Efficient Conflict Detection in Flow-Based
Virtualized Networks

Sriram Natarajaf) Xin Huand, Tilman Wolf*
*University of Massachusetts, Amherst, MA 01002
Email: {snataraj,wolf@ecs.umass.edu
T Deutsche Telekom R&D Lab, USA

Email: xin.huang@telekom.com

Abstract—In the current Internet, traffic is routed at the level to the “OpenFlow Controller,” which adds a new flow entry
of destination prefixes. The next-generation Internet reqires to the flow table and subsequently all matching packets will
control of traffic at the level of flows or flow aggregates. To be handled by the added flow entry.

accommodate fine-grained control, modern switching subsates ; . . . -
(e.g., OpenFlow) maintain forwarding information for each active Network virtualization, which is the ability to support

flow in a flow table. A separate control plane manages flows Multiple logical networks on a common infrastructure, is
within a subnetwork by updating this flow information within ~ an important aspect of the future Internéi [1]. OpenFlow
switches. When using network virtualization, a technique hat implements virtualization through a “FlowVisor,” which a
allows sharing of networking resources among different logal interact with multiple different controllers, each hamgjia

networks, the physical switch and its flow table need to be shed. t ¢ K sli Th hitect I ket t
Current virtualization solutions in OpenFlow do not support S€Parateé network siice. 1he architecture allows a packet 1o

hardware isolation in the flow table and thus lead to hidden b€ @ part of multiple slices as mentioned in [5]. While this
conflicts and misconfiguration of flows. To maintain networkievel approach achieves effective virtualization of an OpenFlow
flow integrity, we propose two new conflict detection techniges. network, it also presents an important technical challefige
The first algorithm uses an hybrid hash-trie structure to represent parallel operation of multiple OpenFlow controllers ingsi

the flow table and determine the conflicting flows using a divié . i, . L
and conquer strategy. The second mechanism uses an ontolog}hat multiple entities can install flow entries in the flow &b

based logic inference system to represent and infer the coidting Of an OpenFlow switch. It is essential that these entries
flow entries. We performed extensive experimental evaluatn do not conflict, i.e., do not specify different processingl an
of both the techniques. For flow table with thousands of flow forwarding actions for the same packets.

entries, the proposed techniques effectively resolve theowflicts To maintain configuration integrity, it is essential to im-

in approximately 100 milliseconds. plement an effective isolation mechanism for the flow table
between virtual network slices. Current OpenFlow switathes
not provide flow table isolation in hardware. Instead, Open-
In the current Internet, network traffic is routed based dflow handles the flow conflict problem by assigning a priority
the destination address prefixes. While this approach allow to each flow table entry. When using multiple controllers,
efficient implementation of shortest-path (and more com)pleeffective isolation cannot be achieved with prioritiescgin
routing protocols, it does not provide fine-grained contna@r individual controllers may make modifications to the flow
network traffic. However, many proposals for the future intetable that lead to hidden flow conflicts (i.e., a flow entry with
net architecture require that the network data plane imgrem higher priority shadows another flow entry). As a resultiuat
routing and forwarding at the level of individual conneaso OpenFlow networks may exhibit network-level routing that i
or connection aggregates e.g., for network virtualizafijror inconsistent with the view of each controller.
for network services[2]. In this paper, we present two new techniques to detect and
An increasingly widely used platform for flow-based netresolve the flow conflicts, which is essential for effectvel
working is OpenFlow[[B]. OpenFlow is based on commerciahanaging flow-based (e.g., OpenFlow) networks that support
switching hardware and clearly separates the control plavigualization. The specific contributions of our work atreet
from the data plane. An OpenFlow network consists dbllowing: 1) Identification of the flow conflict problem in
hardware switches and controllers that communicate withttze context of flow-based virtualized networks, 2) Design of
dedicated protocol to set up and maintain “flow tables” usexth efficient flow conflict detection system to solve the above
in packet lookup and forwarding. Each flow entry consists @roblem, and 3) Implementation and experimental evalnatio
set of header fields and multiple actions to be performed ofithe performance of the proposed techniques.
the matching packets. Talile | shows the 12-tuple headesfield The remainder of the paper is organized as follows. Sec-
defined in the OpenFlow 1.01[4]. When the switch receiveion [states the flow conflict problem in the context of flow-
an incoming packet, a matching flow entry is determinduhsed virtualized networks. Section IIl discusses the gseg
in the flow table and the packet is forwarded based on tilew conflict detection system. Sectidn]IV focuses on the
specified actions. If no flow matches, the packet is forwardedperimental evaluation of the proposed system. Seéfibn V

I. INTRODUCTION

Ether
Type

IP
Dst

P
Proto

P
ToS

Src
Port

Dst
Port

Ether
Dst

Ingress | Ether
Port Src

VLAN | VLAN P
ID Priority | Src

TABLE |
OPENFLOW HEADER FIELDS

Flows | Ingress| Ether Ether Ether | VLAN | VLAN IP IP 1P P Src | Dst Actions
Port Src Dst Type ID Priority | Src Dst Proto | ToS | Port | Port
el 5 00:24:D7: | 58:B0:35: | Ox800 | * * * 01* TCP | * * 2211 | action 1
63:2C:14 | F6:12:F1
e2 1 * * 0x800 | * * 010* | 100* | UDP | * * 2210 | action 2
e3 * * * 0x800 | * * 101* | 011* | * * * 2211 | action 3
e4 * * * * * * * * * * * * action 4
TABLE Il
EXAMPLE FLOW TABLE
. . Controller A Controller B Controller C
discusses the related work. Sectlod VI summarizes and con-
cludes this paper. N N NS
& N &

Il. PROBLEM STATEMENT

Network virtualization layer i Conflict detection
A flow-based (e.g., OpenFlow) network virtualization ar- (8.9, Flowteor) system
chitecture allows multiple logical networks to share theea N

physical infrastructure. Network virtualization layer.de
FlowVisor) allows set of controllers to manage multiple
switches per slice. Controllers are responsible for ifistal
flow entries in the assigned domain of switches. In such a
design, one physical switch could belong to multiple vittua
networks and thus could be controlled by set of controllers,
leading to flow conflicts.
The flow conflict detection identifies the conflicting flows
in the same flow table. In our work, we model the flow table Fig. 1. Flow Conflict Detection.
asE = {ey,eq, ..., }, Wheren is the number of flow entries.
Flow entrye; containsd fields (e.g., in OpenFlow V1.0 =
12). Let ! denote the range of values that are permissible [1l. FLow CONFLICT DETECTION SYSTEM
for field j of flow ¢;. Hencee; can be represented as, = In this section, we propose a flow conflict detection system
[r},r7,..r{]. Let an incoming packet p be represented as thigat evaluates new flow entries to be added in the flow tables
set of header fieldg, = [f*, /2, ... /], wheref7 is the value of of the physical switches. The working of our conflict detesti
field j. Packetp matches flowe; (i.e.,p € e;), if Vj, f/ € e]. system is depicted in Figufd 1, which shows an example of
Flows e; and e, conflict each other if a packet matches an OpenFlow-based virtualized network where multiple con-
both entries (i.e.3 p,p € e; andp € ey). Table[ll shows an trollers install set of flow entries on the same set of switche
example OpenFlow flow table, where flow eonflicts with The network virtualization layer (e.g., FlowVisor) forvasr
e; and g, flow e, conflicts with g, & and . the new flow entries to our conflict detection system, which
OpenFlow associates a priority field to each flow entryaintains a database of existing flow entries for all swisdne
to solve the conflict problem. In an OpenFlow switch, flowhe network domain. The conflict detection system can either
entries are stored in the flow table TCAM from the highesihclude an hybrid hash-trie based algorithm or an ontology
priority to the lowest priority order. When a packet is reegl, based logical inference mechanism to evaluate and repart th
the matching flow with the highest priority (i.e., the firsket of all conflicting entries. The network virtualizaticayer
matching entry in the TCAM) is chosen and the associatégen resolves the conflicting flows, ensuring consistendién
actions are performed. This approach works well when faw table. In the next section, we describe both methods and
physical switch is controlled by one controller. Howevervaluate their performance.
in the context of virtualized networks, the highest priprit)) _
match leads to hidden flows and eventually causes a netwdfk-Hash-Trie based Conflict Detection
level misconfiguration. Hence, when a new flow is added, anThe hash-trie based conflict detection algorithm (HTCD)
efficient flow conflict detection mechanism helps to maintaiexhibits a divide and conquer design paradigm to detect flow
configuration consistency among multiple virtual netwaaksl conflicts. In our approach we handle the exact match and
thus should be an integral function of network managementildcard entries with different representations as diseds

[Fows [T T AT AT AT TISSTAIATISTI M) Ingress Port Hash Trie
el 1 1 1 1 1 1 1 1 1 1 1 1
e2 0 1 1 1 1 1 0 0 0 1 1 1 {esedd
e3 1 1 1 1 1 1 1 1 1 1 1 1 Hash h(5) (1)
ed 1 1 1 1 1 1 1 1 1 1 1 1
TABLE Il
INTERSECTION MATRIX {e} {e;}
Fig. 3. Hash-Trie Representation
Input: new flow entry
- v‘ the parents of MN, and the subtrie of MN.
N 2) Hash Trie: The exact value header fields are stored in
r ol il Bl i) K A R B B a unique hash and trie combination structure. The root of the
¢ v L ¢ L vy i ¢ v l L hash-trie represents the wildcard entries. The subtrienef t
Hash-Tre RadixTre root in the trie structure stores all the exact match entries

For performance improvements, the subtrie entries aredtor
using a hash table as shown in Figlide 3. In the hash structure,
MatrxTable (= multiple flow entries can be mapped to the same value, hence
o to maintain uniqueness, each header field value is added as
Y hash key and the array of FlowIDs are stored as hash values.
Qupt conflcting flow entries Hence, the hash table can be represented as a (Field Value,
Fig. 2. Hash-Trie based Conflict Detection Workflow. FlowIDs) pair. For each new flow entry, the correspondingffiel
values are compared. If the value is a wildcard, all FlowIDs
are returned. Else, if the value matches with an exact value i

below. Figure[R shows the workflow of our conflict detecthe hash, the FlowIDs associated with the exact match field

tion

algorithm in the context of OpenFlow-based virtuatizeand the FlowIDs associated with the wildcard entry in the roo

networks. are returned. When no match is found, the new (key,value) pai

Divide: The algorithm first divides each flow entry intoWill be added to the hash table. _
set of header fields and detects conflicts on each fielg3) Intersection Matrix: As described above, each field de-
separately. We categorize the conflict detection procet§§m'”e3 the conflicting flow entries and returns the assedtia

based on the type of the header field as follows: 1) -”FéowlDS. The IM then combines the results from all fields
prefix-based fields (e.g., source IP and destination |p51d determines the intersection of FlowIDs. The rows in the

are represented using radix trie structure to determiH¥ table represent the flow entries and the columns represent
the conflicts, and 2) The exact value fields (e.g., tHge header fields. All entries in IM are initialized to zero,
remaining 10 fields in OpenFlow) are represented usir\{ﬂﬂlch denotes no conflicts. For every FlowlD returned, a
hybrid hash and trie structure. The divide step returns tf@esponding flow entry in the IM for the specified header
set of FlowlDs (in our design, each flow is associated wifff!d iS set to 1. An entire row of 1's in the IM corresponds
a FlowID), which represents the conflicts in each field.©© the flow entry conflicting with the input. For a new
Conquer The algorithm then combines the returned sdoW entry [5,%*%,%,*,10%,01*, TCP.* *], Table [Illshows the

of FlowIDs from all fields and determines the conflicting°nflicting flows in the IM, for the flow table in Tablelll. As

flow entries using an Intersection Matrix (IM) table. & result, IM reports flows ¢ &;, and g to be conflicting with
the new flow.

1) Radix Trie: In our algorithm, the prefix-based fields are
represented using radix trie structure for the followingsens: B. Ontology based Conflict Detection
1) A trie structure is a natural selection to represent pesfi®s | this section we introduce our second technique, an
discussed in’[6], and 2) A radix trie maintains a good balanggology based conflict detection (OCD) mechanism to de-
between lookup time, update time, and space requirementiermine the conflicting flow entries. An ontology based logic
The conflict detection process determines all the nodes tagttem provides a standardized mechanism for knowledge
overlap with the new entry in the corresponding IP field. Thepresentation and automated reasoning (inference) wéth w
detection process is as follows: defined syntaxes and semantics. A representation language

We determine the Matching Node (MN) using theéransforms the knowledge from the real world into a logic
Longest Prefix Match (LPM) mechanism. representation using the syntaxes and a reasoning metigydol
For prefix-based fields, all parent nodes of the MN amdeduces and infers the required solutions from the built up
all child nodes of the MN (subtrie of MN) represent flonknowledge.

entries conflicting with the input flow. Thus, we record all In our work, we consider the Description Logic (DL) mech-
nodes along the path while finding the MN. As a resulgnism [7], which provides a logical formalism to represent
the process returns all FlowIDs associated with the Mhe flow table ontology and determine the conflicting flow

Constructor

[DL Syntax | Manchester OWL Syntay

Intersection e oy [o andand o that are permissible for every field antl data properties,

UL e R representing the header field values (e.g., hasingresi-has

—— e Proto,..hasl?stPort). The followmg properties prqwde lbgic

Exact Cardinality __| =n P ezactlyPn representation to determine the conflicting entries.

Un_lverse_\l Quantlf](-_:'r YV, P only P,))

Extstential Quantier] 3n P some P « Domain Property: The domain property ensures that
TABLE IV

DESCRIPTIONLOGIC SYNTAXES

(VianPriority

'/7' (IngressPort)

(VianiD)

/; 3 =

(‘ / (IPDst)
- EtherType)
("Flow.n) ———

-

(_FlowTable <3—=2—(Flow_2

i %
HDW_IOX:
il N
e
I\
\

Tesee)
(_ DstPort

(EtherDst)

N
N (pproto
(1pTos)

Fig. 4. Flow Table Class Taxonomy.

entries. The DL based logic representation consists ofetas
(concepts), individuals and properties (relations orspl&he
classes in the logic represent a set of individuals and ptiege

each field value is within the range of values that are
permissible for the fieldj, by creating a constraint on
the individuals with a set of object property restrictions.
The restrictions are based on the cardinality constructors
as shown in TablEIV<, =, and >). A domain property

is constructed for each field as per the OpenFlow 1.0
specification and is evaluated when a new individual
(field) is added to the class (flow) as follows.

FlowValue = (C FlowClass) M
(ShasFieldDomainRange;) (1)

The above representation specifies thatflhewV alue is

a subsumption of thélowClass and the data instance
for each field is within the permissible value for each
header field in the flow entry.

Data Property: A set of data properties link individuals

to the associated data values. Each data property (denot-
ing a field) is associated with a specific data type (e.g.,
integer, string). When an individual satisfies the domain
property, the corresponding data value for every field is
added to the data property of the individual (flow entry).
An individual is associated with (For the OpenFlow 1.0
specification, d=12) data properties and is represented as

represent a relationship between individuals. Complegses follows.
can be constructed from a set of atomic classes using the
description logic constructors. The set of available caresors

and the corresponding DL and Manchester OWL syntaxes are

shown in Tabld TV { denotes the set of properties). o I :
1) Requirements:The following logic representation and 3) Reasoning The description logic based query language

) . i to determine th ({)rovides an effective mechanism in searching the defined flow
reasoning requirements are necessary to determine the Gy, ontology and determine the conflicting flow entriese Th

flicting flow entries: 1) A logical component to represent thF lowi o : .
X : . . t dicate th OWL
flow entries and their header fields in the flow tahl€),(2) r(;a(;v(\)nnnjs eps Indicate the querying process using an

A set of defined object and data properties for each fields that -) o

ensures consistency and functioning of the system, and 3) A+ The entities (classes, properties and individuals) repre-
logic function to determine the flow conflicts by querying an senting the flow entries are first loaded in the flow table
ontology based reasoner. ontology. _ , _

2) RepresentationThe flow table entities are represented * Once loaded, a class hierarchy is built and the data
using a set of OWL components as shown here. A class struc_tures representing _the class |nstar_10es are |mit_hl|_z
(representing the flow table) consists of set of individuals * The input flow request is transformed into a description
(representing flow entries). An individual should satisBr-c logic syntax and a query is sent to the reasoner to evaluate
tain conditions (properties) to be a member of a class. The @and determine the conflicting flow entries.
permissible value for each header fields are representad usi To handle the exact matching fields and the wildcard header
the object properties and the data values for each field digds in an input flow, the class expression that represéets t
represented using the data properties in the OWL ontolodggical query is generated as follows:

An ontology based flow table class taxonomy is shown in a) Exact Match: The input header field value conflicts
Figure[4. TheFlowTable represents a class that consists ofith the flow entries that exactly matches with the input and
set of individuals {low,, Flow,, ...Flow,). Each individual with all the flow entires that are wildcard for the specified
consists ofd object properties (e.g., hasDomainRange) thaeader field. The class expression (conflict) correspontiing
checks if a given individual satisfies the range of valughe exact matching input fofield; is generated as:

FlowValue = N{(3(hasDataProperty;(value)) (2)

time isO(nd). Thus, the aggregate worst case radix trie search
time is O(nd), wheren is the number of flow entries andlis

the number of prefix-based header fields. The IM combination
The intersectionr() of all field values { < j < d) gives time is proportional to the number of flow entries and the

Field Conflict = (hasDataProperty; = Input Ux) (3)

the conflicting flow entries and is represented as: number of header fields, that i§(nd). Combining the above
_ 4 three stages, the total worst case search time is propattion
Flow Conflict = M (hasDataProperty, to the number of flow entries and the number of header fields
= (Input L x)) (4) and is given byO(nd).

b) OCD Inference SystemThe total search time to

b) Wildcard Match:A wildcard input value conflicts with : - . . .
all the flow entries for the corresponding header field Whednetermme the conflicting flow entries using the OCD inferenc
all field values of the input flow entry is wildcard, then albth Sl Involves the following two stages: 1) Building and

flow entries in the flow table conflicts as shown in Table Iilnitializing the class instance data structure, and 2) @ogr
: . . the ontology with an effective OWL based reasoner. The class
(e.g., Flowed4). The class expression (conflict) correspondi

to the wildcard input forfield; is generated as: "Ritialization time to build the data structure and reasone
J ' guerying time are dependent on the number of entities defined
in the ontology. In our case, we haueindividuals, with each
Field Conflict = 3(hasDataProperty;(x)) (5) individual containingd properties. Hence the worst case total
))) _search time using the OCD inference system is (similar to the
When all the field values are wildcard, the intersection Qftcp algorithm) proportional to the number of flow entries
all field values { < j < d) gives the conflicting flow entries 54 the number of header fields and is given®fnd). In

and is represented as: both the techniques, for the OpenFlow scenario the number of
Flow Conflicts = ¢ (3hasDataProperty; (x)) (6) header fieldsd, is constant. Hence the total worst case search
time is dependent only on the number of flow entires and is

IV. EVALUATION given by,O(n).

In this section we evaluate and discuss the performance o) Memory Requirements:
our proposed flow conflict detection techniques with analysi @) HTCD Algorithm: The worst case memory require-
and implementation results. ment for the hash-trie structure (exact match fields), réukx

. (prefix-based fields) and the Intersection Matrix is projoo!

A. Analysis to the number of flow entries in the flow table and the number

1) Search Time: of header fields, and is given b§(nd). In the OpenFlow

a) HTCD Algorithm: The total search time to determinescenario the number of header fields,is constant (10 for

the conflicting flows using the HTCD algorithm involves théhash-trie structure and 2 for radix trie). Hence the totatsivo
following three stages: 1) Cumulative search time for thecéx case memory requirement is dependent only on the number of
value fields, 2) Aggregate search time for the prefix-baséidw entires and is given by)(n).
fields and 3) Intersection Matrix (IM) evaluation time. b) OCD Inference Systemfhe worst case memory re-

The hash-trie search time is dominated by the hash lookgpirement for the ontology based mechanism is proportional
time. The load factorp (u/m) is given as the ratio of the to the number of individuals in the flow table class and the
number of unique field values:Y over the number of slots associated properties (object and data) for each indijidua
(m). For an efficient hash implementatiom,is usually kept and is given byO(nd). As shown in the HTCD algorithm,
below a small constant, preferably less thams shown in [[B]. the worst case memory requirement is dependent only on the
Thus, the total hash search time using the HTCD algorithmrgimber of flow entires and hence is given }(n).
O(1). For set ofd fields represented by the hash-trie structure, .
the cumulative hash-trie search time@d). The radix trie B- Implementation
search time is determined as a combination of LPM searchin this section we discuss the experimental setup, perfor-
time and the subtrie search time. For each radix trie, the LPiance metrics and evaluation results of both the HTCD and
search time is proportional t@(Dj), where D’ denotes the OCD mechanisms in the OpenFlow scenario.
depth of the radix trie structure of field When the depth of 1) Setup: The experiment was conducted in our lab using
a prefix trie is close to 32, the worst case LPM search timeas conflict detection server based on an Intel Core 2 Duo
O(1). For d fields, the search time i©(d). processor (2.53 GHz, 4 GB memory, and 3 MB L2 cache).

For each radix trie, the subtrie search time is proportion8ince performance evaluations using real flow entries are
to the size of the subtrie rooted from the MN. In the worgestricted by the size and structure, we generate synthetic
case scenario, this is proportional to the size of the whdlews that reflect the characteristics of the flows used in real
radix trie (i.e., when MN is the root of the trie structurd)at OpenFlow scenarios. The synthetic flow entries are gerterate
is, O(n), wheren denotes the number of entries in the flovas follows:
table. Assume that fields are represented by the radix trie The 5-tuple fields (i.e., IP source, IP destination, source
structure, then the worst case scenario for the subtrieclseaport, destination port, IP protocol) are generated usiras€l

Total Search Time (ms)

Initialization Time (ms)

Query Time (ms)

HTCD Query Time (ms)

140 T T T T

[Hash-Trie
120~ M Jena
B OWL-API

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3

Flow Table Size

Fig. 5. Flow Table Size vs Total Search Time (ms).

90 T T T

80 O Hash-Trig
B Jena
70k B OWL-API

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3

Flow Table Size

Fig. 6. Flow Table Size vs Initialization Time (ms).

80 T T T

[Hash-Trie|
70r M Jena N
Bl OWL-API

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3

Flow Table Size

Fig. 7. Flow Table Size vs Query Time (ms).

60 T T T T T

B Intersection-Matrix
50 [Radix-Trie i
B Hash-Trie

40

30

20

10

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,

Flow Table Size

Fig. 8. Flow Table Size vs HTCD Query Time (ms).

120 T T T

[J Hash-Trie|
100+ M Jena
Bl OWL-API

Total Memory (Kb)

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3

Flow Table Size

Fig. 9. Flow Table Size vs Total Memory (Kb).

Bench [9], a packet classification benchmark. The source
and destination ethernet addresses are generated by taking
random value in the range of valid MAC addresses, ensuring
significant wildcard entries added to the flow table. A typica
OpenFlow hardware switch (e.g., NEC IP8800) has 48 1G
ports and 4 10G ports. Hence the valid ingress port numbers
in our experiment were from to 52. According to [4], the
Ethernet type values that are most widely used in OpenFlow
networks areé)x0806 (i.e., ARP) and)x0800 (i.e., IP). The IP
ToS field consists of 6 bits in the IP header, and hence ranges
from 0 to 26 — 1. VLAN id and VLAN priority fields are used

for packets with Ethernet type 0x8100 and hence are set to
wildcard.

The experiment was conducted for different flow table sizes
(i.e., number of flow entries) ranging from 300 to 3600 with
step size of 300. During the flow entry set generation prqcess
we also ensured that the entries have sufficient number of
wildcard fields to test the efficiency of our conflict detentio
system. The HTCD algorithm was implemented using the Mul-
tiMap hash functionality provided in the C++ STL library and
the RadixTrie Java library. For an extensive set of evabuasti
the ontology based inference system was implemented using
the OWL-API library and using the Jena library. For the OWL-
API, the Hermit OWL reasoner was used to infer the flow
conflicts by generating queries using the Manchester OWL
syntax. For the Jena implementation, we used the inbuil Jen
inference engine to query the ontology using OWLReasoner.

C. Results

1) Search Time:The total search time performance for
the three techniques (HTCD, OWL-API, Jena) are shown
in Figure[®. The OWL-API based ontology implementation
performs better than compared to the HTCD and Jena based
technique. To further analyze the search time contribgtion
of each entities, we breakdown the total search time into
the initialization time and query time. Figufé 6 shows the
initialization time for the three techniques. For small@wfl
table sizes, the HTCD scheme initializes faster. Howevih w
increase in flow table size the OWL-API technique initiatize
the individuals and properties in the ontology faster tHam t
other two techniques. Figurdel 7 shows the query time for
different flow table sizes. The query time for both ontology

schemes (OWL-API and Jena) linearly increases with ineregzresent multiple methodologies for identifying and regajv

in the flow table size. For the HTCD algorithm: 1) The hasthe conflicts. We observe a performance trade-off between th
search time is constant, 2) The radix trie search and theoposed techniques. The ontology based technique (OWL-
Intersection Matrix evaluation time increases linearlytvthe API) performs better in the initialization time, while the
flow table size and hence the total search time also increabash-trie algorithm performs better in the query time. The
linearly as shown in Figur€l 8. For larger flow table sizeperformance evaluation of our mechanisms show that we can
the query time for HTCD algorithm performs better than theffectively determine flow conflicts with low time and space
ontology based techniques. On the average case, the OWbmplexities. Thus, our work can solve a key management
API based technique is 8.5% faster than the HTCD technigpmblem in any flow-based virtualized network and ensure

and 4% faster than the Jena based model in determining togrect network-level operation of a virtualized network i

flow conflicts.

2) Memory: The memory requirement for the three tech-
niques were evaluated and is shown in Figure 9. The total
memory required for all the three techniques (HTCD, OWL1]
API and Jena) linearly increases with increase in the floletab
size. The results prove our analysis in Secfion T¥-A2. On th¢2]
average case, the HTCD has 6.5% less memory requiremeLt
than the OWL-API scheme and 4.5% less memory requireme
than the Jena scheme. From the above analysis and our
experimentation results we see that for efficient searcle ti
requirements, the OWL-API based ontology model perform
the best and for limited memory constraints, the HTCD base@]
algorithm performs better.

4]

V. RELATED WORK

(6]

Future Internet architectures are being actively explaned 7]
the networking research community [10]. Network virtual-
ization is at the core of many proposed solutiohs [1] and
prototypes that are being developeéd1[11]. OpenFlow is ?8]
potential substrate for such a future Interret [3]. The b
of managing flows within OpenFlow has received attention in
related work[[12]. Reference[l13] addresses the requiréofen
flow-based policy languages and policy representationd. [1 el
shows the flexibility of decoupling policy and configuration
using OpenFlow. Such solutions define flow-based polici€¥!
and emphasize the requirement of expressive policy specifir
cation languages to maintain consistency. FlowChedkef [15
proposes a verification tool to determine OpenFlow flow tabl&?!
misconfigurations using a Binary Decision Diagram. Imprbve
flow matching schemes have been proposed using FPGA-
based techniquels[lL6]. A conflict detection technique foltimu 13]
dimensional rule sets have been explored for packet claésl-
fication in general[[17]. However, the fundamental problem
of avoiding hidden, conflicting flow entries due to Wildcarii#
fields in a single flow table has not yet been addressed in eJ
context of flow-based virtualized networks. Our work presd
a practical solution to this problem.

VI. CONCLUSION (15]

To support future Internet architectures, control ovetirgu
of individual flows or flow aggregates is essential. OpenFlow;
provides a useful substrate for managing network traffibat t
flow-level. With a move toward network virtualization, it is
important that parallel OpenFlow controllers do not introd 17
conflicts into the flow tables of OpenFlow switches. In our
work, we have identified this problem of hidden conflicts. We

frastructure.

REFERENCES

T. Anderson, L. Peterson, S. Shenker, and J. Turner, f€mring the
Internet impasse through virtualizationComputey vol. 38, no. 4, pp.
34-41, Apr. 2005.

T. Wolf, “In-network services for customization in negeneration
networks,”IEEE Network vol. 24, no. 4, pp. 6-12, Jul. 2010.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,Reterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enablimguation
in campus networks,'SIGCOMM Computer Communication Review
vol. 38, no. 2, pp. 69-74, Apr. 2008.

OpenFlow Switch Specification Version 1@penFlow Switch Consor-
tium, Dec. 2010.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casall. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualizatidayer,”
Department of Computer Science, Stanford University, et Report,
2009.

P. Gupta and N. McKeown, “Algorithms for packet classifion,” IEEE
Network vol. 15, no. 2, pp. 24-32, Mar. 2001.

F. Baader, “Description logic terminology,” iThe Description Logic
Handbook: Theory, Implementation, and ApplicatiofsBaader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneifés.
Cambridge University Press, 2003, pp. 485—-495.

S. Kumar and P. Crowley, “Segmented hash: an efficienh hable
implementation for high performance networking subsystgin Proc.
of ACM/IEEE Symposium on Architectures for Networking anch@u-
nication Systems (ANCSPrinceton, NJ, Oct. 2005.

D. E. Taylor and J. S. Turner, “Classbench: A packet d&sgion
benchmark,”IEEE/ACM Transactions on Networkingol. 15, no. 3,
pp. 499-511, Sep. 2007.

A. Feldmann, “Internet clean-slate design: what ang ®w5IGCOMM
Computer Communication Revigwol. 37, no. 3, pp. 59-64, Jul. 2007.
Global Environment for Network InnovatipiNational Science Founda-
tion, |http://www.geni.nel/.

J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. SharmaRACurtis, and
S. Banerjee, “Devoflow: Cost-effective flow management fightper-
formance enterprise networks,” Proc. of The Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNetB)ontreal, CA, Oct.
2010.

T. L. Hinrichs, N. Gude, M. Casado, J. C. Mitchell, and Shenker,
“Expressing and enforcing flow-based network security giedi” De-
partment of Computer Science, University of Chicago, TedirReport,
2008.

N. Feamster, A. Nayak, H. Kim, R. Clark, Y. Mundada, A.rRachan-
dran, and M. bin Tariq, “Decoupling policy from configuratian
campus and enterprise networks,”Rmoc. of the 17th IEEE Workshop
on Local and Metropoliton Area Networks (LANMAN)ong Branch,
NJ, May 2010, pp. 1-6.

E. Al-Shaer and S. Al-Haj, “Flowchecker: configurati@malysis and
verification of federated openflow infrastructures,” Rroc. of the
3rd ACM workshop on Assurable and usable security configurat
(SafeConfig) Chicago, IL, Oct. 2010.

W. Jiang, V. Prasanna, and N. Yamagaki, “Decision forAsscalable
architecture for flexible flow matching on fpga,” iroc. of the 20th
IEEE International Conference on Field Programmable Logiod
Applications (FPL) Milano, Italy, Aug. 2010.

F. Baboescu and G. Varghese, “Fast and scalable cod#teiction for
packet classifiers,” ilNetwork Protocols, 2002. Proceedings. 10th IEEE
International Conference gmov. 2002, pp. 270 — 279.

http://www.geni.net/

	Introduction
	Problem Statement
	Flow Conflict Detection System
	Hash-Trie based Conflict Detection
	Radix Trie
	Hash Trie
	Intersection Matrix

	Ontology based Conflict Detection
	Requirements
	Representation
	Reasoning

	Evaluation
	Analysis
	Search Time
	Memory Requirements

	Implementation
	Setup

	Results
	Search Time
	Memory

	Related Work
	Conclusion
	References

