
Design of a Network Service Architecture
Sivakumar Ganapathy and Tilman Wolf

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA USA

{sganapat,wolf}@ecs.umass.edu

Abstract— Considerable research efforts in the networking
community are focused on defining a new Internet architecture
that not only solves some of the problems of the current design,
but also meets future needs. Our work focuses on the issue of
how to provide suitable abstractions for communication between
end-systems. This is a particularly important aspect of the
network architecture as it is exposed to all applications and
also determines what kind of services can be provided by the
network. We present an architecture for network services that
are implemented on router systems. We illustrate how control
and data plane interact to provide the necessary end-to-end
functionality. Our prototype implementation indicates that such
a design is feasible and scalable for high-performance networks.

I. INTRODUCTION AND RELATED WORK

The Internet has established itself as a successful and
dominating example of a computer network. Careful consid-
erations in the design philosophy of the Internet [1] have
made it possible to develop a scalable and (mostly) decen-
tralized system that connects hundreds of millions of systems.
But when looking at recent and expected future technology
developments, it becomes clear that some of the original
assumptions and constraints in the Internet design no longer
hold. Thus, the network research community is currently in
the process of designing new network architectures that can
address current and future challenges [2], [3] and eventually
evolve or replace the current Internet.

In the context of a next-generation Internet architecture,
many different proposals are considered. We can observe the
following overarching themes:

• Increasing Diversity of End-Systems and Applications:
The emergence of mobile thin-clients (e.g., cell phones,
PDAs) and sensor networks have expanded the traditional
view of workstation-type clients. Novel applications like
peer-to-peer networks, multimedia streaming, and voice-
over-IP have expanded the range of applications. Novel
networking concepts that go beyond traditional store-
and-forward approaches are introduced through content-
distribution networks and caching architectures.

• Virtualization of Networking Hardware: The diversity in
systems and applications makes it apparent that this diver-
sity needs to be reflected in the networking infrastructure.
Virtual networks that use “slices” of physical hardware
have been proposed and prototyped [4], [5].

• Inherent Security Considerations: The implementation of
security features in form of cryptographic processing

This work was supported by NSF grant CNS-0626690.

on end-systems and firewalls and intrusion detection
systems on the network edge is insufficient in today’s
environment. Several approaches attempt to develop a
comprehensive security architecture that is inherent to the
network rather than added afterwards [6], [7].

• Reconsideration of End-to-End Data Transfers: The de-
sign of the current Internet assumes most complexity
of data communication to be placed in end-systems [8]
and routers to be simple store-and-forward systems. New
developments in network designs and applications make
it necessary that routers perform more complex features
(which we call “services”). Recent proposals suggest
to consider these services as first-class networking fea-
tures [9].

This theme of new abstractions for end-to-end communi-
cation that involve services inside the network is the topic
of this paper. We address the question of how to design a
network architecture where network services can be accessed
explicitly by end-systems to utilize them for novel end-to-end
communication paradigms.

Network services – while not formally part of the current
Internet design – have been introduced slowly to address some
shortcomings in the network design: A variety of so-called
“middleboxes” are currently used to expand the IP address
space (e.g., network address translation (NAT) [10]), provide
security features (e.g., firewalls [11] and intrusion detection
systems (IDS) [12]), and support different business models
(e.g., ad insertion in HTTP traffic). These middleboxes are
introduced into the network in such a way that they typically
do not interfere with existing protocols. This requirement
limits the features of middleboxes that can be deployed in
such a fashion.

An alternative to stealthily adding middleboxes to a network
is to make network services an explicit architectural feature.
This expansion to store-process-forward networking has been
approached in the past. Active networking proposed to give
end-systems full access to program router systems [13]. The
arising issues of security, resource management and isolation,
and programming complexity limit the practicality of such
a general approach to network services. A more constrained
model of programmable routers is a more realistic scenario
for deployment [14]. In programmable routers, a selected set
of features as installed by an administrator and end-systems
may choose if their communication utilizes these services.

The approach of explicit service features in the network
also yields the benefit that such services can be visible to the

end-system and thus managed accordingly. The management
issue of middleboxes has been addressed by the IETF Open
Pluggable Edge Services (OPES) working group [15] and the
IRTF End-Middle-End (EME) working group.

In our recent work, we have proposed a more fundamental
shift towards network services, where services are not just
optional add-on features, but all processing steps for data
communication are considered a service [9]. These services
encompass functions that have been traditionally placed on
end-systems (e.g., information encoding, reliability protocols
(e.g., TCP)) and functions that are typically placed on routers
(e.g., NAT, IDS). This approach unifies all processing aspects
of data communication into a common framework and thus
provides a way for merging traditional networking abstractions
with emerging communication paradigms.

The contributions of this paper are a specific design for a
network service architecture that implements the concepts that
are described only very generally in our prior work [9]. We
present a discussion of design considerations for nodes that
implement network service and for the control infrastructure
that manages these services. Our prototype implementation
and our performance results illustrate the feasibility of our
design and the idea of end-to-end service abstractions in
general.

The remainder of the paper revisits a more detailed dis-
cussion of network services in the end-to-end context in
Section II. Section III presents the design of our architecture
from an inter-network as well as an intra-network point of
view. The prototype implementation is briefly discussed and
performance results are presented in Section IV. Section V
summarizes and concludes this paper.

II. SERVICE-CENTRIC END-TO-END ARCHITECTURE

To provide the necessary context for our system design, we
briefly revisit the concepts of network services and how they
are used for end-to-end communication as discussed in [9].

A. Concepts

The key idea for our end-to-end abstraction is to focus
on the basic purpose of a network: information transfer. The
encoding of information into data and the transfer of this data
is a secondary step, and there are many ways of how this can
be implemented. In our service-centric end-to-end architecture,
end-system applications specify the information transfer that is
desired and the network (in cooperation with the end-systems)
determines the appropriate handling of data. There are three
major aspects that need to be considered in this process:

• Data Encoding and Semantics: The information that
needs to be transmitted needs to be encoded into data.
In many cases, this is already given, for example in a file
transfer.

• Data Transmission: The transfer of data between end-
systems and network systems corresponds to the tradi-
tional functionality of a network.

• Data Processing: In order to provide advanced services,
data needs to be processed. This includes modification

of the transferred data and processing for the purpose of
control.

The last point – having processing as a first-class network-
ing function – is the key difference to the existing Internet
architecture. Instead of limiting processing to end-systems, as
it has been done in the current layered Internet architecture,
we permit processing throughout the network. The purpose
of these data services or network services is to implement
the handling of data that is necessary to achieve the desired
functionality and performance properties.

By putting the encoding of information under control of
the network, we allow the system to maintain semantic in-
formation on the bits that are being transmitted. The network
can therefore modify the data to more efficiently transfer the
information. In the example of web caching, a proxy could
intercept web requests and respond with a local copy of a
document. As a result the same information is transferred
without involving an end-to-end data transfer. This process
would not require any configuration on the end-system since
it could be done transparently by the network.

B. Network Services

Network services are key to providing flexible handling of
data streams in the network. A service can receive, store,
process, and transmit data that is sent over the network.
Services leverage semantic information about a data stream
to implement different functionalities. Examples for network
services are:

• Reliability: buffering and acknowledgement-based re-
transmission of lost data as it is done in TCP.

• Privacy: encryption and decryption services between end-
systems (similar to SSL) or subnets (similar to VPN).

• Congestion Control: limiting of data transfer rate based
on the state of the (sub-)network.

• Caching: storing of information for certain application-
layer protocols and making it accessible to other connec-
tions.

• Security: firewalling, intrusion detection, payload scan-
ning and other mechanism to identify and mitigate at-
tacks.

• Quality of Service: prioritized forwarding of data based
on service requirements.

• Multicast: duplication and forwarding of data along mul-
tiple links and local retransmission for scalable, reliable
multicast.

• Payload Transcoding: depending on the semantics of the
transferred information, this service can adapt the content
that is transferred. For example, large images from web
pages can be downsampled for display on a cell phone.
This service is very specialized and highly dependent on
the transferred information and its coding in data.

Note that some of these services should be implemented on
end-systems as traditionally done in the current Internet (e.g.,
reliability service). However, it is important that these services
are also available inside the network since that allows routers

Service-Enabled Network

information
decoding

information
encoding

reliability
service

reliability
service

privacy
service

privacy
service

encryption decryption

End-to-End Information Transfer and Data Service Specification

Fig. 1. Specification of End-to-End Information Transfer and Mapping of
its Service Components onto Network Resources.

to implement features that have been previously reserved
for end-systems (e.g., the reliability service can be used to
reassemble a TCP stream on an intrusion detection system).

C. Design Challenges

With these concepts of information transfer and network
services, end-to-end communication can be specified by a
sequence of processing tasks that need to be performed.
This is illustrated in Figure 1 where one example of end-to-
end communication is shown on top. The exchange involves
reliability and privacy services that are mapped to service
nodes in the network.

To implement a network service architecture, we need to
address a number of fundamental theoretical and practical
questions:

• How can nodes that implement services be managed in a
scalable fashion?

• What information do end-systems, control nodes, and
service nodes exchange?

• What per-flow state needs to be managed across compo-
nents?

• What steps need to be taken for connection
setup/teardown and data transfers?

We present an architecture design that addresses these ques-
tions and provides a practical environment to implement
network services.

III. DESIGN OF SERVICE ARCHITECTURE

We split the discussion of our design into two aspects:
first, we discuss how to design a scalable “inter-network”
architecture that determines how services are set up across
networks that are managed by separate administrative entities.
Then we dive into the details of how services are managed
and implemented within a network and a service node.

A. Inter-Network Design

The high-level design of our service-centric network is
shown in Figure 2. The control plane is shown on the top of the
figure and the data plane is shown on the bottom. When setting
up a service-based communication, end-systems communicate
with a “service controller” that manages a number of service

Service-
Enabled
Network

Service
Node

Service
Node Service

Node

Service
Node

Service
Node

Service
Controller

Service
Controller

Control plane

Data plane

End-
System

Service
Node

End-
System

Service
Node

Fig. 2. Control and Data Path Components of Network Service Architecture
Design.

nodes. This controller allocates processing services to service
nodes that it manages and arranges the data transfers between
them. For services that cannot be allocated to nodes that the
controller manages (either due to resource limitations or due to
placement constraints specified by the end-system), the request
is passed on to a neighboring service controller that is along
the path to the destination.

This design implies that a circuit-switched network with
fixed routes for each flow is assumed. While the issue of
state management in protocols is already a complex issue
[16], it is particularly difficult in the context of services.
Many processing services require that processing state is
maintained between packets of the same flow (e.g., stateful
packet inspection, measurement and monitoring, etc.). If routes
change during the lifetime of a flow, then this state may not
be available at another service node. It is conceivable that
state may be moved from one service node to another during
a rerouting event, but this is very difficult to implement and
thus is not further considered here. For stateless services, a
conventional packet-switched network can be assumed.

In a realistic deployment scenario, it can be expected that
many complex and stateful services are implemented on or
close to the end-system and the edge network (e.g., reliability
service, content inspection, security services, etc.). In contrast,
the performance demands in a core network limit the complex-
ity of services to simple, stateless functions. This separation of
complexity would allow a hybrid approach where fixed routes
are required in the access and edge networks, but not in the
core of the network. Thus, this design can be incrementally
deployed in the existing Internet.

To set up services and routes, we envision a hierarchical ap-
proach as proposed previously in Private Network-to-Network
Interface (PNNI) signalling for ATM networks [17]. As de-
scribed above, service controllers control a number of service
nodes and set up services among them. This presents one
level of a hierarchy that can be further extended (e.g., service
controllers that coordinate multiple other service controllers).
During a connection request, services are then allocated among
the highest level of controllers and then passed down the
hierarchy to individual service nodes.

Service Controller

Control Interface to Service Nodes

Flow Mapping
Algorithm

Connection Management

Connection Management
Interface to End-Systems

Connection Management
Interface to Service

Controllers

Flow Manager

Flow
Configu-

ration

Request Parser

Controller View of
Local Network
and Resources

... ...

...

Service
Node

Service
Node

Service
Controller

Service
Controller

End-
System

End-
System

(a) Service Controller

Service Node

Resource Monitor

Flow Manager Service Manager

Packet Demultiplexer Packet Scheduler

I/O System

Control Interface to
Local Service

Controller

Flow
Configuration

and State

Processing
Service
Flow-

independent
Processing

State

Service
Controller

(b) Service Node

Fig. 3. Block Diagram of Design of Service Components.

B. Intra-Network Design

Within a network (i.e., the domain controlled by a single
service controller), the service controller manages resource
monitoring and connection setup and teardown. A detailed
design of the service controller and service node is shown
in Figure 3 and explained in more detail below.

1) Service Controller: The design of the service controller
consists of four major components: connection management
interfaces (between end-systems and other service controllers),
resource management (tracking of available processing and
memory on service nodes), flow-specific components (flow
management, mapping), and control interface to service nodes.
There are a number of design choices and considerations for
each component.

a) Connection Management Interfaces: This compo-
nent communicates with end-systems to receive requests for
service-based communications. These requests can be spec-
ified in a number of different ways [18], [19]. We have
chosen the “active pipe” abstraction proposed in our prior
work. This specification notation provides a mechanism for ex-
pressing services, their parameters, and placement constraints
in a textual string (for details see [9], [18]). This string
is communicated to the service controller during connection
setup. The request parser component analyzes the string and
translates this into a representation that can be used by the
mapping algorithm. The convenient aspect of the active pipe
notation is that service components that are not handled by
the service controller can be passed on to another service
controller downstream.

b) Resource Management: The resource management
component tracks the available resources on local service
nodes. This information is necessary to determine if new

service requests can be accepted. For our system, not only
bandwidth needs to be tracked, but also availability of process-
ing power and memory. When using heterogeneous systems,
resources need to be normalized to a common metric as pro-
posed in [20]. The simplest implementation of this component
is “open-loop” where the available resources are estimated
based on previous allocation. Nodes do not provide direct
feedback on their actual state. Several problems can arise from
this approach, in particular when resource requirements vary
depending on changes in flow bandwidth, packet payloads,
etc. A “closed-loop” implementation where nodes report pe-
riodically about their available processing, memory, and link
resources is therefore preferable.

c) Flow Setup and Management: This component con-
sists of the mapping algorithm for determining service place-
ment and the flow manager. The mapping algorithm uses the
service request translated by the request parser and attempts to
map it to local service nodes. The information provided by the
resource management components provides the constraints for
potential mapping solutions. There are a number of approaches
on how to perform mapping. The simplest case is a greedy
approach or a load-balancing approach that only considers one
metric (e.g., available processing power). If secondary metrics
(e.g., memory and bandwidth) cannot be satisfied, the next
node is considered. While this algorithm can be implemented
easily, it is unsatisfactory to only consider one resource as
the dominating metric. Instead, it is possible to use more
advanced mapping algorithms to combine processing resources
and bandwidth [21] or all three components [19].

d) Service Node Interface: This component communi-
cates with the local service nodes that are managed by the ser-
vice controller. It sends control messages for connection setup

and teardown and receives updates on available resources.
2) Service Node: The design of the service controller

consists of five major components: control interface to the
service controller, flow manager, service manager, resource
monitor, and data I/O system.

a) Service Controller Interface: This interface communi-
cates with the service controller to receive connection requests
and sends updates on available resources. This is the comple-
ment component to the service node interface on the service
controller.

b) Flow Manager: The flow manager not only keeps
track of which flows are currently using service on the service
node, but it also sets up the appropriate flow classification
rules in the packet demultiplexer to ensure that each flow
receives the appropriate service processing. For services that
maintain state between packets across the flow, this state is
maintained by the flow manager. In this context, it is important
to point out that this design separates the state of per-flow data
structures (e.g., encryption keys) from the state of per-service
data structures (IDS rules).

c) Service Manager: This component manages the ac-
tually processing that implements network services. This re-
quires that processing resources are made available to the
packets that are passed from the demultiplexer. Also, flow-
independent per-service state is managed by the service man-
ager.

d) Resource Monitor: The resource monitor monitors
the operation of the service manager. It reports the available
resources to the service controller. If resources are abused or
locked up due to erroneous behavior, it can reset services and
free up processing resources and memory. This of course may
impact per-flow state and thus needs to be coordinated with
the service controller.

e) Data I/O System: The I/O system receives and trans-
mits the actual packets that are forwarded and processed by the
service node. As indicated above, the packet demultiplexer en-
sures that packets are passed to the correct service component
(or simply forwarded if there is no service to be performed).
The packet scheduler is used to ensure that the access to the
outgoing link can be controlled by the system. Since some
services send more data than they receive (e.g., multicast,
decompression) the outgoing link can become overloaded.

If this design is used on a larger multi-port switch, it is
possible to place the service controller on the control processor
of the router. Each I/O port can then be equipped with a service
node that runs on a port processor or network processor.

IV. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of the network-service
architecture that uses the concepts discussed above. This
section presents an overview on this implementation and a
few performance results to illustrate its operation.

A. Prototype Setup

In our prototype, a service controller is placed on a well-
known host. Each service node that is started initially con-
nects to the service controller and “registers” its available

connection
 request

t

End-
System

Service
Controller

Service
Node 1

Service
Node 2

service
 setup

mapping

service
 setup

setup
ack

setup
ack

connection
ack

data
transmission

data
transmission

service
processing

service
processing

...

...

resource
allocation

Fig. 4. Example of Connection Setup and Data Transfer Interactions between
End-System, Service Controller, and Service Node.

service. This information is kept by the service controller
in the resource management component that provides a local
view to the mapping algorithm. Our prototype system cur-
rently supports three services: reliability (using a simple stop-
and-wait protocol), compression/decompression, and encryp-
tion/decryption.

When an end-system wants to use network services, it sends
a request to the service controller. The controller parses the
request string and determines which nodes should implement
the requested services. These nodes are then notified and hop-
by-hop UDP connections are established. That is, each node
is informed to which IP address and port number to send
the packet next. After setting up the service nodes, the end-
system is informed where the first hop of the connection is
and to which port to send traffic. All traffic is sent via UDP
since all current services are implemented in user space. In
the next generation of our prototype, we envision services to
be implemented in the kernel. This would allow us to use a
custom demultiplexing function rather than relying on UDP
and its port numbers.

An example of the operation of the prototype is shown
in the space-time diagram in Figure 4. In this scenario, the
end-system requests a connection that uses multiple network
services. The service controller performs a mapping process to
determine where to place which services. It then communicates
with two service nodes to set up the required processing
resources and communication links. Once the service nodes
have acknowledged the connection setup, the service controller
communicates back to the end-system. After this connection
setup process, data is transmitted and processed on the service
nodes (without further involvement of the service controller).
Note that only one end-system is shown.

B. Prototype Performance Results

To give an insight in the performance of our proposed
design, we have measured the connection setup delay for a

Step Time
Connection request, parsing, mapping 475 µs
Service setup and resource allocation 463 µs
Total connection setup 938 µs

TABLE I

AVERAGE CONNECTION SETUP PERFORMANCE.

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700 800

se
rv

ic
e

pr
oc

es
si

ng
 ti

m
e

(μ
s)

packet size (bytes)

CP+EC+DC+EX
CP+EC

CP
EC

no service

Fig. 5. Service Node Processing Performance for Different Combinations of
Services (CP/EX=compression/expansion, EC/DC=encryption/decryption).

service request as well as the service processing performance.
The results are obtained from our prototype implementation,
where the service controller and service nodes are imple-
mented on a workstation system (Intel x86, 3.0GHz, Linux
2.6.15 kernel).

Table I shows the setup time for a connection which involves
four network service steps that are placed on two service
nodes. The processing of the request on the service controller
node requires 475 µs and the service setup requires 462 µs.
Thus, the overall delay from the point of view of the end-
system is roughly 1 ms.

The service processing time for different configuration is
shown Figure 5. The baseline forwarding performance is
illustrated with the configuration that uses no services. In that
case, packets are simply passed from the input interface to
the output interface. For the other configurations, we use the
encryption and compression services, which process packet
payloads. Thus, there is an (approximately linear) increase in
processing time with increasing packet size. When going from
one to two services, the processing time does not double, but
increases by less. This is due to a fixed per-packet overhead
in the service node.

V. SUMMARY AND CONCLUSIONS

We have presented a design for a network architecture that
improves on existing end-to-end abstractions by providing
processing service inside the network. We have reviewed
the general design concepts of such an architecture and
the discussed a detailed design. We have illustrated how
the service controller and service node of our architecture
operate. Our prototype implementation is discussed and the
performance results show that the proposed design can indeed
be implemented and operate efficiently. We believe that this

work provides an important step towards developing a next-
generation Internet that overcomes the limitations of current
network designs.

REFERENCES

[1] D. D. Clark, “The design philosophy of the DARPA internet protocols,”
in Proc. of ACM SIGCOMM 88, Stanford, CA, Aug. 1988, pp. 106–114.

[2] M. S. Blumenthal and D. D. Clark, “Rethinking the design of the
internet: the end-to-end arguments vs. the brave new world,” ACM
Transactions on Internet Technology, vol. 1, no. 1, pp. 70–109, 2001.

[3] D. Clark, K. Sollins, J. Wroclawski, D. Katabi, J. Kulik, X. Yang,
B. Braden, T. Faber, A. Falk, V. Pingali, M. Handley, and N. Chiappa,
“New Arch: future generation internet architecture,” Defense Advanced
Research Project Agency, Tech. Rep., Dec. 2003.

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34–41, Apr. 2005.

[5] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas: realistic and controlled network experimentation,” in SIGCOMM
’06: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Pisa, Italy,
Aug. 2006, pp. 3–14.

[6] S. M. Bellovin, D. D. Clark, A. Perrig, and D. Song, “A clean-
slate design for the next-generation secure internet,” National Science
Foundation, Tech. Rep., Mar. 2005.

[7] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. B. N. McKe-
own, and S. Shenker, “SANE: A protection architecture for enterprise
networks,” in 15th USENIX Security Symposium, Vancouver, Canada,
Aug. 2006, pp. 137–151.

[8] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Transactions on Computer Systems, vol. 2, no. 4,
pp. 277–288, Nov. 1984.

[9] T. Wolf, “Service-centric end-to-end abstractions in next-generation
networks,” in Proc. of Fifteenth IEEE International Conference on
Computer Communications and Networks (ICCCN), Arlington, VA, Oct.
2006, pp. 79–86.

[10] K. B. Egevang and P. Francis, “The IP network address translator
(NAT),” Network Working Group, RFC 1631, May 1994.

[11] J. C. Mogul, “Simple and flexible datagram access controls for UNIX-
based gateways,” in USENIX Conference Proceedings, Baltimore, MD,
June 1989, pp. 203–221.

[12] The Open Source Network Intrusion Detection System, Snort, 2004, http:
//www.snort.org.

[13] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network ar-
chitecture,” ACM SIGCOMM Computer Communication Review, vol. 26,
no. 2, pp. 5–18, Apr. 1996.

[14] T. Wolf, “Challenges and applications for network-processor-based
programmable routers,” in Proc. of IEEE Sarnoff Symposium, Princeton,
NJ, Mar. 2006.

[15] Open Pluggable Edge Services, IETF, 2003, http://www.ietf-opes.org/.
[16] P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A comparison of hard-state

and soft-state signaling protocols,” in SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, Karlsruhe, Germany, Aug.
2003, pp. 251–262.

[17] Private Network-Network Interface Specification Version 1.0, ATM
Forum Technical Committee, Mar. 1996.

[18] R. Keller, J. Ramamirtham, T. Wolf, and B. Plattner, “Active pipes:
Program composition for programmable networks,” in Proc. of the 2001
IEEE Conference on Military Communications (MILCOM), McLean,
VA, Oct. 2001, pp. 962–966.

[19] L. Ruf, T. Wolf, K. Farkas, and B. Plattner, “Specification of network
services and mapping algorithms,” in Proc. of the 2006 IEEE Conference
on Military Communications (MILCOM), Washington, DC, Oct. 2006.

[20] V. Galtier, K. L. Mills, Y. Carlinet, S. Leigh, and A. Rukhin, “Expressing
meaningful processing requirements among heterogeneous nodes in an
active network,” in Proc. of the Second International Workshop on
Software and Performance, Ottawa, Canada, Sept. 2000, pp. 20–28.

[21] S. Y. Choi, J. S. Turner, and T. Wolf, “Configuring sessions in pro-
grammable networks,” in Proc. of the Twentieth IEEE Conference on
Computer Communications (INFOCOM), Anchorage, AK, Apr. 2001,
pp. 60–66.

