High-Performance Implementation of In-Network
Traffic Pacing

Y. Sinan Hanay, Abhishek Dwaraki and Tilman Wolf
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA, USA
{hanay,dwaraki,wolf@ecs.umass.edu

Abstract—Optical packet switching networks promise to pro- and dynamics, there are important technological challenge
vide high-speed data communication and serve as the foundah that need to be addressed. Apart from the difficulties of
of the future Internet. A key technological problem is the vey building a switch that operates in the optical domain, there
small size of packet buffers that can be implemented in the djal . . s
domain. Existing protocols, for example the transmission entrol are also challenge_s |mpqsed by the bc_’;\5|c operation (_)f the
protocol, do not perform well in such small-buffer networks, Internet. Packet switching in the Internet is based onssteail
To address this problem, we have proposed techniques for multiplexing and traffic is forwarded opportunisticallytivbut
actively pacing traffic to ensure that traffic bursts are reduced prior resource reservations. As a result, traffic may compet
or eliminated and thus do not cause packet losses in routersith for link bandwidth on the output port of a switch. To avoid
small buffers. In this paper, we present the design and prottype :
of a hardware implementation of a packet pacing system based packet losses, packet_ buffers are used to queue_packets and
on the NetFPGA system. Our results show that traffic pacing thus absorb short periods of overload. In electronic networ
can be implemented with few hardware resources and without and OEO networks, these buffers can be implemented easily
reducing system throughput. Therefore, we believe traffic pcing with SRAM or DRAM and can be sized to hold a large number
can be deployed widely to improve the operation of current ad of packets. In all-optical networks, buffers are more diffi¢o
future networks. . . . o . .

implement since there exist no practical solution to stigiet|

Index Terms—small-buffer network, traffic pacing, traffic other than sending it through a delay line [4]. These optical
burstiness, field-programmable gate array, prototype buffers can only hold a very small number of packets. One

important question is how efficiently can such small-buffer

|. INTRODUCTION networks operate with network, transport and applicatiyet
rotocols that have been designed for large buffer networks
he issue of buffer sizing has also been explored in other
contexts (e.g., to reduce the cost of electronic routers by

High-bandwidth data communication is one of the keg
foundations for the future Internet. Society’s expectagid®o
perform many daily act.|V|t|(.as over the Internet (e.g., eie- {educing the amount of buffer memory per port).
ment, person communication, e-government, health cacg, e

has increased the demand for raw bandwidth in the networkone key concern with small-buffer networks is their inter-

One technology that promises to meet these demands :;rl(c):Pon with the transmission control protocol (TCP) [5]. In

bandwidth is optical networking. Optical fiber has long beerrJlartICUIar’ the use of congestion control in TCP [6] leads

used for long-haul, point-to-point data transmissionsweler, to significant performancg drops in throughput when_packet
. ; loss occurs. Several studies have explored how traffic char-
the need to convert from the optical domain back to the

. . o T acteristics (e.g., burstiness) impact packet losses inll-sma
electronic d_omaln for_swnchmg hgs I|m|_ted the throughihat buffer networks and how these losses affect TCP throughput
can be achieved optical-electronic-optical (OEO) network

To address these performance limitations, all-opticat n%z]' While there are arguments that aggregation of traffic in

works (AON) have been developed. Optical circuit switchina e network leads to smoothing of traffic bursts [8], there

. . re also arguments that the conditions for smoothing cannot
(C?CCSS%:sa Bet()a?\ gsigetsc;fp?vclidee Igng;?g)?ggr::gehts%aégze\gvche ensured [9]. In this context, we have proposed in our
) nsu u'ly deploy . u F work to actively smooth traffic in the network and
ios, the slow timescales at which connections can be setdip an . .
. : us achieve the conditions that are necessary for smé#bu
torn down does not match the timescales of highly dynamic .- i
. : . nétworks to operate efficiently [10]. In particular, we have
end-to-end Internet connections. As alternative, oppeaket . : X .
switching (OPS) [1] and optical burst switching (OBS) [] [shown that burstiness in traffic can compound in the network
h\g; beie?n ronosed. In thzsle ne':J ork;\” aékzts or shorsb agtd lead to larger average queue lengths in the core (and thus
proposed.) W P X lflﬁlgher packet loss rates for small-buffer networks) [11d. T
of packets are switched independently in the optical domalgi cumvent this problem. it is possible to berform pacind of
While OPS and OBS are promising approaches to opti P ' b P b 9

ffic and thus reduce or eliminate traffic bursts [12].
networks that match the needs of current Internet protocols, .. paper, we present a high-performance implementa-

This material is based upon work supported by the Nationaérse tion of the traffic pacing FeChnique desf:ribed_in our priorb.«vo
Foundation under Grant No. CNS-0721790. A key aspect of the design of our traffic pacing method is that

it is easy to implement and can be performed at high dathange the characteristics of network traffic to meet thelsiee
rates. Our prototype system based on the NetFPGA platfoaoh small-buffer networks. Pacing for TCP on end-systems
[13] shows that traffic pacing can be implemented with bhas been proposed (albeit not in the context of small-buffer
small amount of hardware resources and does not impaudsworks) [18]. This approach is difficult to implement rit
the throughput performance of the system. Specifically, thequires software modifications on all end-systems. Inresht

contributions of this paper are: we have proposed to implement pacing functions on nodes in
« A hardware design for a high-performance traffic pacépe network to simplify deployment [10]. A specific pacing
based on algorithms described in [12], [14], algorithm is pre_sented in [12], [14]. A similar technique
« A prototype implementation of the traffic paced on th#as developed independently by Alparslan et al. [19]. The
NetFPGA platform, and hardware implementation of the traffic pacer presentedis th
« Evaluation results to demonstrate the performance aR@per is based on the algorithms described in these papers.
effectiveness of the hardware design. There have been numerous works analyzing performance of

We believe that the results from this work are importari'icép paé:ing or traftf)ic pa:(cing lthdroughhns—Z Isimulatic_)ns [14],
since they demonstrate that it is possible to implementi¢raf 16], [18]. TO_ our best nowledge, t_e only e_xperlment to
easure pacing performance is done in [14], using a software

pacing at high data rates with little additional hardware. d lugin. | K ol
Therefore, traffic pacing can be widely deployed and thup he ased pacer plugin. In our work, we implement a pacer system

in ensuring that network traffic characteristics are sugtdb In programmable hardware.

fully utilize a future Internet that is based on high-penfiance
small-buffer routers. I1l. OPERATION OFQLBP PACKET PACER

The remainder of this paper is organized as follows. Sec-As the basis for discussion of the hardware design of the
tion 1l discusses related work. Section Ill presents queuBigh-performance pacer presented in Section 1V, we briefly
|ength based pacing' which we have deve|0ped in prior WofﬂVieW the general operation of the traffic pacer descrilped i
and which is the basis for the hardware implementatidh0l. [12], [14]. The figures, notation, and some text in this
presented in this paper. Section IV presents the designSgction are repeated from these papers to provide the aegess
the pacer implementation and a discussion of various desf@ckground for the reader.
tradeoffs. Results from the prototype implementation asd i
performance are presented in Section V. Section VI summi- Traffic Pacing in Network

rizes and concludes this paper. The traffic pacing that we describe in this paper is im-
plemented in electronics and thus cannot be part of a all-
Il. RELATED WORK optical network. Figure 1 shows our perspective on how we

The size of router buffers is important for effective opinat @0 deploy traffic pacing in a future Internet with an all-
of networks with statistically multiplexed traffic. The uséPPtical core. By conditioning traffic in the edge networks,
of the transmission control protocol (TCP) for most datii€ all-optical core can operate efficiently — even with very
communication in the Internet, has led to buffer sizing re€Mall buffers. Pacers can be deployed opportunisticabfie
ommendations based on the produce of round-trip time affifit traverses multiple pacers achieves better throughpie
link capacity. Such large buffers ensure that buffer unde] small-buffer core, but there is no requirement that a paaer h

can be avoided when TCP reacts to packet loss (indicati%b_e_travers_ed' Also, pacing is done indiscriminately fior a
congestion) with multiplicative decrease in transmisgiate. traffic; there is no per-flow adjustment of the pacing rate, bu

However, such buffers are also expensive and difficult tedbui@!l traffic is handled the same.

for optical switches. Recently, there have been severdiestu

showing that aggregation of multiple connections leads B Pacing Algorithm

traffic characteristics that ensure efficient operatiomewih The pacing mechanism considered in our work is Queue

smaller buffer sizes [15]. Appenzeller et al. show that &uff Length Based Pacing (QLBP) [12], [14]. The goal of the pacer

size proportional to square-root of the number of flows may to approximate constant bit-rate (CBR) traffic by delayin

be sufficient [8]. certain packets. However, since the pacer cannot know the
While small-buffer networks can operate efficiently witharrival times of future packets, it is not able to perfectly

TCP for some scenarios, it has also been shown that thisdigtermine the transmission times that would correspond to

not the case for many practical scenarios [9]. In particula€BR. Instead, it uses an adaptive process to determine if and

the presence of TCP connections with short lifetimes ar@w much packets should be delayed.

problematic. Haesegawa et al. show that a high ratio of The length of the packet queue for an output port is used to

short-lived flows has a negative effect on link utilizatiasr f determine the transmission rate in QLBP. The transmissiten r

small buffers [16]. Sivaraman et al. [17] show the impact qf(¢) at timet is determined by queue lengtfit) as follows:

small buffers on real-time and TCP traffic and identify short o

. : H . Mq(ﬂ + Mmin Q(t) < Qmam
timescale burstiness as the major contributor of perfooean (t) = Qmas (1)
degradation. Hmaz, q(t) = Qmaa

Instead of relying on multiplexing effect to smooth ouParameter@,,., is the maximum queue length at which
traffic bursts, there have been several approaches to lgctiyeacing is allowed ang,,;, and p,,,... are the minimum and

7~

Packet-switched optical core
with small buffers

ittle or no @
s e ,:4&‘17 o
> WP
g

LT T
Edge and access @)

networks

:/1@) -

7

Pacing at network

ingress to enforce F Longer average \
L i length d
End packet spacing ‘p‘ ?OUEE(:S er;gr;afﬁcue S
system 5 @ Y y system
End- %%
system
Fig. 1. Network Architecture with Traffic Pacing (from [10])
(1) d(t)
S

lumax -

/“lmin
lumin S 77777

> lLll’l’laX >
0 q(1) On 4(1)

Fig. 2. Pacing Rate of QLBP (from [14]). Fig. 3. Pacing Delay of QLBP (from [14]).

maximum transmission rates. Figure 2 shows the transmissio

rate of the pacer as a function of queue length. .

Based on the transmission rate of the pacer, the delay

experienced by a packet is .
S

)

whereS is the size of the packet. Figure 3 shows the delay as

rule ensures that the link can be fully utilized.

For an empty queue, the maximum delay is limited. This

rule ensures that packets do not get delayed indefinitely.
The first packet arriving at the pacer does not get delayed.
This rule ensures that pacing is only activated when

multiple packets (i.e., a burst) are observed.

a function of queue length. In the implementation of QLBEE- Effectiveness of QLBP Pacer
the pacing delay is activated after a packet is transmitted t Figure 4 shows the effectiveness of our pacing ap-
ensure that individual packets that do not belong to a burst Hroach. Traffic bursts traversing the multiple pacing nodes

not get delayed.

are smoothed out to nearly match constant bit-rate traffic.

Thus, QLBP has the following properties that make WYsing this QLBP pacing at multiple nodes in the network edge

effective for use in small-buffer networks:

ensures that traffic in the core nearly matches CBR traffic and

« For longer queue lengths, the pacing delay is lower. Thisus can efficiently utilize small-buffer networks.

200

g8
g2l
L0
g8
ga]
8§ 1]
ga]

\

150¢1
x
@)
©
< Input Arbiter
E 100 T
3] no pacer
© . Output Port
a & with 1 pacer Lookup

* with 2 pacers |-

y
o with 3 pacers E’HQHHHH

ideal CBR Output Queues xi

=l

CPU || MAC
™Q || TQ

501 F

0 005 01 015 02 025 0.3
Time (s)

g/

8§ [}
B&[10
BE L
B[
8§ 1]

B8

Fig. 4. Effectiveness of Pacing on Multiple Nodes (from [14]

Fig. 6. NetFPGA Reference Router Pipeline (from [20]).

onto a PCI card along with SRAM, DRAM and 4 Gigabit
Ethernet ports. This PCI card plugs into the PCI socket of

TILLEOP

ignal on engueve any PC and can be used to develop and test new networking
' methodologies and protocols.
conTrG. 2) The NetFPGA IPv4 Reference Routdihe IPv4 refer-
ence router is part of the NetFPGA base package and consists

of library modules connected together in a pipelined fashio

to enable the design to operate at almost 125 MHz [20]. It is
essential to understand the modular design of the NetFPGA to
Signal Dequeue Compite make optimal use of the existing design. Below is shown the
pipeline structure of the NetFPGA reference design. We first
take a look at that design and then go into the details of our

Dequeus on expiry design. Figure 6 shows the Reference Router pipeline.
i There are 4 Gigabit Ethernet ports on the PCI card, which
PAGKET serve as ingress/egress ports for the design. Each of the MAC

ports have a corresponding CPU DMA port that acts as the
conduit between the NetFPGA card and the host PC via the
PCI bus. These DMA ports are used to relay packets to the
host PC’s processor in the eventuality of the NetFPGA being
IV. HIGH-PERFORMANCEDESIGN OFPACKET PACER unable to process them.

To ensure that traffic pacing improves the throughput per-Apart from the Rx/Tx ports, the NetFPGA has other mod-
formance of a small-buffer network, it is critical that tmaffic ules that are part of the reference design. One of them is the
pacer itself does not present a performance bottleneckeThdnput arbiter, which takes packets from each of the Rx parts i
fore, it is important to develop a suitable high-performand round robin manner and hands them off to the output port
design of such a system. We discuss our implementationsn tijokup module. Another is the output port lookup module,
section and evaluation results from the prototype in Sectio Which is responsible for the IP/LPM lookups and Ethernet

This section deals with the architecture of the pacer af@ader modifications before the packet is pushed to output
how it has been implemented in hardware. We look at tiggieues, which places it in the queue for the corresponding
underlying platform that is used and the reference desigats toutput MAC.
have been modified to suit our needs. We first discuss theThe pipelining is done in such a way that each module
NetFPGA in more detalil. consists of a small input FIFO where the previous module

1) The NetFPGA Platform:The NetFPGA is a Gigabit writes data into. The current module picks up data from here
Ethernet open platform for networking research which has process. This enables the pipeline to go ahead unhindered
been developed at Stanford University [13]. It consists of la case a certain module is not ready to accept data, the
Xilinx Virtex 2Pro FPGA along with a Spartan 3 FPGA builtinput FIFO is filled with data and then the pipeline begins

Fig. 5. State Diagram of Pacer Implementation.

to stall backwards until the input buffers are full and paske dequeuing the packet. The block is part of the Signal
get dropped. Control Block.

3) Packet Pacer Designin this section, we look at the « The Output State Machine: This state machine is activated
design of the packet pacer on the NetFPGA and how is fits by the Signal Control block once the timer has expired

into the reference pipeline. Figure 5 shows the state diagifa and the next transmission time has been reached. It is
the pacer. The packet pacer is been split into various iddali responsible for handling the packet dequeue and also
modules handle discrete functionalities. Each of the meslul making sure that the packet size global register is updated
is explained below. with the new packet’s size.

« The Input State Machine: This state machine handles theThe whole pacer module is connected between the output

job .Of mo.nitorin.g the input FIFO for data. Once Q'ata i ort lookup module and the output queues module on the
available in the input FIFO and the pacer module is rea

d . ; h ket f he i etFPGA. This is the initial design and makes it global to the
to process data, It transfers the packet from the Inpu iar A packets entering the router are paced. As a next

FIFO t(.) the pacer FIFO where it is held t_i” it r_eaches it§tep to this, the pacer module is replicated and the gratular
transmission time. The FIFOs are explained in the nexfitaq to per-port pacing

section.

o The FIFOs: There are two FIFOs, which handle the
incoming packets. One is 72 bits wide, and holds the
packet and some control information. The other is 3%

bits wide and holds the size of packets that come into The critical path in our design is in the delay calculation
the module. The smaller 32 bit FIFO has a N-1 mappingock. It takes two inputs: packet siz§,, and instantaneous

to the |arger FIFO and the size of the paCket at the head(ﬂjeue Sizeq(t), calculates the de'ay, and OUtpwlémt- treat
the queue is held in a global register, which is explaingd calculated as follows:

below.
« The Signal Control Block: The Signal Control Block tront = tiast + S /(Nmaz — Pmin () + fmin) (3)
is responsible for maintaining the current queue size, P Qmaz

previous transmission time and next transmission time _)
data. Once the input state machine enqueues a pack%f,he above equation, the packet sigeand the instantaneous

it sends a signal to the signal control block, whiclfu€ue lengthy(t) are inputs to the calculation black, while

first updates the queue size to reflect the new pacKét'” and upax are parameters. We denote the right term
and then activates the calculate block to calculate tiHé the add|t|on_ as thed, delay in our discussion from now
next transmission time of the packet. The timer contr@Wards, that is: _
embedded in the control block monitors the validity of the It can be seen that to calculate deldy.a straightforward
transmission time. When the timer expires on a calculaté@Proach requires two divisions, one multiplication ane on
transmission time value, the control block sends a Sig,%gidition at the minimum, not to mention a host of conversions
to the output state machine asking it to dequeue the pacl@m integer to the IEEE 754 format to perform the floating
at the head of the queue. Once the output state machifgnt operations.
has dequeued a packet, the signal control block receivedn the sections below, we discuss alternative hardware
the acknowledgement and updates it current queue sig#plementations of this delay calculation. We present acex
to reflect the new changes. implementation that employs using floating point operation
« The Delay Lookup/Calculation block: This block is refor precision. We also present a look up table based imple-
sponsible for updating the signal control block with thénentation for higher throughput.
new transmission time on every enqueue or dequeue. Ded) Floating Point Implementation (FPI)tn our implemen-
pending on the implementation, it incorporates an arragtion, we use floating point blocks to precisely calculde t
of floating point cores or a Block RAM based Single pord. In doing so, first step is to convert the unit@éfrom time
ROM. The latency of this block is also dependent on the clock cycles, that ig.;;, = f.x < d. At this point a designer
implementation, with the floating point implementatioomay want to implement the delay block straightforwardly by
imparting greater accuracy, but also adding a lot more tsing 2 dividers, 1 multiplier and 1 adder. In addition to
the latency due to the complexity involved. On the othahese, floating to fixed point converters are needed to conver
hand, the single port ROM does not add much in ternfixed values. Division is a time consuming operation even
of latency itself since the lookup is very fast, typicallyin hardware. The divisionfze—£min can be transformed
one cycle, but approximates the calculated delay usitg a shift operation ifQ,,,q. is "selected to be a power of
pre-calculated, extrapolated values. 2. Qmaz Can be selected conveniently as a power of 2 for
« The Timer Control Block: This block creates a referendeuffer sizes less than 500. For a detailed discussio,gf .,
time-line for the timer functionality. It consists of areader can refer to [12]. We have used IP cores provided
timer that up-counts on every clock and simultaneoushy Xilinx to perform the floating point operations such as
monitors whether there next transmission time has bedivision, addition, multiplication, fixed to float and thecei
reached. Once the timer hits the next transmission timesrsa conversions. Floating point divider is pipelined lsat t
it sends a signal to the output state machine to stértcompletes in 4 cycles.

. Implementation of the Delay Calculation Block

2) Lookup Table Implementation (LTI)It is possible to
avoid expensive operations such as divisions and multiplic
tions by storing pre-calculated delay values in a lookupetab
The inputs to this LTI block are(t) and S,, and look-up
table can be implemented in Block RAM as a single-pol
ROM. The valid range fof),,. is from 1 to buffer size. The
pacer is intended to be used in small-buffer networks of @0-:
packets, which is around 10-15 Kb on average. For the sa
of consistency and ease of calculation, we store both pacl
size S, and instantaneous queue sizg) in terms of 8-byte
words, since this is the data width of the pipeline anywaysTh
results in a maximum packet size of 187 words for a 1500 by
packet. The delay ranges from a maximum of 20,000 cycle
max(d) = Sp/umin for the MTU to a few hundred cycles
for small size packets. Extrapolating these statisticag®ius
to a possible 200K to 300K entries with a memory size of 1
Mbits.

V. EVALUATION

In this section, we evaluate the throughput and hardware

. 64 bytes
overhead of implemented pacer. We compare our implemented 2500 |- 25 mgg <
pacing capable router against base reference router ingplem 1300 bytes

tation that comes with NetFPGA. This gives us some insight
on area overhead of employing a pacing inside a router.

A. Hardware Overhead
NetFPGA reference router's pipeline clock runs at 125

delay (ns)

Packet Index

Fig. 7.

Effect of Pacing
T T

201

i
a
T

10

Pkt Size=64 bytes

% Unpaced
* Paced

.
55 6 6.5 7 75 8 85
time (ns) x10°

Operation of Prototype Pacer.

3000

2000

1500

1000

500

delay vs instantaneous queue length

T
ref - - -

MHz. NetFPGA can be set to run at either 62.5 MHz or _— I S *

125 MHz. In our initial straightforward implementation,eth o R e gy
maximum achievable clock frequency was 59 MHz. After 0 500 1000 1500 2000 2500 3000 3500 4000 4500

modifying the delay equation algebraically as explainethi queue length (bytes)

previous section, the pacer could be rl’,m at 125 MHz. g. 8. Measured Delay and Reference Delay vs. Queue Lemgiratotype
Table | shows the resource usage in the reference routgeer.
design that is part of the NetFPGA base package. In addition
to that, it shows the overhead that the FPI implementation
adds to the reference design, which is around 10%. LTI, di¢ pacer is used the pacer delays the departure of the packet
the other hand, uses even lesser resources due to preci§¥fPt the first one, and in turn smoothes the traffic.
being sacrificed for throughput and speed. Please notettaat t Figure 8 shows the implemented LTI based pacer delay
number of slices is not a meaningful metric in terms of arégiaracteristics for different size packets and differemeup
since it shows how optimally logic gates have been pack>hs. Reference plot lines (shown as ‘ref’ in the figure)
together. show the exact values and dots represent the delay values
Table Il gives some insight about maximum achievabf@at are calculated by our LTI implementation. Since our
throughput and minimum possible latency. Since our floatirld ! implementation uses interpolation to calculate delays
divider takes 4 cycles to complete, and is not pipe"nemtermgdlate vaIue;, it sac_nﬁc;es a little accuracy withpect .
maximum achievable throughput with FPI is 2 Gbps, whef@ FPI _|mple|_”nentat|on. T_hls figure shows that if average size
as with LTI that is 8 Gbps. We see an extra cycle of Iatenéif the incoming packets is small then the error will be small
with LTI and 4 cycles of latency with FPI implementation. regardless of the queue length.
Figure 7 demonstrates the pacing. It shows the dequeuing
of the packets in reference router (non-paced) and in our VI. SUMMARY AND CONCLUSIONS
pacing-capable router implementation (paced). Each point High-performance networks with small packet buffers rep-
this figure corresponds to the departure time of a packeteTheesent a possible core technology for the future Internat. A
are about 30 packets leaving the queue. It takes about 2important consideration is to ensure that traffic charéttes
without pacer for all 30 packets leave the queue, while iesakare suitable for these networks. The burstiness of traffic
about 4.5 ns for all 30 packets leave the queue when a pagenerated by the widely used transmission control protocol
is installed. Without a pacer incoming packets leave thaigueis particularly problematic for networks with small buffer
more bursty as it can be seen in the figure. However, whén prior work, we have shown that traffic pacing on nodes

TABLE |
RESOURCEUTILIZATION OF PROTOTYPEPACER ONNETFPGA RLATFORM.
Reference Router FPI LTI
Resource Typel Count | Utilization | Count | Utilization | Overhead| Count | Utilization | Overhead
Flip Flops 16,433 34% 17,180 36% 4.5% 16,552 35% 0.7%
4 input LUTs | 22,954 48% 25,423 53% 10.8% 23,792 50% 3.7%
Block RAMs 106 45% 111 47% 4.7% 132 56% 24.5%
MULT18X18s 0 0% 6 2% +6 0 0 0%
Slices 15,796 66% 17,530 74% 11.0% 15,514 65% -1.8%
TABLE I
PERFORMANCE OFPROTOTYPEPACER.
Reference Routef FPI | LTI
Maximum Block Latency (cycles) 1 4 1
Clock Frequency (MHz) 125 125 | 125
Theoretical Upper Limit (Gb/s) 8 2 8
Extra Latency (clock cycles) 0 4 1

inside the network can alleviate these problems and lemd] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. HartkeNaous,

to higher network throughput. In this paper, we present th

e

design and prototype implementation of a high-performance
pacing system that can be implemented with low overhead
on the output port of routers. We show that the desigh!!
performs pacing as intended and that it does not degrade the
performance of the router. We believe that this work presents)
an important step toward the efficient operation and widdesc

deployment of small-buffer networks, including opticatkat-
switched networks.

REFERENCES

(1]

122, Sep. 2000.

C. Qiao and M. Yoo, “Optical burst switching (OBS) — a neargdigm
for an optical Internet,'Journal of High Speed Networksol. 8, no. 1,
pp. 69-84, Mar. 1999.

S. Verma, H. Chaskar, and R. Ravikanth, “Optical bursttaving: A
viable solution for terabit IP backbond EEE Network vol. 14, no. 6,
pp. 48-53, Nov. 2000.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R.dwig,
L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop opticaufter,”

(2]

(3]

(4]

[16]

[17]

(18]

D. K. Hunter and I. Andonovic, “Approaches to optical émet packet
switching,” IEEE Communications Magazingol. 38, no. 9, pp. 116—

[19]

[20]

Journal of Lightwave Technologyol. 14, no. 3, pp. 324-335, Mar.

1996.

J. Postel, “Transmission Control Protocol,” Infornwati Sciences Insti
tute, RFC 793, Sep. 1981.

V. Jacobson, “Congestion avoidance and control,”HAroc. of ACM
SIGCOMM 88 Stanford, CA, Aug. 1988, pp. 314-329.

(5]
(6]

[71
buffer sizing: recent results and open problen®GCOMM Compute
Communication Reviewol. 39, pp. 34-39, Apr. 2009.

[8] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing t@ubuffers,”

A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspexdi on router

r

SIGCOMM Computer Communication Revjewl. 34, no. 4, Oct. 2004.

El

A. Dhamdhere and C. Dovrolis, “Open issues in router éuffizing,”

SIGCOMM Computer Communication Revjewl. 36, no. 1, pp. 87-92,

Jan. 2006.

[10] T. Wolf, W. Gong, and Y. Cai, “Burstiness as traffic metin next-

generation optical core networks,” iroc. of IEEE Photonics Society

Summer TopicalsNewport Beach, CA, Jul. 2009, pp. 129-130.
[11]
queue length: An infinitesimal perturbation analysis,”Hroc. of 48th

Y. Cai, Y. Liu, W. Gong, and T. Wolf, “Impact of arrival lpstiness to

IEEE Conferences on Decision and Control (CDGhanghai, China,

Dec. 2009.

[12] Y. Cai, B. Jiang, T. Wolf, and W. Gong, “A practical omé pacing

scheme at edges of small buffer networks,”Hroc. of the 29th IEEE
Conference on Computer Communications (INFOCOBn Diego,

CA, Mar. 2010.

R. Raghuraman, and J. Luo, “NetFPGA-an open platform foalgtg
rate network switching and routing,” IMSE '07: Proceedings of
the 2007 IEEE International Conference on Microelectroi@gstems
Education San Diego, CA, Jun. 2007, pp. 160-161.

Y. Cai, Y. S. Hanay, and T. Wolf, “Practical packet pagin small-buffer
networks,” in Proc. of IEEE International Conference on Communica-
tions (ICC) Dresden, Germany, Jun. 2009.

M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Bbgarden,
“Part Ill: Routers with very small buffers,'SIGCOMM Computer
Communication Reviewol. 35, no. 3, pp. 83-90, Jul. 2005.

G. Hasegawa, T. Tomioka, K. Tada, and M. Murata, “Siriatastudies
on router buffer sizing for short-lived and pacing TCP fléwSpmputer
Communicationsvol. 31, no. 16, pp. 3789-3798, 2008.

V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, tRat pacing in
small buffer optical packet switched networkEEEE/ACM Transactions
on Networking vol. 17, no. 4, pp. 1066-1079, Aug. 2009.

A. Aggarwal, S. Savage, and T. Anderson, “Understapdime perfor-
mance of TCP pacing,” irfProc. of IEEE INFOCOM 2000Tel Aviv,
Israel, Mar. 2000, pp. 1157-1165.

O. Alparslan, S. Arakawa, and M. Murata, “Node pacing &ptical
packet switching,” irProc. of the International Conference on Photonics
in Switching Aug. 2008, pp. 1-2.

“NetFPGA,” http://www.netfpga.org/.

