
Attacks on Network Infrastructure

Danai Chasaki∗, Qiang Wu† and Tilman Wolf∗

∗Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA

Email: {dchasaki,wolf}@ecs.umass.edu
†Juniper Networks, Inc.

Sunnyvale, CA, USA

Abstract—We present the first practical example of an entirely
new class of network attacks – attacks that target the network in-
frastructure. Modern routers in computer networks use general-
purpose programmable packet processors. The software used for
packet processing on these systems is potentially vulnerable to
remote exploits. In this paper, we demonstrate a specific attack
that can launch a devastating denial-of-service attack by sending
just a single packet. We show that vulnerable packet processing
code can be exploited on a Click modular router as well as on a
custom packet processor on the NetFPGA platform. We also show
that defense techniques based on processor monitoring that we
have proposed in prior work can help in detecting and avoiding
such attacks.

Index Terms—network security, network attack, pro-
grammable router, network processor, processing monitor

I. INTRODUCTION

Network security is an important concern in the Internet.

Most network security efforts have focused on vulnerable

end-systems that are exploited by remote attacks through the

network, on denial-of-service attacks that use the network

to disable end-systems, and on general information security.

Until recently, the network infrastructure itself has not been

a major concern for network security since it presented no

practical attack target. However, the technology used to im-

plement network routers has changed in recent years and new

vulnerabilities are emerging. In our work, we demonstrate a

specific example of a novel type of attack that exploits these

vulnerabilities and thereby attacks the network infrastructure

itself.

In the past, most high-performance network routers used

application-specific integrated circuits (ASICs) to implement

packet forwarding functions. While ASICs are costly to de-

velop, they represented the only technology that could achieve

the performance that was necessary for multi-Gigiabit per

second traffic forwarding. Over the last few years, however, the

performance of general-purpose multi-core processors (e.g.,

network processors or high-end server processors) has reached

a level where high traffic forwarding rates can be achieved.

Since the functionality of an ASIC cannot be changed once

it has been designed, the use of general-purpose processor

provides a router vendor with much more flexibility to adjust

a router’s functionality after production [1]. Therefore, there

is an ongoing shift in the industry toward developing routers

based on programmable packet processing engines rather than

based on ASICs.

A side-effect of this shift from ASIC-based routers to

routers with programmable packet processors is that it gives

rise to a new class of vulnerabilities and corresponding attacks.

Routers based on ASICs represented no practical attack target

since their functionality could not be changed except by re-

placing actual hardware. In contrast, routers based on general-

purpose processors that run software to implement packet

processing functions exhibit the same kind of vulnerabilities

that have been observed and exploited in conventional end-

systems and embedded systems: attackers can attempt to crash

the system, change its operation, extract information, etc.

Vulnerabilities in the network infrastructure itself are par-

ticularly problematic. First, routers are shared infrastructure

and outages can affect a large number of users. Second, some

routers at the core of the network are connected to links with

extremely high data rates (e.g., 40 Gigabits per second). If

an attacker can modify the behavior of a router to send out

malicious traffic, devastating denial-of-service attacks can be

launched using only one or a handful of vulnerable systems.

In our work, we show a practical example of such an attack.

Specifically, we demonstrate how benign protocol processing

code (in our case, the insertion of a protocol header) can

be exploited by a single data packet and trigger a denial-of-

service that consumes the entire outgoing link bandwidth of

a router. We show this vulnerability for two specific systems,

a Click modular router [2] and a custom packet processor [3]

based on the NetFPGA platform [4], as representatives for the

broad class of routers with programmable packet processors.

We also show that processor monitoring techniques developed

in prior and related work [5] can help in identifying and

mitigating these attacks.

The specific contributions of our paper are:

• To our knowledge, the first practical example of a novel

type of attack on routers with programmable packet

processors,

• A prototype implementation and evaluation of the attack

on a Click modular router system and on a custom

network processor based on the NetFPGA platform, and

• A discussion of mitigation techniques, including previ-

ously proposed processor monitors.

The remainder of the paper is organized as follows. Section

II discusses related work. We describe the problems arising

from programmability in the data plane of networks in Section

III. A specific attack example is presented in Section IV.



Results from two implementations of the attack in a real

network setup are shown in Section V. Section VI presents a

discussion of defense mechanisms against this type of attacks.

Section VII summarizes and concludes this paper.

II. RELATED WORK

Programmability in the data plane of routers is widely

used and many modern routers use programmable packet

processors to implement protocol processing. Routers that

use software for packet processing include workstation-based

routers [2], [6], programmable routers [7], and virtualized

router platforms [8]. High-performance router systems use

multi-core packet processors (so-called “network processors”)

[9], [10]. Commercial examples of network processors are the

Intel IXP2400 [11], the EZchip NP-3 [12], the LSI APP [13],

the Cavium Octeon [14], and the Cisco QuantumFlow [15].

The number of processor cores in these chips ranges from as

little as eight in the IXP2400 to over a hundred in the Cisco

Silicon Packet Processor (SPP).

Addressing the problem of vulnerabilities in routers is also

important in the context of research on the design of the future

Internet [16]–[18]. The use of programmable packet processors

is at the core of many future Internet designs (e.g., network

virtualization [8], [19]). Thus, developing defense mechanisms

to protect the packet processors in router systems is critical

for the continued success of the Internet.

The vast majority of security issues in networking are

related to end-systems and protocols. One example is large-

scale distributed denial-of-service attacks, which are generated

by botnets [20]. Widely deployed intrusion prevention systems

including firewalls [21] and deep packet inspection [22], are

trying to control end-system intrusion and thus to limit the

access to platforms from which attacks can be launched.

Secure protocols (e.g., IPsec [23]) are used to provide basic

information security, including authentication and privacy.

Very little work has addressed security issues in the network

infrastructure itself. A recent study [24] surveyed network

devices that are considered vulnerable due to exposed ad-

ministrative interfaces, which are part of the control plane

of the network and can be protected by better management

methods. In our work, we consider the data plane of the

network, which inherently needs to be exposed and thus needs

novel protection techniques. One such protection is based

on processor monitoring, originally proposed for embedded

systems in general [25] and recently adapted for network

systems in our prior work [5]. Other defenses may be based

on techniques from embedded system security [26].

Software vulnerabilities have been studied extensively on a

range of different systems. For programmable routers based

on Click, the integer vulnerability exploited in this paper

effectively leads to a buffer overflow attack on the host

operating system. Although there have been many attempts

to tackle this problem statically [27], [28] and dynamically

[29], [30], state-of-the-art attack prevention mechanisms lack

the ability to adjust the execution flow at runtime and lead to

termination of the packet processing task.

Large scale DoS attacks have been previously studied in the

context of worms [31]. Worms can spread quickly by infecting

a large number of vulnerable end-systems and can absorb a

large amount of network bandwidth. The key difference of the

attack that we describe in this paper is that it has an even more

devastating effect: The attack is triggered with a single packet,

absorbs all bandwidth of the outgoing link on the router, and

can propagate to all vulnerable downstream routers.

III. VULNERABILITIES AND ATTACKS IN NETWORK

INFRASTRUCTURE

Before discussing the details of our specific attack in Section

IV, we provide a brief overview of the vulnerabilities and

potential attacks in the network infrastructure.

A. Attack Classification

The main functionality of the Internet (and any other data

communication network) is to allow end-systems to com-

municate. As such, the Internet has served as a vehicle for

many attacks where malicious users have gained unauthorized

access to end-systems for the purpose of hacking, espionage,

etc. In addition to such attacks that target access to data on

end-systems, there are also denial-of-service attacks that aim

to make end-systems temporarily inaccessible. While attacks

on end-systems are often highly visible due to news media

attention, there are are also several other types of attacks

on other components of the network. These attack types are

shown in Figure 1 together with a few examples and common

defense mechanisms. This figure by no means contains a com-

prehensive list of attacks and defenses, but merely a selection

that helps in illustrating major differences in attack types. The

control plane of the network, where routing information and

other control information is exchanged, is a target of attacks

that aim to disrupt the correct operation of the network (e.g.,

by stealthily redirecting traffic to malicious end-systems). In

the data plane of the network, where the actual network traffic

is transmitted between end-systems and routers, attackers may

aim to eavesdrop on or intercept communications. It is here

where a new type of attack that can lead to denial-of-service

is emerging.

The attack on the data plane of the network that aims at

denial of service is the main focus of this paper. As explained

in the introduction, this attack is rooted in the way modern

routers are implemented. Until a few years ago, practically

all high-performance routers used ASICs to implement packet

forwarding operations. The function of an ASIC cannot be

changed after it has been created and thus there was no way

to change the forwarding operation of a router for the purpose

of a network attack. However, the recent development of high-

performance MPSoCs that are specialized for packet process-

ing (i.e., network processors) has shifted router designs from

ASIC-based packet forwarding to software-based forwarding

on general-purpose processing systems [1], [14], [15], [32].

As with any software-based system, the flexibility provided by

programmability also presents a security challenge as attackers

can change the operation of the system for malicious purposes.



�

Fig. 1. Examples of network attacks and defenses.

B. Security Model for Network Infrastructure

In our work, we use a straightforward security model that

reflects the operation of current Internet. Basically, we assume

that the packet processing code on a router is benign (i.e.,

not intentionally malicious) and an attacker aims to exploit

vulnerabilities in this code to change the operation of a router.

1) Security Requirements: The basic security requirement

in our model is that the operation of the router does not

change under attack. The infrastructure attacks we discuss here

(see Figure 1) rely on the ability of an attacker to change

the behavior of the packet processor (i.e., change in control

flow or instruction memory) or its data (i.e., change in data

memory). It is important to note that in most attack scenarios a

modification of behavior is necessary even when modification

of or access to data is the ultimate goal of the attack. This

leads to two main security requirements that ensure that the

router continues to perform correct protocol processing: (1)

Benign packets should be processed according to protocol

specifications without interference from possible attacks; (2)

Malicious traffic should be identified and be discarded.

We show in Section IV how an attacker can violate security

requirement (1) and in Section VI how processing monitoring

can enforce requirement (2) and thus circumvent the problems

caused by attack traffic.

2) Attacker Capabilities: The capabilities of an attacker

that define the potential attack space include the following: (1)

An attacker can send arbitrary data and control packets; (2)

An attacker can modify instruction and data memory through

exploits; (3) An attacker cannot modify the source code or

binary of the protocol implementation before it is installed on

the router; (4) An attacker cannot physically access the router.

These capabilities reflect what most practical attackers can do:

they can try to hack a router remotely (i.e., (1) and (2)), but

the basic functionality of the router is benign (i.e., (3) and

(4)).

Based on this security model, we present a concrete attack.

�

Fig. 2. Example of in-network attack. Vulnerable packet processing systems
on routers can be used to launch large-scale denial-of-service attacks with a
single packet.

IV. NETWORK INFRASTRUCTURE ATTACK

The main idea of the attack is illustrated in Figure 2.

A cleverly crafted packet may be able to exploit software

vulnerabilities (e.g., stack smashing attack) and change the

operation of the packet processor. A simple change in the

software could lead to an infinite loop where the same packet

is transmitted repeatedly. Such an approach is particularly

effective and damaging since the attack originates from within

the network, where the compromised system may have access

to links with tens of Gigabits per second bandwidth.

To describe the attack in detail, we briefly discuss the code

vulnerability that we exploit, as specific example code that

exploits this vulnerability in the context of protocol processing,

and an example data packet that triggers an exploit of the

vulnerability.

A. Vulnerability

Our attack exploits a vulnerability in the program that

is executed on the packet processor of the routers. There

are known C/C++ code exploits such as pointer subterfuge,

use of strcpy and memcpy for buffer overflows, and

integer vulnerabilities. A large number of them is present



in commercial software designs and implementations. These

vulnerabilities, under certain conditions, can be exploited by

attackers, especially if programmers are not writing security-

aware code.

The premise of our attack is that the packet processing code

is benign and does not contain intentionally malicious code.

The attacker sends a carefully crafted packet to one of the

router’s network interface cards. The processing of this packet

turns the ‘good’ code/protocol routine that runs on the network

processor into ‘bad’ code. There is nothing inherently wrong

with the packet or the application code, but the combination

of the two can lead to the processor’s malfunctioning. In our

case, the incoming packet changes the control flow of the

routing and redirects it to malicious code that resides inside

the payload of the attack packet. For all other packets, the

correct processing is performed by the router.

The specific exploit we use in our attack is an integer

vulnerability. Certain integer arithmetic operations, depending

on the conditions, can result to unexpected outcome. Sign

errors, truncation errors, integer overflows or underflows can

occur, which, if not taken into account before the program

execution, can lead to programs with unexpected behavior and

security flaws [33].

Our attack is based on a vulnerability caused by an integer

overflow. As we know, integers can represent values within

a given range. For example, the integer type ‘unsigned short’

ranges from 0 to 65535. When a variable declared as short

integer exceeds the upper limit, the assigned value wraps

around zero in order to stay within the allowed limits. If

the programmer does not anticipate this behavior, and the

remaining of the program reuses that value at some point,

potentially harmful things can happen. The following example

code contains an integer overflow vulnerability:

unsigned short sum;

unsigned short one = 65532;

unsigned short two = 8;

sum = one + two;

The value assigned to the variable sum is not 65540, as

one would expect, but 4 due to the limited amount of memory

space that is assigned to it.

B. Vulnerable Protocol Processing Code

Routers perform a variety of protocol processing operations,

ranging from simple IP forwarding to more advanced functions

that include IPsec termination, intrusion detection, tunneling,

etc. For our attack example, we assume that the protocol pro-

cessing operation consists of adding a header to a packet. We

are describing this operation in the context of the congestion

management protocol described in [34] to be concrete, but it

is important to note that the vulnerability can apply to a much

broader range of protocol operations that add packet headers.

The congestion management (CM) protocol uses a custom

protocol header that is inserted between the IP header and the

UDP header. This process is illustrated in Figure 3. For the

discussion of our attack, the detailed operation of the CM

��
�
�

��
�
�

Fig. 3. Protocol Header Insertion.

���������	
��
������

����������������������������������������� ������

 �����!������� ������ �����!��"#

$

��������������%�����&����	
��
��'

���������� ������ ����� �('

�������� �()�!���*�!��"'

����������� �(�+��	
��
�#�$��������,�'-�

���������! ��$

��������(�(.�/����%�����&��*!���#������������!��"#'

��������000

���������������1'

-

����(�����������.��.����22���3#

$

����������������������'

��������000�

�������������������������������������������� �4���

56��!�����#'

��������000

-

Fig. 4. Example Application Code.

protocol and its header format is irrelevant. The important

aspect is that CM adds a header in a packet.

The processing steps associated with the header insertion

by the CM protocol are:

1) Parse headers to identify header boundary between IP

and UDP.

2) Shift the UDP header (and higher layer headers and

payload) to the right to make room for the CM header.

3) Insert CM header in packet.

Figure 4 shows pseudocode for the part of the program

that inserts the new CM header in the original packet, which

is the part of the code that contains a vulnerability. While

writing the CM header generation part of the protocol, a

security aware programmer would perform a check on the

packet’s total size before shifting the UDP datagram and



inserting the new header into the original packet. This check

is making sure that the outgoing packet – after the 12-

byte CM header is appended to it – does not exceed the

maximum datagram size. Only if the check (CM_hdr_size

+ UDP_length) < MAX_PKT passes, the original UDP

datagram gets shifted by 12 bytes, and the CM header followed

by the original UDP datagram are copied into the new packet

buffer. The following line is the one that performs the shift

and copy operation: memcpy((new_pkt_buf+len1),

original_pkt, len2); where len1 is the CM header

size (12 bytes) and len2 is the UDP datagram’s total length.

Since the total length field of the UDP header is a 16-bit field

and the CM header is only 12 bytes long, the programmer

could choose to assign len1 and len2 to ‘unsigned short’

integer types, so that the embedded processor’s limited re-

sources are not wasted.

This code, while correct for CM protocol processing, con-

tains a vulnerability that is based on an integer overflow in

the length check. A carefully crafted attack packet can exploit

this vulnerability.

C. Attack Packet

The vulnerability does not exhibit problematic behavior for

most “normal” packets that are short enough to accommodate

the 12-byte CM header within the maximum IP packet length.

An attacker, on the other hand, can send a long UDP packet

that triggers an overflow. If an attacker chooses to send a

regular, oversized packet (larger than MAX_PKT), the size

check will fail. However, if an attacker sends a packet with a

malformed UDP length field (for example with the 16-bit value

0xfffc (65532 in decimal)), then the code performs incorrectly:

1) CM_hdr_size + UDP_length = 12 + 65532

= 8 (incorrect due to integer overflow)

2) CM_hdr_size + UDP_length < MAX_PKT

(even though it is not)

3) 65532 bytes are copied into the new_pkt_buf, which

can only accommodate 1484 bytes

Due to the malformed UDP total length field of the in-

coming packet, the processing of the protocol code leads to

unexpected program behavior. A large amount of data ends up

being copied into a buffer that was not designed to handle more

than the maximum datagram size. The result is the notorious

buffer overflow attack, which will overwrite the processor’s

stack.

Figure 5 shows the stack of the processor when the func-

tion generate_CM_header is running. We can see the

original incoming packet residing in the bottom of the stack,

as part of the main function. The last few bytes of the

original packet correspond to the payload and contain the

attack code, which the attacker has devised. Once the func-

tion generate_CM_header starts processing the incoming

packet with the malformed UDP length field, the new packet

buffer will overflow and start rewriting the local variables of

the current frame, continue with the stack pointer and finally

overwrite the return address of the current frame as well.

Originally, the program should have jumped back to the calling

�

�

�

�������	�
���


����������
��

����	���������

���������

�

�

�

��������

����

������

������

���

������

	������

�����

����

������

����

 ������

���!�
������������!��	��

 �������

���!��	��

����������

 "����
���

#��������	�������
�

Fig. 5. Stack Smashing.

function after finishing with the CM header generation, but

when the return address is overwritten, the program will jump

to whichever address the attacker has chosen! Of course, the

attacker chooses to overwrite the return address with the stack

memory address where the attack code begins. Thereby, the

attacker can make the program jump to malicious code that is

carried inside the packet payload.

In our attack, we insert a few instructions of assembly code

into the payload, which repeatedly broadcast the same attack

packet in an infinite loop. As we show in Section V, a single

attack packet of this type triggers a denial-of-service attack

that jams the routers outgoing link at full data rate. While our

attack is used for launching a denial-of-service service attack,

it should be noted that an attacker could choose to run attack

code with other purposes.

With this example, we demonstrate that vulnerabilities in

software-based routers are not only hypothetical, but can occur

in common protocol processing code. We also show that these

vulnerabilities can be exploited to execute arbitrary attack

code.

V. RESULTS

To demonstrate the feasibility and effects of the attack

described in Section IV, we show a prototype implementation

in a real network. We have implemented the attack on the

Click modular router [2] and on a custom packet processor

[3] based on the NetFPGA platform [4]. The custom packet

processor uses a Plasma soft core [35], which is a 32-bit MIPS

architecture processor.

Our experimental setup is shown in Figure 6. We send

video traffic from one end-system to the other over a network

consisting of two routers. The first router implements the

CM header insertion processing described above. The second

router removes the CM header. The header insertion routine

on the first router is implemented as discussed in Section IV

and exhibits the integer overflow vulnerability.

We measured the incoming and outgoing traffic on the first

router for different scenarios. Figure 7 shows the results for



Incoming video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

Outgoing video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

(a) Benign network traffic

Incoming video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

Outgoing video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

(b) Benign traffic and single attack packet on custom network processor

Incoming video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

�������

������

Outgoing video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

(c) Benign traffic and single attack packet on Click modular router

Fig. 7. Traffic Rates at Input Port and Output Port of Vulnerable Router. Benign video traffic is shown in green, attack traffic is shown in red.

Fig. 6. Experimental Setup.

benign traffic and attack traffic. There is a 30-second video

transmission as baseline traffic (shown in green). In the first

scenario (Figure 7(a)), only benign traffic is sent and the router

forwards it as expected. In the second scenario (Figure 7(b)),

a single attack packet is injected into the incoming traffic

of our custom network processor. Since the attack packet

triggers an infinite loop of retransmitting itself, all output

traffic consists of attack traffic (shown in red). There are two

important observations: (1) No benign traffic is forwarded.

Thus, the attack not only absorbs all unused bandwidth, but

all bandwidth. (2) The amount of outgoing attack traffic is

around 850 Mbps, which is close to the total link rate of the

system. The performance of the system is limited to 850 Mbps

due to the maximum clock frequency in our prototype. In a

commercial high-performance router, attack traffic would be

sent at the full link rate.

We also demonstrate a denial-of-service attack with Click.

Due to the integer vulnerability, the memory copy will exceed

the pre-determined buffer boundary and overwrite adjacent

memory content (e.g. variables, function pointers). In our

experimental setup (kernel version 2.6.19.2), Click runs as

a user process and cross-boundary write causes a runtime

exception that leads to termination of the process. (We demon-

strate a different attack scenario from that on the customized

packet processor. The denial-of-service in this case consists of

shutting down all packet forwarding in the router.) Figure 7(c)

shows the attack scenario. An attack packet is sent to the

router and effectively interrupts all packet processing services

provided by Click.

These results very clearly show that the attack we describe

in this paper is indeed possible in practice and that it has

devastating effects on the network by generating attack traffic

at full link rates in the core of the network.

VI. DEFENSE MECHANISMS

To defend against this type of attack on the packet pro-

cessing systems of routers, a variety of security mechanisms

could be used. These can range from using No eXecute

(NX) bits to mark non-instruction memory to other security

techniques used in embedded systems [26]. In our prior work,



Fig. 8. Monitoring System Overview (from [5]).

we proposed a secure packet processor design [5]. We briefly

describe the operation here and demonstrate that it can defend

against the attack we describe.

Defense mechanisms for a packet processor have the fol-

lowing requirements:

• The system should be able to correctly identify date plane

attacks.

• When an attack occurs, malicious traffic should be de-

tected and eliminated quickly to reduce its potential

impact.

• The detection mechanism should be lightweight, since

embedded processors have limited resources.

Our secure packet processor design accomplishes these

goals. It uses a fine-grained hardware monitor to track the

instruction-level operations of the packet processor. These

operations are compared to a reference model of operation that

has been obtained through offline analysis of the processor’s

binary file. Under normal conditions, the operations reported

by the processor match the offline model. This process is

illustrated in Figure 8. If an attack occurs, the behavior of

the processor changes in an unexpected way (e.g., executes

malicious code instead of executing the functions that it

was programmed for) and the executed operations no longer

match the reference model. The secure packet processor can

detect this condition, drop the offending packet, and initiate a

recovery process that resets the processor core and allows the

normal operation to resume.

We have implemented this type of monitor on the same

custom processor used for the experiments shown in Figure V.

The prototype successfully detects the example attack (and any

other attack that changes the control flow), halts the processor,

drops the packet, and restores the system within 6 instruction

cycles. This very small time for recovery allows our secure

packet processor to operate at full data rate even when under

attack. The overhead for adding a monitoring system to the

packet processor is very small (0.8% increase on slice LUTs

and 5.6% on memory elements).

Figure 9 shows the operation of the secure packet processor

under attack. As can be seen, not only does the processor not

fall victim to the attack, but it also continues to forward regular

traffic without interruption.

While the results from our secure packet processor are en-

couraging by demonstrating that there are defenses against the

types of attacks that we describe in this paper, it is important

to note that such defenses are not currently deployed in the

Internet. Existing software-based routers are still vulnerable

and more research and development is necessary to design

and deploy defenses against this novel type of attack.

VII. SUMMARY AND CONCLUSION

In this paper, we describe and demonstrate a novel type of

network attack. The attack exploits vulnerabilities in the packet

processing systems of modern routers. We show how integer

vulnerabilities in the implementation of a common protocol

processing operation can be used to execute arbitrary attack

code. Our attack can be used to launch devastating denial-of-

service attacks in the core of the network. We show that de-

fense mechanisms do exist, but they are not currently deployed

in the network. To our knowledge, this work represents the first

time a practical attack on the data plane of the actual network

infrastructure has been shown and thus provides an important

step toward understanding and correcting vulnerabilities in the

network infrastructure.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. 0952524.

REFERENCES

[1] W. Eatherton, “The push of network processing to the top of the
pyramid,” in Keynote Presentation at ACM/IEEE Symposium on Archi-

tectures for Networking and Communication Systems (ANCS), Princeton,
NJ, Oct. 2005.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, Aug. 2000.

[3] Q. Wu, D. Chasaki, and T. Wolf, “Implementation of a simplified
network processor,” in Proc. of IEEE International Conference on High

Performance Switching and Routing (HPSR), Richardson, TX, Jun.
2010.

[4] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in MSE ’07: Proceedings of

the 2007 IEEE International Conference on Microelectronic Systems

Education, San Diego, CA, Jun. 2007, pp. 160–161.

[5] D. Chasaki and T. Wolf, “Design of a secure packet processor,” in
Proc. of ACM/IEEE Symposium on Architectures for Networking and

Communication Systems (ANCS), San Diego, CA, Oct. 2010.

[6] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture
for implementing network protocols,” IEEE Transactions on Software

Engineering, vol. 17, no. 1, pp. 64–76, Jan. 1991.



Incoming video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

Outgoing video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

(a) Benign network traffic

Incoming video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

Outgoing video stream

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

(b) Benign traffic and single attack packet

Fig. 9. Traffic Rates at Input Port and Output Port of Router with Processing Monitor.

[7] L. Ruf, K. Farkas, H. Hug, and B. Plattner, “Network services on service
extensible routers,” in Proc. of Seventh Annual International Working

Conference on Active Networking (IWAN 2005), Sophia Antipolis,
France, Nov. 2005.

[8] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34–41, Apr. 2005.

[9] J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns,
S. Kumar, J. Lockwood, J. Lu, M. Wilson, C. Wiseman, and D. Zar,
“Supercharging PlanetLab: a high performance, multi-application, over-
lay network platform,” in SIGCOMM ’07: Proceedings of the 2007

conference on Applications, technologies, architectures, and protocols

for computer communications, Kyoto, Japan, Aug. 2007, pp. 85–96.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas: realistic and controlled network experimentation,” in SIGCOMM

’06: Proceedings of the 2006 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, Pisa, Italy,
Aug. 2006, pp. 3–14.

[11] Intel Second Generation Network Processor, Intel Corporation, 2005,
http://www.intel.com/design/network/products/npfamily/.

[12] NP-3 – 30-Gigabit Network Processor with Integrated Traffic Man-

agement, EZchip Technologies Ltd., Yokneam, Israel, May 2007, http:
//www.ezchip.com/.

[13] APP3300 Family of Advanced Communication Processors, LSI Corpo-
ration, Aug. 2007, http://www.lsi.com/.

[14] OCTEON Plus CN58XX 4 to 16-Core MIPS64-Based SoCs, Cavium
Networks, Mountain View, CA, 2008.

[15] The Cisco QuantumFlow Processor: Cisco’s Next Generation Network

Processor, Cisco Systems, Inc., San Jose, CA, Feb. 2008.

[16] A. Feldmann, “Internet clean-slate design: what and why?” SIGCOMM

Computer Communication Review, vol. 37, no. 3, pp. 59–64, Jul. 2007.

[17] Future INternet Design, National Science Foundation, http://www.
nets-find.net/.

[18] Global Environment for Network Innovation, National Science Founda-
tion, http://www.geni.net/.

[19] J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in Proc. of

IEEE Global Communications Conference (GLOBECOM), vol. 2, Saint
Louis, MO, Nov. 2005.

[20] D. Geer, “Malicious bots threaten network security,” Computer, vol. 38,
no. 1, pp. 18–20, 2005.

[21] J. C. Mogul, “Simple and flexible datagram access controls for UNIX-
based gateways,” in USENIX Conference Proceedings, Baltimore, MD,
Jun. 1989, pp. 203–221.

[22] The Open Source Network Intrusion Detection System, Snort, 2004, http:
//www.snort.org.

[23] S. Kent and R. Atkinson, “Security architecture for the Internet proto-
col,” Network Working Group, RFC 2401, Nov. 1998.

[24] A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo, “Brave new world:
Pervasive insecurity of embedded network devices,” in Proc. of 12th

International Symposium on Recent Advances in Intrusion Detection

(RAID), ser. Lecture Notes in Computer Science, vol. 5758, Saint-Malo,
France, Sep. 2009, pp. 378–380.

[25] S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6,
pp. 847–854, Jun. 2010.

[26] S. Parameswaran and T. Wolf, “Embedded systems security – an
overview,” Design Automation for Embedded Systems, vol. 12, no. 3,
pp. 173–183, Sep. 2008.

[27] E. Haugh and M. Bishop, “Testing C programs for buffer overflow
vulnerabilities,” in Proc. of the Network and Distributed System Security

Symposium (NDSS), San Diego, CA, Feb. 2003.
[28] T.-C. Chiueh and F.-H. Hsu, “Rad: a compile-time solution to buffer

overflow attacks,” in Proc. of 21st International Conference on Dis-

tributed Computing Systems (ICDSC), Apr. 2001, pp. 409–417.
[29] K.-s. Lhee and S. J. Chapin, “Type-assisted dynamic buffer overflow

detection,” in Proceedings of the 11th USENIX Security Symposium,
San Francisco, CA, Aug. 2002, pp. 81–88.

[30] J. Wilander and M. Kamkar, “A comparison of publicly available tools
for dynamic buffer overflow prevention,” in Proc. of the Network and

Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2003.

[31] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the
spread and victims of an Internet worm,” in IMW ’02: Proceedings of

the 2nd ACM SIGCOMM Workshop on Internet measurement, Marseille,
France, Nov. 2002, pp. 273–284.

[32] T. Wolf, “Challenges and applications for network-processor-based
programmable routers,” in Proc. of IEEE Sarnoff Symposium, Princeton,
NJ, Mar. 2006.

[33] R. C. Seacord, Secure Coding in C and C++, 1st ed. Addison-Wesley
Professional, 2005.

[34] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated congestion
management architecture for internet hosts,” in Proceedings of the

conference on Applications, technologies, architectures, and protocols

for computer communication (SIGCOMM), Cambridge, MA, Sep. 1999,
pp. 175–187.

[35] S. Rhoads, Plasma – most MIPS I(TM) Opcodes, 2001, http://www.
opencores.org/project,plasma.


