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Abstract— Computer networks have progressed from a sim-
ple store-and-forward medium to a complex communication
infrastructure. Routers in the network need to implement a
variety of functions ranging from simple packet classification for
forwarding and firewalling to complex payload modifications for
encryption and content adaptation. As these functions increase
in number and complexity, more processing time is required, and
packets experience a significant processing delay. In most network
simulations, this delay has not been addressed because it was con-
sidered negligible. However, we show that this network processing
delay can reach the magnitude of long-distance propagation delay
and thus becomes a significant contributor to the overall packet
delay. We evaluate different network applications and develop
a model that characterizes packet processing cost with only a
few parameters that can easily be derived from our simulations.
To validate our simulation and our model, we compare them to
actual network measurements. The contributions of this work
can be used to increase the accuracy of network simulations and
improve network performance estimations.

I. INTRODUCTION

The Internet has progressed from a simple store-and-for-
ward network to a more complex communication infrastruc-
ture. In order to meet demands on security, flexibility, and
performance, network traffic not only needs to be forwarded,
but also processed inside the network. This packet processing
occurs on routers (mainly edge devices) and not on the end-
systems. Examples of protocols and applications that require
such additional processing are network address translation
(NAT), firewalling, and virtual private network (VPN) tunnel-
ing. There is also a trend towards more complex services, that
demand even more intense processing, like virus scanning,
content adaptation for wireless clients, or ad insertion in
web page requests. In particular, the need for security in
today’s Internet is leading towards more processing on edge
and access routers where traffic can be filtered and blocked
if necessary. This trend towards increasing computation will
continue as more security features and services will have to
be implemented in the future. The packet delay caused by this
processing on routers is the topic of this paper.

To handle the increasing functional and performance re-
quirements, router designs have moved away from hard-wired
ASIC forwarding engines. Instead, software-programmable
“network processors” (NPs) have been developed in recent
years. These NPs are typically single-chip multiprocessors
with high-performance I/O components. A network processor
is usually located on each input port of a router. Packet
processing tasks are performed on the network processor

before the packets are passed through the router switching
fabric and on to the next network link. This is illustrated in
Figure 1.

Due to the increasing complexity of processing, routers
require more time to forward packets. The required perfor-
mance is achieved by processing many packets in parallel on
the set of processor cores. This improves the overall router
throughput and supports increasing link speeds. Individual
packets, however, observe increasing delays because they are
processed on a single processing core. Together with the
increasing complexity of packet handling, this causes the
processing delay on networks nodes to become increasingly
important. In this paper, we characterize this delay in more
detail.

To illustrate the impact of processing delay or “processing
cost,” we briefly discuss the various network delays that
contribute to the overall packet delay. When sending a packet
from one node to another, the following delays occur: (1)
transmission delay (the time it takes to send the packet onto
the wire), (2) propagation delay (the time it takes to transmit
the packet via the wire), (3) processing delay (the time it
takes to handle the packet on the network system), and (4)
queuing delay (the time the packet is buffered before it can be
sent). Table I shows a simple back-of-the-envelope calculation
for these delay components for a 1Gbps link, a 1250 byte
packet and a 200km link. In most cases, the key contributors
of delay are (2) and (4) and are therefore considered in
simulations and measurements. The transmission delay (1) is
usually small for fast links and small packets and is therefore
not considered. Traditionally, the processing delay (3) has also
been negligible (as shown in column “Simple Packet Forward-
ing”). We show, however, that this is not the case anymore
as packet processing on routers becomes more complex. Our
measurements and simulations indicate that packet processing
can take considerable time when payload modifications are
involved. Encryption of a single packet, for example, can take
in the order of milliseconds, which contributes as much as 50%
of the overall packet delay (as shown in column “Complex
Payload Modifications” in Table I).

First, we discuss related work in Section II. We then discuss
how to estimate the processing delay of packets in Section III
using our tool called PacketBench. We develop an analytic
model to estimate processing delay for different network appli-
cations in Section IV. To verify the accuracy of this approach,
we compare our results to measurements of processing delays
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Fig. 1. Packet Data Path on Network Router. Packets are shown as shaded
boxes. Packet processing is performed on a network processor that is located
at the input port of the system.

Simple Complex
Packet Payload

Delay Forwarding Modifications
Transmission delay 10µs 10µs
Propagation delay 1,000µs 1,000µs
Processing delay 10µs 1,000µs
Queuing delay 0 . . .∞ 0 . . .∞
Fraction of processing
delay to total delay ∼1% ∼50%

TABLE I

NETWORKING DELAY COMPONENTS. A 1GB/S LINK, 1250 BYTE PACKET,

100MIPS PROCESSOR, AND LINK DISTANCE OF 200KM ARE ASSUMED.

on an actual router in Section V. Finally, we show that the use
of this model can improve network simulations to accurately
reflect the impact of processing delay. Section VI summarizes
and concludes this paper.

II. RELATED WORK

There are numerous examples of packet processing on
network nodes that extend the basic packet forwarding pa-
radigm. Routers can perform firewalling [1], network address
translation (NAT) [2], web switching [3], IP traceback [4],
and many other functions. In the context of security, routers
need to handle virtual private networks (VPN), where packets
are encrypted and tunneled over the Internet to achieve se-
cure communication between trusted subnets and hosts. The
processing required for VPN termination is significant as it
requires the use of cryptographic algorithms (e.g., Advanced
Encryption Standard (AES) [5]).

In recent years, network processors have become available
for performing general-purpose processing on high-bandwidth
data links. NPs are system-on-a-chip multiprocessors that are
optimized for high-bandwidth I/O and highly parallel process-
ing of packets. A few examples are the Intel IXP1200 [6] and
EZchip NP-1 [7]. While NPs are the most realistic network
processing platforms, one of their main challenges is that
they require a significant amount of hardware expertise to be
programmed due to their complex and heterogeneous system
architecture. Therefore, we cannot easily use NP simulators to

derive quantitative results for developing network processing
delay models. Instead, we have developed our own tool called
PacketBench (discussed in Section III), which is much simpler
to use but still yields suitable simulation results.

In the context of network processors, processing complexity
has been discussed in several benchmarks. Crowley et al.
has defined simple programmable network interface workloads
in [8]. Wolf et al. have developed a network processor bench-
mark called CommBench [9]. Memik et al. have proposed a
similar benchmark more recently [10]. All these benchmarks
are useful in that they define a realistic set of network
processing applications, but are limited as their results do
not directly translate into a networking related metric (e.g.,
packet delay). The processing delay model that we develop
in Section IV addresses this issue. Recently, Choi et al. [11]
have proposed a delay model similar to ours for backbone
routers. They study the variation in total point-to-point delay in
a backbone network, while we focus on the delay encountered
by a packet when it is processed in different ways by a router.

It is particularly important to consider processing delay
in network simulations. However, the capability to specify
processing cost in current network simulators is limited. The
ns-2 [12] network simulator does not consider processing
delays, but can be extended to do so. The NEST network
estimator [13] provides a slumber() method which can be used
to suspend node execution for a definite period of time. The
OPNET network simulator [14] can simulate processes which
are behavioral descriptions of the functionality of network
nodes. What is still missing, is a simple model for processing
delay that can be easily integrated into these simulators. Our
model is very suitable for this purpose as it uses only two
parameters and can easily be adapted to different systems. To
show this, we have extended ns to simulate processing delay
accordingly.

III. PACKET PROCESSING SIMULATION

We have developed a tool called PacketBench [15] that gives
us the ability to accurately measure the processing performed
on packets in real network traces. PacketBench is simulated
on the ARM [16] target of the SimpleScalar [17] simulator to
get statistics such as the number of instructions executed and
the number of memory accesses made. This simulator was
chosen because the ARM architecture is very similar to the
architecture of the core processor and the microengines found
in the Intel IXP1200 network processor.

We simulated four different network processing applications
using PacketBench, which range from simple forwarding to
complex packet payload modifications. The simulations were
performed on a set of actual network packet traces from both
a LAN and the Internet[18]. The specific applications are:

• IPv4-radix. IPv4-radix is an application that performs
RFC1812 compliant packet forwarding[19] and uses a
radix tree structure to store entries of the routing table.
The routing table is accessed to find the interface to which
the packet must be sent, depending on its destination IP
address.



• IPv4-trie. IPv4-trie is similar to IPv4-radix and also
performs RFC1812-based packet forwarding. This imple-
mentation uses a trie structure with combined level and
path compression for the routing table lookup [20].

• Flow Classification. Flow classification is a common
part of various applications such as firewalling, NAT,
and network monitoring. The packets passing through
the network processor are classified into flows which
are defined by a 5-tuple consisting of the IP source
and destination addresses, source and destination port
numbers, and transport protocol identifier.

• IPSec Encryption. IPSec Encryption is an implementa-
tion of the IP Security Protocol [21], where the packet
payload is encrypted using the 3DES (Triple-DES)[22]
algorithm. This algorithm is used in most commercial
broadband VPN routers. This is the only application
where the packet payload is read and modified.

Using PacketBench runtime traces, we were able to deter-
mine the overall number of instructions that were executed,
and the number of memory accesses made in order to process
a packet for each of the four applications described above. The
metric of instructions per packet is a good system-independent
measure of processing cost. This metric can also be adapted
to various heterogeneous packet forwarding systems. We later
show how instructions per packet can be converted to an actual
processing time for a particular system.

The variation in processing cost with packet size for the
IPv4-radix and IPSec Encryption applications is shown in Fig-
ure 2. More detailed results can be found in [15]. From these
simulation results, we can make the following observations:

• The number of instructions executed per packet for pay-
load processing applications such as IPSec Encryption
is several orders of magnitude higher than the number
of instructions required for the other applications which
operate only on the packet header. It also increases
linearly with packet size.

• In header processing applications such as IPv4-radix
and IPv4-trie, the number of instructions executed per
packet remains more or less constant, but can show slight
variations depending on the destination address of the
packet (which may be at different locations in the routing
table).

• When comparing the number of memory accesses to
the packet size (not shown), trends similar to those
in Figure 2 can be observed. In particular, the header
processing applications show roughly the same number
of memory accesses for all packet sizes. For IPSec, the
number of memory accesses exhibits the same linear
relationship with increasing packet size as for instruction
complexity.

IV. PROCESSING COST MODEL

We develop a simple analytic model that describes process-
ing cost as a function of a few parameters and is based on the
simulation results from the previous section. First, we develop
a simple expression that derives the number of instructions

Application a Instructions Memory

αa βa γa δa

IPv4-radix 4,493 0 868 0
IPv4-trie 205 0 50 0
Flow Class. 153 0 79 0
IPSec -2363 294 -868 104

TABLE II

APPLICATION STATISTICS.

based on packet size. Then we extend this expression to
consider the impact of memory accesses as well. Finally, we
show how the number of instructions and memory accesses
can be translated into an actual processing delay.

A. Packet Processing Instructions

We use two parameters, αa and βa, which are specific to
each network processing application a:

• Per-Packet Processing Cost αa. This parameter reflects
the instructions that need to be processed for each packet
independent of its size (i.e., the y-axis offset in Figure 2).

• Per-Byte Processing Cost βa. This parameter reflects the
processing cost that depends on the packet size (i.e., the
slope in Figure 2).

The total instructions processed, ia,l, by an application a
for a packet of length l can then be approximated by

ia(l) = αa + βa · l. (1)

Using PacketBench simulation results for the four appli-
cations considered here, we obtain the parameters shown in
Table II.

B. Memory Accesses

Similar to the number of instructions, we obtain two param-
eters for memory accesses for each application a:

• Per-Packet Memory Accesses γa.
• Per-Byte Memory Accesses δa.
The total number of memory accesses for an application a

and a packet of size l is

ma(l) = γa + δa · l. (2)

The memory parameters that we derived from simulation
are also shown in Table II. For IPSec, the constant αIPSec

and γIPSec are negative. This is due to the fact that each
IPSec packet has a header that is not encrypted and thus does
not require cryptographic processing. The packet length, l,
includes this header and causes the offset to be negative. Since
packets must have a minimum size that includes all headers,
the resulting estimate is always positive.

C. System Parameters

In order to derive an overall processing delay as an ex-
pression of time, rather than instructions or memory accesses,
it is necessary to consider the network system on which the
processing is performed. The processing speed of the core
and the memory access speed determine the overall processing
time.
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Fig. 2. Processing Cost over a Range of Packet Sizes. The processing cost is shown for two different trace files.

To capture the processing performance of a RISC core,
we use the processor clock frequency, f . This metric is
easily obtained and is a good approximation for processing
speed. The main problem with using processor clock speeds
as performance indicators is that the overall processing time
also depends on the processor architecture and other system
components. Since basically all network processors today use
RISC processor cores, the architecture across systems is very
similar. In normal operation, a RISC processor executes one
instruction per clock. This yields a processing time, tp,a, for
application a and a packet of length l of

tp,a(l) =
ia(l)
f

. (3)

However, the processing performance of a RISC processor
can be reduced due to pipeline stalls, which occur during
memory accesses. There are also other causes for memory
stalls, like control hazards, but the impact on the overall
performance is less severe than stalls due to memory accesses
and are therefore neglected. To integrate the effect of memory
delay into our model, we assume an average memory access
time of tmem and determine the additional memory access
delay, tm,a, as

tm,a(l) = ma(l) · tmem. (4)

The total packet processing time, ta, is the sum of both
delays:

ta(l) = tp,a(l) + tm,a(l). (5)

An example of these system parameters for a network
processor (Intel IXP1200 [6]) are: fIXP = 233MHz and tmem

= 4ns . . . 170ns depending on the type of memory used (on-
chip registers vs. off-chip SDRAM). More detailed models for
processing performance can be used, but are beyond the scope
of this work. Galtier et al. have developed a methodology to
“translate” performance measurement results from one proces-
sor system to another in [23]. Network processor performance
models have been discussed in [24].

VPN RouterSource

IPSec Tunnel

Measurement Node

SinkHub Hub

Fig. 3. Measurement Setup. The VPN router is a Linksys BEFVP41 and all
network connections are 10Mbps Ethernet.

V. PROCESSING DELAY MEASUREMENTS AND MODEL

VERIFICATION

In this section, we present more detailed measurements
on a network system that show the quantitative impact of
processing delay. The results are compared to the simulation
and model results from previous sections.

A. Measurement Setup

In this work we are particularly interested in the processing
delay on a single router system. In order to isolate and
measure the processing delay of individual packets, we need to
timestamp packets as they enter and leave the router. We use
a commercial off-the-shelf router for this measurement and
thus do not have the option of obtaining measurement data
from the router. Instead, we use the network setup shown in
Figure 3.

Traffic is sent from the source to the sink over 10Mbps
Ethernet. The VPN router is a Linksys BEFVP41 system [25].
The measurement node operates both network interfaces in
promiscuous mode and can therefore observe the packets
that are transmitted on both sides of the VPN router using
tcpdump [26]. Since the hubs do not buffer the packets, they
do not incur any delay between the VPN router and the
measurement node.

The delay from the VPN router is measured by timestamp-
ing packets on both sides of the router. The difference in
the timestamp is the delay. It is crucial that both links are
measured by the same computer so that differences in system
clocks do not bias the measurement.

The traffic that is sent for the delay measurement is a stream
of UDP packets of varying size at a low data rate (a few kbps).
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Fig. 4. Measurement Results.

For the round trip time measurement, a TCP connection is
used. This keeps queues empty and ensures that we measure
the processing delay on the router and not the queuing delay.

B. Measurement Results

We consider two different cases in our measurement:
1) Simple Packet Forwarding. In this case processing is

limited to simple IP forwarding. The IPSec tunnel shown
in Figure 3 is not used.

2) VPN Termination. In this case all packets require cryp-
tographic processing when moving into and out of the
IPSec tunnel.

The results for both applications are shown in Figure 4.
The plot shows the processing time in microseconds over
the packet size. We can observe that there is an increase in
processing time with larger packets – as expected. However,
even packet forwarding, which is a simple header processing
application, shows this behavior. This is likely due to the fact
that the Linksys BEFVP41 system requires memory copies
of the packets when moving them from one port to another.
This causes larger packets to take additional time, which is
not something that is captured in PacketBench. Nevertheless,
the overall trend observed in the simulations is clearly visible.

C. Model Use in Network Simulations

The model that we have developed for processing cost can
easily be used in network simulations. We show this by adding
an estimated delay as derived in Equation 5 to a networking
simulation and comparing the results to the measurements we
have performed.

We integrated the delay model into the Network Simulator
ns-2 [12] and simulated the topology shown in Figure 3
(excluding the measurement node). The metric that we are
interested in is the round-trip time (RTT) for a TCP connection
that traverses the VPN router. RTT is a good measure as it
directly expresses the end-to-end delay and has a significant
impact on the performance of TCP connections.

Figure 5(a) shows the measured RTT for both IPSec and
plain forwarding. The RTT for IPSec averages 56.2ms and is
about 12ms larger than the 44.1ms RTT for IP forwarding.
This is an expected result and confirms the observations from
Figure 4 that delay is greater for complex payload processing
applications than simple header processing applications.

Figure 5(b) shows the ns-2 simulation result for the same
setup. The x-axis shows time instead of TCP sequence number
due to the way ns-2 reports RTT values. The RTT values
are shown as two distinct points due to the resolution at
which these values are reported. If a finer resolution was
available, the graphs in Figure 5(b) would be similar to those
in Figure 5(a). The average RTT for baseline IP forwarding is
42.0ms and thus very close to the measured value of 44.1ms.
The RTT increases to 56.9 ms for IPSec. This value is also
very close to the RTT observed in the measurement.

These results clearly show that:

• The processing delay on a router has a direct impact
on the performance of TCP connections. The process-
ing delay increases the overall RTT and decreases the
throughput.

• By extending the network simulator with our simple
model for determining processing delay, we can achieve
results that capture the measured network behavior.

On the average, a 2-5% error is introduced by using a simple
linear model for the instruction counts and memory accesses.
We conclude that processing delay needs to be considered
in simulations to achieve realistic results and our model can
provide good delay estimates for this purpose.

D. Model Complexity

The processing cost model that we have derived is very
simple and only requires two parameters. There is a tradeoff
between simplicity and accuracy. We feel that it is important
to derive a simple model that can easily be integrated into
network simulations (as shown above). If the model requires
a large number of parameters that are hard to derive and under-
stand, it is unlikely that it will find broad usage. The results
from Figures 5(a) and 5(b) also show that even this simple
model can improve the accuracy of simulations significantly.

E. Limitations

There are several limitations to this work that we want
to point out. First, the performance model in Section IV is
only one of many ways of approximating processing cost.
Not all applications match the linear behavior that is observed
in IP forwarding and IPSec. Examples are flows where pro-
cessing is unevenly distributed among packets (e.g., HTTP
load balancers or web switches [3] where most processing
is performed on transmission of the initial URL). However,
our model captures two key factors that are characteristic
for packet processing: the per-packet delay, and the per-byte
delay. Many applications process the headers, which incurs
a fixed cost, and some process the payload, which incurs a
packet length dependent cost. Therefore we expect that a large
number of processing applications fall into the category that
can be estimated by our model.

The derivation of system parameters is difficult for network
systems where detailed specifications are not available. Also,
the use of co-processors and other hardware accelerators leads
to heterogeneous architectures that cannot easily be calibrated
with a few metrics.
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Fig. 5. RTT for TCP Connection. The simulation, which uses the processing delay model, matches closely the measured network behavior.

Finally, so far we have only explored the impact of pro-
cessing delay on a small network with a few hops. The next
step in this research is to measure the impact of processing on
traffic in the Internet and verify the suitability of our model.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a characterization of
network processing delay. This delay is becoming increasingly
significant as networks implement more and more complex
protocol processing on routers. In order to get a detailed
understanding of the characteristics of this processing, we
have developed a tool called PacketBench and use simulation
results in our analytic processing cost model to derive a
simple estimate of processing delay as a function of the
packet length and two application parameters. We compare
the accuracy of this model with measurements on a real
router system. The trends observed in the measurements match
those of the simulation indicating that the model is a good
approximation. Further, we extended the ns-2 simulator to
include the processing delay model that we have developed.
We show that the TCP behavior in the simulation matches
the TCP behavior observed in the testbed and significantly
improves the accuracy of the simulated results. This shows
that it is important to consider network processing delay and
that our proposed model is a good approach to achieving a
more realistic representation of network processing delay.
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