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Abstract—Packet forwarding operations in network systems
are often performed in software so that routers can be updated
as new protocols and service features are developed. To meet
the processing demands of high-performance networks, multi-
processor systems-on-a-chip with dozens of cores are employed
to provide raw processing power. Management of these processors
and other system resources to achieve high forwarding rates
is a key challenge. In particular, the allocation of processing
workloads and the placement of data structures in memory have
an enormous impact on system performance. Our work proposes
a runtime system that manages these system resources. Much
related work has proposed the use of cache memory hierarchies
in packet processors. In this work, we show that our dynamic
placement strategy can outperform a conventional cache memory
and achieve up to 1.77 times higher hit rates for small memories,
which are typically found in packet processing systems.

Index Terms—network processor, memory, cache, runtime
system

I. INTRODUCTION

The data path of routers, where packets are forwarded from

the input interface to the output interface, requires a number of

packet processing steps. These packet processing steps involve

basic protocol operations (e.g., standard IP forwarding [1]) as

well as more advanced functionality (e.g., firewall [2], intru-

sion detection [3], network address translation [4]). Modern

routers have a large number of configurable data path features

ranging from accounting to load balancing and tunneling [5].

With recent efforts to develop a new network architecture for

the next-generation Internet [6], even more functionality is

being pushed into the data path of networks. Virtualized router

systems use dynamically deployed, custom protocol stacks

[7] to adapt to new requirements. Network services provide

a mechanism for dynamically instantiate protocol processing

features across a network [8].

To adapt to changes in the forwarding functionality, mod-

ern router designs have moved away from using applica-

tion specific integrated circuits (ASIC), which cannot be

reprogrammed once deployed. Instead, more general network

processors (NP) based on embedded multi-processors systems-

on-a-chip (MPSoC) have been proposed [9]. Such system

exploit the inherent parallelism in network traffic (i.e., the lack

of dependence between packets from different connections)

to achieve throughput rates of several Gigabit per second
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using dozens of very simple processors. These multi-core

packet processing engines are either implemented as systems

specialized for networking (e.g., Intel IXP family [10], EZchip

NP family [11]) or as general-purpose multi-processors that

are adapted to networking functionality (e.g., Sun Niagara

[12], MIT Raw [13]). As in many other computer systems,

the memory system associated with these processors consists

of a combination of memories ranging from fast but small (i.e.,

SRAM) to large but slow (i.e., DRAM).

While multi-core packet processors provide the necessary

computational performance, they also present a significant

development and operational challenge. The parallelism of the

system makes it difficult to program. Also, numerous com-

ponents (e.g., processor cores, memory interfaces, hardware

accelerators, etc.) need to interact smoothly to achieve maxi-

mum operational performance. Since many systems operate on

the principle of a (software or hardware) pipeline, bottlenecks

can cause considerable drops in performance. Therefore it is

important to consider the following issues:

• Programming Abstractions: Packet processing applica-

tions need to be represented by a suitable programming

abstractions to allow for effective exploitation of system-

level and processor-level parallelism. In many cases,

applications are represented by a directed graph of pro-

cessing steps indicating order.

• Resource Allocation: Given the packet processing appli-

cation, it is necessary to allocate system resources (e.g.,

processors, memory, etc.) to different processing task. A

suitable resources allocation is crucial when aiming for

high system performance.

• Runtime Adaptation: Resource allocation depends greatly

on the workload demands put forth by the network

traffic handled by the router system. Since network traffic

changes during runtime, it is necessary to adapt resource

allocation accordingly.

In this paper, we propose a solution to the problem of run-

time resource allocation. In particular, we propose a resource

allocation mechanism that considers both processing resources

and memory resources. Prior and related work has considered

these resources independently, but we argue that a runtime

system that considers both in combination can perform better.

The specific contributions of our work are:

• The design of a runtime management system that can
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Fig. 1. Multi-core packet processing system. architecture

profile processing and memory requirements of packet

processing applications and perform dynamic resource

allocation.

• A resource allocation algorithm for placing processing

tasks on processors and for placing program data struc-

tures in memories.

• An evaluation of the proposed system on synthetic and

realistic network traces that shows effective processor

utilization and low memory access overheads. Compared

to a system with static task placement and a cache

memory hierarchy, our system achieves nearly optimal

processor utilization and 1.77× higher first level memory

hit rates.

The remainder of this paper is organized as follows. Sec-

tion II discusses related work. Section III introduces system

issues related to packet processing. The allocation algorithms

are introduced in Section IV. Experimental results are pre-

sented in Section V. Section VI concludes this paper.

II. RELATED WORK

Programming support for packet processing applications

has been studied widely. Solutions range from low-level

instruction set extensions [14], [15] to network-processor-

specific language extensions [16] and high-level composition

mechanisms for network operations [17]. One of the most

general approaches is the Click programming model, which

allows a composition of basic packet processing tasks as a

queuing network [18]. Click has been extended for multi-

processor support [19] and with network-processor specific

functionality [20]. Our work is based on the Click abstraction

that is slightly modified to permit task placement on different

processors and to represent program data structures.

The task allocation problem on multi-core packet processing

systems has been addressed in various forms. Static workload

placement is well-understood [20], [21]. Runtime support for

pipelined structures has been considered [22]. More general

task distribution for dynamic workloads has been studied more

recently [23]–[25]. The idea of using runtime profiling for

more improved task placement has been described in our

prior work [26], [27]. The main shortcoming of all these

approaches is that they focus only on task allocation and do not

further consider the placement of data structures in memory.

Memories in packet processing systems have been considered

from the perspective of design alternatives [28]. Also, dynamic

allocation of data structures to memory has been attempted in

general for parallel processors [29] and embedded systems

[30], [31]. In our work, we consider a dynamic placement

approach that is based on runtime profiling information. Com-

bining task placement and program state allocation in packet

processing system through a single runtime system is a novel

approach presented in this paper.

III. SYSTEM OVERVIEW

To provide context for the allocation algorithms presented

in Section IV, we provide a brief overview about packet

processing systems, throughput performance, and resource

allocation issues.

A. Packet Processing Systems

A generic illustration of a router with multi-core packet

processing engines is shown in Figure 1. Traffic enters the

system through an interface on the router port. Then it is stored

and processed by software running on one or more processor

cores. Packets are then passed through the switching fabric to

the output port where they may be processed and/or queued

before exiting the router on the outgoing interface.

Practically all packet processing systems employ a hierarchy

of memories (as shown in Figure 1). Small, low-latency

memories (e.g., SRAM) provide fast access to frequently used

data structures and larger, slower memories store less fre-

quently accessed data. For example, the Intel IXP2400 system

[10] uses three types of memories: Scratchpad SRAM for

parameters and inter-processor communications, QDR SRAM

for packet queue storage and lookup tables, and DDR DRAM

for packet storage. Depending on system design, lower levels

of the memory hierarchy (i.e., memories that are closer to

the processor) may be shared (as shown in Figure 1(a)) or

dedicated to a single processor (as shown in Figure 1(b)). For

our work, we assume a shared memory hierarchy as shown in

Figure 1(a).



Fig. 2. Model of processing workload and program data structures.

B. Parallelism and Processing State

To exploit parallelism in packet processing workloads,

packet processing tasks are distributed to different processor

cores. Packet processing may be performed in a “run-to-

completion” model, where a single processor core processes

a packet in its entirety, or in a pipeline model, where packets

are passed from core to core as different steps are completed.

In many modern packet processors, a pipeline (with possibly

multiple cores per stage) is employed. Therefore, it is impor-

tant to consider how the processing tasks can be partitioned

across processor cores.

One aspect of processing that needs to be considered

carefully are program data structures. These data structures

are used to maintain processing state and to store the packets

that are being processed. Many modern packet processing

functions use “stateful” processing (i.e., information that is

carried between packets of the same flow) and thus data

structures and their placement in the memory hierarchy of the

system are becoming a more important topic.

C. Workload and Data Structure Representation

As discussed in Section II, there are a number of different

abstractions used to represent packet processing applications.

Our work focuses on allocation of processing tasks and

program data structures and thus both components need to

be represented suitably:

• Workload Partitioning: The granularity at which ap-

plication workload is represented determines the basic

mapping unit that an algorithm works on. In general,

the higher the level of representation is, the coarser the

mapping results are. Thus, it is important to consider at

which level to represent such information. The finest level

of representation, where individual processor instructions

are considered, requires a very large amount of informa-

tion and is very complex to use in later stages of the

mapping process (e.g., large overhead for profiling). The

coarsest level, where the application is seen as a single

monolithic block, lacks details about the application and

leads to trivial (and likely low performance) mapping

results.

In our work, we chose to represent applications at the

level of basic functional blocks (i.e., “tasks”) similar to

Click modules [18]. Tasks are illustrated as round nodes

in Figure 2. Sequences of arrows that connect tasks show

the processing dependency among processing nodes.

• Program State Representation: In our work, we identify

each data structure that is accessed by a task. This

is illustrated as rectangular node in Figure 2. Based

on read/write dependencies, arrows are unidirectional or

bidirectional. Data structures can be shared by multiple

tasks.

Using this abstraction of processing tasks and data struc-

tures, we propose allocation algorithms in Section IV.

D. System Performance

To understand the impact of resource allocation on system

performance, we briefly discuss the basic performance model

used in our work. Note that the model presented here is very

simple. In prior work, we have developed a more detailed

and more accurate performance model [32]. However, the

complexities of the more advanced model may distract from

the main point of this paper, which is resource allocation.

Therefore, we use the simpler model, which shows the same

performance tradeoffs, but may not achieve the same level of

accuracy.

Typical performance metrics considered for packet process-

ing systems are throughput, packet delay, power consumption,

etc. For this work, we aim at maximizing system throughput,

which is most important for many practical systems. On a

multi-core packet processing system with shared memories,

multiple cores execute instructions in parallel and generate

requests to memory. Thus, the program execution time, texec,

depends on the time spent for processing and the time spent

for memory accesses. Since most packet processors use some

form of a pipeline, the execution time is determined by the

core that requires most processing time among the available

N cores. Thus, we obtain the following equation:

texec = max
i=1...N

(tproc(i)) + tmem, (1)

where tproc(i) is the time spent for processing by core i and

tmem is the time spent for memory accesses.

To increase system throughput, we need to decrease the

total execution time, texec. There are two ways of achieving

this goal:

1) Balance processing workload among processor

cores: While the total amount of processing,∑N

i=1 tproc(i), cannot be changed (unless network

traffic changes), the worst case processing allocation,

maxi=1...N (tproc(i))can be reduced. In the ideal

case, all cores require the same processing time

(tproc(1) = · · · = tproc(N)).
2) Reducing memory access time: By reducing the amount

of time spent for memory accesses, tmem, the overall

throughput can be achieved.

The algorithms presented in Section IV pursue exactly these

two goals.

IV. ALLOCATION ALGORITHMS

In order to make a suitable allocation choice, it is necessary

to know the demands of network traffic.



A. Runtime Profiling

As network traffic changes, the amount of processing asso-

ciated with a task can change (since packets may take different

paths through the workload graph illustrated in Figure 2).

Therefore it is important to develop allocation mechanisms

that can adapt at runtime. The general concepts of runtime

adaptation are discussed in our prior work [26], [27]. The

main idea is to obtain profiling information at runtime and

to adapt accordingly. In our system, we profile two types

of information: processing requirements and data structure

accesses.

1) Profiling of Processing Demand: To characterize pro-

cessing demand, the following information is collected at

runtime:

• Task Service Time si: For each task ti, we determine

the service time si (measured, for example, in number of

instructions executed per packet). Since this value may

be different for each packet, we consider si as a sample

from a random variable Si. We assume the distribution

of Si matches the empirical observations of si.

• Task Utilization u(ti): Based on edge utilization (or

through direct profiling), we can derive the utilization of

a particular task ti, which is denoted by u(ti).

Task service time reflects computational demands of tasks

(i.e., expected service time E[si]), while task utilization rep-

resents how frequently tasks are used. We therefore define wi

as the amount of “work” that is imposed by task ti:

wi = u(ti) · E[Si]. (2)

Since “work” is measured in number of instructions per packet,

the sum of all “work” on a processor yields
∑N

i=1 tproc(i).

2) Profiling of Data Structure Accesses: To obtain profiling

information on memory accesses, we track size and utilization

of data structures. We collect the following information about

memory accesses:

• Data Structure Size pi: For each data structure, we

measure the size pi (in number of bytes). For programs

that do not allocate memory at runtime, this measurement

could be done at offline to reduce runtime overhead.

• Data Structure Utilization u(vj): During the runtime of

each processing tasks, we observe the amount of memory

access (read and write) to each data structure from all

tasks.

Using these profiling data, we can then run the allocation

algorithms to determine resource allocation. As network traffic

demands change the profiling data changes accordingly and

the allocation process can be repeated. Using this process, the

packet processing system can keep up with changes in the

network.

B. Resource Allocation Problem

Assume a graph representing the packet processing work-

load is given (e.g., Figure 2) and profiling annotations are

available as described above. Assume there are T task nodes,

t1, . . . , tT , and V data structures, v1, . . . , vV , that are con-

nected by directed edges ei,j with i ∈ {t1, . . . , tT }, j ∈
{v1, . . . , vV } or i ∈ {v1, . . . , vV }, j ∈ {t1, . . . , tT }. (Bidi-
rectional edges are represented by two directional edges in

opposite direction.) Also assume that we represent a packet

processing system by N processor cores and L layers of shared

memory with capacities C1, . . . , CL.

The resource allocation problem is to find a mapping m

that assigns each of the T tasks to one of N processor cores

and each of the V data structures to one of L memories:

m : {t1, . . . , tT } → [1, N ], {v1, . . . , vV } → [1, L], such that

the overall program execution time given by Equation 1 is

minimized. This allocation needs to consider the constraint of

resource limitations: ∀j, 1 ≤ j ≤ L : |
∑

i{vi × pi|m(vi) =
j}| ≤ Cj .

As discussed above, the goals of balancing processing

time and minimizing memory access time can be considered

independently from each other. Thus we first consider how

to balance the mapping of processing tasks and then how to

minimize memory access time.

C. Mapping of Processing Tasks

When mapping tasks to processors, we need to consider

each task’s service time. The problem of how to map tasks

to processors such that the maximum of total all service

times on processors is minimized is a load balancing problem.

Unfortunately, this challenge is a “bin packing” problem and

thus NP-hard. We therefore design a heuristic algorithm to

achieve a good approximation of the optimal solution.

Algorithm 1 Task Mapping Algorithm.

Require: w1 ≥ w2 ≥ · · · ≥ wN

1: i← 1
2: tproc(1)← 0, . . . , tproc(N)← 0
3: while i ≤ T do

4: k ← argminj=1...N (Wj)
5: m(ti)← k

6: tproc(k)← tproc(k) + wi

7: i← i + 1
8: end while

9: return m

Algorithm 1 uses a first fit decreasing strategy. Tasks are

allocated in decreasing order of work wi. A task is always

allocated to the processor with least amount of work allocation

(represented by tproc(i)). It can be shown that the maximum

workload allocation, W = maxi=1...N tproc(i), achieved by

this algorithm’s mapping m is no more than 1.5× that of the

optimal mapping m∗. This proof follows the ideas in [33].

Proof: Assume an optimal task mapping m∗, where

W ∗ = maxj=1...N tproc(j), and mapping m from Algo-

rithm 1, where W = maxj=1...N tproc(j). Assume T > N

(otherwise W ∗ = W ), then W ∗ ≥
∑

i
wi

N
. Given that

tasks are always mapped to the processor with minimum

tproc, the inequality minj=1...N tproc(j) − wT ≤
∑

j
tproc(j)

N



holds when the last task tT is to be mapped. Therefore,

minj=1...N tproc(j)−wT ≤
∑

j
tproc(j)

N
≤

∑
i
wi

N
≤W ∗. Since

tasks are sorted by their workload in decreasing order before

mapping and |T | > N , the inequality wT ≤ wN+1 ≤
W∗

2
also holds for the last task tT . Therefore, we have: W =
minj tproc(j)−wT +wT ≤W ∗ + W∗

2 , which is W ≤ 3×W∗

2 .

A key observation from the proof is that differences in task

workload wi are the main obstacle that prevents algorithm 1

from achieving a better approximation to optimal solution.

To address this problem, we can use a technique called

“task duplication,” which duplicates processing intensive tasks

(splitting the network traffic assigned to this task equally

among duplicates). This approach is particularly useful in

networking where there is little or no dependency between

packets and thus duplication does not lead to coordination

overhead. The detailed algorithm for task duplication is ex-

plained in [26].

Using these allocation strategies (either without or with

duplication), we can achieve a balanced mapping of tasks to

processing resources.

D. Data Structure Allocation

The memory allocation problem on a hierarchy of memories

with different capacities and bandwidths can be formulated

as a “0-1 knapsack” problem: Given are V data structures

v1, . . . , vV and L memories with capacities C1, . . . , CL. Each

data structure vi has a size of pi and a utilization of u(vi). The
goal is to find a mapping m : {v1, . . . , vV } → [1, L], such that∑

i u(vi) for fast memories is maximized while no memory

capacity is exceeded (∀i, 1 ≤ i ≤ L :
∑

j|m(vj)=i pj ≤ Ci).

We design an algorithm using dynamic programming to

solve this memory utilization problem:

To better utilize faster memories, we attempt to map data

structures with higher utilization to those memories that have

higher bandwidth. The algorithm requires memories to be

sorted by their bandwidth. A(x, y) is the maximum memory

utilization that can be achieved with capacity less than or

equal to y using data structures up to x. Boundary conditions

A(0, Cy) = 0 and A(vx, 0) = 0 hold for any set of capacities

Cy and data structures vx.

The mapping results provide an allocation of each data

structure to a memory in the system. Therefore we can place

these data structures accordingly. Implementation techniques

for placing data structures at runtime have been described in

[29]–[31].

V. EVALUATION

Given allocation algorithms for processing tasks and data

structures, we evaluate their effectiveness and compare them

to existing approaches. We use PacketBench [34] to evaluate

our algorithms through simulation and analysis. In our exper-

imental configuration, we assume a packet processing system

with eight processors and three layers of memories (similar

to the Intel IXP2400 network processor). A collection of

applications that are representative of various network services

Algorithm 2 Memory Mapping Algorithm.

1: j ← 1
2: while j ≤ L do

3: n← V

4: A(n,Cj)
5: V ← V

⋂
{vi|m(vi) = j}

6: j ← j + 1
7: end while

8: return m

9:

10: function A(x, y)
11: if px ≤ y then

12: if A(x− 1, y) ≤ u(vx) + A(x− 1, y − px) then
13: k ← u(vx) + A(x− 1, y − px)
14: m(vx)← j

15: else

16: k ← A(x− 1, y)
17: end if

18: else

19: k ← A(x− 1, y)
20: end if

21: return k

Fig. 3. Network services in experimental system.

are implemented on PacketBench for our evaluation (shown

in Figure 3). The applications are further partitioned into

27 processing tasks which need to access around 4000 data

structures.

The methodology of our experiments can be divided into

four phases:

• Simulation: PacketBench is used to simulate the process-

ing of a network packet trace. The simulation results from

PacketBench are instruction traces that are passed to the

profiling stage.

• Profiling: For each instruction in the instruction trace

it is determined to which task it belongs. Memory

access instructions and their target address and target

data structure are identified. This information provides

accurate profiling information for task service time si,

task utilization u(ti), and data structure utilization u(vj).
• Mapping: Both processing task allocation and data struc-

ture allocation happen in this phase. Tasks are duplicated

and mapped to cores and data structures are allocated to

different layers of the memory system.

• Evaluation: After mapping, the quality of mapping for

tasks and data structures is evaluated by determining
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processing balance and memory access time.

To evaluate our system with representative network loads,

we have obtained packet traces from the Internet uplink of

our institutional network. Trace 1 is an original network trace,

which exhibits a low amount of dynamic variation in workload

and access to data structures. Trace 2 is synthesized from

four network traces obtained at different times, thus represents

rapidly changing scenario.

To accommodate changes in network traffic, the profiling

process takes place at intervals of 1000 packets. Mapping

is revised after profiling information is available. Periodical

revision of mapping averages out short bursts of network

traffic, while maintaining adaptivity to the majority of network

workloads.

A. Workload Characteristics

Before discussing mapping performance, we show a brief

analysis of the workload characteristics applied to the system.

These results provide a context for the mapping results dis-

cussed below.

Task workload profiling results for both network traces are

shown in Figure 4. A low level of variation in processing

requirements can be observed in the workload for Trace 1.

For Trace 2, the workload shows a high variation due to

changes in the synthetic network trace every 10 intervals.

Trace 2 illustrates a scenario where runtime adaptation is

clearly necessary as the processing workload heavily depends

on input traffic.

It can also be observed that the difference between individ-

ual workload can be very large (note the log scale y-axis in
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Figure 4). As observed above, the main obstacle that prevents

Algorithm 1 from achieving better output is the difference

in processing requirements for different tasks. Therefore task

duplication is used in our system to get a well balanced

workload on each processor.

Access to data structures change at runtime similar to how

processing requirements change. The accessed subset of all

data structures is dependent on input network traffic. Figure 5

shows the number of data structures that are accessed in each

interval of Trace 1 and Trace 2.

The utilization of each data structure is also dependent on

network traffic that exercises the system. Tasks require differ-

ent amount of read and write operations based on the packets

they are processing. Figure 6 shows the amount of bytes
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accessed from each of 2096 data structures in one interval.

From this result, it is clear that differences in utilization of

different data structures can be significant.

B. Comparison to Cache Memories

To put the performance of our data structure placement

algorithm in context, we consider an alternative memory allo-

cation approach based on a hierarchy of caches. We compare

systems with equal amounts of memory. The cache system is

configured with a block size of 64 bytes, an associativity of

2, and LRU replacement policy. To limit the design space, we

assume that second level memories are a fixed factor larger

than first level memories (either 2× or 4×).
Figure 7 shows the hit rates for level 1 and level 2 caches

on the left and the hit rates for our allocation algorithm on

the right. We can observe that for small level 1 memory sizes,
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Fig. 9. Comparison of allocation quality.

as they are typical in network processors (e.g., Scratchpad

memory in Intel IXP), our system achieves a higher hit rate in

the first level memory. This increased hit rate has significant

performance benefits since access to higher level memories

are costly.

To illustrate for which memory configurations our system

performs better, Figure 7 shows two regions with different

shading. The y-axis shows the factor of miss penalties increase

for accessing higher levels in memory hierarchy. Our system

performs better for small memory sizes and low relative miss

penalties.

C. Mapping Quality

For overall performance evaluation of the allocation al-

gorithms, we show the first level memory hit rate and the

average processor utilization in Figure 9 (256 bytes of first

level memory). The average processor utilization depends on

the balance achieved by the processing task mapping. In the

ideal case, it is 100%. The first level hit rate is also 100% in

the ideal case.

Static application mapping is a baseline, where tasks are

assigned to different processors independently of network traf-



fic. This mapping is similar to conventional task management

on programmable packet processing systems. As expected the

utilization is low due to large differences in processing task

requirements. Also, the hit rate into first level memory is low.

Such a system does not perform well. In comparison, dynamic

task mapping achieves nearly 100% utilization. Using our

memory allocation algorithm, a much higher hit rate (up to

around 45%) can be achieved. In comparison, cached memo-

ries achieve hit rates in the order of 15–30%. On average, our

system shows an improvement of first level memory hit rate

of 1.77× over cache memories.

VI. CONCLUSION

Runtime management of processing and memory resources

on multi-core packet processing systems is an important prob-

lem. We present two algorithms that allocate processing tasks

to cores and program data structures to memories. Our system

achieves nearly optimal system utilization and up to 1.77×
higher hit rates into first level memory than cached memories.

In particular, our system performs better than caches in very

small memory configurations as they are encountered on

practical packet processing systems.
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