
Reconfigurable Security Support
for Embedded Systems

Guy Gogniat
Laboratory LESTER

University of South Britanny
Lorient, France

Email: guy.gogniat@univ-ubs.fr

Tilman Wolf
Department of Electrical and

Computer Engineering
University of Massachusetts

Amherst, MA 01003-9284 USA
Email: wolf@ecs.umass.edu

Wayne Burleson
Department of Electrical and

Computer Engineering
University of Massachusetts

Amherst, MA 01003-9284 USA
Email: burleson@ecs.umass.edu

Abstract— Embedded systems present significant security chal-
lenges due to their limited resources and power constraints.
We propose a novel security architecture for embedded sys-
tems (SANES) that leverages the capabilities of reconfigurable
hardware to provide efficient and flexible architectural support
to both security standards and a range of attacks. This paper
shows the efficiency of reconfigurable architecture to implement
security primitives within embedded systems. We also propose
the use of hardware monitors to detect and defend against
attacks. The SANES architecture is based on three main ideas:
1) reconfigurable security primitives, 2) reconfigurable hardware
monitors and 3) a hierarchy of security controllers at the
primitive, system and executive level. Results are presented for a
reconfigurable AES security primitive within the IPSec standard
and highlight the interest of such a solution.

I. INTRODUCTION

Security within embedded systems is becoming a major
challenge since this condition is mandatory to enable the vision
of ubiquitous computing. Two issues have to be considered
when dealing with security; the first one is related to security
primitives and protocols that are used to guarantee privacy and
integrity of data, these security methods are mainly defined
through standards. The second issue is related to attacks, as
malicious users or funding organizations aim to defeat the
security methods. Current solutions to address both issues are
facing several gaps as demonstrated by Ravi et al [1] and
summarized below.

First, from a performance point of view, the processing,
the battery and the flexibility gaps have to be considered. The
processing gap highlights that current embedded system archi-
tectures are not capable of keeping up with the computational
demands of security processing. The battery gap emphasizes
that the current energy consumption overheads of supporting
security on battery-constrained embedded systems are very
high. The flexibility gap shows that an embedded system
is often required to execute multiple and diverse security
protocols and standards. Second, from an attack point of view,
the tamper resistance and the assurance gaps have to be
addressed. The tamper resistance gap emphasizes that secure
embedded systems are facing an increasing number of attacks
from physical to software attacks, and the assurance gap is
related to reliability and stresses the fact that secure systems

must continue to operate reliably despite attacks.
Designing an embedded system architecture dealing with all

these requirements is a challenging task. New solutions have
to be defined in order to mitigate the costs of security. Two
complementary approaches are considered in this paper that
leverage the security within embedded systems. The first one
is based on reconfigurable computing since such a technology
provides many interesting features to be selected as an high
performance and flexible solution [2]. The second one is
related to hardware monitoring to build Intrusion Detection
Systems (IDSs). Indeed, software solutions show their limits
when used in embedded systems as they are based on extensive
audit of data, in form of system logging, which may require
too much time and energy [3].

Thus, in this paper we propose a new approach to build
embedded systems that takes benefit of both reconfigurable
architectures and hardware monitors to increase security by
detecting abnormal behaviors and by reacting appropriately.
Such a solution enables the system to face an unsecured
and evolving environment while meeting performance and
constraints issues.

The remainder of this paper is organized as follows. Section
2 reviews previous efforts to build secure embedded systems.
Section 3 presents our solution and shows how the security
is enforced and how attacks can be fended off. In section
4 we deal with the AES security primitive within the IPSec
standard to illustrate our concepts and to demonstrate their
efficiency. Finally, section 5 concludes the paper and draws
some perspectives.

II. RELATED WORK

Existing efforts to promote security within embedded sys-
tems are mainly dealing with processor-based approaches
[4][5][6]. These solutions are based on cryptography mech-
anisms to guarantee integrity and privacy of data and ap-
plications. Such solutions are very interesting, however as
demonstrated by Ravi et al. [1] it is mandatory to define
new alternatives to processor-based approaches as the costs
of security using such solutions are very high. Other solutions
can be considered using programmable hardware accelerators
in order to mitigate the workload of processors. In [7] and [8]



the authors propose cryptography processor or co-processor
which can perform various execution modes and achieve high
throughput. However, they do not address the attack issue
and the energy efficiency metric is not considered. In [9]
the authors focus on architecture support for energy-efficient
security. In their work they deal with security primitives and
security protocols but they do not consider the attack issue.

Another alternative is to consider reconfigurable architec-
tures to implement security primitives instead of using pro-
grammable hardware accelerators. Several works have been
published using such a solution [10][11][12] that have demon-
strated its very high efficiency but none have focused on
the mechanisms required to manage the flexibility of these
primitives and to detect attacks.

The concept of hardware monitoring has already been used
for processor power reduction [13][14] and recently for power-
attack [15]. In [15], the authors define the energy monitoring
unit (EMU) which performs energy measurements to be com-
pared to a set of reference energy signatures to detect when
the system is under attack.

The work presented in this paper differs from these efforts in
several respects. First, the underlying concept of our approach
is to dynamically adapt the security protections in order to deal
with dynamic constraints (i.e. attacks, performance, power).
We propose an architecture that promotes the design of secure
embedded systems by targeting all of the challenges stated by
Ravi et al. [1] as presented in the introduction. Our approach
allows the definition of a solution that leverages both flexibility
and security within embedded systems. The performance and
energy issues are considered by using reconfigurable security
primitives which enable the system to provide several tradeoffs
depending on the requirements and the security policy. The
reliability issue is managed through the use of different imple-
mentations from low to high reliability (e.g. fault detection or
fault tolerance). Second, we propose a hierarchy of hardware
monitors in order to track the activity of the system. In
our approach monitors provide different levels of flexibility
which enables an evaluation of the right compromise between
accuracy and simplicity which is mandatory to meet embedded
system constraints.

III. SANES: SECURITY ARCHITECTURE FOR EMBEDDED
SYSTEMS

A. The SANES architecture: a new concept

Our approach to protect embedded systems is by providing
an architectural support for the prevention, detection and reme-
diation of attacks. Most embedded systems are implemented
as system-on-a-chip devices, where all important system com-
ponents (processor, memory, I/O) are implemented on a single
chip. We propose to extend the functionality of such systems
to include both reconfigurable hardware and a continuous
monitoring system that guarantees secure operations. Through
monitoring, abnormal behavior of the system can be detected
and hardware defense mechanisms can be employed to fend
off attacks. Such an approach presents several advantages
since application verification and protection is provided in

Battery

Processor Memory

FPGA I/O

Power 
monitor

Bus 
monitor

Primitive 
monitor

Channel 
monitor

Secure Embedded System

S
ec

u
ri

ty
p

ri
m

it
iv

e

Security
Executive
Processor Clock

Clock 
monitor

Fig. 1. The Security Architecture for Embedded Systems. The reconfigurable
architecture contains the security primitives and the monitors protect the
system

dedicated hardware and not directly inside the application. The
security mechanisms can be updated dynamically depending
on the application running on the system which guarantees
the durability of the architecture. Furthermore our approach
focuses on embedded security and exploits the characteristics
of embedded computations.

Figure 1 presents an overview of the architecture. As we
can see several monitors are considered and track specific
data of the system. The number and the complexity of the
monitors are important parameters as they are directly related
to the overhead cost of the security architecture. The role
of these monitors is to detect attacks against the system. To
provide such a solution, the normal activity (i.e. correct or
expected) of the modules are characterized to detect irregular
behaviors. Autonomy and adaptability have been stressed to
build an efficient security-network of monitors. The monitors
are autonomous in order to build fault tolerant systems; if one
monitor is attacked the others can still manage the security of
the system. The monitors are distributed to be able to analyze
the different parts of the system (e.g. battery, buses, security
primitives, communication channel).

Different levels of reaction are considered depending on the
type of attack, reflex or global. Reflex reaction is performed
by a single monitor; the response time is very short since
no communication between the different monitors is required.
Global reaction is performed when an attack involves a large
modification of the system, in that case the monitors need to
define a new global configuration of the system which leads
to a longer response time. The monitors are linked by an
on-chip intelligence network. This network is controlled by
the Security Executive Processor (SEP) that acts as a secure



Data_in (128 bits)

Key (128 bits)

AES core (datapath)

Data_out (128 bits)

A
lP
_
R
e
g
is
te
r

A
rP
_
R
e
g
is
te
r

In
p
u
t 
F
S
M

O
u
tp
u
t 
F
S
M

S
ta
rt

R
e
s
e
t

D
o
n
e

SPC SSC

F
a
u
lt

Battery level

Communication 
Channel Quality

Attacks

System_state

Req

FPGA

S
e

c
u

ri
ty

p
ri

m
it

iv
e

Fig. 2. The security primitive architecture. The Security Primitive Controller manages the flexibility of the primitive and the Security System controller deals
with the detection of abnormal activity using specific sensors

gateway to the outside world. The SEP provides a software
layer to map new monitoring and verification algorithms to
monitors. In response to abnormal behavior, the SEP can
issue commands to control the operation of the system. For
example, it can override the power management or disable I/O
operations.

B. The reconfigurable architecture

The reconfigurable architecture within the system enables
the implementation of security primitives. A security primitive
corresponds to an agile hardware accelerator and performs a
security algorithm (e.g. cryptography, IP filtering, key manage-
ment). A device generally embeds several security primitives
that work independently. Main goals of these modules are [2]:
• To speedup the computation of the security algorithm

compared to software execution;
• To provide flexibility compared to a fixed implementation

to be able to update the primitive or to switch from one
primitive to another;

• To provide various tradeoffs in terms of throughput, area,
latency, reliability, power and energy in order to meet real
time constraints.

Figure 2 presents the security primitive architecture for an
128-bit AES algorithm. Three key components are considered,
1) the security primitive datapath, 2) the Security Primitive
Controller (SPC), and 3) the System Security Controller (SSC)
which is a monitor. An SPC is connected to the datapath
in order to manage its flexibility. The SPC control tasks are
related to reconfiguration of the datapath to change or adapt
its architecture. The SPC is connected to the system processor
in order to define the configuration of the security primitive.
For example, in the case of cryptography it corresponds to
the parameters of the algorithm (i.e. key size, mode and key
value). A System Security Controller (SSC) is also connected
to each security primitive to monitor the primitive and to
check the system state to detect if some faults injection or
abnormal operations are performed. The role of the SSC is
to detect attacks against the primitive. The SSC is connected
to other monitors to analyze the different parts of the system
(e.g. battery, buses, other security primitives, communication
channel).

C. Detailed architecture of the primitive

The reconfigurable security primitive is composed of the
datapath and the two previous controllers (SPC and SSC)
as shown in figure 2. The SPC is connected to the sys-
tem processor through a memory mapped mechanism (i.e.
hardware accelerator). Depending on the primitive, different
configuration registers are used to define its configuration.
These registers provide the algorithm (i.e. execution mode
and key size for cryptography algorithm) and architecture
parameters (i.e. throughput, area and reliability). As stated
before, the SPC manages the flexibility of the primitive. When
the processor needs a security primitive it first configures the
SPC which starts to check what execution modes can be used.
Figure 3 presents the FSM corresponding to the SPC.

During the Initialization state, the SPC polls via the SSC
the state of the system (i.e. battery level and communication
channel quality) in order to define what implementations can
be performed within the primitive. Once the algorithm and
architecture parameters are checked, the SPC provides this
information to the processor. During the Configuration state,
once the processor has selected the algorithm parameters
so that the security primitive can be configured, the SPC
selects the corresponding configuration data (it corresponds
to a bitstream) and starts the configuration of the datapath.
On the Run state the security primitive is ready to run and
to handle the data. While the datapath is running, the SPC
regularly checks the system state through the SSC to define
if the primitive needs to be reconfigured. Once the data has
been computed, the security primitive can be stopped or can be
removed from the reconfigurable hardware (Stop state). If the
security primitive remains within the reconfigurable hardware
this state corresponds to an idle state before running again the
primitive. Finally, the Security state is particular in the sense
it is always active. The Security state is driven by the SSC to
indicate that a reconfiguration must be done in order to fend
off or to anticipate an attack against the primitive. Whatever
the state of the SPC, the Security state enforces the activation
of the Configuration state to reconfigure the security primitive
with the appropriate parameters.



Init

Config. run

stop

Security

Checking of
Algorithm
Parameters
done

Security
Primitive
Ready

Algorithm
Parameters 

modification for 
performance 

Algorithm
Parameters 
modification 
for security

Security
Primitive
terminated

Restart
Security 
Primitive

Fig. 3. The Security Primitive Controller FSM deals with the different states
of the primitive to dynamically adapt the architecture of the primitive

D. Dynamic security within the system: monitoring

Two main scenarios are considered in our work to protect
the system from being pirated and to guarantee the execution
of the security protections. The first one is managed by the
SSC and deals with attacks (it relies on the security policy)
and the second one by the SPC and deals with the flexibility
of the primitive (it relies on the performance policy).

In the first scenario, the SSC can interrupt the SPC if an
irregular activity is detected within the module or the system.
In that case the SSC indicates to the SPC what configuration
has to be implemented. Examples of attacks are: hijacking,
denial-of-service (e.g. draining of battery or causing battery
to overheat) and extraction of secret information (e.g. user’s
phone book). In case of an hijacking attack the security
primitive needs to be reconfigured with a safe configuration.
In case of a denial-of-service attack the primitive needs to
be enhanced by fault tolerance mechanisms to be able to
guarantee its functionality and in case of an extraction of secret
information attack, I/O of the primitive needs to be stalled.

One essential question is how an attack can be identified
during run-time. It is not even theoretically possible to identify
all attacks for any given system and thus we need to use
an heuristic approach to address this problem. Our proposed
monitoring system uses an approach where the current system
behavior is compared to normal behavior. The expected be-
havior (namely normal behavior) of the system components is
derived from off-line profiling runs in a secure environment.
The aim is to detect behavior that deviates from a normal
operation and thus detect an attack before the symptoms of
the attack are evident. This capability allows the detection of
intrusion, denial-of-service (e.g. drained battery as presented
in [15]), hijacking, and even the attempt to extract secret
information. For example, as will be detailed in the result
section, by monitoring the data bus it is possible to detect
that memory locations containing encryption keys are accessed

even though no cryptographic operation is performed.
Profiling system behavior is a generally challenging prob-

lem. Today’s computers run such a diverse and dynamically
changing workload that any approach to characterize baseline
system behavior is inconceivable. In our case we target embed-
ded systems which simplifies the task. The embedded systems
domain differs conceptually in two aspects that enables the
definition of realistic solutions. These are:
• Simplicity of Workload. Many embedded systems are

typically only executing a handful of programs at any
given time. In most cases it is known beforehand which
programs are run on the system and careful analysis can
derive a baseline behavioral profile.

• Repetitiveness of Workload. Unlike workstation com-
puter, where users can install and execute a large number
of different programs, embedded systems are character-
ized by a less diverse, more repetitive workload. Many
embedded systems perform simple control tasks (e.g. cell
phone communicating with tower to determine if call is
arriving), which by nature repeat the same instructions
over and over again. Even though users switch between
different modes of operation (e.g. between voice and
messaging on a cell phone), the operations within each
mode are often highly repetitive.

This simplicity and repetitiveness of embedded applications
ensures that application profiling can indeed capture a large
fraction of the application behavior and use this information
for comparison to attack scenarios. Furthermore, it is important
to define what has to be monitored. For embedded systems
we believe that power, clock, bus, security primitive and
communication channel monitors track most of the data within
the system and enable the detection of main attacks.

E. Performance and security policies

Once an attack has been fended off the SPC defines a new
configuration to provide the best performance tradeoff (per-
formance policy), for example in term of throughput versus
energy when dealing with cryptography. Protected modes like
fault tolerant architecture consume more area and power so it
is essential to run these modes only when required and not by
default to guarantee the power efficiency of the system. The
security is also provided through the SPC since it continuously
checks the state of the system to guaranty the best performance
for the security primitive. Embedded systems are characterized
by two main parameters, the power limitation and the evolving
environment which leads to various level of quality of the
communication channels. Hence, depending on both the SPC
selects which parameters have to be considered. For example,
in case of a best effort performance policy, when the level of
battery is low or the channel quality decreases under some
thresholds then the SPC reconfigures the module with a lower
throughput but a better energy-efficient architecture. In case
of guaranteed throughput, the SPC keeps the same parameters
event if the thresholds are crossed.

The performance and security policies are essential issues
to take benefit of the reconfigurability of the system and to



AES Slices Period Frequency Power Energy Throughput Energy efficiency
version (% of the (% compared (ns) (MHz) (mW) (% compared (nJ) (Mbits/s) (% compared (Gbits/J)

total amount) to FB) to FB) to FB)
FB 2192 - 26.4 37.8 996 - 316 403.7 - 0.4

(16%)
FB FD 2240 +2.1 25.3 39.4 970 -2.7 295 420.9 +4 0.4

(16%)
FB FT 6302 +65.2 25.2 39.6 1673 +40.5 507 422.2 +4.4 0.25

(46%)

TABLE I
PERFORMANCE COMPARISON OF THE FOUR AES CONFIGURATION (I.E. DATAPATH). EACH CONFIGURATION CORRESPONDS TO A SPECIFIC TRADEOFF

BETWEEN THE SECURITY LEVEL AND THE PERFORMANCE

provide efficient solutions. These policies are very dependent
of the primitives and have to cope with their intrinsic speci-
ficities. The definition of these policies is beyond the scope of
this paper, however designers must pay a particular attention
to that point.

IV. SECURITY PRIMITIVE AND MONITORS: THE AES
CASE STUDY

To demonstrate the concepts presented in this paper we have
defined an agile security primitive and two hardware monitors.
Our case study deals with the AES algorithm [16] since this
FIPS standard has been selected by the National Institute of
Standards and Technology to replace the DES one. Further-
more AES is expected to be one of the major cryptography
algorithm within IPSec which is a framework of different
standards for ensuring secure private communications over the
Internet. The major advantage of IPSec is its flexibility since it
allows for negotiation of algorithm choices and configurations
between the communicating parties. The algorithm parameters
of AES are defined while the main mode and the quick mode
security association steps of IPSec. The parameters negotiated
in these previous phases and the current session keys are used
to transmit data during the secure data transfer step.

All the experimentation has been conducted using a Xilinx
Virtex-II Pro FPGA device [17]. Figure 1 presents the FPGA
and the links between the processor and the memory that
contains the different bitstreams (each bitstream corresponds
to a configuration). The two registers within the SPC contain
respectively the algorithm and architecture parameters. In our
case the algorithm parameters are related to the type of
algorithm (i.e. AES), to the execution mode of the primitive
(i.e. feedback, non-feedback) and to the key and data sizes
(i.e. 128 bits). The architecture parameters are focusing on
the reliability (i.e. no, fault detection, fault tolerance), on the
throughput, the area (use rate of the device) and the energy
consumption.

In the following sections different points are analyzed.
Section IV-A provides a comparison between several imple-
mentations of the AES datapath to define the performance
and the costs of security. Then, section IV-B describes a
bus monitor that tracks the accesses to the keys stored in the
memory in order to detect hijacking. Finally, section IV-C
discusses the efficiency of the whole AES security primitive.

A. AES datapath implementations comparison

Three different datapaths have been implemented to show
the flexibility provided within the primitive, feedback mode
(FB), feedback mode with fault detection (FB FD), and feed-
back mode with fault tolerance (FB FT). An 128-bit key
has been considered. Fault detection mechanisms enable the
system to detect if a fault occurs during the computation of
the AES algorithm but without correcting the result. A parity-
based technique has been used to detect the fault [18]. Fault
tolerance mechanisms provide a tamper resistant architecture.
We have considered a TMR technique as it corresponds to a
common solution [19]. Figure 4 illustrates the architectures
of these primitives.

The implementations have been performed using the Xilinx
ISE Foundation 6.3i tool and the power estimations have been
done using the Xilinx XPower 6.3i tool. As shown in table I,
each solution corresponds to different levels of performance in
terms of area, throughput and power. Fault tolerance solution is
the most secure one but the area and energy overheads are very
high (respectively 6302 slices and 1673 mW). Fault detection
using parity code does not lead to a significant difference
in area and power consumption, respectively +2.1% of slices
and -2.7% of power consumption compared to a non secured
implementation in feedback mode. For these implementations
the throughput is almost equivalent and around 400Mbits/s.

Another metric is interesting to compare these implemen-
tations, the energy efficiency which represents the throughput
per energy (Gbits/J). Feedback with and without fault detection
provide the same efficiency. Fault tolerance guarantees the
security of the primitive but has a high overhead in energy
efficiency. Thus, fault detection is a good compromise to
guarantee the performance and to increase the security of the
primitive and could be considered as an implementation by
default.

B. Bus monitoring

Tracking the activity on the bus corresponds to an inter-
esting way to analyze the operation of the system. In our
case we have defined a monitor that spies the address bus.
As we can see on Figure 5 once the AES primitive starts
the encryption, the accesses to the keys memory addresses are
very regular. The first sequence corresponds to the generation
of the sub keys from the cipher key. Then, each sequence



Initial_round
Round_core

data_register

ciphertext_register

Round_key

Plain_text

Cipher_text

Initial_round

Initial_round

Voter 

Round_core

data_register

Round_core

data_register

Voter 

Initial_round
Round_core

data_register ciphertext_register

Round_key

Plain_text

Cipher_text

Parity current_parity

expected_parity
fault

parity_register

expected_parity

Key_parity

x0 x1 x15

S S SByte Sub

Shift Row

Mix Column

Add Key 
k0 k1 k15

Initial_round
Round_core

data_register ciphertext_register

Round_key

Plain_text

Cipher_text

a) AES core using parity-based technique 
(fault detection)

b) AES core using TMR technique 
(fault tolerance)

c) AES core without protection

Fig. 4. AES core architecture for the three primitives: a)AES core using parity-based technique (fault detection), b) AES core using TMR technique (fault
tolerance), and c) AES core without protection

all non-key
memory

addresses

key memory
address

(lower bound)

key memory
address

(upper bound)

0 500 1000 1500 2000 2500 3000 3500

m
em

or
y 

op
er

at
io

ns

instruction number

AES initialization encryption of
first AES block

encryption of
second AES block

read access
write access

Fig. 5. Monitoring of the bus: accesses to the keys are highlighted which enables the monitor to detect some abnormal activities

Feedback mode 
without security

Feedback mode 
with fault detection

Feedback mode 
with fault tolerance

datapath

SSC

SPC

Fig. 6. Layout of the three configurations of the AES reconfigurable security primitive. Three modules are defined which are the datapath, the SPC and the
SSC



represents the encryption of one block of data. As we can
see 10 keys memory addresses accesses are performed for
each block which correspond to the 10 rounds of the AES
algorithm.

Two complementary scenarios have been considered to
detect abnormal activity. the first one is based on a counter
which compares the off-line profile with the run time memory
accesses. For that purpose we have stored the off-line profile
in a table (using a Huffmann-based coding to code the data)
and we have implemented a counter that counts sequences of
non-keys memory accesses and keys memory accesses. When
the sequence matches what it is stored in the table, no alarm is
raised. When there is a mismatch then there is a problem and
the monitor indicates that there is potentially an attack. The
monitor is flexible in the sense that the number of blocks to be
encrypted is not known statically, so we have stored only one
sequence that we compare as long as some blocks need to be
encrypted. The second scenario is based on the combination of
different data. Indeed, if the keys memory addresses are found
on the bus and no encryption is running then it corresponds
to an hijacking of the secret keys.

The complexity of the bus monitor depends on the mon-
itoring technique as all source and destination addresses of
reads and writes to/from keys memory can be analyzed. In
our case we have considered a simpler solution as we only
count the number of accesses and we do not consider the
exact keys memory addresses. This solution leads to a small
area overhead for the monitor but provides a less accurate
approach. Dynamic reconfiguration of the monitor could be
considered to adapt the accuracy of the monitor depending on
the state of the system.

C. AES reconfigurable security primitive efficiency

The three previous feedback implementations (FB, FB FD,
FB FT) have been considered for the definition of the whole
AES security primitive. We have defined three reconfigurable
modules which are the datapath, the SPC and the SSC. An
area constraint has been associated to each module as shown
in figure 6. In this experiment we have considered a single
primitive but there is no limitation concerning that point.
The execution schedule between the processor, the SPC and
the SSC is described in figure 7. It highlights when the
reconfigurations occur. When the processor needs a security
primitive, it configures the FPGA with the SPC and the SSC.
The SPC indicates to the SSC that it has been configured and
what function it has to realize. The SSC provides the SPC with
data related to the battery state and the quality of transmission
from the sensors. At the same time the SSC indicates to the
SEP what type of primitive it is going to monitor, so that
the SEP specialized it. Then, the SPC sends to the processor
what type of configuration it can performs (mode, key size)
based on the sensors information. Once the configuration is
complete, the SPC is no longer involved in the datapath of
the security primitive. However the SPC continues to poll via
the SSC the state of the system to check if the mode of the
security primitive needs to be changed (the aim is to change

the mode if for example the battery is running low and the
functionality is still to be available). At the same time, the
SSCs are monitoring the system and if something abnormal
occurs, then some modifications can be done (for example, to
provide fault detection within the security primitive or fault
tolerance)

The communications between the modules have been per-
formed through 3 bus macro which are pre-defined Xilinx hard
IPs [20]. One bus macro is used to provide the fault signal
between the datapath and the SSC (figure 2). The two others
are used between the datapath and the SPC and correspond to
control signals (e.g. start, reset, done). The reconfiguration is
performed by the SPC through the ICAP interface which al-
lows the dynamic and partial self-reconfiguration of the FPGA
[21]. Figure 6 shows the three possible configurations. As we
can see, the area overhead for the fault tolerant implementation
is high compared to the two other solutions. The SPC and
SSC modules are very small and remain constant for the
three configurations. Their complexity is small compared to
the datapath so that they represent a negligible area overhead.
For this study we have considered very simple performance
and security policies which are basically based on a threshold
crossing or on an attack or a fault detection. For real embedded
systems, these policies might use more advanced techniques.
However, the overhead costs should remain small compared
to the datapath.

Concerning the performance of such a solution, the recon-
figuration time is directly related to the size of the bitstream.
The full bitstream which is used at power up represents 1415
kB and the three partial bitstreams for the FB, FB FD, FB FT
configurations are respectively equal to 356 kB, 356 kB and
463 kB. In our case the clock of the ICAP interface is 50
MHz which leads to an average reconfiguration time around
8 ms. Each time a reconfiguration is performed there is also
an overhead cost in term of power. However, this overhead is
negligible for the FPGA power core and represents an increase
of around 6% for the FPGA power supply [22].

V. CONCLUSION AND FUTURE WORK

We have presented the SANES architecture to improve se-
curity within embedded systems. The main concepts that drive
the definition of this architecture is continuously monitoring
the operation of the system to detect abnormal behavior and
use of reconfigurable hardware to provide various levels of
protection and performances. The combination of both ap-
proaches is to our knowledge an original work that enables the
system to target both security standards and attacks. Results
on the AES algorithm within IPSec show that the flexibility
of our solution enables the definition of an energy-efficient
solution while guaranteeing the security. Future work includes
the definition of other monitors to detect attacks. This point is
important as low complexity solutions have to be defined not to
increase prohibitively the global cost of the system. Solutions
based on signatures (using off-line profiling techniques) seem
promising and will be further investigated.



Processor

SPC

SSC

AES

Parameters 
computation

Configure 
datapath

Configure

Configure

System 

state

Parameters 
selection

Ready

computation

System 

state

No change

System 
state

Change

Reconfigure 
datapath

New 
parameters

Fig. 7. Processor/security primitive schedule

VI. ACKNOWLEDGMENT

This work was supported by the French DGA DSP/SREA
under contract no. ERE 04 60 00 010

REFERENCES

[1] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, ”Security in
Embedded Systems: Design Challenges”, ACM Transactions on Embedded
Computing Systems, Vol. 3, No. 3, August 2004, Pages 461-491

[2] G. Gogniat, W. Burleson, and L. Bossuet, ”Configurable Computing
for High-Security/High-Performance Ambient Systems”, Lecture Notes in
Computer Science, Volume 3553, Jul 2005, Pages 72 - 81

[3] D. Nash, T. Martin, D. Ha, and M. Hsiao, ”Towards an Intrusion
Detection System for Battery Exhaustion Attacks on Mobile Computing
Devices”, Proceedings of the 2nd International Workshop on Pervasive
Computing and Communications Security, March 2005

[4] D. Lie, C. A. Thekkath, and M. Horowitz, ”Implementing an Untrusted
Operating System on Trusted Hardware”, 19th ACM Symposium on
Operating Systems Principles, October 19-22, 2003, The Sagamore, New
York, USA

[5] E. Suh, J. Lee, S. Devadas, and D. Zhang, ”Secure Program Execution
Via Dynamic Information Flow Tracking”, MIT, Memo-467, November
2003

[6] X. Zhuang, T. Zhang, and S. Pande ”HIDE: An Infrastructure for Effi-
ciently Protecting Information Leakage on the Address Bus”, in Eleventh
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XI) Boston, MA, USA, October
2004

[7] A. Hodjat and I. Verbauwhede, ”High-Throughput Programmable Cryp-
tocoprocessor”, IEEE Micro, May-june 2004, pp. 34-45

[8] D. Oliva, R. Buchty, and N. Heintze, ”AES and the Cryptonite Crypt
Processor”, In proceedings of CASES 2003, Oct-Nov 2003, San Jos,
California USA

[9] P. Schaumont and I. Verbauwhede, ”Domain-Specific Codesign for Em-
bedded Security”, IEEE Computer, April 2003

[10] T. Wollinger and C. Paar, ”Security aspects of FPGAs in cryptographic
applications”, Chapter in ”New Algorithms, Architectures, and Applica-
tions for Reconfigurable Computing”, editors Wolfgang Rosenstiel and
Patrick Lysaght, Kluwer, 2004

[11] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, ”An FPGA-based perfor-
mance evaluation of the AES block cipher candidate algorithm finalists”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
volume 9, issue 4 (August 2001), pp. 545-557

[12] A. Dandalis and V.K. Prasanna, ”An Adaptive Cryptography Engine for
Internet Protocol Security Architectures” ACM Transactions on Design
Automation of Electronic Systems (TODAES), Vol. 9, N 3, July 2004,
Pages 333-353

[13] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss, ”Combining Software
and Hardware Monitoring for improved Power and Performance Tuning”,
The 7th Annual Workshop on Interaction between Compilers and Computer
Architectures (INTERACT-7), Anaheim, California February 8, 2003

[14] J.S Seng, E.S. Tune, and D.M. Tullsen, ”Reducing Power with Dynamic
Critical Path Information” In proceedings of the 34th International Sym-
posium on Microarchitecture, December 2001, Austin, Texas, USA

[15] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, ”Denial-of-Service
Attacks on Battery-powered Mobile Computers”, Proceedings of the 2nd
IEEE Pervasive Computing Conference, Orlando, Florida, March 2004, pp.
309-318.

[16] J. Daemen and V. Rijmen, ”The Design of Rijndael AES-The Advanced
Encryption Standard” Springer-Verlag 2002

[17] www.xilinx.com
[18] K. Wu, R. Karri, G. Kuznetsov, and M. Goessel, ”Parity Based Concur-

rent Error Detection for the Advanced Encryption Standard”, International
Test Conference 2004 (ITC), 2004, Charlotte

[19] C. Carmichael, ”Triple Module Redundancy Design Techniques for
Virtex FPGAs” Xilinx Application Note 197 (XAPP197) November 1,
2001

[20] Two Flows for Partial Reconfiguration: Module Based or Difference
Based, Xilinx Application Note XAPP290, Xilinx, September 2004

[21] M. Ullmann, B. Grimm, M. Huebner, and Juergen Becker, ”An FPGA
Run-Time System for Dynamical On-Demand Reconfiguration”, The 11th
Reconfigurable Architectures Workshop (RAW 2004), Santa F, New Mex-
ico, USA, April 26 and 27, 2004

[22] J. Becker, M. Huebner, and M. Ullmann, ”Power Estimation and Power
Mesurement of Xilinx Virtex FPGAs: Trade-offs and Limitations, IEEE
Symposium on Intregated Circuits and System Design, September 2003


