded Microprocessor Benchmark Consortium, <http://www.eembc.org>.
[23] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,

MiBench: a free, commercially representative embedded benchmark suite, in:
Proceedings of the IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, 2001.

[24] Y. Luo, J. Yang, L.N. Bhuyan, L. Zhao, NePSim: a network processor
simulator with a power evaluation framework, IEEE Micro 24 (5) (2004)
34–44.

[25] S.D. Goglin, D. Hooper, A. Kumar, R. Yavatkar, Advanced software framework,
tools, and languages for the IXP family, Intel Technology Journal 7 (4) (2003)
64–76.

[26] N. Weng, T. Wolf, Analytic modeling of network processors for parallel
workload mapping, ACM Transactions on Embedded Computing Systems 8 (3)
(2009) 1–29.

[27] Tensilica Inc., Santa Clara, CA, Xtensa LX2 Product Brief, April 2007.
[28] CoWare Inc., San Jose, CA, CoWare Processor Designer, 2006.
[29] ARM Ltd., ARM7 Datasheet, 2003.
[30] TCPDUMP, TCPDUMP Public Repository, 2003 <http://www.tcpdump.org>.
[31] National Laboratory for Applied Network Research – Passive Measurement

and Analysis, Passive Measurement and Analysis, 2003, http://pma.nlanr.net/
PMA/.

[32] F. Baker, Requirements for IP version 4 routers, RFC 1812, Network Working
Group, June 1995.

[33] NetBSD Project, NetBSD release 1.3.1, <http://www.netbsd.org/>.
[34] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE Journal on

Selected Areas in Communications 17 (6) (1999) 1083–1092.
[35] R. Ramaswamy, T. Wolf, High-speed prefix-preserving IP address

anonymization for passive measurement systems, IEEE/ACM Transactions on
Networking 15 (1) (2007) 26–39.

[36] J. Xu, J. Fan, M.H. Ammar, S.B. Moon, Prefix-preserving IP address
anonymization: measurement-based security evaluation and a new
cryptography-based scheme, in: Proceedings of the 10th IEEE
International Conference on Network Protocols (ICNP’02), Paris, France,
2002, pp. 280–289.

[37] S. Kent, R. Atkinson, IP Encapsulating Security Payload (ESP), RFC 2406,
Network Working Group, November 1998.

[38] National Institute of Standards and Technology, Advanced Encryption
Standard (AES), fIPS 197, November 2001.

[39] National Institute of Standards and Technology, Data Encryption Standard
(DES), fIPS 46-3, October 1999.

[40] Snort, The Open Source Network Intrusion Detection System, 2004, <http://
www.snort.org>.

[41] M.O. Rabin, Fingerprinting by Random Polynomials, Tech. Rep. TR-15-81,
Harvard University, Department of Computer Science, 1981.

[42] H.-A. Kim, B. Karp, Autograph: toward automated, distributed worm signature
detection, in: Proceedings of the 13th Usenix Security Symposium (Security
2004), San Diego, CA, 2004.

[43] S. Singh, C. Estan, G. Varghese, S. Savage, Automated worm fingerprinting, in:
Proceedings of the ACM/USENIX Symposium on Operating System Design and
Implementation, San Francisco, CA, 2004.

[44] N.T. Spring, D. Wetherall, A protocol-independent technique for eliminating
redundant network traffic, SIGCOMM Computer Communication Review 30
(4) (2000) 87–95.

[45] Network Processor Forum, Benchmarking Implementation Agreements, 2003,
<http://www.npforum.org/benchmarking/bia.shtml>.

[46] R. Ramaswamy, N. Weng, T. Wolf, Characterizing network processing delay, in:
Proceedings of the IEEE Global Communications Conference (GLOBECOM),
Dallas, TX, 2004, pp. 1629–1634.

[47] M.A. Franklin, T. Wolf, A network processor performance and design model
with benchmark parameterization, in: Proceedings of the First Network
Processor Workshop (NP-1) in Conjunction with Eighth IEEE International
Symposium on High Performance Computer Architecture (HPCA-8),
Cambridge, MA, 2002, pp. 63–74.

[48] S. McCanne, V. Jacobson, The BSD packet filter: a new architecture for user-
level packet capture, in: Proceedings of the USENIX Technical Conference, San
Diego, CA, 1993, pp. 259–270.

[49] LBNL, Xerox PARC, UCB, and USC/ISI, The Network Simulator – ns-2, <http://
www.isi.edu/nsnam/ns/>.

Ramaswamy Ramaswamy received the B.E. degree in
computer science and engineering from the University
of Madras, India, in 1999, and M.S. and Ph.D. degrees in
computer engineering from the University of Massa-
chusetts, Amherst, in 2001 and 2006, respectively. He is
currently with Cisco Systems Inc. in San Jose, CA. His
research interests include network systems design and
network processor analysis.

http://www.intel.com/design/network/products/npfamily/ixp2400.htm
http://www.intel.com/design/network/products/npfamily/ixp2400.htm
http://www.amcc.com
http://www.ezchip.com/
http://www.ezchip.com/
http://www.eembc.org
http://www.tcpdump.org
http://pma.nlanr.net/PMA/
http://pma.nlanr.net/PMA/
http://www.netbsd.org/
http://www.snort.org
http://www.snort.org
http://www.npforum.org/benchmarking/bia.shtml
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

stems Architecture 55 (2009) 421–433 433
Ning Weng received an M.S. degree in electrical and
computer engineering from the University of Central

Florida in 2000. He received a Ph.D. degree in electrical
and computer engineering from the University of Mas-
sachusetts, Amherst in 2005. He is currently an assistant
professor in the Department of Electrical and Computer
Engineering at Southern Illinois University, Carbondale.
His research interests are system integration, network
processing system design, and network security.

R. Ramaswamy et al. / Journal of Sy
Tilman Wolf is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the
University of Massachusetts Amherst. He received his
D.Sc. in computer science from Washington University
in St. Louis in 2002. His research interests are next-
generation Internet architecture, programmable rou-
ters, network processors, and embedded system
security.

	Analysis of network processing workloads
	Introduction
	Related work
	PacketBench
	PacketBench system
	PacketBench API
	PacketBench prototype

	Application workload
	Network processing applications
	Network traces and routing tables

	Results
	Average statistics
	Processing complexity
	Memory accesses
	Memory coverage

	Variation across packets
	Processing complexity
	Memory accesses

	Individual packet analysis
	Instruction pattern
	Basic block access frequency
	Basic block coverage
	Memory access sequence

	Analysis of network processing delay
	Analytical model
	Model verification

	Conclusion
	References

