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Abstract—To provide flexibility in deploying new protocols and services,
general-purpose processing engines are being placed in the datapath of
routers. Such network processors are typically simple RISC multiproces-
sors that perform forwarding and custom application processing of pack-
ets. The inherent unpredictability of execution time of arbitrary instruc-
tion code poses a significant challenge in providing QoS guarantees for data
flows that compete for such processing resources in the network. How-
ever, we show that network processing workloads are highly regular and
predictable. Using estimates of execution times of various applications on
packets of given lengths, we provide a method for admission control and
QoS scheduling of processing resources. We present a processor scheduling
algorithm called Estimation-based Fair Queuing (EFQ) which uses these
estimates and provides significantly better delay guarantees than processor
scheduling algorithms which do not take packet execution times into con-
sideration.

I. INTRODUCTION

Over the past decade there has been rapid growth in the need
for reliable, robust, and high-performance communication net-
works. This has been driven in large part by the demands of the
Internet and general data communications. New protocols, ser-
vices, standards, and network applications are being developed
continuously. However, the ability to deploy these in the current
Internet is greatly inhibited by the need for changes in the for-
warding loops of routers, which for performance considerations
are usually implemented in custom logic. To overcome this ob-
stacle, it has been proposed to place general-purpose processing
engines in the data path of routers. Such network processors
extend the traditional store-and-forward paradigm to a store-
process-and-forward paradigm, which opens vast possibilities
for applications like simple quality of service (QoS) forwarding
to complex payload transcoding for wireless clients.

In terms of QoS, general purpose processing introduces an ad-
ditional level of complexity into the system, since not only link
bandwidth, but also computational resources have to be shared
among packets of competing flows. While a significant amount
of work has been done with respect to designing systems, which
can provide guaranteed QoS to flows competing for bandwidth,
processor sharing poses several new problems in this domain.
The problem that we are considering is aimed at routers, where
packet processing is performed at the output port. The data path
through the output port is shown in Fig. 1. Packets are received
from the switch fabric and queued in per-flow queues. Then
the processor scheduler assigns packets from the � queues to
the � processing engines as they become idle. After process-
ing, packets are again queued in per-flow queues before the link
scheduler assigns them to be transmitted on the link. The pro-
cessor scheduler can view each processing engine as a separate
resource to be scheduled if they individually have capacities ex-
ceeding the requirements of any single flow. The scheduler can
also consider all the processing engines as a single processing
resource, which can be scheduled using multi-server variants
of single server scheduling algorithms [1]. In either case, the

essential problem reduces to designing an efficient scheduling
algorithm for sharing a single processing resource.

We provide mechanisms for such a system to give guaran-
teed bandwidth and computational resources to incoming flows.
Guarantees in these two dimensions mean that a flow always
gets its reserved shares except when:
1. A flow requires computational resources in excess of its re-
served capacity and hence only a fraction of the incoming traffic
is processed and forwarded to the link scheduler, possibly giving
the flow a lesser share of its reserved bandwidth.
2. Or equivalently, a flow exceeds its link share resulting in
too many packets being queued up at the link scheduler, which
forces the processor scheduler not to give the flow its processing
share.

Realizing such a system is fundamentally complicated by the
fact that the execution times of various applications on pack-
ets are not known in advance, which limits applicability of well
known bandwidth scheduling algorithms. Also, at a flow level,
it is not clear as to how explicit or implicit admission control
can be done as the processing requirements of a single flow are
not known.

In this paper, we first present actual execution times of vari-
ous applications on packets of varying lengths, measured on a
programmable router. We show that for the restricted class of
network applications, the processing times are strongly corre-
lated to the size of the data being processed (i.e., packet length).
We then use this correlation to predict packet execution times to
perform admission control and to schedule packets for process-
ing. We present a scheduling algorithm called Estimation-based
Fair Queuing (EFQ), which unlike bandwidth schedulers uses
the estimates of packet execution times and provides better de-
lay bounds than processor scheduling algorithms which do not
use packet execution times at all.

The paper is organized as follows: Section II discusses re-
lated work. Section III demonstrates the predictability of packet
processing times and shows how admission control on process-
ing resources can be done. Section IV describes the scheduling
algorithm EFQ in detail and Section V presents the simulation
results. Conclusions are drawn in Section VI.

II. RELATED WORK

A significant amount of work has been done in defining ar-
chitectures for software based programmable routers [2] [3] [4].
In particular, we have extensively used the router plugins archi-
tecture in our work [5] [4]. Most systems enforce isolation of
packet processing between flows (e.g., malicious packets cannot
effect the proper processing of other packets). However, QoS is-
sues at the level of processing are addressed only in a few cases.
The commonly used NodeOS specification [6] asks for packets
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Fig. 1. System Outline.

to be processed by individual threads to allow for an accounting
mechanism. However, methods for admission control and QoS
scheduling are not described. Reference [7] describes the prob-
lem of scheduling computational resources among competing
flows, but relies on being able to pre-determine the processing
time of packets. Also the more important issue of correlating
the cycle rate of a flow to the bit rate is not addressed. There
are also approaches where the expressiveness of the processing
environment is restricted (e.g, no loops) to give execution time
guarantees [8], which limits the usefulness to simple header pro-
cessing applications.

Packet service disciplines and their associated performance
issues have been widely studied in the context of bandwidth
scheduling in packet-switched networks [9]. The performance
of these disciplines has been compared to Generalized Proces-
sor Sharing (GPS) [10], which has been considered an ideal
scheduling discipline based on its end-to-end delay bounds and
fairness properties. Packet Fair Queuing (PFQ) disciplines,
however, cannot be used for processor scheduling. PFQ disci-
plines like WFQ, WF�Q [11] use a notion of virtual time, whose
correct update in a processor scheduler, requires precise knowl-
edge of execution times of various packets in advance. Efforts
have been made to design service disciplines which isolate the
scheduler properties that give rise to ideal fairness and delay be-
havior, without emulating GPS [12]. Notable among these are a
class of schedulers called Rate Proportional Servers [13], which
decouple the update of system virtual time from the finish times
of packets in queues. But even these service disciplines, while
avoiding the complexity of GPS emulation, schedule packets in
order of pre-determined finish times, which in turn requires the
knowledge of execution times of various packets in advance.

An exception to these disciplines is Start-Time Fair Queu-
ing (SFQ) [14], which has been deemed suitable for CPU
scheduling [15]. Since SFQ does not need prior knowledge of
the execution times of packets (packet lengths in a bandwidth
scheduler), it is also applicable to scheduling computational re-
sources. However, the worst case delay under SFQ increases
with the number of flows and can in fact worsen in the presence
of correlated cross-traffic as shown in [16]. As we will show
in later sections, SFQ tends to favor (provide lesser queuing de-
lays) to flows which have a higher average processing time per
packet to reserved processing rate ratio.

Our work is aimed at providing a way of estimating execution
times of packets, which is used on a flow level for admission
control and for QoS scheduling at a packet level.

III. RESERVATION OF PROCESSING RESOURCES

A key component of quality of service is the definition of the
service that is requested by a flow. While this is straightforward
and well understood for link resources, reservations for compu-
tational resources are not as clearly defined. This comes from
the unpredictability of general purpose processing. In principle,
the halting problem states that it cannot be determined if an ar-
bitrary program ever terminates. Thus, the execution time of an
arbitrary piece of instruction code cannot be determined, in par-
ticular, when the execution time depends on data fields in the
packet.

However, networking applications often require very regular,
predictable processing. Our measurements, which are discussed
below, indicate that for certain application classes, the process-
ing times are very tightly correlated to the packet size. This
holds true on a per-flow granularity, where processing require-
ments are dependent on the flow bandwidth, as well as on a per-
packet granularity, where the processing time is dependent on
the packet size. This correlation can be exploited to predict pro-
cessing requirements of packets and flows and use the prediction
for admission control and scheduling.

A. Predictability of Processing Requirements

A.1 Application Types

Applications that process packets on routers can be di-
vided into two categories: header-processing applications and
payload-processing applications [17]. Header-processing appli-
cations are characterized by the fact that the processing of the
packet is restricted to read and write operations in the header
of the packet. This means that the processing complexity is
in general independent of the size of the packet. Examples
of header-processing applications are IP forwarding, transport
layer classification, and QoS routing. Payload-processing ap-
plications, in contrast, are characterized by read and write op-
erations to all the data in the packet, in particular, the payload
of the packet. It is here that the processing complexity strongly
correlates to the packet size. Typically, payload processing ap-
plications also show a header-processing overhead in addition
to the payload processing. Examples of payload-processing ap-
plications are IPSec encryption, packet compression, and packet
content transcoding (e.g., image format transcoding).

A.2 Measurements

We have measured the processing times for four applica-
tions: IP forwarding, which is a header-processing application,



and encryption (CAST), compression (Adaptive Huffman Cod-
ing), and forward error correction (Reed-Solomon), which are
payload-processing applications. The packet processing times
were acquired using a programmable line card [18] on the Wash-
ington University Gigabit Router [19]. Processing was per-
formed in the Crossbow [5]/ANN [4] operating system.

The measured results over a range of packet sizes are shown
in Fig. 2. The average processing times are shown as lines and
the error bars indicate the range of the 95% percentile of pro-
cessing times. Note that we use time as the unit for processing
cost. This is done to simplify the description of the schedul-
ing algorithm and its analysis. In a realistic network, process-
ing cost should be translated to processor cycles per second and
then adapted to the particular router system, where the packets
get processed, as described in [20].

For IP forwarding, the processing time is practically constant
for all packet sizes, which shows the per-packet processing cost
of header processing. However, the processing times of the three
payload processing applications are clearly dependent on the
packet size. The per packet processing time for these applica-
tions can be extrapolated for packets of size 0. With these ob-
servations, we can approximate the processing cost � of a packet
of length � when processed by application � as

� � �� � �� � �� (1)

where �� is the per packet processing cost and �� is the per
byte processing cost of application �. Thus, the processing re-
quirements of these applications can then be described by two
parameters: �� and ��. These parameters for the three applica-
tions are shown in Table I.

A.3 Online Estimation

Though the parameters �� and �� have been determined
from traces, given this strong correlation between packet
sizes and execution times, it is possible to determine these
parameters online and in fact improve them, using simple
linear least squares regression techniques. As packets are
processed the router maintains variables denoting the sums,�
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��� � ��� for each application �. These
variables are updated on the arrival of a new ������ ����� pair.
The parameters to be used in the estimation can then be com-
puted as
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It should be noted that there are also applications, where the
processing time cannot be as nicely correlated to packet size as
shown above. An example for such an application is MPEG en-
coding. For MPEG encoding a whole video frame is required to
perform effective compression. With unencoded video frames
typically exceeding a packet size, processing can only be per-
formed once several packets of a flow are buffered. In this case
the processing time varies significantly between packets, but it
can be expected to be more evenly distributed over frames (i.e.,
I-frame to I-frame). In such a case the parameters should be

maintained for the group of packets constituting a single frame,
which are always processed together.

B. Bandwidth Expansion

Processing of packets on routers can affect the size of the
packets after the processing is completed. For many types of
applications (e.g., encryption, routing lookup) the packet size
is not changed, but a few applications can significantly change
the bandwidth of a flow (e.g., compression, FEC). To take these
changes into account, we define an expansion factor, ��, that is
the average output bandwidth divided by the input bandwidth.
This factor is also shown in Table I. Note that the expansion
factor can be dependent on packet size and data as for the com-
pression application.

C. Admission Control

In an environment, where we want to be able to give service
guarantees to data flows, it is typically necessary to explicitly re-
serve resources for that flow. This happens during the flow setup
and allows the network to route a new flow in such a fashion that
enough bandwidth is available on the chosen path. Now that we
have shown that the processing requirements for a stream of data
can be described in a simple manner, we can integrate this infor-
mation into the flow setup process.

A reservation for a flow � with incoming bandwidth  � that
is processed by application � needs to reserve �� �� bandwidth
on the outgoing link. The amount of processing � � that is re-
quired (as fraction of one processor) depends on the bandwidth
of the flow, the average size of packets �� , and the application
parameters:

�� �
� � �

�
�

�

�
� ��� � �� � ��
 (4)

Thus, flow � can be admitted to any router that has � � process-
ing power and �� � � outgoing bandwidth available. How an
efficient or optimal route can be found with these parameters is
outside the scope of this paper. In principle, an optimal route can
be found by combining processing and transmission costs into
one metric [21]. Another approach is to aggregate processing
availability information together with bandwidth and topology
data similar to PNNI [22].

IV. PROCESSOR SCHEDULING

The choice of the packet service discipline for scheduling
the processing resources is an important issue in guaranteeing
end-to-end delay bounds and ensuring fair sharing of processors
among competing flows.

We note that the exact processing time of an application on
a packet of a given size cannot be pre-determined and hence
precludes the use of many well known packet scheduling algo-
rithms. However, we can use a good estimate of the execution
time using parameters obtained in Section III for designing a
scheduling algorithm that has good delay and fairness proper-
ties. In this section we describe how we build upon the class of
rate-proportional servers, which have desirable properties that
allow the use of these estimates to design a processor schedul-
ing algorithm called Estimation-based Fair Queuing (EFQ).
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Fig. 2. Processing Times of Programmable Router Applications. The error bars indicate the 95%-percentile of processing times.

TABLE I

PACKET PROCESSING PARAMETERS.

Application � per-packet cost �� per-byte cost �� expansion factor ��
(�s per packet) (�s per byte)

IP forwarding 51 0 1
Encryption 320 1.3 1
Compression 970 7.6 0.13 - 0.34
FEC coding 320 9.2 1.14

A. Rate Proportional Servers

A.1 Definition

Rate Proportional Servers (RPS) are a class of scheduling
algorithms designed according to the methodology presented
in [13], which allows the designer to trade fairness of the al-
gorithm with implementation complexity. Generally speaking,
a rate-proportional server is a work-conserving server with the
following properties:

1. The server has an associated system potential, which is up-
dated to reflect the total work done by the server.
2. Each flow in the system has an associated potential. When
a flow becomes backlogged, its potential is set equal to the sys-
tem potential. When a flow is already backlogged, its potential
is updated to reflect the normalized service received from the
server.

By imposing conditions for the potential functions as given
in [13] and by serving packets from flows such that at any in-
stant the individual potentials of all backlogged flows are equal,
it can be shown that rate proportional servers have delay and

fairness properties comparable to GPS. WF�Q+ [16] is an im-
portant example of a scheduler belonging to the RPS class.

We build on this methodology in designing the EFQ proces-
sor scheduling algorithm for two important reasons. First, the
methodology helps in designing algorithms with delay bounds
and fairness comparable to GPS without the complexity of GPS
emulation. More importantly, the methodology provides us with
enough flexibility to decouple the update of system potential
from the exact finish times of the packets in the queues, which
addresses the problem of not knowing the exact processing times
in advance.

A.2 Packet Selection Policy

A scheduling algorithm with optimal fairness would have to
schedule single processing cycles according to the fluid Rate
Proportional Server. However, in network processors, the small-
est unit of processing is a complete packet. Context switch-
ing between packets is not considered here, because saving and
recovering processing state is a relatively expensive operation
compared to the short overall processing time for a packet.



Thus, to approximate a fluid RPS, packets should be sched-
uled in order of their finish time with the earliest finish time
first. While this works perfectly fine for bandwidth schedulers,
the lack of the knowledge of the actual execution times of the
packets, makes an exact implementation infeasible for proces-
sor schedulers.

However, to derive an approximate scheduler of this class, we
can generalize the definition of a packet-by-packet RPS. Such a
scheduler schedules two packets, � and �, of flows � and , in
the order in which they are more likely to finish processing, i.e.,
if � �

� and � �
� are random variables representing the finish times

of these packets in the fluid RPS, then packet � is scheduled for
service before �, if

� �� �
� � � �

� � � �
�
 (5)

Hence, it is the knowledge of the distributions of � �
� and � �

�

which determines the accuracy with which schedulers can ap-
proximate GPS even if they use the same potential (or virtual
time) functions. Also, since the potentials of individual flows
are updated according to the normalized service received by the
flows from the system, the finish time � �

� is

� �
� � �� �

� �
�

��

� (6)

where �� is the potential and �� is the rate of service reserved
by flow �. While these are known in advance when determining
� �
� , � �

� , which represents the service time required by packet �,
is not. Thus, the random variable � �

� is directly determined
by � �

� .
Start-time Fair Queuing (SFQ) [14] (with a modified system

virtual time) and WF�Q+ [16] are scheduling algorithms be-
longing to this class that represent the extremes with respect to
the amount of knowledge of � �

� . SFQ does not use any infor-
mation about the service time of a packet and hence, accord-
ing to the above policy, SFQ schedules packets in increasing
order of ��, which makes it suitable for processor scheduling.
WF�Q+, on the other hand, assumes that the exact service times
of all packets are known in advance and thus determines the
right order of servicing packets with probability 1.

A.3 Misordering Delay

Different schedulers using the same potential functions and
ordering packets for execution according to the above defined
policy can give varying delays to flows based on their knowl-
edge of the random variables � �

� . To quantify these delays,
assume that a scheduler of this class can be characterized by ran-
dom variables ��� ��� , which denote the event that the scheduler
(with its knowledge of � �

� and � �
� ) makes a mistake in order-

ing packets � and �. I.e., � ���� ��� � �� is the probability that the
scheduler orders the packets of these two flows correctly, while
� ���� ��� � 	� is the probability that the scheduler makes a mis-
take in the ordering. Then, the average misordering delay, Æ �, as
seen by a packet of flow � is the additional delay caused by the
scheduler misordering packets of flow � and flow , which is

Æ� � � ���� ��� � 	� �
��

�
� ��� �

� �
�

��

� �� �
� �

�

��

�
 (7)

This accounts for the time spent by the server in servicing addi-
tional traffic from flow  before processing packet from flow �.
It is these additional delays caused by misordering of packets
that we intend to reduce using the estimates of the packet execu-
tion times we derived in Section III which improves the sched-
ulers knowledge of � �

� .

B. Estimation-Based Fair Queuing

Estimation based Fair Queuing (EFQ) is a scheduling disci-
pline designed for processor schedulers that uses the estimates
of the packet execution times in ordering packets of various
flows for processing. While the packet selection policy of any
Rate Proportional Server can be changed to use these estimates,
EFQ is derived by modifying WF�Q+ which is known to have
the tightest delay bounds and low time-complexity among band-
width schedulers.

EFQ, like WF�Q+, uses a notion of system virtual time (sys-
tem potential), defined by

� ��� �� � ����� ��� � �������	�
������� (8)

where B(t) represents the set of backlogged flows at time �
and �� the start-tag associated with flow � as defined below.
The above definition of � ��� makes WF�Q+ a Rate-Proportional
Server. It differs from SFQ, in that it has a linear component,
which ensures that the delay bounds provided are within one
packet servicing time of a corresponding GPS server [16].

For each flow � in the system, EFQ maintains a start tag, ��
(potential of flow �), a finish tag, ��, and an estimated finish time
tag, ���. Consider a packet � of flow �, with a reserved rate � �,
that arrives at time ��� . When this packet reaches the head of the
queue, �� is updated using

�� � 
������ � ���� ��� (9)

if queue � is empty, else

�� � ��
 (10)

��� is updated using

��� � �� �
��
�

��
� (11)

where ��
� is the estimated number of instructions required to

process packet �. This estimate is derived from the length of
the packet ��

� and the parameters �� and �� of the application
processing the flow using Equation 1:

��
� � �� � �� � �

�
� 
 (12)

When the processor finishes processing this packet, the actual
finish tag �� is updated using feedback from the processor:

�� � �� �
��
�

��
� (13)

where ��
� is the actual number of instructions required to pro-

cess packet �. This ensures that each flow is correctly charged
for processing time, even if the initial estimate was incorrect.

Given these tags, the EFQ scheduler, schedules packets in in-
creasing order of their estimated finish time tags ���.



C. Example

The following illustrates the behavior of EFQ and compares
it to that of SFQ and WF�Q+. Consider a set of flows, all of
which send packets of the same length but at different rates and
are processed by the same application. Fig. 3 shows six such
flows, with flow 1 reserving 50% of the processing resource and
the rest of the flows reserving 10% each. The size of a packet
in Fig. 3 represents the actual processing time of that packet.
Note, however, that the estimates for all packets are the equal,
since they all have the same length and are processed by the
same application.

WF�Q+ achieves an optimally fair schedule, because it is as-
sumed the scheduler knows the actual processing times. Thus,
the packets of flow 1 and the other flows alternate (due to the
rate reservations). Out of flows 2-6, the packet of flow 2 is pro-
cessed first, because it has the lowest actual execution time and
therefore the lowest finish time.

EFQ expects all packets to have the same execution times.
Thus, EFQ could pick any order of packets 2-6 to alternate with
packets from flow 1. The worst case, which introduces most
misordering delay, is shown in Fig. 3. Here, the packet of flow 2
is processed after packets of flows 6,5,4 and 3 are processed,
which all use more processing time than expected by scheduler.
As a result, the packet from flow 2 experiences an additional de-
lay due to the variation in actual processing times of these pack-
ets. However, these variations are much smaller (and bounded,
for the applications in consideration) than the total processing
times of the packets themselves. In particular, these delays are
much smaller than those introduced by SFQ.

As shown in the example, in the worst case SFQ could delay
the processing of the first packet of flow 1 until packets from
all other flows are processed. This is due to all initial packets
having the same start time.

In summary, EFQ processes most packets in the same order
as WF�Q+. When either a flow reserves a much higher rate than
others or has greatly differing processing requirements (due to
differing packet sizes or applications), the variations in the ac-
tual executions times compared to estimated execution times do
not change the scheduling order. Even in the case when the
scheduling order of packets in EFQ varies from that of WF�Q+,
the additional delay that is experienced by a packet is bounded
by the variation in execution times as opposed to the total exe-
cution times of packets as in SFQ.

D. Analysis

From the example given above, it can be seen that for �
flows, in the worst case, SFQ introduces a misordering delay
of

Æ�� �

��

���

����
�

�
�

����
�

��


 (14)

This is obtained by using ��  ��� ��� � 	 with the misordered
packets being of maximum size and using �  �� � �� in
Equation 7, since the scheduler can make a mistake only when
�� � ��. Results in Section V also show that SFQ actually
favors (i.e., gives lesser delays to) flows with packets which re-
quire greater average normalized service (i.e., higher ����

�

��
).

To analyze EFQ, assume that for a given packet length, the
packet execution time estimates obtained in section III can be
represented by uniform random variables � �

� lying in the range
���

� � � �
� � �

�
� � � �

� �. The EFQ scheduler misorders packet �
and � when it determines that

�� �
��
�

��
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��
�

��

� (15)

but the actual processing times are such that

�� �
��
�

��

� �� �
��
�

��


 (16)

In the worst case, we get
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 (17)

Hence from Equation 7, the misordering delay for packet � due
to packet � is limited to

Æ� � � ���� ��� � 	� �
��

�
� �

� ���
�

��

�
� ���
�

��

� (18)

and the worst case misordering delay is bounded by

Æ�� �

����

���

� ���
�

�
�

� ���
�

�
�

� ���
�

��


 (19)

From the above equation we can see that as the number of
flows increases, Æ�� only increases with the variations in exe-
cution times as opposed to Æ�� which increases with total pro-
cessing times. Also note that, with a better estimation, e.g., by
including higher order moments in characterizing � �

� , EFQ can
more accurately determine the right scheduling order, resulting
in a smaller Æ�� and thus approximating WF�Q+.

V. SIMULATION EXPERIMENTS

In this section, we present simulation experiments to demon-
strate the improved performance of EFQ as compared to SFQ.

A. Simulation Setup

To compare the delay characteristics of the two schedulers,
we use the following simulation setup. First, we obtain traces of
the actual execution times of packets from different flows that
are processed by different applications on the programmable
router. These traces are then used by a packet generator to feed
the two simulated schedulers: SFQ and EFQ. The speed of the
processor in the simulator is 2GHz (about 10 times the speed of
the processor on the Smart Port Card (SPC) [18] on which the
actual measurements were made). The system has 32 flows with
different packet sizes, which are processed by the four different
applications. All the flows reserve the same procesing rate and
adjust their sending rates to just saturate their share of the pro-
cessing resource. These flows together require just below 100%
of the system’s processing resources. Thus, they can all be ad-
mitted and the measured delays are only due to scheduling and
not due to queuing backlog.
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Fig. 3. Scheduling Example. All flows have backlogged packets of the same length and are processed by the same application. The figure shows the actual
execution times of packets as their size and the processing order derived by different scheduling disciplines.

B. Delay Plots

Fig. 4 shows the delays of various packets of a flow, which is
processed by the forwarding application. The interarrival time
of the packets of the flow is approximately 163 microseconds,
which is just enough to saturate the flow’s share of process-
ing resources. Note the high and bursty delays experienced by
the packets of the flow when scheduled by SFQ as shown in
Fig. 4(a). Since SFQ, always schedules packets with the min-
imum virtual time, a single packet of a flow can be delayed in
the worst case by the equivalent of the sum of one packet pro-
cessing time of all other flows. In the simulation this translates
to a worst case misordering delay of 8218 microseconds. The
maximum delay actually observed in Fig. 4(a) is about 6100 mi-
croseconds, implying an observed maximum misordering delay
of �	��� 	�� � ���� microseconds.

For EFQ, much lower delays can be seen in Fig. 4(b). This
illustrates two things. Firstly, given the small execution time of
forwarding as compared to other applications, the finish times
of the packets of this flow where so different compared to the
finish times of the packets of other flows that the errors in esti-
mates did not change the scheduling order (i.e., Equation 17 was
not satisfied for most comparisons of finish times). Secondly,
the worst case delay that could be experienced by these pack-
ets is only 1312 microseconds which would occur if there were
maximum variations in the estimated execution times for pack-
ets from all other flows at the same time. In the simulation, the
maximum misordering delay observed is about ����	�� � ���
microseconds.

Fig. 5 shows the delays experienced by a flow being processed
by the CAST encryption application, with the average packet
size of the flow being 200 bytes and has a higher average pro-
cessing time per packet compared to the forwarded flow. While
the average delays experienced by the packets when scheduled

using EFQ is close to the interarrival time of the packets indi-
cating a very low misordering delay, the average delays seen
in Fig. 5(a) are about thrice the interarrival time of the packets.
Fig. 6 shows the delays experienced by a flow being processed
by the FEC application which requires much greater processing
time per packet compared to the above flows. Here, the average
delays seen by the packets when scheduled by SFQ are actually
less than the interarrival time of the packets! indicating an aver-
age negative misordering delay, while those due to EFQ are are
just about the interarrival time of the packets.

Two important conclusions can be drawn from these plots:
1. SFQ gives much higher misordering delay bounds than EFQ.
2. Across flows, while the misordering delays due to EFQ are
on an average close to zero, they vary from high positve misor-
dering delays (e.g., the delay of about 35 times the interarrival
rate seen by the forwarding flow) to low negative misordering
delays when scheduled using SFQ.

C. Biased Delay Bounds Due To SFQ

The second conclusion can be explained by the work con-
serving nature of the two schedulers. If SFQ gives high positive
misordering delays to some flows, there should be flows in the
system which get low and in fact negative misordering delays,
while EFQ gives low (close to zero) average misordering de-
lays for all flows. We actually show a correlation between the
misordering delay experienced by the packets of a flow and the
average processing time per packet to reserved processing rate
ratio (i.e., �

���
�

��
).

SFQ favors and gives less misordering delays to flows with
higher average processing time to reserved rate ratio over flows
with a lower ratio. Given a set of flows with the same potential,
since SFQ can schedule them in any random order, it is very
likely that a packet of a flow with higher average processing
time to reserved rate ratio is scheduled before at least a few flows
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Fig. 4. Packet Delays for a Flow Processed by IP forwarding.
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Fig. 5. Packet Delays for a Flow Processed by CAST Encryption.
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Fig. 6. Packet Delays for a Flow Processed by Reed-Solomon FEC.
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SFQ and EFQ.

with lower ratios, resulting in lower delays for such flows. EFQ
by just using the estimates is able to rightly reverse this order.
Fig. 7 shows the average misordering delay introduced by the
two schedulers plotted with increasing average packet execution
times. Note that all the flows have the same reserved processing
rates. This plot clearly shows the above conjectured correlation
between average misordering delay and average processing time
per packet to reserved rate ratio.

D. Simulation Summary

In summary, the simulation shows three main results. One
is that the analytically derived worst case misordering delay is
almost reached by the SFQ scheduler as shown in Fig. 4(a). Sec-
ond, EFQ shows a much lower and smoother scheduling delay.
This is due to the delay depending on the variance of the pro-
cessing times rather than the absolute processing times as in
SFQ. Third, SFQ introduces unfairness by favoring flows with
high processing time to reserved rate ratios. This behavior is not
shown by EFQ, which provides fairness over a wide range of
processing requirements.

VI. CONCLUSIONS

In this work, we have presented an approach to providing QoS
guarantees for flows that are processed on nodes in the network.
We have shown that network processing applications exhibit
very regular and predictable processing patterns, which help
overcome the obstacle of theoretically undeterminable compu-
tation times of arbitrary programs. The processing time estima-
tions can be approximated by a linear function that we use for
admission control. The Estimation-based Fair Queuing (EFQ)
algorithm also uses these estimates to fairly and efficiently as-
sign packets to processing engines. The analysis and simulation
results show that EFQ performs significantly better in terms of
misordering delay and fairness than a SFQ scheduler.

We believe these results are an important step in providing the
type of QoS guarantees that are common for bandwidth sched-
ulers in an environment where flows compete for processing re-
sources.
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