
Efficient Conflict Detection in Flow-Based
Virtualized Networks
Sriram Natarajan∗, Xin Huang†, Tilman Wolf∗
∗University of Massachusetts, Amherst, MA 01002

Email: {snataraj,wolf}@ecs.umass.edu
† Deutsche Telekom R&D Lab, USA

Email: xin.huang@telekom.com

Abstract—In the current Internet, traffic is routed at the level
of destination prefixes. The next-generation Internet requires
control of traffic at the level of flows or flow aggregates. To
accommodate fine-grained control, modern switching substrates
(e.g., OpenFlow) maintain forwarding information for each active
flow in a flow table. A separate control plane manages flows
within a subnetwork by updating this flow information within
switches. When using network virtualization, a technique that
allows sharing of networking resources among different logical
networks, the physical switch and its flow table need to be shared.
Current virtualization solutions in OpenFlow do not support
hardware isolation in the flow table and thus lead to hidden
conflicts and misconfiguration of flows. To maintain network-level
flow integrity, we propose two new conflict detection techniques.
The first algorithm uses an hybrid hash-trie structure to represent
the flow table and determine the conflicting flows using a divide
and conquer strategy. The second mechanism uses an ontology
based logic inference system to represent and infer the conflicting
flow entries. We performed extensive experimental evaluation
of both the techniques. For flow table with thousands of flow
entries, the proposed techniques effectively resolve the conflicts
in approximately 100 milliseconds.

I. I NTRODUCTION

In the current Internet, network traffic is routed based on
the destination address prefixes. While this approach allows an
efficient implementation of shortest-path (and more complex)
routing protocols, it does not provide fine-grained controlover
network traffic. However, many proposals for the future Inter-
net architecture require that the network data plane implement
routing and forwarding at the level of individual connections
or connection aggregates e.g., for network virtualization[1] or
for network services [2].

An increasingly widely used platform for flow-based net-
working is OpenFlow [3]. OpenFlow is based on commercial
switching hardware and clearly separates the control plane
from the data plane. An OpenFlow network consists of
hardware switches and controllers that communicate with a
dedicated protocol to set up and maintain “flow tables” used
in packet lookup and forwarding. Each flow entry consists of
set of header fields and multiple actions to be performed on
the matching packets. Table I shows the 12-tuple header fields
defined in the OpenFlow 1.0 [4]. When the switch receives
an incoming packet, a matching flow entry is determined
in the flow table and the packet is forwarded based on the
specified actions. If no flow matches, the packet is forwarded

to the “OpenFlow Controller,” which adds a new flow entry
to the flow table and subsequently all matching packets will
be handled by the added flow entry.

Network virtualization, which is the ability to support
multiple logical networks on a common infrastructure, is
an important aspect of the future Internet [1]. OpenFlow
implements virtualization through a “FlowVisor,” which can
interact with multiple different controllers, each handling a
separate network slice. The architecture allows a packet to
be a part of multiple slices as mentioned in [5]. While this
approach achieves effective virtualization of an OpenFlow
network, it also presents an important technical challenge. The
parallel operation of multiple OpenFlow controllers implies
that multiple entities can install flow entries in the flow table
of an OpenFlow switch. It is essential that these entries
do not conflict, i.e., do not specify different processing and
forwarding actions for the same packets.

To maintain configuration integrity, it is essential to im-
plement an effective isolation mechanism for the flow table
between virtual network slices. Current OpenFlow switchesdo
not provide flow table isolation in hardware. Instead, Open-
Flow handles the flow conflict problem by assigning a priority
to each flow table entry. When using multiple controllers,
effective isolation cannot be achieved with priorities since
individual controllers may make modifications to the flow
table that lead to hidden flow conflicts (i.e., a flow entry with
higher priority shadows another flow entry). As a result, virtual
OpenFlow networks may exhibit network-level routing that is
inconsistent with the view of each controller.

In this paper, we present two new techniques to detect and
resolve the flow conflicts, which is essential for effectively
managing flow-based (e.g., OpenFlow) networks that support
virtualization. The specific contributions of our work are the
following: 1) Identification of the flow conflict problem in
the context of flow-based virtualized networks, 2) Design of
an efficient flow conflict detection system to solve the above
problem, and 3) Implementation and experimental evaluation
of the performance of the proposed techniques.

The remainder of the paper is organized as follows. Sec-
tion II states the flow conflict problem in the context of flow-
based virtualized networks. Section III discusses the proposed
flow conflict detection system. Section IV focuses on the
experimental evaluation of the proposed system. Section V

Ingress Ether Ether Ether VLAN VLAN IP IP IP IP Src Dst
Port Src Dst Type ID Priority Src Dst Proto ToS Port Port

TABLE I
OPENFLOW HEADER FIELDS

Flows Ingress Ether Ether Ether VLAN VLAN IP IP IP IP Src Dst Actions
Port Src Dst Type ID Priority Src Dst Proto ToS Port Port

e1 5 00:24:D7: 58:B0:35: 0x800 * * * 01* TCP * * 2211 action 1
63:2C:14 F6:12:F1

e2 1 * * 0x800 * * 010* 100* UDP * * 2210 action 2
e3 * * * 0x800 * * 101* 011* * * * 2211 action 3
e4 * * * * * * * * * * * * action 4

TABLE II
EXAMPLE FLOW TABLE

discusses the related work. Section VI summarizes and con-
cludes this paper.

II. PROBLEM STATEMENT

A flow-based (e.g., OpenFlow) network virtualization ar-
chitecture allows multiple logical networks to share the same
physical infrastructure. Network virtualization layer (e.g.,
FlowVisor) allows set of controllers to manage multiple
switches per slice. Controllers are responsible for installing
flow entries in the assigned domain of switches. In such a
design, one physical switch could belong to multiple virtual
networks and thus could be controlled by set of controllers,
leading to flow conflicts.

The flow conflict detection identifies the conflicting flows
in the same flow table. In our work, we model the flow table
asE = {e1, e2, ...en}, wheren is the number of flow entries.
Flow entryei containsd fields (e.g., in OpenFlow V1.0,d =
12). Let rji denote the range of values that are permissible
for field j of flow ei. Henceei can be represented as,ei =
[r1i , r

2

i , ...r
d
i]. Let an incoming packet p be represented as the

set of header fields,p = [f1, f2, ...fd], wheref j is the value of
field j. Packetp matches flowei (i.e., p ∈ ei), if ∀j, f j ∈ e

j
i .

Flows ei and ek conflict each other if a packetp matches
both entries (i.e.,∃ p, p ∈ ei andp ∈ ek). Table II shows an
example OpenFlow flow table, where flow e3 conflicts with
e4 and e1, flow e4 conflicts with e1, e2 and e3.

OpenFlow associates a priority field to each flow entry
to solve the conflict problem. In an OpenFlow switch, flow
entries are stored in the flow table TCAM from the highest
priority to the lowest priority order. When a packet is received,
the matching flow with the highest priority (i.e., the first
matching entry in the TCAM) is chosen and the associated
actions are performed. This approach works well when a
physical switch is controlled by one controller. However,
in the context of virtualized networks, the highest priority
match leads to hidden flows and eventually causes a network-
level misconfiguration. Hence, when a new flow is added, an
efficient flow conflict detection mechanism helps to maintain
configuration consistency among multiple virtual networksand
thus should be an integral function of network management.

Fig. 1. Flow Conflict Detection.

III. F LOW CONFLICT DETECTION SYSTEM

In this section, we propose a flow conflict detection system
that evaluates new flow entries to be added in the flow tables
of the physical switches. The working of our conflict detection
system is depicted in Figure 1, which shows an example of
an OpenFlow-based virtualized network where multiple con-
trollers install set of flow entries on the same set of switches.
The network virtualization layer (e.g., FlowVisor) forwards
the new flow entries to our conflict detection system, which
maintains a database of existing flow entries for all switches in
the network domain. The conflict detection system can either
include an hybrid hash-trie based algorithm or an ontology
based logical inference mechanism to evaluate and report the
set of all conflicting entries. The network virtualization layer
then resolves the conflicting flows, ensuring consistency inthe
flow table. In the next section, we describe both methods and
evaluate their performance.

A. Hash-Trie based Conflict Detection

The hash-trie based conflict detection algorithm (HTCD)
exhibits a divide and conquer design paradigm to detect flow
conflicts. In our approach we handle the exact match and
wildcard entries with different representations as discussed

Flows f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

e1 1 1 1 1 1 1 1 1 1 1 1 1
e2 0 1 1 1 1 1 0 0 0 1 1 1
e3 1 1 1 1 1 1 1 1 1 1 1 1
e4 1 1 1 1 1 1 1 1 1 1 1 1

TABLE III
INTERSECTION MATRIX

Fig. 2. Hash-Trie based Conflict Detection Workflow.

below. Figure 2 shows the workflow of our conflict detec-
tion algorithm in the context of OpenFlow-based virtualized
networks.

• Divide: The algorithm first divides each flow entry into
set of header fields and detects conflicts on each field
separately. We categorize the conflict detection process
based on the type of the header field as follows: 1) The
prefix-based fields (e.g., source IP and destination IP)
are represented using radix trie structure to determine
the conflicts, and 2) The exact value fields (e.g., the
remaining 10 fields in OpenFlow) are represented using
hybrid hash and trie structure. The divide step returns the
set of FlowIDs (in our design, each flow is associated with
a FlowID), which represents the conflicts in each field.

• Conquer: The algorithm then combines the returned set
of FlowIDs from all fields and determines the conflicting
flow entries using an Intersection Matrix (IM) table.

1) Radix Trie: In our algorithm, the prefix-based fields are
represented using radix trie structure for the following reasons:
1) A trie structure is a natural selection to represent prefixes, as
discussed in [6], and 2) A radix trie maintains a good balance
between lookup time, update time, and space requirement.

The conflict detection process determines all the nodes that
overlap with the new entry in the corresponding IP field. The
detection process is as follows:

• We determine the Matching Node (MN) using the
Longest Prefix Match (LPM) mechanism.

• For prefix-based fields, all parent nodes of the MN and
all child nodes of the MN (subtrie of MN) represent flow
entries conflicting with the input flow. Thus, we record all
nodes along the path while finding the MN. As a result,
the process returns all FlowIDs associated with the MN,

Fig. 3. Hash-Trie Representation

the parents of MN, and the subtrie of MN.
2) Hash Trie: The exact value header fields are stored in

a unique hash and trie combination structure. The root of the
hash-trie represents the wildcard entries. The subtrie of the
root in the trie structure stores all the exact match entries.
For performance improvements, the subtrie entries are stored
using a hash table as shown in Figure 3. In the hash structure,
multiple flow entries can be mapped to the same value, hence
to maintain uniqueness, each header field value is added as
hash key and the array of FlowIDs are stored as hash values.
Hence, the hash table can be represented as a (Field Value,
FlowIDs) pair. For each new flow entry, the corresponding field
values are compared. If the value is a wildcard, all FlowIDs
are returned. Else, if the value matches with an exact value in
the hash, the FlowIDs associated with the exact match field
and the FlowIDs associated with the wildcard entry in the root
are returned. When no match is found, the new (key,value) pair
will be added to the hash table.

3) Intersection Matrix:As described above, each field de-
termines the conflicting flow entries and returns the associated
FlowIDs. The IM then combines the results from all fields
and determines the intersection of FlowIDs. The rows in the
IM table represent the flow entries and the columns represent
the header fields. All entries in IM are initialized to zero,
which denotes no conflicts. For every FlowID returned, a
corresponding flow entry in the IM for the specified header
field is set to 1. An entire row of 1’s in the IM corresponds
to the flow entry conflicting with the input. For a new
flow entry [5,*,*,*,*,*,10*,01*,TCP,*,*,*], Table III shows the
conflicting flows in the IM, for the flow table in Table II. As
a result, IM reports flows e1, e3, and e4 to be conflicting with
the new flow.

B. Ontology based Conflict Detection

In this section we introduce our second technique, an
ontology based conflict detection (OCD) mechanism to de-
termine the conflicting flow entries. An ontology based logic
system provides a standardized mechanism for knowledge
representation and automated reasoning (inference) with well
defined syntaxes and semantics. A representation language
transforms the knowledge from the real world into a logic
representation using the syntaxes and a reasoning methodology
deduces and infers the required solutions from the built up
knowledge.

In our work, we consider the Description Logic (DL) mech-
anism [7], which provides a logical formalism to represent
the flow table ontology and determine the conflicting flow

Constructor DL Syntax Manchester OWL Syntax

Intersection ei ⊓...⊓ ek ei and...and ek
Union ei ⊔...⊔ ek ei or...or ek
Complement ¬ ei not ei
Max Cardinality ≤n P maxPn

Min Cardinality ≥n P minPn

Exact Cardinality =n P exactlyPn

Universal Quantifier ∀n P only Pn

Existential Quantifier ∃nP some Pn

TABLE IV
DESCRIPTIONLOGIC SYNTAXES

Fig. 4. Flow Table Class Taxonomy.

entries. The DL based logic representation consists of classes
(concepts), individuals and properties (relations or roles). The
classes in the logic represent a set of individuals and properties
represent a relationship between individuals. Complex classes
can be constructed from a set of atomic classes using the
description logic constructors. The set of available constructors
and the corresponding DL and Manchester OWL syntaxes are
shown in Table IV (P denotes the set of properties).

1) Requirements:The following logic representation and
reasoning requirements are necessary to determine the con-
flicting flow entries: 1) A logical component to represent the
flow entries and their header fields in the flow table (E), 2)
A set of defined object and data properties for each fields that
ensures consistency and functioning of the system, and 3) A
logic function to determine the flow conflicts by querying an
ontology based reasoner.

2) Representation:The flow table entities are represented
using a set of OWL components as shown here. A class
(representing the flow table) consists of set of individuals
(representing flow entries). An individual should satisfy cer-
tain conditions (properties) to be a member of a class. The
permissible value for each header fields are represented using
the object properties and the data values for each field are
represented using the data properties in the OWL ontology.
An ontology based flow table class taxonomy is shown in
Figure 4. TheFlowTable represents a class that consists of
set of individuals (Flow1, F low2, ...F lown). Each individual
consists ofd object properties (e.g., hasDomainRange) that
checks if a given individual satisfies the range of values

that are permissible for every field andd data properties,
representing the header field values (e.g., hasIngress, hasIP-
Proto,..hasDstPort). The following properties provide the logic
representation to determine the conflicting entries.

• Domain Property: The domain property ensures that
each field value is within the range of values that are
permissible for the fieldj, by creating a constraint on
the individuals with a set of object property restrictions.
The restrictions are based on the cardinality constructors
as shown in Table IV (≤,=, and ≥). A domain property
is constructed for each field as per the OpenFlow 1.0
specification and is evaluated when a new individual
(field) is added to the class (flow) as follows.

FlowV alue ≡ (⊑ FlowClass) ⊓d
1

(∃hasF ieldDomainRangej) (1)

The above representation specifies that theFlowV alue is
a subsumption of theFlowClass and the data instance
for each field is within the permissible value for each
header field in the flow entry.

• Data Property: A set of data properties link individuals
to the associated data values. Each data property (denot-
ing a field) is associated with a specific data type (e.g.,
integer, string). When an individual satisfies the domain
property, the corresponding data value for every field is
added to the data property of the individual (flow entry).
An individual is associated withd (For the OpenFlow 1.0
specification, d=12) data properties and is represented as
follows.

FlowV alue ≡ ⊓d
1
(∃(hasDataPropertyj(value)) (2)

3) Reasoning:The description logic based query language
provides an effective mechanism in searching the defined flow
table ontology and determine the conflicting flow entries. The
following steps indicate the querying process using an OWL
reasoner:

• The entities (classes, properties and individuals) repre-
senting the flow entries are first loaded in the flow table
ontology.

• Once loaded, a class hierarchy is built and the data
structures representing the class instances are initialized.

• The input flow request is transformed into a description
logic syntax and a query is sent to the reasoner to evaluate
and determine the conflicting flow entries.

To handle the exact matching fields and the wildcard header
fields in an input flow, the class expression that represents the
logical query is generated as follows:

a) Exact Match: The input header field value conflicts
with the flow entries that exactly matches with the input and
with all the flow entires that are wildcard for the specified
header field. The class expression (conflict) correspondingto
the exact matching input forfieldj is generated as:

Field Conflict ≡ (hasDataPropertyj = Input ⊔ ∗) (3)

The intersection (⊓) of all field values (1 ≤ j ≤ d) gives
the conflicting flow entries and is represented as:

Flow Conflict ≡ ⊓d
1
(hasDataPropertyj

= (Input ⊔ ∗)) (4)

b) Wildcard Match:A wildcard input value conflicts with
all the flow entries for the corresponding header field. When
all field values of the input flow entry is wildcard, then all the
flow entries in the flow table conflicts as shown in Table II
(e.g., Flowe4). The class expression (conflict) corresponding
to the wildcard input forfieldj is generated as:

Field Conflict ≡ ∃(hasDataPropertyj(∗)) (5)

When all the field values are wildcard, the intersection of
all field values (1 ≤ j ≤ d) gives the conflicting flow entries
and is represented as:

Flow Conflicts ≡ ⊓d
1(∃hasDataPropertyj(∗)) (6)

IV. EVALUATION

In this section we evaluate and discuss the performance of
our proposed flow conflict detection techniques with analysis
and implementation results.

A. Analysis

1) Search Time:
a) HTCD Algorithm: The total search time to determine

the conflicting flows using the HTCD algorithm involves the
following three stages: 1) Cumulative search time for the exact
value fields, 2) Aggregate search time for the prefix-based
fields and 3) Intersection Matrix (IM) evaluation time.

The hash-trie search time is dominated by the hash lookup
time. The load factor,α (u/m) is given as the ratio of the
number of unique field values (u) over the number of slots
(m). For an efficient hash implementation,α is usually kept
below a small constant, preferably less than1 as shown in [8].
Thus, the total hash search time using the HTCD algorithm is
O(1). For set ofd fields represented by the hash-trie structure,
the cumulative hash-trie search time isO(d). The radix trie
search time is determined as a combination of LPM search
time and the subtrie search time. For each radix trie, the LPM
search time is proportional toO

(

Dj
)

, whereDj denotes the
depth of the radix trie structure of fieldj. When the depth of
a prefix trie is close to 32, the worst case LPM search time is
O(1). For d fields, the search time isO(d).

For each radix trie, the subtrie search time is proportional
to the size of the subtrie rooted from the MN. In the worst
case scenario, this is proportional to the size of the whole
radix trie (i.e., when MN is the root of the trie structure), that
is, O(n), wheren denotes the number of entries in the flow
table. Assume thatd fields are represented by the radix trie
structure, then the worst case scenario for the subtrie search

time isO(nd). Thus, the aggregate worst case radix trie search
time isO(nd), wheren is the number of flow entries andd is
the number of prefix-based header fields. The IM combination
time is proportional to the number of flow entries and the
number of header fields, that is,O(nd). Combining the above
three stages, the total worst case search time is proportional
to the number of flow entries and the number of header fields
and is given byO(nd).

b) OCD Inference System:The total search time to
determine the conflicting flow entries using the OCD inference
system involves the following two stages: 1) Building and
initializing the class instance data structure, and 2) Querying
the ontology with an effective OWL based reasoner. The class
initialization time to build the data structure and reasoner
querying time are dependent on the number of entities defined
in the ontology. In our case, we haven individuals, with each
individual containingd properties. Hence the worst case total
search time using the OCD inference system is (similar to the
HTCD algorithm) proportional to the number of flow entries
and the number of header fields and is given byO(nd). In
both the techniques, for the OpenFlow scenario the number of
header fields,d, is constant. Hence the total worst case search
time is dependent only on the number of flow entires and is
given by,O(n).

2) Memory Requirements:
a) HTCD Algorithm: The worst case memory require-

ment for the hash-trie structure (exact match fields), radixtrie
(prefix-based fields) and the Intersection Matrix is proportional
to the number of flow entries in the flow table and the number
of header fields, and is given byO(nd). In the OpenFlow
scenario the number of header fields,d, is constant (10 for
hash-trie structure and 2 for radix trie). Hence the total worst
case memory requirement is dependent only on the number of
flow entires and is given by,O(n).

b) OCD Inference System:The worst case memory re-
quirement for the ontology based mechanism is proportional
to the number of individuals in the flow table class and the
associated properties (object and data) for each individual,
and is given byO(nd). As shown in the HTCD algorithm,
the worst case memory requirement is dependent only on the
number of flow entires and hence is given by,O(n).

B. Implementation

In this section we discuss the experimental setup, perfor-
mance metrics and evaluation results of both the HTCD and
OCD mechanisms in the OpenFlow scenario.

1) Setup:The experiment was conducted in our lab using
a conflict detection server based on an Intel Core 2 Duo
processor (2.53 GHz, 4 GB memory, and 3 MB L2 cache).
Since performance evaluations using real flow entries are
restricted by the size and structure, we generate synthetic
flows that reflect the characteristics of the flows used in real
OpenFlow scenarios. The synthetic flow entries are generated
as follows:

The 5-tuple fields (i.e., IP source, IP destination, source
port, destination port, IP protocol) are generated using Class-

 0

 20

 40

 60

 80

 100

 120

 140

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

T
ot

al
 S

ea
rc

h
T

im
e

(m
s)

Flow Table Size

Hash−Trie
Jena
OWL−API

Fig. 5. Flow Table Size vs Total Search Time (ms).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

In
iti

al
iz

at
io

n
T

im
e

(m
s)

Flow Table Size

Hash−Trie
Jena
OWL−API

Fig. 6. Flow Table Size vs Initialization Time (ms).

 0

 10

 20

 30

 40

 50

 60

 70

 80

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

Q
ue

ry
 T

im
e

(m
s)

Flow Table Size

Hash−Trie
Jena
OWL−API

Fig. 7. Flow Table Size vs Query Time (ms).

 0

 10

 20

 30

 40

 50

 60

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

H
T

C
D

 Q
ue

ry
 T

im
e

(m
s)

Flow Table Size

Intersection−Matrix
Radix−Trie
Hash−Trie

Fig. 8. Flow Table Size vs HTCD Query Time (ms).

 0

 20

 40

 60

 80

 100

 120

300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

T
ot

al
 M

em
or

y
(K

b)

Flow Table Size

Hash−Trie
Jena
OWL−API

Fig. 9. Flow Table Size vs Total Memory (Kb).

Bench [9], a packet classification benchmark. The source
and destination ethernet addresses are generated by takinga
random value in the range of valid MAC addresses, ensuring
significant wildcard entries added to the flow table. A typical
OpenFlow hardware switch (e.g., NEC IP8800) has 48 1G
ports and 4 10G ports. Hence the valid ingress port numbers
in our experiment were from1 to 52. According to [4], the
Ethernet type values that are most widely used in OpenFlow
networks are0x0806 (i.e., ARP) and0x0800 (i.e., IP). The IP
ToS field consists of 6 bits in the IP header, and hence ranges
from 0 to 26−1. VLAN id and VLAN priority fields are used
for packets with Ethernet type 0x8100 and hence are set to
wildcard.

The experiment was conducted for different flow table sizes
(i.e., number of flow entries) ranging from 300 to 3600 with
step size of 300. During the flow entry set generation process,
we also ensured that the entries have sufficient number of
wildcard fields to test the efficiency of our conflict detection
system. The HTCD algorithm was implemented using the Mul-
tiMap hash functionality provided in the C++ STL library and
the RadixTrie Java library. For an extensive set of evaluations,
the ontology based inference system was implemented using
the OWL-API library and using the Jena library. For the OWL-
API, the Hermit OWL reasoner was used to infer the flow
conflicts by generating queries using the Manchester OWL
syntax. For the Jena implementation, we used the inbuilt Jena
inference engine to query the ontology using OWLReasoner.

C. Results

1) Search Time:The total search time performance for
the three techniques (HTCD, OWL-API, Jena) are shown
in Figure 5. The OWL-API based ontology implementation
performs better than compared to the HTCD and Jena based
technique. To further analyze the search time contributions
of each entities, we breakdown the total search time into
the initialization time and query time. Figure 6 shows the
initialization time for the three techniques. For smaller flow
table sizes, the HTCD scheme initializes faster. However, with
increase in flow table size the OWL-API technique initializes
the individuals and properties in the ontology faster than the
other two techniques. Figure 7 shows the query time for
different flow table sizes. The query time for both ontology

schemes (OWL-API and Jena) linearly increases with increase
in the flow table size. For the HTCD algorithm: 1) The hash
search time is constant, 2) The radix trie search and the
Intersection Matrix evaluation time increases linearly with the
flow table size and hence the total search time also increases
linearly as shown in Figure 8. For larger flow table sizes,
the query time for HTCD algorithm performs better than the
ontology based techniques. On the average case, the OWL-
API based technique is 8.5% faster than the HTCD technique
and 4% faster than the Jena based model in determining the
flow conflicts.

2) Memory: The memory requirement for the three tech-
niques were evaluated and is shown in Figure 9. The total
memory required for all the three techniques (HTCD, OWL-
API and Jena) linearly increases with increase in the flow table
size. The results prove our analysis in Section IV-A2. On the
average case, the HTCD has 6.5% less memory requirement
than the OWL-API scheme and 4.5% less memory requirement
than the Jena scheme. From the above analysis and our
experimentation results we see that for efficient search time
requirements, the OWL-API based ontology model performs
the best and for limited memory constraints, the HTCD based
algorithm performs better.

V. RELATED WORK

Future Internet architectures are being actively exploredin
the networking research community [10]. Network virtual-
ization is at the core of many proposed solutions [1] and
prototypes that are being developed [11]. OpenFlow is a
potential substrate for such a future Internet [3]. The problem
of managing flows within OpenFlow has received attention in
related work [12]. Reference [13] addresses the requirement of
flow-based policy languages and policy representations. [14]
shows the flexibility of decoupling policy and configuration
using OpenFlow. Such solutions define flow-based policies
and emphasize the requirement of expressive policy specifi-
cation languages to maintain consistency. FlowChecker [15]
proposes a verification tool to determine OpenFlow flow table
misconfigurations using a Binary Decision Diagram. Improved
flow matching schemes have been proposed using FPGA-
based techniques [16]. A conflict detection technique for multi-
dimensional rule sets have been explored for packet classi-
fication in general [17]. However, the fundamental problem
of avoiding hidden, conflicting flow entries due to wildcard
fields in a single flow table has not yet been addressed in the
context of flow-based virtualized networks. Our work provides
a practical solution to this problem.

VI. CONCLUSION

To support future Internet architectures, control over routing
of individual flows or flow aggregates is essential. OpenFlow
provides a useful substrate for managing network traffic at the
flow-level. With a move toward network virtualization, it is
important that parallel OpenFlow controllers do not introduce
conflicts into the flow tables of OpenFlow switches. In our
work, we have identified this problem of hidden conflicts. We

present multiple methodologies for identifying and resolving
the conflicts. We observe a performance trade-off between the
proposed techniques. The ontology based technique (OWL-
API) performs better in the initialization time, while the
hash-trie algorithm performs better in the query time. The
performance evaluation of our mechanisms show that we can
effectively determine flow conflicts with low time and space
complexities. Thus, our work can solve a key management
problem in any flow-based virtualized network and ensure
correct network-level operation of a virtualized network in-
frastructure.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,”Computer, vol. 38, no. 4, pp.
34–41, Apr. 2005.

[2] T. Wolf, “In-network services for customization in next-generation
networks,” IEEE Network, vol. 24, no. 4, pp. 6–12, Jul. 2010.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,”SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Apr. 2008.

[4] OpenFlow Switch Specification Version 1.0, OpenFlow Switch Consor-
tium, Dec. 2010.

[5] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
Department of Computer Science, Stanford University, Technical Report,
2009.

[6] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network, vol. 15, no. 2, pp. 24–32, Mar. 2001.

[7] F. Baader, “Description logic terminology,” inThe Description Logic
Handbook: Theory, Implementation, and Applications, F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,Eds.
Cambridge University Press, 2003, pp. 485–495.

[8] S. Kumar and P. Crowley, “Segmented hash: an efficient hash table
implementation for high performance networking subsystems,” in Proc.
of ACM/IEEE Symposium on Architectures for Networking and Commu-
nication Systems (ANCS), Princeton, NJ, Oct. 2005.

[9] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM Transactions on Networking, vol. 15, no. 3,
pp. 499–511, Sep. 2007.

[10] A. Feldmann, “Internet clean-slate design: what and why?” SIGCOMM
Computer Communication Review, vol. 37, no. 3, pp. 59–64, Jul. 2007.

[11] Global Environment for Network Innovation, National Science Founda-
tion, http://www.geni.net/.

[12] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and
S. Banerjee, “Devoflow: Cost-effective flow management for high per-
formance enterprise networks,” inProc. of The Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNets), Montreal, CA, Oct.
2010.

[13] T. L. Hinrichs, N. Gude, M. Casado, J. C. Mitchell, and S.Shenker,
“Expressing and enforcing flow-based network security policies,” De-
partment of Computer Science, University of Chicago, Technical Report,
2008.

[14] N. Feamster, A. Nayak, H. Kim, R. Clark, Y. Mundada, A. Ramachan-
dran, and M. bin Tariq, “Decoupling policy from configuration in
campus and enterprise networks,” inProc. of the 17th IEEE Workshop
on Local and Metropoliton Area Networks (LANMAN), Long Branch,
NJ, May 2010, pp. 1–6.

[15] E. Al-Shaer and S. Al-Haj, “Flowchecker: configurationanalysis and
verification of federated openflow infrastructures,” inProc. of the
3rd ACM workshop on Assurable and usable security configuration
(SafeConfig), Chicago, IL, Oct. 2010.

[16] W. Jiang, V. Prasanna, and N. Yamagaki, “Decision forest: A scalable
architecture for flexible flow matching on fpga,” inProc. of the 20th
IEEE International Conference on Field Programmable Logicand
Applications (FPL), Milano, Italy, Aug. 2010.

[17] F. Baboescu and G. Varghese, “Fast and scalable conflictdetection for
packet classifiers,” inNetwork Protocols, 2002. Proceedings. 10th IEEE
International Conference on, nov. 2002, pp. 270 – 279.

http://www.geni.net/

	Introduction
	Problem Statement
	Flow Conflict Detection System
	Hash-Trie based Conflict Detection
	Radix Trie
	Hash Trie
	Intersection Matrix

	Ontology based Conflict Detection
	Requirements
	Representation
	Reasoning

	Evaluation
	Analysis
	Search Time
	Memory Requirements

	Implementation
	Setup

	Results
	Search Time
	Memory

	Related Work
	Conclusion
	References

