
Locality-Aware Predictive Scheduling of Network Processors

Tilman Wolf and Mark A. Franklin
Departments of Computer Science and Electrical Engineering

Washington University in St. Louis, MO, USA

�wolf, jbf�@ccrc.wustl.edu

Abstract

Demands for flexible processing have moved general-
purpose processing into the data path of networks. Pro-
cessor schedulers have a great impact on the performance
of these real-time systems. We present measurements that
show that the workload of a network processor is highly reg-
ular and predictable. Processing time predictions, based on
these measurements, can be used in scheduling together with
information about locality in the instruction stream to sig-
nificantly improve throughput performance. We propose two
scheduling schemes, Locality-Aware and Locality-Aware
Predictive, that try to avoid cold caches when scheduling
packets for processors. Simulations of the schedulers using
packet processing times obtained from an operational net-
work processor show the tradeoffs between the algorithms
and their performance improvements over First-Come-First-
Serve scheduling.

1 Introduction

Over the past decade there has been rapid growth in the need
for reliable, robust, and high performance communications
networks. This has been driven in large part by the demands
of the internet and general data communications. To adapt
to new protocols, services, standards, and network applica-
tions, many modern routers are equipped with general pur-
pose processing capabilities to handle (e.g., route and pro-
cess) data traffic in software rather than dedicated hardware.
This paper addresses how processing tasks can be scheduled
efficiently on such network processors making use of local-
ity information and execution time predictions.

In the current router environment, single processor sys-
tems generally cannot meet network processing demands.
This is due to the high computational requirements of many
network applications and the growing gap between link
bandwidth and single processor performance. Such applica-
tion service software or system software, which we call “ap-
plication,” includes routing, QoS, encryption, compression,
media transcoding, and other computationally demanding

tasks [18], [4]. However, since packet streams only have de-
pendencies among packets of the same flow but none across
different flows, processing can be distributed over several
parallel processors. From a functional and performance
standpoint it is therefore reasonable to consider developing
network processors as parallel machines.

Progress in VLSI technology has also advanced integra-
tion to the point where it is now possible to design and
implement multiple network processors, with cache and
DRAM, on a single silicon chip. Benefits of system-on-
a-chip designs include reduced memory access latency and
higher clock rates. Commercial examples for such network
processors are the IBM PowerNP [8], the Intel IPX1200 [9],
and the Motorola C-5 [1]. A study of optimal configurations
of system-on-a-chip designs [17] has shown that on-chip
cache sizes are typically small (� � ����) due to die size
limitations and can only hold information for the most re-
cently executed program. The information, which is mostly
instruction code, can be reused by the processor if subse-
quent packets require the same program. Data cache infor-
mation containing packet-dependent data can less easily be
reused, since it changes with every packet. Thus, we mainly
focus on the reuse of information in the instruction cache of
the processors. Changing the program that a network pro-
cessor executes, causes the caches to become cold, which
results in an execution time penalty associated with the ini-
tial loading of the cache with new application instructions.
This can have a significant negative effect on overall net-
work processor performance. It is possible, however, to use
instruction locality information in scheduling tasks in such
a way that the assignment of packets, processed by the same
program, are placed on the same processor. This reduces the
occurrence of cold caches and improves performance.

Section 2 formalizes the scheduling problem that is con-
sidered. Section 3 introduces the locality-aware predictive
scheduling algorithm and shows the feasibility of process-
ing time prediction. Section 4 shows simulation results and
discusses the benefits of the scheduling strategies. Section 5
discusses related work and Section 6 concludes this paper.

from
transmission

interface

selection
buffer

...

processor
1

processor
m

processor
2

Scheduler

... output queue
to link

scheduler

data
control

1

b

2

input queue

Figure 1: Network Processor Subsystem

2 Scheduling Problem
We consider the parallel network processor shown in Fig-
ure 1. The datapath through the system originates at
the transmission interface, where packets are received and
buffered in the input queue. The scheduler assigns a packet
to each of the� processing units whenever a processing unit
becomes idle. To do this effectively, the scheduler can pick
any of the � packets in the “selection buffer.” A packet that is
removed from the selection buffer for processing is replaced
by the next packet from the input queue. Processed pack-
ets are placed into the output queue and sent to the outgoing
link or the switch fabric of a router. More details on such a
network processor system can be found in [19].

The application software that is executed by a processing
unit on a given packet is implicitly defined by the flow to
which packet belongs. This requires a flow classification for
each packet, which we assume is performed before packets
enter into the selection buffer. An example of an efficient
flow classification algorithm is described in [13]. To fo-
cus on the scheduling issues, we do not consider the issue
of per-flow queuing and the associated resource reservation
and enforcement issues. We also do not address issues of
how code is dynamically distributed to the processors and
executed safely. This is addressed by much of the research
in the area of active networks [14].

The scheduler bases the decision of which packet to pro-
cess next, on control information that is received from the
selection buffer and the processors (dashed lines in Fig-
ure 1). The selection buffer can provide information on the
size of each packet and which application is required. The
processors feed back information on when they become idle
and which application was executed most recently.

The goal of the scheduler is to assign packets to proces-
sors in such a way as to maximize the throughput while
bounding delay for the individual packets. In the network
processor domain, it is particularly important to make use of
locality in instructions caches. Since caches are relatively
small in multiprocessor system-on-a-chip designs it is ad-
vantageous to reuse cached instructions by executing pack-
ets that use the same application back-to-back.

2.1 Definition
The definition of the scheduling problem is as follows:

Given a sequence of packets �� � � � ��, as-
sociated processing application requirements
�������������, and a set of identical processors
and their associated caches �� � � � ��: Find a se-
quential assignment of processing units �� � ��
�	 � �
 � � �
�� � � �
 � � �
 �� to packets that max-
imizes a given performance metric (defined later).

We would like to develop a scheduler, ���
 ���, where S is
a function of the set of packets in the selection buffer,� �, at
time �, and the processing unit, ��, which has become idle
at time �. That is, anytime a processor � becomes idle, we
want to schedule a packet from � on that processor.

The assignment of a packet to a processor may be de-
veloped as a function of packet size, application properties,
time, and state of the processors (see Table 1). Naturally,
a schedule is prohibited from assigning more than one
packet to a processor � at any given time.

2.2 Performance Criteria
The performance of a schedule S can be defined in several
(sometimes conflicting) ways. The performance depends in
large part on the order of packet execution and the resulting
processing time for the packet set. The execution time of
a packet depends on the state of the cache of the processor
where it is processed. A cache is said to be cold if the ap-
plication required by a newly assigned packet differs from
the application just completed. If the cache is warm, the
processing time is �����. If the cache is cold, a penalty of
������ is added to the processing time �����. We define the
following performance criteria:

� Throughput �	 �

�
�������

����

�������������
�

The throughput is defined as the amount of data (i.e.,�
�����) that is processed in a given amount of time.

This is the key performance parameter, since generally
network processors are aimed at processing as much

Component Symbol Description

packet � � the set of all packets (� � �)
� number of packets (�� � � �)
�� the ��� packet in the data stream
���� size of packet �
���� application � that is used to process packet �

application � � the set of all applications (� � �)
� the number of all applications (��� � �)
	���� the actual processing time of packet �
	���� the estimated processing time of packet � with warm caches
	����� the cold cache penalty for packet p

processing unit
 � the set of all processing units (
 � �)
� number of processors (�� � � �)
��
� set of apps for which processor
 has a warm cache at time 	

selection buffer �� �� the set of all packets in the selection buffer at time 	 (�� � � �)
� number of buffer slots (���� � �)

schedule S ��
���� the packet from �� that is assigned to
 under schedule �
	���� time when packet � is scheduled for a processor by schedule �
����
����� returns 1 if assigned processor has cold cache, 0 otherwise
����� returns the order of packet � under schedule �

Table 1: System Parameters.

data as possible. Note that for simplicity, the execution
time remaining after scheduling the last packet is ig-
nored, since it has negligible effect on the results when
� is large.

� Fraction of cold caches �	 �

�
�������

��	�����
��

�

where �� � � � �� is the sequence of times when schedul-
ing decisions occur. The fraction of cold caches is the
number of times a packet � is assigned to a processor
with a cold cache (i.e., ����
���� � �) divided by the
total number of scheduled packets. �	 is an indicator
of how much locality awareness a scheduling scheme
shows. The lower the fraction, the fewer cold cache
penalties are incurred.

� Delay variation�	 �
��

��������	� �	�����
�

where �	���� is the order in which schedule assigns
packets to processors. If packet �� is the seventh packet
to be processed, then ����� � �. Thus, for in-order
processing �	 � 	. If packets are processed out of
order, �	 is the standard deviation of the variation in
the order. The larger �	, the more variation, which
means that certain packets are kept longer in the selec-
tion buffer. This increases their overall delay. While it
is necessary to change the order of packet processing
to make use of locality in reducing the negative cold
cache performance effects, the goal is to keep�	 low.
This will both reduce delay, and help to avoid large-
scale re-ordering of the packet stream.

Using these performance measurements, the different
scheduling strategies are evaluated in Section 4.

3 Scheduling Strategies
We consider four scheduling strategies with varying
grades of complexity: First-Come-First-Serve (FCFS),
Throughput-Optimal (T-Opt), Locality-Aware (LA), and
Locality-Aware Predictive (LAP). FCFS and T-Opt are sim-
ple strategies that perform optimally for one performance
criterion (FCFS causes no delay variation, T-Opt achieves
maximum throughput). They are used for comparison with
the proposed locality-aware scheduling schemes, which are
described below.

FCFS. A simple, basic scheduling scheme is first-come-
first-serve (FCFS). In this scheme, packets are assigned to
processors in the order of their arrival. If a processor � be-
comes available at time �, the oldest packet in the selection
buffer� is sent to �:
���	��
��� � ��
 ����� 	 �
�������� � ����

The schedule is independent of the size of the selection
buffer and does not take any locality into account. It is op-
timal in terms of variation in delay for packets since it does
not re-order packets and keeps the delay for each packet in
a given flow the same.

Throughput-Optimal (T-Opt). We define Throughput-
Optimal as the algorithm that achieves maximum locality
(and thus maximum throughput) by being allowed to pick
any packet out of packet stream � (independent of � �). T-
Opt executes all packets of one application before it switches
the processor to another. Thus, the only cold caches are due
to compulsory cache misses for the first packet of an appli-
cation.

�������
��� � ��

����� �� �
����� ��� � � ������ � �������

This strategy, though not realistic for actual implementation,
gives an upper bound on the possible performance.

Locality-aware (LA). Locality aware scheduling uses in-
formation about the recent execution history of processor �
to decide on the next packet. Given the set of applications
for which the cache of processing unit � is warm,� ����, a
packet � from �� is chosen that uses one of these applica-
tions (���� � �����). In case there are several such packets,
the oldest is chosen.
����
��� � ��

����� �� �
����� ��� � �������� ��������
If there is no packet for which the cache of � is warm, the
oldest packet overall is chosen.

The effect of such a scheduling strategy is that a processor
executes packets from only one application until there are
no more packets from that application available in the selec-
tion buffer. Thus, packet execution is clustered together to
achieve locality. The drawback of such scheduling is that
the packets are re-ordered significantly.

Locality-Aware Predictive (LAP). The locality-aware,
predictive scheduling algorithm aims at making use of lo-
cality, while keeping a bound on delay of the individual
packets. At each scheduling decision, LAP computes the
fraction of processing that is necessary for each application
based on the packets in the selection buffer. To achieve that,
LAP uses an estimation of the processing time, �����, for
each packet �. Define ���

��� as the fraction of processing
required by application �:

���
��� �

�
�������������

������
����

�����
�

This fraction is compared to the fraction of processors that
are currently executing application � (which means that they
have a warm cache for application �). Let � ���� be that
fraction for �:

����� �
��� � � �� � �������

�
�

Given ���
��� and �����, LAP attempts to ensure that the

fraction of processing power associated with applications
(i.e.,������ is close to the that required by the packets in the
buffer (i.e., ���

���). LAP chooses to continue processing
the application � for which � has a warm cache if changing
the application would drop its processing fraction, � ����,
below the required fraction of processing, ���

���. Thus, if
����� �

�
�
� ���

���, LAP picks the oldest packet with
���� � ����� from��. Otherwise it picks the oldest packet
overall.

��� ��
��� �

����
���

����� ��� � �������� �������

	� ������

�
�
� ���

���

����� ��� � ���

����

LAP differs from LA in that it tries to group processors
such that each group processes one application and thus
keeps a warm cache for this application. The size of each
group is determined by the amount of processing pending
for packets in the selection buffer. The effectiveness of LAP
is based on the assumption that the processing time for pack-
ets is predictable from their size and the application they ex-
ecute.

3.1 Predictability of Processing
Based on a study of a network processor benchmark [18],
there are two key characteristics in NP workloads that differ
from traditional workstation workloads. These are:

� Packet size dependent processing time due to the
streaming nature of data.

� Small processing kernels (few ��) and thus good in-
struction cache performance on small caches.

The streaming nature of data causes the applications to re-
peatedly execute the same code over the data that is passed
through the processor. This leads to good predictability in
processing times. The small program sizes and the good
performance on caches reduce the variation in processing
time due to jumps into instruction code that is rarely used
and therefore not cached. The good performance on small
caches indicates that even after processing only a single
packet, the instruction cache can be considered warm.

To show the processing properties of network traffic on a
network processor, we have measured the processing times
of packets on a programmable router. Three payload pro-
cessing applications were selected: encryption, compres-
sion, and forward error correction. The applications are sim-
ilar to payload processing applications presented in Comm-
Bench [18]. For the measurements, the Washington Univer-
sity Gigabit Switch [2] enhanced with a fully programmable,
single processor linecard [6] was used. The software en-
vironment for the processing utilized the Active Network
Node operating system [5].

Figure 2 shows the processing time for packets of differ-
ent sizes using the three applications. As can be seen, pro-
cessing time is linearly dependent on the packet size. The er-
ror bars indicate the 95% percentile of processing time. For
encryption and FEC, the processing times are very close to
the average. For compression, however, which is a data de-
pendent computation, the variations are slightly larger. This
linear dependency can be used to develop an expression for
the estimated processing time for an application as a func-
tion of packet size.

����� � �������� � �������� 	 ����

�� is the per-packet cost of processing for application ����
and represents the constant processing overhead associated

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 m

ic
ro

se
co

nd
s

packet size in bytes

Reed-Solomon FEC
Huffman compression

CAST encryption

Figure 2: Packet Processing Times for Network Processor
Applications.

application � per-packet per-byte cold cache
cost �	��� cost ����� penalty 	��
(�s / pkt.) (�s / byte) (�s / pkt.)

encryption 320 1.3 170
compression 970 7.6 950
FEC coding 320 9.2 175

Table 2: Packet Processing Parameters and Cold Cache
Penalties.

with a packet. �� is the per-byte cost of processing and is
multiplied by the size of the packet, ����. Using the re-
sults from Figure 2, we can derive the costs shown in Ta-
ble 2. Thus, the processing time of a packet can be predicted
with good accuracy given the packet size and the application
characteristics.

3.2 Cold Cache Penalties
With the same measurement setup, the effect cold caches
can also be shown and quantified. When sending a stream of
packets, which require the same application, the first packet
encounters a cold cache. For subsequent packets, the pro-
cessing time is reduced due to locality in the instruction code
and the resulting warm cache. These measurements are not
shown due to space limitations, but Table 2 shows the aver-
age cold cache penalty, ���, for all applications. It can also
be shown that this cold cache penalty is independent of the
packet size.

These results confirm our assumption that the processing
time as well as the cold cache penalty are well predictable.

3.3 Complexity
Finally, the usefulness of these scheduling algorithms de-
pend on how efficiently they can be implemented in hard-
ware. Both LA and LAP have constant processing cost per

packet, making them well suited for high performance sys-
tems. The following briefly discusses a possible data struc-
ture for LAP that can be implemented in hardware and has
���� update complexity. Since LA is similar and somewhat
simpler to LAP, LA can be also be implemented with ����
update complexity.

There are three components necessary for LAP schedul-
ing: the current values of ���

��� and�����, a list of packets
pending processing for each application in order of packet
age, and a list of all packets in order of packet age. Each
of these structures can be updated in constant time when a
packet is received or scheduled. The update of ���

��� can
be done every time a packet is entered into selection buffer
by adding its expected processing time. When a packet is re-
moved, the processing time is subtracted. Similarly, � ����
can be adjusted by incrementing and decrementing as pro-
cessors change the applications that they process. An up-
date occurs only when a packet enters or leaves the selection
buffer. Thus, the complexity is ���� per packet. Maintain-
ing lists of packets for different applications that are sorted
by the age of the packets can also be done in constant time.
Since the age of packets corresponds to the arrival order, a
simple queue can be used. Updates to queues can be done in
���� time per update. Regarding efficient hardware imple-
mentations, there has been much work done in implement-
ing efficient queueing systems of this sort [3].

4 Evaluation
The evaluation of the scheduling algorithms was done using
a trace-driven simulation. Packet traces that were obtained
from a network processor were used as input to a discrete
event simulator that emulated the behavior of the scheduler
and the processors. After a packet trace was processed, the
performance metrics were recorded.

The packet traces were obtained from the Washington
University Gigabit Switch [2] that has a Pentium class pro-
cessor on each input port [6]. Using the Berkeley Packet
Filter (BPF), arrival and departure times of packets were
recorded and used to compute the actual processing times
for all packets of a given application (encryption, compres-
sion, or FEC coding). Given the packet size, application,
and actual processing time, traces of 100,000 packets were
generated having an equal share of bandwidth for each ap-
plication. To simulate more than three applications, the orig-
inal traces were replicated with different application iden-
tifiers. We assumes that a processor could only have one
application in its instruction cache at any time, which is rea-
sonable for the small cache sizes considered.

Measurements were taken over a variety of configura-
tions. The number of processors ranged from 1 to 64, the
size of the selection buffer from 1 to 512 packets, and the
number of applications in the packet trace from 3 to 300.

4.1 Basic Operation and Adaption to Work-
load Changes

To illustrate the basic operation of each of the algorithms,
we look at the case where we have three applications, 16
processors, and a selection buffer size of 64 packets. The
application workload is such that the first 10,000 packets re-
quire equal processing. Thus, each application on average
should be processed on one third of the processors. Af-
ter 10,000 packets, the workload changes, such that appli-
cation 1 requires �	� of the processing and applications 2
and 3 require �	� each (see Figure 3(a) and 3(b)). This is
used to illustrate the adaptability of the various algorithms
to changes in the workload. Figures 3(c)-3(h) show the dif-
ferent scheduling algorithms. The lines show how many
processors have warm caches for each application (i.e., how
many processors process each application at that moment)
for packets 8,000 through 12,000.

FCFS scheduling shows the expected “random” behavior.
Since packets are scheduled in the order of arrival, no lo-
cality is exploited and the number of processors executing
a given application changes quickly. This behavior leads to
a large number of cold caches and low performance. LA
scheduling show much less variation in the number of pro-
cessors assigned to an application. This comes from mak-
ing use of warm caches until all packets of a given appli-
cation are processed. The smoothest scheduling behavior
is produced by LAP scheduling, which tries to partition the
processors according to the processing requirements. Fig-
ure 3(g) and 3(h) shows that the partitioning follows very
closely to the offered load as shown in Figure 3(a) and 3(b).

All scheduling algorithms adapt quickly to changes in the
workload. LA and LAP reach a processor assignment that
corresponds to the offered load within a few hundred pack-
ets of the change in workload (3 to 4 times the size of the
selection buffer). During this period, packets from before
the change remain in the selection buffer and influence the
scheduling decisions.

4.2 Throughput
Figure 4 shows a throughput comparison for the four
scheduling algorithms over a range of selection buffer sizes.
The number of processors considered is 16 and the number
of applications is 30. FCFS has the lowest throughput of
just a bit over ��� �!�. This can be expected, since FCFS
does not take locality into account. On the other hand, T-Opt
achieves the highest throughput of about ��� �!�. For a
very small buffer, LA and LAP are close to FCFS, since the
number of packets from which the algorithm can select is
small and locality can only be maintained for short times.
At a selection buffer size of about 16 to 64 packets, LA and
LAP perform significantly better than FCFS. For large selec-
tion buffers, both algorithms converge towards the through-
put of T-Opt.

4.3 Cold Cache Fraction

To show the correlation between the use of locality informa-
tion and throughput, Figure 5 shows the cold cache fraction
of packets for the same parameters as used in Figure 4. The
cold cache fraction gives the percentage of packets that are
executed with a cold cache (i.e., do not make use of local-
ity). FCFS has the highest rate of cold caches with about
96%. This is due to the random assignment of packets to
processors in FCFS, which causes only 1 in 30 assignments
to be to a processor with warm caches (assuming � � �	
applications).

The cold cache fraction for LA and LAP are close to that
of FCFS for small selection buffer sizes. As one would ex-
pect, with larger buffer sizes, more packets are available and
hence scheduling for warm caches is more effective. Thus,
the cold cache fraction drops for selection buffer sizes of 16-
64 packets before it gets close to T-Opt for very large selec-
tion buffers. Note, that the throughput in Figure 4 is directly
related to the drop in cold cache fraction around � � ��.

4.4 Delay Variation

With respect to the variation in delay, as defined in Section 2,
there is a significant difference between LA and LAP. Fig-
ure 6 shows the standard deviation of the variation in packet
order for FCFS, LA, and LAP. The delay variation for T-
Opt is arbitrarily large and thus not plotted here. For FCFS,
there is no variation, because packets maintain their order.
One can see that LAP shows only very little delay varia-
tion for small selection buffer sizes. This is expected since
the reordering is roughly limited to the size of the selection
buffer. Even for a selection buffer size of 32 packets, the
delay variation is only 20 packets for LA and 8 packets for
LAP. Differences increase greatly however for large buffer
sizes. This is due to the fact that LA tries to execute pack-
ets of the same application regardless of their “age” in the
selection buffer. LAP on the other hand attempts to group
processors with respect to the estimated required processing
and with large buffers the quality of that estimate improves.
Thus, the variation in delay is kept smaller, because packets
from all applications are processed according to the required
processing.

Finally, the processor utilization for all scheduling algo-
rithms is " � �, because no processor is left idle by the
scheduler. Overall, we can see that the throughput perfor-
mance for LA and LAP is significantly better than FCFS,
even for selection buffer size of only 16 packets. With in-
creasing buffer size, LA and LAP approximate the optimal
throughput of T-Opt. With respect to delay variation, LAP
performs better than LA when the number of processors is
large.

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d

loa
d

packet number

(a) offered load (app 1)

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d

loa
d

packet number

(b) offered load (app 2/3)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ign

ed
 to

 a
pp

packet number

(c) FCFS (app 1)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ign

ed
 to

 a
pp

packet number

(d) FCFS (app 2/3)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ign

ed
 to

 a
pp

packet number

(e) LA (app 1)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000
pr

oc
es

so
rs

 a
ss

ign
ed

 to
 a

pp
packet number

(f) LA (app 2/3)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ign

ed
 to

 a
pp

packet number

(g) LAP (app 1)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ign

ed
 to

 a
pp

packet number

(h) LAP (app 2/3)

Figure 3: Processor assignment by different scheduling schemes. Since applications 2 and 3 behave similarly, only one set
of figures is shown.

5 Related Work

Cache-affinity scheduling, which uses of locality informa-
tion for the scheduling decision has been used mostly in
shared memory multiprocessors [16], [7], [12], [15]. The fo-
cus in this domain is to schedule the same process/thread on
processors that can reuse previously established cache state.
While this is similar to the network processor environment,
it does not consider the reuse of instruction cache state for
different threads that use the same instruction code (as it is
done with packets that use the same application).

An example for scheduling that uses hints about the pro-
cessing requirement is [10]. In this work, the compiler pro-
vides information about thread requirements that are used
by the scheduler to determine a thread execution schedule
with high cache locality.

Salehi ������ show the effect of affinity-based scheduling
on network processing in [11]. While this also considers
the processing of network traffic, the focus is on the op-
erating system level, where packet processing is disrupted

by a background workload. This switching between packet
processing and the background workload reduces locality in
execution and can be avoided by appropriate scheduling.

6 Summary and Conclusions
In this paper, we have discussed processor scheduling is-
sues associated with programmable network multiproces-
sors. We have shown that locality in instruction data can be
exploited with two scheduling algorithms, Locality-Aware
and Locality-Aware Predictive. We have evaluated and
quantified their throughput improvements over First-Come-
First-Serve. The results show that for modest selection
buffer sizes (16 packets), the throughput can be improved
significantly over FCFS, while keeping the delay variations
very limited. For large selection buffer sizes, near optimal
throughput can be achieved while the delay variation in LAP
stay relatively small. Therefore, the contributions of this
work can improve network processor throughput while in-
creasing the complexity of the scheduler only slightly.

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1 2 4 8 16 32 64 128 256 512

th
ro

ug
hp

ut
 in

 M
B

/s

selection buffer size

T-Opt
LAP

LA
FCFS

Figure 4: Throughput for different selection buffer size (30
applications, 16 processors).

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512

co
ld

 c
ac

he
s

pe
r

pa
ck

et

selection buffer size

T-Opt
LAP

LA
FCFS

Figure 5: Cold cache fraction for different selection buffer
size (30 applications, 16 processors).

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512

st
an

da
rd

 d
ev

ia
tio

n
of

 d
el

ay

selection buffer size

LA
LAP

FCFS

Figure 6: Delay variation for different selection buffer size
(3 applications, 64 processors).

References
[1] C-Port Corporation. C-5
� Digital Communications Processor,

1999. http://www.cportcorp.com/solutions/docs/c5brief.pdf.

[2] T. Chaney, A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit
ATM switch. In Proc. of IEEE INFOCOM 97, Kobe, Japan, Apr.
1997.

[3] Y. Chen and J. S. Turner. Design of a weighted fair queueing cell
scheduler for ATM networks. In Proc. of IEEE GLOBECOM 98,
Sydney, Australia, Nov. 1998.

[4] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Work-
loads for programmable network interfaces. In IEEE Second Annual
Workshop on Workload Characterization, Austin, TX, Oct. 1999.

[5] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner.
A scalable, high performance active network node. IEEE Network,
31(1):8–19, Jan. 1999.

[6] J. DeHart, W. Richard, E. Spitznagel, and D. Taylor. The smart port
card: An embedded UNIX processor architecure for network man-
agement and active networking. unpublished.

[7] M. Devarakonda and A. Mukherjee. Issues in implementation of
cache-affinity scheduling. In Proc. of Winter USENIX Conference,
pages 345–357, Jan. 1992.

[8] IBM Corp. IBM Power Network Processors, 2000.
http://www.chips.ibm.com/products/wired/communications/net-
work processors.html.

[9] Intel Corp. Intel IXP1200 Network Processor, 2000. http://develo-
per.intel.com/design/network/ixp1200.htm.

[10] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li. Thread
scheduling for cache locality. In Proc. of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems, Cambridge, MA, Oct. 1996.

[11] J. D. Salehi, J. F. Kurose, and D. Towsley. The effectiveness of
affinity-based scheduling in multiprocessor networking. In Proc. of
IEEE Infocom 96, San Francisco, CA, Mar. 1996.

[12] M. S. Squillante and E. D. Lazowska. Using processor cache affin-
ity information in shared-memory multiprocessor scheduling. IEEE
Transactions on Parallel and Distributed Systems, 4(2):131–143, Feb.
1993.

[13] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast scalable
algorithms for level four switching. In Proc. of ACM SIGCOMM 98,
Vancouver, BC, Sept. 1998.

[14] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden. A survey of active network research. IEEE Com-
munications Magazine, 35(1):80–86, Jan. 1997.

[15] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the performance of
cache-affinity scheduling in shared-memory multiprocessors. Journal
of Parallel and Distributed Computing, 24:139–151, Feb. 1995.

[16] R. Vaswani and J. Zahorjan. The implications of cache affinity on
processor scheduling for multiprogrammed, shared memory multi-
processors. In Proc. of Thirteenth Symposium on Operating Systems
Principles, pages 26–40, Pacific Grove, CA, Oct. 1991.

[17] T. Wolf and M. Franklin. Design tradeoffs for embedded network
processors. unpublished, 2001.

[18] T. Wolf and M. A. Franklin. CommBench - a telecommunications
benchmark for network processors. In Proc. of IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 154–162, Austin, TX, Apr. 2000.

[19] T. Wolf and J. S. Turner. Design issues for high performance ac-
tive routers. IEEE Journal on Selected Areas of Communication,
19(3):404–409, Mar. 2001.

