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Abstract—The next-generation Internet promises to provide
a fundamental shift in the underlying architecture to support
dynamic deployment of network protocols. With the introduction
of programmability and dynamic protocol deployment in routers,
potential vulnerabilities and attacks are expected to increase.
In this paper, we consider the problem of detecting packet
forwarding misbehavior in routers. Specifically, we focus on an
attack scenario, where a router selectively drops packets destined
for another node. Detecting such an attack is challenging since it
requires differentiating malicious packet drops from congestion-
based packet losses. We propose a controller-based misbehavior
detection technique that effectively detects malicious routers
using a hash-based delay sampling and verification. We provide a
performance analysis of the detection accuracy and quantify the
performance overhead of our system. Our results show that our
technique provides accurate detection with low sampling rates.

I. INTRODUCTION

The next-generation Internet promises to provide a fun-

damental shift in the underlying architecture to support the

increase in demand of deploying dynamic, heterogenous ap-

plications. Virtualized network infrastructures allow multiple

logical networks to coexist on a shared physical infrastructure

platform, as discussed in [1], [2]. The idea of introducing

programmability in the data-path of routers facilitates the

dynamic deployment of new protocol stacks and services [3]–

[5]. The customization of routers using programmability and

shared network virtualization platform introduces increased

vulnerabilities and attacks on the router platform, as shown

in [6].

A key problem in networks, where traffic is forwarded

by multiple routers that belong to different administrative

entities, is that there is no easy way of detecting misbehaving

network nodes. Malicious routers may drop packets instead

of forwarding (i.e., black hole attack) or drop some fraction

of packets (i.e., gray hole attack). While an end-system may

detect that certain packets are not being received, it is difficult

to infer which node dropped these packets. Even more difficult

is to determine if a packet drop is due to malicious behavior or

due to network conditions (e.g., congestion, bit errors in link

layer, etc.). To address this problem, techniques for verifying

the correct behavior of routers have been developed. In re-

lated work, initial ideas for explicit verification of forwarding

actions (i.e., proof of forwarding) have been developed. A

concern in these systems is the overhead introduced by this

verification, since most techniques involve the end systems in

the detection process.

In this paper, we propose a secure controller based for-

warding misbehavior detection system that uses a hash-based

delay sampling algorithm and a verification technique to

detect the malicious packet drops introduced by routers. At

a given time, the controller randomly chooses set of three

nodes (a router node to monitor and its corresponding uplink

and downlink neighbor nodes) in the forwarding path and

gathers the forwarding information (sample aggregate) from

the monitored node and the evidence information (i.e., the set

of packets forwarded by the uplink node and the actual packets

received by the downlink node) from the neighbor nodes. This

technique localizes the identification of misbehaving modes,

thereby reducing the overhead within the network since only a

sampled subset of forwarding actions is required. The specific

contributions of our paper are: 1) formulation of the malicious

packet forwarding router problem, 2) design a forwarding

misbehavior detection system to accurately determine the

malicious router, 3) presentation of a performance analysis

of the proposed technique.

The reminder of the paper is organized as follows. Section

II discusses the related work. Section III introduces the design

of the proposed forwarding misbehavior detection system.

Section IV discusses the security model explaining the re-

quirements and attacker capabilities. Section V proposes our

defense mechanism, explaining the sampling algorithm and the

verification technique. Section VI discusses the performance

analysis of the proposed system and Section VII summarizes

and concludes the paper.

II. RELATED WORK

The problem of identifying the compromised routers on a

given forwarding path can be determined by either developing

a protocol based adversary identification, as shown in [7],

[8] or using a distributed monitoring approach that involves

traffic validation mechanisms to evaluate the performance of

each router. Reference [9] presents an effective fault tolerant

forwarding technique that is effective with Byzantine failures

(e.g., forging or modifying protocol messages). Reference

[10] shows a detection scheme by considering the data and

ack packet characteristics to monitor the selected route from

source to destination. The technique monitors the end to end

connectivity but cannot identify the compromised routers in

the path.



Reference [11] presents a protocol that provides a combi-

nation of source routing, hop based authentication, and end to

end reliability mechanism. However, the scheme introduces

significant storage and communication overhead. Reference

[12] proposes a distributed detection system that uses traffic

validation schemes between the source and the intermediate

routers. The detection technique suggested in [13] can at best

detect a faulty path, but cannot help come to a consensus as

to which router along the faulty path is presenting malicious

behavior. Both techniques involve significant performance

overhead and provide low detection accuracy in determining if

a monitored node is malicious. Current distributed monitoring

approaches involve intermediate routers or end systems in

the forwarding path to detect the misbehaving routers. This

introduces significant communication and storage overhead to

validate the router performance.

III. PACKET FORWARDING MISBEHAVIOR DETECTION

In this paper, we propose a controller-based monitoring

technique that gathers forwarding behavior from neighboring

nodes that is efficient in detection accuracy and introduces

lower performance overhead. Currently, the proposed tech-

nique focuses on detecting malicious packet drops from a com-

promised router. Before discussing the design of our system,

we enumerate the set of assumptions that are considered in

our design.

A. Assumptions

Modern routers have sufficient capability to process packets

and provide aggregate data describing details on the traffic they

are forwarding. We presume that the routers have computa-

tional power to send the traffic aggregate to neighboring nodes

as well as receive messages from them. The proposed system

is designed to detect a compromised router in the core network

and assumes the access routers to never be faulty in terms of

the traffic originating or ending at the router. We consider the

following assumptions to monitor the compromised node using

the controller:

• It is possible to establish a secure connection between the

controller and each individual router nodes (e.g., SSL).

• All routers maintain reasonably synchronized clocks (e.g.,

the granularity achievable by NTP [14]).

• Individual routers are connected by a duplex link and

forward packets by looking up forwarding tables in a

multi-hop fashion.

• There is no collusion among the compromised routers in

the network.

• The path a packet takes is known a priori (it has been

shown that routers can predict the path for a packet once

the network has become stable).

B. Design

The technique of using witness-based forwarding misbe-

havior detection in wireless networks was shown in [15].

Unlike the witness-based model, which chooses the witness

nodes from the set of observing neighbor nodes, we consider
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Fig. 1. Forwarding Misbehavior Detection System

a secure controller node (for a given autonomous system) that

dynamically picks and collects sample aggregate from the

forwarding node and evidence aggregates from its neighbor

nodes.

The design of the forwarding misbehavior detection system

is shown in Figure 1. The system consists of a controller node

(C, that does not lie on the forwarding path of the router),

the monitored router (R), and its corresponding uplink (U )

and downlink (D) routers and the end systems. The detection

process involves the following steps: Consider a forwarding

path with intermediate routers U −R−D as shown in Figure

1. At time t, the controller node C monitors the forwarding

behavior of router R (We assume that nodes U and D are

secure at that instance). To perform an effective monitoring,

router R send the sampled aggregate statistics to C and routers

U and D together send the sampled evidence statistics to C.

The controller then performs a verification mechanism on the

received packets to determine the performance of the moni-

tored node R. A detailed description of the sampling algorithm

and the verification process is discussed in Section V.

IV. SECURITY MODEL

In this section, we discuss our security model, describing

the security requirements and attacker capabilities that can

introduce compromised packet forwarding behavior in routers.

A. Security Requirements

The following set of security requirements ensure the secure

processing of network traffic by routers:

• Ensure correct packet forwarding behavior of all routers

in the network.

• Identify routers that introduce malicious packet forward-

ing behavior.

• Infer and discard malicious traffic originating from the

compromised router.

B. Attacker Capabilities

The following attacker capabilities define the potential at-

tack scenarios that can be launched from the compromised

routers:

• The attacker can selectively drop legitimate network

traffic, which introduces malicious packet loss behavior

by exploiting the congestion control mechanism.



• The attacker can send arbitrary network traffic (data and

control packets) from the compromised router.

• The attacker can modify the data packet to introduce

anomalous forwarding and routing behavior.

• The attacker can physically tamper or remotely access

the router to extract secure information from the device.

V. DEFENSE MECHANISM

In this section, we discuss the design challenges and

functionalities of our proposed controller based forwarding

misbehavior detection system.

A. Challenges

The fundamental challenge of our misbehavior detection

technique is to provide an accurate detection technique with

low false positive (identifying congestion based packet loss

as malicious packet drop) and false negative (incorrectly

disregarding a malicious packet loss as congestion based

packet loss) detection rates. Another important challenge of the

proposed mechanism is to provide a technique that is effective

with respect to the communication overhead required to detect

a malicious forwarding behavior (packet loss) and the storage

overhead involved between the controller and the router nodes.

To address the above challenges, the proposed mechanism

involves 1) a robust sampling technique that introduces lower

performance overhead and 2) a verification technique that is

effective in detecting the malicious packet processing behavior.

B. Sampling

In this section, we describe our hash-based delay sampling

technique, explaining the functionalities performed by the

monitored node and the evidence nodes to provide the required

sample aggregate to the controller node. The concept of delay

sampling for verifiable network measurements was proposed

in [16]. Delay sampling requires each router to maintain

network state on all observed packets for a fixed interval

of time. The sampling is then performed on the stored set

of packets. The advantage of this technique is to prevent a

compromised router from giving preferences to the sampled

set of packets, as it could forward the sampled set of packets

correctly and drop the packets that would not be added to the

sample subset.

We modify the sampling algorithm proposed in [16] to

support the monitoring of multiple paths (maintaining indi-

vidual buffers for each path) at a given time, as shown in

Figure 2. For each path pathi the buffer maintains n tuples

(T1, T2, ..., Tn). The advantage of such a scheme is to improve

the detection accuracy and also identify the packets belonging

to the compromised path. The fundamental requirement of

the sampling algorithm is to decide on when to initiate the

sampling process in the routers. To avoid sending excessive

control information to initiate the sampling process, the source

sends a data packet whose initiator value is below a predefined

initiator threshold. The initiator packet initiates the sampling

process at the router R and the sample aggregate (set of

tuples) are sent to C. Similarly, upon receiving the initiator
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TABLE I
SAMPLING DETAILS

Variables Definition

p new packet
Tp packet tuple

PathIDi(p) packet’s path
PacketIDi(p) hash function
InitiatorIDi(p) hash function

η initiator threshold
σ sampling threshold
Bi circular buffer for a path i
Si sample aggregate for a path i

packet, U and D sample the evidence packets and send the

sample aggregate (evidence tuples) to the controller node for

verification.

The set of sample variables and the associated defini-

tions used in the sampling algorithm are shown in Table I.

Each node associates a packet with a PathID that defines

the packet’s path and computes a set of hash functions

(PacketID, InitiatorID). Each hash function value is gen-

erated using a cryptographically secure hash function (e.g.,

SHA-1 [17]). In addition, the node maintains k circular buffers

(Bi) for the recently seen k unique paths and k sample

aggregate (Si), which are sent to the controller node. The

process of maintaining k circular buffers at a given instance of

time improves the detection accuracy compared to observing a

single path. The creation and deletion of the buffers are based

on the k recent paths observed in the router. For simplicity,

we show the packet sampling process for a single path.

Algorithm 1 shows the sampling algorithm when a new

packet is received. First the node computes (for path i) the

PathIDi(p), PacketIDi(p), and InitiatorIDi(p) for the

received packet. The algorithm then computes a tuple Tp

(PathIDi(p), PacketIDi(p)) (line 2) for each of the n

recently observed packets in the path. The sampling is initiated

when an initiator packet is received for the corresponding

path. An initiator packet is identified by calculating the hash

(InitiatorID) of the packet. If the hash value is below the

initiator threshold (η) (line 3), then the observed packet is

treated as an initiator packet, else, the calculated tuple is added

to the corresponding buffer Bi (line 13).

Next, the algorithm determines the set of tuples in the buffer

Bi whose hash value (line 5) is below the sample threshold

(σ) value. The set of tuples that satisfy this condition is



Algorithm 1 Sample <p>

Require: Bi ← 0, Si ← 0
1: for i = 1 to k do

2: Tp = (PathIDi(p), PacketIDi(p))
3: if InitiatorIDi(p) ≤ ηi then

4: for all T in Bi do

5: if Hash(Tp,T ) ≤ σ then

6: Si ← T {Sample the new packet}
7: else

8: Clear T from Bi

9: end if

10: end for

11: Si ← Tp {Sample the initiator packet}
12: else

13: Bi ← Tp

14: end if

15: end for

sampled out and added to the sample aggregate (Si) (line 6).

the remaining tuples in Bi are removed from the buffer (line

8). The initiator packet’s tuple is also added to the sample

aggregate buffer (line 10). Once the sampling is completed,

the total sample aggregate Si is sent to the controller node

for verification. A similar sampling method is initiated at the

corresponding uplink and downlink routers to sample and send

the evidence tuples to the controller node for verification.

The initiator packet ensures that the same set of packets are

sampled at each node.

The probability that the new packet is an initiator packet

is given by (η/M ), where η represents the initiator threshold

and M is the maximum value generated by the hash function

(InitiatorIDi(p)). If the new packet (p) is not an initiator

packet and if the buffer is not full, then the probability of

seeing an initiator packet after p is given by the cumulative

distribution function (CDF) as:

CDF = 1− (1−
η

M
)n (1)

The probability that a given packet’s tuple in the buffer Bi

is sampled is given by σ/S, where σ represents the sample

threshold and S is the maximum value generated by the

PacketIDi(p). Hence the probability that the packet’s tuple

is included in the sample aggregate is:

PTp
= (1− (1−

η

M
)n)×

σ

S
(2)

C. Verification

The verification is performed at the controller node C when

it receives the sample aggregate from the router (R) and the

evidence aggregates from the uplink (U ) and downlink (D)

nodes. The hash-based delay sampling ensures that the three

nodes, U , R, and D, sample the same set of packets. The

verification process performs a comparison on the aggregates

received as follows: 1) For each tuple received, the controller

TABLE II
FALSE POSITIVE/NEGATIVE ANALYSIS

classification malicious (actual) benign(actual)

loss as malicious true positive false positive

loss as benign false negative true negative

TABLE III
DETECTION ACCURACY PROBABILITY DEFINITIONS

probabilities events

P[A] actual malicious loss

P[B] actual benign loss

P[X] classified malicious loss

P[Y] classified benign loss

P[X|A] true positive

P[X|B] false positive

P[Y|A] false negative

P[X|B] false positive

C first XOR’s the tuple bits of R and U , 2) C then XOR’s the

tuple bits of R and D, 3) the hash values of the output of step

1 and step 2 are computed 4) the controller then compares

the hash values. If the hash values match, then the router’s

current state is determined to be not compromised. If the hash

values do not match, then the controller determines that the

router is compromised. If the percentage of loss observed for a

given set of packets (window size) is higher than the expected

congestion based loss, then a malicious behavior is detected.

The performance of the verification process can be improved

by comparing the samples using tuple aggregates rather than

checking each tuple in the sample aggregate, as shown in [18].

We plan to incorporate this technique in our future work. The

analysis on the accuracy of our current detection technique is

discussed in the next section.

VI. ANALYSIS

In this section, we discuss the performance analysis of our

proposed technique. In our analysis, we actively monitor the

network traffic traversing a router that exhibits a Byzantine

failure scenario, switching between benign and malicious

states. To model this behavior, we consider a two-state Markov

model to represent the benign and malicious states of the

router. Also, to model the malicious router state, we consider

an active sample collection rather than injecting additive losses

on network traces. The problem of identifying a malicious

router on a given forwarding path requires a technique that

introduces 1) efficient detection accuracy in determining the

functioning of the router, and 2) lower performance overhead.

We provide an analysis for the above two performance metrics.

A. Detection Accuracy

The detection accuracy metric is determined by evaluating

the false positive rates. In our analysis, we assume the packet

loss events to be independent. Let event A represent the

actual malicious loss and event B represent the actual benign

(congestion) loss Let event X denote the classified malicious

loss and event Y denote the classified benign (congestion)



loss, as seen by our detection mechanism. The false posi-

tive/negative rates are determined by applying Bayes’ theorem

and the scenarios are shown in Table II. Table III shows the

set of probabilities that is required to determine the detection

accuracy of the system. The false positive is given by the

probability of classifying an actual benign loss packet as a

malicious packet and is represented as:

P [B|X] =
P [X|B]× P [B]

P [X]
(3)

Similarly, the false negative is given by the probability of

classifying a malicious packet loss as a benign (congestion)

loss and is represented as:

P [A|Y ] =
P [Y |A]× P [A]

P [Y ]
(4)

For time t, with window size of w packets, we randomly

introduce varying packet loss percentage in the malicious state

and in the benign state (e.g., the monitored router would be in

the benign state for x% of the time and in a malicious state

for the remaining y% in the monitored time period). When the

InitiatorID of the received packet is less than η, we start

sampling the tuples from the corresponding buffer. The set

of tuples that satisfy the sampling threshold (σ) condition are

sampled out and added to the sample aggregate. The sample

aggregate is then sent to the controller for verification. The

verification process then evaluates the tuples and classifies the

packet loss behavior to be either in good or bad state.

We now discuss the method of determining the false positive

and true positives rates in our verification mechanism. To

evaluate the performance of the proposed system, we analyze

a window of about 1000 packets for a specific time period.

In the above window, we randomly inject packet losses. The

injected packet losses simulate having benign (congestion)

losses in the good state and malicious losses in the bad state.

For the window of 1000 packets, we sample out packets from

a buffer size of w = 20. We vary the sampling rates ranging

from 10% to 90% (set of sample packets whose hash value

is less than the sampling threshold σ), with step size of 10%.

The detection accuracy is calculated by comparing the actual

injected loss behavior with our sample output aggregate for

various sampling thresholds.

Figure 3 shows the ROC curve explaining the detection

accuracy of our system for varying sampling rates (S= 40%,

60%, and 80%). To evaluate the performance of our proposed

controller-based detection system, we compare our scheme

with HSER [11], which employs a detection technique us-

ing intermediate nodes in the forwarding path, and Secure-

traceroute [12], which utilizes the end nodes in detection of

packet loss. To determine the optimal sampling rate and the

permissible threshold value of losses, we conducted multiple

analysis by varying the allowable congestion based loss rate

and threshold rate for malicious behavior. Our proposed sys-

tem can accurately determine the malicious behavior at an

attack threshold of 20%. The accuracy for each sampling rate

is shown in Table IV and is discussed below.
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B. Performance Overhead

The total packet overhead required in our system is deter-

mined by the summation of the size of the sample aggregate

sent to the controller from the monitored router and the size of

evidence aggregates sent from the uplink and downlink nodes

in the forwarding path. The size of each sample aggregate is

given by the product of the number of tuples and the size of

each tuple. The number of tuples is dependent on the sampling

rate. The tuple size is given by the summation of the size of

the PathIDi(p) of the packet and the PacketIDi(p) of the

packet.

The tuple size consists of a hash value of the 5-tuple

fields (i.e., IP source, IP destination, source port, destination

port, and IP protocol) (size = 104 bits) of a packet and the

path id (size = 20 bits), which is approximately about 16

bytes. We consider the overhead involved in transmitting the

tuple aggregates at various sampling threshold rates. Since all

the nodes (U , R, and D) in the setup sample at the same

rate, the overhead involved in transmitting the tuples to the

controller node is three times the size of the sample aggregate



TABLE IV
PERFORMANCE COMPARISON ANALYSIS

technique overhead (KB) accuracy

40% sampling 0.38 0.90

60% sampling 0.57 0.91

80% sampling 0.76 0.92

HSER 2.14 0.78

Secure-traceroute 9.36 0.82

of the monitored router (i.e., the summation of the size of

the monitored node, the uplink and the downlink node). The

packet overhead performance of our system for different buffer

sizes (w = 10, 20, and 40) is shown in Figure 4. The graph

shows the overhead for different sampling rates in the x-axis

and packet overhead (in KB) in the y-axis.

Table IV shows the performance comparison of the pro-

posed system with the HSER [11] and Secure-traceroute [12]

techniques. Clearly, the accuracy of detection and the packet

overhead for one detection cycle of our proposed system

performs better when compared with the above techniques.

The above set of analysis show that the proposed detection

system is effective in detection accuracy and introduces lower

performance overhead.

VII. SUMMARY AND CONCLUSION

In this paper, we have proposed a packet forwarding misbe-

havior detection system that monitors the forwarding behavior

of routers on the data path. Unlike previous detection systems

that rely on detection at the end systems or identifying the

faulty paths, we provide a controller-based detection technique

that utilizes the sample aggregate from the monitored node, its

corresponding uplink and downlink nodes. The performance

analysis of our proposed mechanism shows the introduction of

lower packet overhead and effective detection accuracy with

lower false positive rates. Currently, the verification process is

performed on tuple basis. In the future, we plan to modify the

verification by comparing tuple aggregates. Such modifications

can optimize the detection time observed at the controller.
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