
1

High-Performance Implementation of In-Network
Traffic Pacing

Y. Sinan Hanay, Abhishek Dwaraki and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA, USA

{hanay,dwaraki,wolf}@ecs.umass.edu

Abstract—Optical packet switching networks promise to pro-
vide high-speed data communication and serve as the foundation
of the future Internet. A key technological problem is the very
small size of packet buffers that can be implemented in the optical
domain. Existing protocols, for example the transmission control
protocol, do not perform well in such small-buffer networks.
To address this problem, we have proposed techniques for
actively pacing traffic to ensure that traffic bursts are reduced
or eliminated and thus do not cause packet losses in routers with
small buffers. In this paper, we present the design and prototype
of a hardware implementation of a packet pacing system based
on the NetFPGA system. Our results show that traffic pacing
can be implemented with few hardware resources and without
reducing system throughput. Therefore, we believe traffic pacing
can be deployed widely to improve the operation of current and
future networks.

Index Terms—small-buffer network, traffic pacing, traffic
burstiness, field-programmable gate array, prototype

I. I NTRODUCTION

High-bandwidth data communication is one of the key
foundations for the future Internet. Society’s expectations to
perform many daily activities over the Internet (e.g., entertain-
ment, person communication, e-government, health care, etc.)
has increased the demand for raw bandwidth in the network.
One technology that promises to meet these demands for
bandwidth is optical networking. Optical fiber has long been
used for long-haul, point-to-point data transmissions. However,
the need to convert from the optical domain back to the
electronic domain for switching has limited the throughputthat
can be achieved optical-electronic-optical (OEO) networks.

To address these performance limitations, all-optical net-
works (AON) have been developed. Optical circuit switching
(OCS) can be used to provide end-to-end light paths. While
OCS has been successfully deployed for some use case scenar-
ios, the slow timescales at which connections can be set up and
torn down does not match the timescales of highly dynamic
end-to-end Internet connections. As alternative, opticalpacket
switching (OPS) [1] and optical burst switching (OBS) [2], [3]
has been proposed. In these networks, packets or short bursts
of packets are switched independently in the optical domain.

While OPS and OBS are promising approaches to optical
networks that match the needs of current Internet protocols

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0721790.

and dynamics, there are important technological challenges
that need to be addressed. Apart from the difficulties of
building a switch that operates in the optical domain, there
are also challenges imposed by the basic operation of the
Internet. Packet switching in the Internet is based on statistical
multiplexing and traffic is forwarded opportunistically without
prior resource reservations. As a result, traffic may compete
for link bandwidth on the output port of a switch. To avoid
packet losses, packet buffers are used to queue packets and
thus absorb short periods of overload. In electronic networks
and OEO networks, these buffers can be implemented easily
with SRAM or DRAM and can be sized to hold a large number
of packets. In all-optical networks, buffers are more difficult to
implement since there exist no practical solution to store light
other than sending it through a delay line [4]. These optical
buffers can only hold a very small number of packets. One
important question is how efficiently can such small-buffer
networks operate with network, transport and application layer
protocols that have been designed for large buffer networks.
The issue of buffer sizing has also been explored in other
contexts (e.g., to reduce the cost of electronic routers by
reducing the amount of buffer memory per port).

One key concern with small-buffer networks is their inter-
action with the transmission control protocol (TCP) [5]. In
particular, the use of congestion control in TCP [6] leads
to significant performance drops in throughput when packet
loss occurs. Several studies have explored how traffic char-
acteristics (e.g., burstiness) impact packet losses in small-
buffer networks and how these losses affect TCP throughput
[7]. While there are arguments that aggregation of traffic in
the network leads to smoothing of traffic bursts [8], there
are also arguments that the conditions for smoothing cannot
be ensured [9]. In this context, we have proposed in our
prior work to actively smooth traffic in the network and
thus achieve the conditions that are necessary for small-buffer
networks to operate efficiently [10]. In particular, we have
shown that burstiness in traffic can compound in the network
and lead to larger average queue lengths in the core (and thus
higher packet loss rates for small-buffer networks) [11]. To
circumvent this problem, it is possible to perform pacing of
traffic and thus reduce or eliminate traffic bursts [12].

In this paper, we present a high-performance implementa-
tion of the traffic pacing technique described in our prior work.
A key aspect of the design of our traffic pacing method is that



2

it is easy to implement and can be performed at high data
rates. Our prototype system based on the NetFPGA platform
[13] shows that traffic pacing can be implemented with a
small amount of hardware resources and does not impede
the throughput performance of the system. Specifically, the
contributions of this paper are:

• A hardware design for a high-performance traffic pacer
based on algorithms described in [12], [14],

• A prototype implementation of the traffic paced on the
NetFPGA platform, and

• Evaluation results to demonstrate the performance and
effectiveness of the hardware design.

We believe that the results from this work are important
since they demonstrate that it is possible to implement traffic
pacing at high data rates with little additional hardware.
Therefore, traffic pacing can be widely deployed and thus help
in ensuring that network traffic characteristics are suitable to
fully utilize a future Internet that is based on high-performance
small-buffer routers.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III presents queue-
length based pacing, which we have developed in prior work
and which is the basis for the hardware implementation
presented in this paper. Section IV presents the design of
the pacer implementation and a discussion of various design
tradeoffs. Results from the prototype implementation and its
performance are presented in Section V. Section VI summa-
rizes and concludes this paper.

II. RELATED WORK

The size of router buffers is important for effective operation
of networks with statistically multiplexed traffic. The use
of the transmission control protocol (TCP) for most data
communication in the Internet, has led to buffer sizing rec-
ommendations based on the produce of round-trip time and
link capacity. Such large buffers ensure that buffer underflows
can be avoided when TCP reacts to packet loss (indicating
congestion) with multiplicative decrease in transmissionrate.
However, such buffers are also expensive and difficult to build
for optical switches. Recently, there have been several studies
showing that aggregation of multiple connections leads to
traffic characteristics that ensure efficient operation even with
smaller buffer sizes [15]. Appenzeller et al. show that buffer
size proportional to square-root of the number of flows may
be sufficient [8].

While small-buffer networks can operate efficiently with
TCP for some scenarios, it has also been shown that this is
not the case for many practical scenarios [9]. In particular,
the presence of TCP connections with short lifetimes are
problematic. Haesegawa et al. show that a high ratio of
short-lived flows has a negative effect on link utilization for
small buffers [16]. Sivaraman et al. [17] show the impact of
small buffers on real-time and TCP traffic and identify short-
timescale burstiness as the major contributor of performance
degradation.

Instead of relying on multiplexing effect to smooth out
traffic bursts, there have been several approaches to actively

change the characteristics of network traffic to meet the needs
of small-buffer networks. Pacing for TCP on end-systems
has been proposed (albeit not in the context of small-buffer
networks) [18]. This approach is difficult to implement since it
requires software modifications on all end-systems. In contrast,
we have proposed to implement pacing functions on nodes in
the network to simplify deployment [10]. A specific pacing
algorithm is presented in [12], [14]. A similar technique
was developed independently by Alparslan et al. [19]. The
hardware implementation of the traffic pacer presented in this
paper is based on the algorithms described in these papers.

There have been numerous works analyzing performance of
TCP pacing or traffic pacing through ns-2 simulations [14],
[16], [18]. To our best knowledge, the only experiment to
measure pacing performance is done in [14], using a software-
based pacer plugin. In our work, we implement a pacer system
in programmable hardware.

III. O PERATION OFQLBP PACKET PACER

As the basis for discussion of the hardware design of the
high-performance pacer presented in Section IV, we briefly
review the general operation of the traffic pacer described in
[10], [12], [14]. The figures, notation, and some text in this
section are repeated from these papers to provide the necessary
background for the reader.

A. Traffic Pacing in Network

The traffic pacing that we describe in this paper is im-
plemented in electronics and thus cannot be part of a all-
optical network. Figure 1 shows our perspective on how we
can deploy traffic pacing in a future Internet with an all-
optical core. By conditioning traffic in the edge networks,
the all-optical core can operate efficiently – even with very
small buffers. Pacers can be deployed opportunistically; traffic
that traverses multiple pacers achieves better throughputin the
small-buffer core, but there is no requirement that a pacer has
to be traversed. Also, pacing is done indiscriminately for all
traffic; there is no per-flow adjustment of the pacing rate, but
all traffic is handled the same.

B. Pacing Algorithm

The pacing mechanism considered in our work is Queue
Length Based Pacing (QLBP) [12], [14]. The goal of the pacer
is to approximate constant bit-rate (CBR) traffic by delaying
certain packets. However, since the pacer cannot know the
arrival times of future packets, it is not able to perfectly
determine the transmission times that would correspond to
CBR. Instead, it uses an adaptive process to determine if and
how much packets should be delayed.

The length of the packet queue for an output port is used to
determine the transmission rate in QLBP. The transmission rate
µ(t) at time t is determined by queue lengthq(t) as follows:

µ(t) =

{ µmax−µmin

Qmax

q(t) + µmin, q(t) < Qmax

µmax, q(t) ≥ Qmax

(1)

ParameterQmax is the maximum queue length at which
pacing is allowed andµmin andµmax are the minimum and



3

���������� ��������������������
	 	

��
�� 
��
��

		

��

	
	


�� 
��
			
���� 
� �������������� �� ��������
���� ��
����

Packet-switched optical core 
with small buffers

������ 
���
������� ������ ����� ������ ��
����

������ �� ��������� ��� ���
���� �
����
Edge and access 

networks

Fig. 1. Network Architecture with Traffic Pacing (from [10]).

min
 

max
 

! "t 

! "q t0
max
Q

Fig. 2. Pacing Rate of QLBP (from [14]).

maximum transmission rates. Figure 2 shows the transmission
rate of the pacer as a function of queue length.

Based on the transmission rate of the pacer, the delay
experienced by a packet is

d(t) =
S

µ(t)
, (2)

whereS is the size of the packet. Figure 3 shows the delay as
a function of queue length. In the implementation of QLBP,
the pacing delay is activated after a packet is transmitted to
ensure that individual packets that do not belong to a burst do
not get delayed.

Thus, QLBP has the following properties that make it
effective for use in small-buffer networks:

• For longer queue lengths, the pacing delay is lower. This

 !q t0
max
Q

 !d t

min

S

"

max

S

"

Fig. 3. Pacing Delay of QLBP (from [14]).

rule ensures that the link can be fully utilized.
• For an empty queue, the maximum delay is limited. This

rule ensures that packets do not get delayed indefinitely.
• The first packet arriving at the pacer does not get delayed.

This rule ensures that pacing is only activated when
multiple packets (i.e., a burst) are observed.

C. Effectiveness of QLBP Pacer

Figure 4 shows the effectiveness of our pacing ap-
proach. Traffic bursts traversing the multiple pacing nodes
are smoothed out to nearly match constant bit-rate traffic.
Using this QLBP pacing at multiple nodes in the network edge
ensures that traffic in the core nearly matches CBR traffic and
thus can efficiently utilize small-buffer networks.



4

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

Time (s)

P
ac

ke
t I

nd
ex

no pacer
with 1 pacer
with 2 pacers
with 3 pacers
ideal CBR

Fig. 4. Effectiveness of Pacing on Multiple Nodes (from [14]).

Fig. 5. State Diagram of Pacer Implementation.

IV. H IGH-PERFORMANCEDESIGN OFPACKET PACER

To ensure that traffic pacing improves the throughput per-
formance of a small-buffer network, it is critical that the traffic
pacer itself does not present a performance bottleneck. There-
fore, it is important to develop a suitable high-performance
design of such a system. We discuss our implementation in this
section and evaluation results from the prototype in Section V

This section deals with the architecture of the pacer and
how it has been implemented in hardware. We look at the
underlying platform that is used and the reference designs that
have been modified to suit our needs. We first discuss the
NetFPGA in more detail.

1) The NetFPGA Platform:The NetFPGA is a Gigabit
Ethernet open platform for networking research which has
been developed at Stanford University [13]. It consists of a
Xilinx Virtex 2Pro FPGA along with a Spartan 3 FPGA built

Fig. 6. NetFPGA Reference Router Pipeline (from [20]).

onto a PCI card along with SRAM, DRAM and 4 Gigabit
Ethernet ports. This PCI card plugs into the PCI socket of
any PC and can be used to develop and test new networking
methodologies and protocols.

2) The NetFPGA IPv4 Reference Router:The IPv4 refer-
ence router is part of the NetFPGA base package and consists
of library modules connected together in a pipelined fashion
to enable the design to operate at almost 125 MHz [20]. It is
essential to understand the modular design of the NetFPGA to
make optimal use of the existing design. Below is shown the
pipeline structure of the NetFPGA reference design. We first
take a look at that design and then go into the details of our
design. Figure 6 shows the Reference Router pipeline.

There are 4 Gigabit Ethernet ports on the PCI card, which
serve as ingress/egress ports for the design. Each of the MAC
ports have a corresponding CPU DMA port that acts as the
conduit between the NetFPGA card and the host PC via the
PCI bus. These DMA ports are used to relay packets to the
host PC’s processor in the eventuality of the NetFPGA being
unable to process them.

Apart from the Rx/Tx ports, the NetFPGA has other mod-
ules that are part of the reference design. One of them is the
input arbiter, which takes packets from each of the Rx ports in
a round robin manner and hands them off to the output port
lookup module. Another is the output port lookup module,
which is responsible for the IP/LPM lookups and Ethernet
header modifications before the packet is pushed to output
queues, which places it in the queue for the corresponding
output MAC.

The pipelining is done in such a way that each module
consists of a small input FIFO where the previous module
writes data into. The current module picks up data from here
to process. This enables the pipeline to go ahead unhindered.
In case a certain module is not ready to accept data, the
input FIFO is filled with data and then the pipeline begins



5

to stall backwards until the input buffers are full and packets
get dropped.

3) Packet Pacer Design:In this section, we look at the
design of the packet pacer on the NetFPGA and how is fits
into the reference pipeline. Figure 5 shows the state diagram of
the pacer. The packet pacer is been split into various individual
modules handle discrete functionalities. Each of the modules
is explained below.

• The Input State Machine: This state machine handles the
job of monitoring the input FIFO for data. Once data is
available in the input FIFO and the pacer module is ready
to process data, it transfers the packet from the input
FIFO to the pacer FIFO where it is held till it reaches its
transmission time. The FIFOs are explained in the next
section.

• The FIFOs: There are two FIFOs, which handle the
incoming packets. One is 72 bits wide, and holds the
packet and some control information. The other is 32
bits wide and holds the size of packets that come into
the module. The smaller 32 bit FIFO has a N-1 mapping
to the larger FIFO and the size of the packet at the head of
the queue is held in a global register, which is explained
below.

• The Signal Control Block: The Signal Control Block
is responsible for maintaining the current queue size,
previous transmission time and next transmission time
data. Once the input state machine enqueues a packet,
it sends a signal to the signal control block, which
first updates the queue size to reflect the new packet
and then activates the calculate block to calculate the
next transmission time of the packet. The timer control
embedded in the control block monitors the validity of the
transmission time. When the timer expires on a calculated
transmission time value, the control block sends a signal
to the output state machine asking it to dequeue the packet
at the head of the queue. Once the output state machine
has dequeued a packet, the signal control block receives
the acknowledgement and updates it current queue size
to reflect the new changes.

• The Delay Lookup/Calculation block: This block is re-
sponsible for updating the signal control block with the
new transmission time on every enqueue or dequeue. De-
pending on the implementation, it incorporates an array
of floating point cores or a Block RAM based Single port
ROM. The latency of this block is also dependent on the
implementation, with the floating point implementation
imparting greater accuracy, but also adding a lot more to
the latency due to the complexity involved. On the other
hand, the single port ROM does not add much in terms
of latency itself since the lookup is very fast, typically
one cycle, but approximates the calculated delay using
pre-calculated, extrapolated values.

• The Timer Control Block: This block creates a reference
time-line for the timer functionality. It consists of a
timer that up-counts on every clock and simultaneously
monitors whether there next transmission time has been
reached. Once the timer hits the next transmission time,
it sends a signal to the output state machine to start

dequeuing the packet. The block is part of the Signal
Control Block.

• The Output State Machine: This state machine is activated
by the Signal Control block once the timer has expired
and the next transmission time has been reached. It is
responsible for handling the packet dequeue and also
making sure that the packet size global register is updated
with the new packet’s size.

The whole pacer module is connected between the output
port lookup module and the output queues module on the
NetFPGA. This is the initial design and makes it global to the
router. All packets entering the router are paced. As a next
step to this, the pacer module is replicated and the granularity
shifted to per-port pacing.

A. Implementation of the Delay Calculation Block

The critical path in our design is in the delay calculation
block. It takes two inputs: packet size,Sp, and instantaneous
queue size,q(t), calculates the delay, and outputstnext. tnext
is calculated as follows:

tnext = tlast + Sp/(
µmax − µmin

Qmax

· q(t) + µmin) (3)

In the above equation, the packet sizeSp and the instantaneous
queue lengthq(t) are inputs to the calculation black, while
umin and umax are parameters. We denote the right term
in the addition as the,d, delay in our discussion from now
onwards, that is:

It can be seen that to calculate delay,d, a straightforward
approach requires two divisions, one multiplication and one
addition at the minimum, not to mention a host of conversions
from integer to the IEEE 754 format to perform the floating
point operations.

In the sections below, we discuss alternative hardware
implementations of this delay calculation. We present an exact
implementation that employs using floating point operations
for precision. We also present a look up table based imple-
mentation for higher throughput.

1) Floating Point Implementation (FPI):In our implemen-
tation, we use floating point blocks to precisely calculate the
d. In doing so, first step is to convert the unit ofd from time
to clock cycles, that isdclk = fclk×d. At this point a designer
may want to implement the delay block straightforwardly by
using 2 dividers, 1 multiplier and 1 adder. In addition to
these, floating to fixed point converters are needed to convert
fixed values. Division is a time consuming operation even
in hardware. The divisionµmax−µmin

Qmax

can be transformed
to a shift operation ifQmax is selected to be a power of
2. Qmax can be selected conveniently as a power of 2 for
buffer sizes less than 500. For a detailed discussion ofQmax,
reader can refer to [12]. We have used IP cores provided
by Xilinx to perform the floating point operations such as
division, addition, multiplication, fixed to float and the vice
versa conversions. Floating point divider is pipelined so that
it completes in 4 cycles.



6

2) Lookup Table Implementation (LTI) :It is possible to
avoid expensive operations such as divisions and multiplica-
tions by storing pre-calculated delay values in a lookup table.
The inputs to this LTI block areq(t) and Sp, and look-up
table can be implemented in Block RAM as a single-port
ROM. The valid range forQmax is from 1 to buffer size. The
pacer is intended to be used in small-buffer networks of 20-30
packets, which is around 10-15 Kb on average. For the sake
of consistency and ease of calculation, we store both packet
sizeSp and instantaneous queue sizeq(t) in terms of 8-byte
words, since this is the data width of the pipeline anyway. This
results in a maximum packet size of 187 words for a 1500 byte
packet. The delay ranges from a maximum of 20,000 cycles
max(d) = Sp/umin for the MTU to a few hundred cycles
for small size packets. Extrapolating these statistics brings us
to a possible 200K to 300K entries with a memory size of 1
Mbits.

V. EVALUATION

In this section, we evaluate the throughput and hardware
overhead of implemented pacer. We compare our implemented
pacing capable router against base reference router implemen-
tation that comes with NetFPGA. This gives us some insight
on area overhead of employing a pacing inside a router.

A. Hardware Overhead

NetFPGA reference router’s pipeline clock runs at 125
MHz. NetFPGA can be set to run at either 62.5 MHz or
125 MHz. In our initial straightforward implementation, the
maximum achievable clock frequency was 59 MHz. After
modifying the delay equation algebraically as explained inthe
previous section, the pacer could be run at 125 MHz.

Table I shows the resource usage in the reference router
design that is part of the NetFPGA base package. In addition
to that, it shows the overhead that the FPI implementation
adds to the reference design, which is around 10%. LTI, on
the other hand, uses even lesser resources due to precision
being sacrificed for throughput and speed. Please note that the
number of slices is not a meaningful metric in terms of area
since it shows how optimally logic gates have been packed
together.

Table II gives some insight about maximum achievable
throughput and minimum possible latency. Since our floating
divider takes 4 cycles to complete, and is not pipelined,
maximum achievable throughput with FPI is 2 Gbps, where
as with LTI that is 8 Gbps. We see an extra cycle of latency
with LTI and 4 cycles of latency with FPI implementation.

Figure 7 demonstrates the pacing. It shows the dequeuing
of the packets in reference router (non-paced) and in our
pacing-capable router implementation (paced). Each pointin
this figure corresponds to the departure time of a packet. There
are about 30 packets leaving the queue. It takes about 2 ns
without pacer for all 30 packets leave the queue, while it takes
about 4.5 ns for all 30 packets leave the queue when a pacer
is installed. Without a pacer incoming packets leave the queue
more bursty as it can be seen in the figure. However, when

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

x 10
4

0

5

10

15

20

25

30

time (ns)

P
ac

ke
t I

nd
ex

Effect of Pacing

 

 

Unpaced
Paced

Pkt Size=64 bytes

Fig. 7. Operation of Prototype Pacer.

 0

500

1000

1500

2000

2500

3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

de
la

y 
(n

s)

queue length (bytes)

delay vs instantaneous queue length

ref
64 bytes

256 bytes
576 bytes

1300 bytes

Fig. 8. Measured Delay and Reference Delay vs. Queue Length on Prototype
Pacer.

the pacer is used the pacer delays the departure of the packet
except the first one, and in turn smoothes the traffic.

Figure 8 shows the implemented LTI based pacer delay
characteristics for different size packets and different queue
lengths. Reference plot lines (shown as ‘ref’ in the figure)
show the exact values and dots represent the delay values
that are calculated by our LTI implementation. Since our
LTI implementation uses interpolation to calculate delaysof
intermediate values, it sacrifices a little accuracy with respect
to FPI implementation. This figure shows that if average size
of the incoming packets is small then the error will be small
regardless of the queue length.

VI. SUMMARY AND CONCLUSIONS

High-performance networks with small packet buffers rep-
resent a possible core technology for the future Internet. An
important consideration is to ensure that traffic characteristics
are suitable for these networks. The burstiness of traffic
generated by the widely used transmission control protocol
is particularly problematic for networks with small buffers.
In prior work, we have shown that traffic pacing on nodes



7

TABLE I
RESOURCEUTILIZATION OF PROTOTYPEPACER ON NETFPGA PLATFORM.

Reference Router FPI LTI
Resource Type Count Utilization Count Utilization Overhead Count Utilization Overhead

Flip Flops 16,433 34% 17,180 36% 4.5% 16,552 35% 0.7%
4 input LUTs 22,954 48% 25,423 53% 10.8% 23,792 50% 3.7%
Block RAMs 106 45% 111 47% 4.7% 132 56% 24.5%
MULT18X18s 0 0% 6 2% +6 0 0 0%

Slices 15,796 66% 17,530 74% 11.0% 15,514 65% -1.8%

TABLE II
PERFORMANCE OFPROTOTYPEPACER.

Reference Router FPI LTI
Maximum Block Latency (cycles) 1 4 1

Clock Frequency (MHz) 125 125 125
Theoretical Upper Limit (Gb/s) 8 2 8

Extra Latency (clock cycles) 0 4 1

inside the network can alleviate these problems and lead
to higher network throughput. In this paper, we present the
design and prototype implementation of a high-performance
pacing system that can be implemented with low overhead
on the output port of routers. We show that the design
performs pacing as intended and that it does not degrade the
performance of the router. We believe that this work presents
an important step toward the efficient operation and wide-scale
deployment of small-buffer networks, including optical packet-
switched networks.

REFERENCES

[1] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet
switching,” IEEE Communications Magazine, vol. 38, no. 9, pp. 116–
122, Sep. 2000.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS) – a new paradigm
for an optical Internet,”Journal of High Speed Networks, vol. 8, no. 1,
pp. 69–84, Mar. 1999.

[3] S. Verma, H. Chaskar, and R. Ravikanth, “Optical burst switching: A
viable solution for terabit IP backbone,”IEEE Network, vol. 14, no. 6,
pp. 48–53, Nov. 2000.

[4] R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig,
L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,”
Journal of Lightwave Technology, vol. 14, no. 3, pp. 324–335, Mar.
1996.

[5] J. Postel, “Transmission Control Protocol,” Information Sciences Insti-
tute, RFC 793, Sep. 1981.

[6] V. Jacobson, “Congestion avoidance and control,” inProc. of ACM
SIGCOMM 88, Stanford, CA, Aug. 1988, pp. 314–329.

[7] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: recent results and open problems,”SIGCOMM Computer
Communication Review, vol. 39, pp. 34–39, Apr. 2009.

[8] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
SIGCOMM Computer Communication Review, vol. 34, no. 4, Oct. 2004.

[9] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 87–92,
Jan. 2006.

[10] T. Wolf, W. Gong, and Y. Cai, “Burstiness as traffic metric in next-
generation optical core networks,” inProc. of IEEE Photonics Society
Summer Topicals, Newport Beach, CA, Jul. 2009, pp. 129–130.

[11] Y. Cai, Y. Liu, W. Gong, and T. Wolf, “Impact of arrival burstiness to
queue length: An infinitesimal perturbation analysis,” inProc. of 48th
IEEE Conferences on Decision and Control (CDC), Shanghai, China,
Dec. 2009.

[12] Y. Cai, B. Jiang, T. Wolf, and W. Gong, “A practical on-line pacing
scheme at edges of small buffer networks,” inProc. of the 29th IEEE
Conference on Computer Communications (INFOCOM), San Diego,
CA, Mar. 2010.

[13] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” inMSE ’07: Proceedings of
the 2007 IEEE International Conference on MicroelectronicSystems
Education, San Diego, CA, Jun. 2007, pp. 160–161.

[14] Y. Cai, Y. S. Hanay, and T. Wolf, “Practical packet pacing in small-buffer
networks,” inProc. of IEEE International Conference on Communica-
tions (ICC), Dresden, Germany, Jun. 2009.

[15] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Part III: Routers with very small buffers,”SIGCOMM Computer
Communication Review, vol. 35, no. 3, pp. 83–90, Jul. 2005.

[16] G. Hasegawa, T. Tomioka, K. Tada, and M. Murata, “Simulation studies
on router buffer sizing for short-lived and pacing TCP flows,” Computer
Communications, vol. 31, no. 16, pp. 3789–3798, 2008.

[17] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, “Packet pacing in
small buffer optical packet switched networks,”IEEE/ACM Transactions
on Networking, vol. 17, no. 4, pp. 1066–1079, Aug. 2009.

[18] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of TCP pacing,” inProc. of IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000, pp. 1157–1165.

[19] O. Alparslan, S. Arakawa, and M. Murata, “Node pacing for optical
packet switching,” inProc. of the International Conference on Photonics
in Switching, Aug. 2008, pp. 1–2.

[20] “NetFPGA,” http://www.netfpga.org/.


