
Des Autom Embed Syst (2008) 12: 173–183
DOI 10.1007/s10617-008-9027-x

Embedded systems security—an overview

Sri Parameswaran · Tilman Wolf

Received: 16 June 2008 / Accepted: 25 June 2008 / Published online: 17 July 2008
© Springer Science+Business Media, LLC 2008

Abstract Security is an important aspect of embedded system design. The characteristics
of embedded systems give rise to a number of novel vulnerabilities. A variety of different
solutions are being developed to address these security problems. In this paper, we provide
a brief overview of important research topics in this domain.

Keywords Embedded system design · Vulnerabilities · Security

1 Introduction

Security in embedded systems is a topic that has received an increasing amount of attention
from industry and academia in recent years. Embedded systems are being deployed in a wide
range of application areas ranging from control of safety-critical systems to data collection in
hostile environments. These devices are inherently vulnerable to many operational problems
and intentional attacks due to their embedded nature. Network connectivity opens even more
avenues for remote exploits. In response, security solutions are being developed to provide
robustness, protection from attacks, and recovery capabilities.

In this article, we provide an overview on embedded system security. We discuss how
the characteristics of embedded systems lead to a set of potential vulnerabilities. We also
provide a brief survey of attacks on embedded systems and corresponding countermeasures.
For other overview articles on embedded system security, see [57, 77].

S. Parameswaran
School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
e-mail: sridevan@cse.unsw.edu.au

T. Wolf (�)
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
e-mail: wolf@ecs.umass.edu

mailto:sridevan@cse.unsw.edu.au
mailto:wolf@ecs.umass.edu

174 S. Parameswaran, T. Wolf

2 Characteristics and vulnerabilities of embedded systems

Many of the inherent characteristics of embedded systems have direct impact on security-
related issues. We discuss some of their implications on vulnerabilities in embedded sys-
tems.

2.1 Characteristics

Embedded systems are used in special application domains where conventional workstation
or server computers are not suitable due to functionality, cost, power requirements, size, or
weight. The specialization of embedded system often comes with one or more drawbacks of
the following type:

• Limited processing power implies that an embedded system typically cannot run appli-
cations that are used for defenses against attacks in conventional computer systems (e.g.,
virus scanner, intrusion detection system).

• Limited available power is one of the key constraints in embedded systems. Many such
systems operate on batteries and increased power consumption reduces system lifetime
(or increases maintenance frequency). Therefore embedded system can dedicate only lim-
ited power resources to providing system security.

• Physical exposure is typical of embedded systems that are deployed outside the imme-
diate control of the owner or operator (e.g., public location, customer premise). Thus,
embedded systems are inherently vulnerable to attacks that exploit physical proximity of
the attacker.

• Remoteness and unmanned operation is necessary for embedded system that are deployed
in inaccessible locations (e.g., harsh environment, remote field location). This limitation
implies that deploying updates and patches as done with conventional workstations is
difficult and has to be automated. Such automated mechanisms provide potential targets
for attacks.

• Network connectivity via wireless or wired access is increasingly common for embedded
systems. Such access is necessary for remote control, data collection, updates. In cases
where the embedded system is connected to the Internet, vulnerabilities can be exploited
remotely from anywhere.

These characteristics lead to a unique set of vulnerabilities that need to be considered in
embedded systems.

2.2 Vulnerabilities

Embedded system are vulnerable to a range of abuses that can aim at stealing private infor-
mation, draining the power supply, destroying the system, or hijacking the system for other
than its intended purpose. Examples of vulnerabilities in embedded systems are:

• Energy drainage (exhaustion attack): Limited battery power in embedded systems makes
them vulnerable to attacks that drain this resource. Energy drainage can be achieved by
increasing the computational load, reducing sleep cycles, or increasing the use of sensors
or other peripherals.

• Physical intrusion (tampering): The proximity of embedded systems to a potential at-
tacker create vulnerabilities to attacks where physical access to the system is necessary.
Examples are power analysis attacks or snooping attacks on the system bus.

Embedded systems security—an overview 175

• Network intrusion (malware attack): Networked embedded systems are vulnerable to the
same type of remote exploits that are common for workstations and servers. An example
is a buffer overflow attacks.

• Information theft (privacy): Data stored on an embedded system is vulnerable to unau-
thorized access since the embedded system may be deployed in a hostile environment.
Example of data that should be protected are cryptographic keys or electronic currency
on smart cards.

• Introduction of forged information (authenticity): Embedded systems are vulnerable to
malicious introduction of incorrect data (either via the system’s sensors or by direct write
to memory). Examples are wrong video feeds in security cameras or overwriting of mea-
surement data in an electricity meter.

• Confusing/damaging of sensor or other peripherals: Similar to the introduction of mali-
cious data, embedded systems are vulnerable to attacks that cause incorrect operation of
sensors or peripherals. An examples is tampering with the calibration of a sensor.

• Thermal event (thermal virus or cooling system failure): Embedded systems need to op-
erate within reasonable environmental conditions. Due to the highly exposed operating
environment of embedded systems, there is a potential vulnerability to attacks that over-
heat the system (or cause other environmental damage).

• Reprogramming of systems for other purposes (stealing): While many embedded systems
are general-purpose processing systems, they are often intended to be used for a particular
use. These systems are vulnerable to unauthorized reprogramming for other uses. An
example is the reprogramming of gaming consoles to run Linux.

In order to defend embedded systems from these attacks, it is necessary to consider dif-
ferent types of attacks and countermeasures in more detail.

3 Attacks and countermeasures

Security threats to embedded systems can be classified by the objectives of the attacks or
the means to launch the attack [76, 77]. As illustrated above, objectives of the attack can be
to prevent privacy, overcome integrity or reduce availability. The means used to launch an
attack can be either physical, logical or side channel based. Typical privacy attacks strike
at authenticity, access control and confidentiality. Logical attacks on the other hand can be
either software based or cryptographic.

Examples of physical attacks include microprobing, reverse engineering and eavesdrop-
ping. The resources available for reverse engineering increase significantly if someone with
manufacturing knowledge attempts to maliciously compromise the system. Integrated cir-
cuits may be vulnerable to microprobing or analysis under an electron microscope, once
acid or chemical means have been used to expose the bare silicon circuitry [70]. Eavesdrop-
ping is the intercepting of conversations by unintended recipients which are performed when
sensitive information is passed via electronic media, such as e-mail or instant messaging.

Fault injection attacks [12, 13], power analysis attacks [59] (both Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [54]), timing analysis attacks [15] and electro
magnetic analysis attacks [75] are examples of side channel attacks. Side-channel attacks
are performed based on observing properties of the system while it performs cryptographic
operations.

176 S. Parameswaran, T. Wolf

3.1 Attacks on embedded systems

3.1.1 Software attacks

Code injection attacks are examples of software attacks which today comprise the majority
of all software attacks. The malicious code can be introduced remotely via the network.

Cryptographic attacks exploit the weakness in the cryptographic protocol information to
perform security attacks, such as breaking into a system by guessing the password. A short
list of common crypto and protocol vulnerabilities is given in [77]. Solutions proposed in
the literature to counter cryptographic attacks include run-time monitors that detect security
policy violations [53] and the use of safe proof-carrying code [68].

Most of the recent security attacks result in demolishing code integrity of an application
program [64]. They include dynamically changing instructions with the intention of gain-
ing control over a program execution flow. Attacks that are involved in violating software
integrity are called code injection attacks. Code injection attacks often exploit common im-
plementation mistakes in application programs and are often called security vulnerabilities.
The number of malicious attacks always increases with the amount of software code [18,
19]. Some of the attacks include stack-based buffer overflows, heap-based buffer overflows,
exploitation of double-free vulnerability, integer errors, and the exploitation of format string
vulnerabilities.

3.1.2 Side channel attacks

Side channel attacks are known for the ease with which they can be implemented, and for
their effectiveness in stealing secret information from the device without leaving a trace
[89]. Adversaries observe side channels such as power usage [59], processing time [15]
and electro magnetic (EM) emissions [71] while the chip is processing secure transactions.
The adversary feeds different input values into the system, while recording the side channels
during the execution of a cryptographic algorithm (e.g., encryption using a secret key). These
recorded external manifestations are then correlated with the internal computations. Side
channel attacks can be performed successfully at either the sender or the receiver to identify
the secret keys used for encryption and/or decryption.

Power dissipation/consumption of a chip is the most exploited property to determine
secret keys using side channel attacks [56, 89]. Kocher et al. [54] first introduced power
analysis attacks in 1999, where secret keys used in an encryption program were successfully
discovered by observing the power dissipation from a chip. Devices like Smart Cards [11,
22], PDAs [44] and Mobile Phones [88] have microprocessor chips built inside, performing
secure transactions using secret keys.

3.2 Countermeasures

3.2.1 Countermeasures against software attacks

There are several countermeasures proposed in the literature to defend against code injec-
tion attacks performed by exploiting common implementation vulnerabilities. These can be
divided into nine groups based on: (1) the system component where the proposed counter-
measure is implemented; and (2) the techniques used for the countermeasures. Following
are the nine groups discussed here:

Embedded systems security—an overview 177

1. Architecture based countermeasures
2. Safe languages
3. Static code analyzers
4. Dynamic code analyzers
5. Anomaly detection techniques
6. Sandboxing or damage containment approaches
7. Compiler support
8. Library support
9. Operating system based countermeasures

As return addresses of functions are the most attacked target of buffer overflows, there are
many hardware/architecture assisted countermeasures that aim to protect these addresses.
Some of these techniques are described in [2, 7, 51, 73]. Another technique to counter code
injection attack is to ensure code integrity at runtime. The authors in [72] have proposed a
microarchitectural technique to ensure program code integrity at runtime and thereby pre-
venting code injection attacks. An embedded monitoring system to check correct program
execution is proposed in [60].

Safe languages such as Java and ML are capable of preventing some of the implementa-
tion vulnerabilities discussed here. However, everyday programmers are using C and C++
to implement more and more low and high level applications and therefore the need for safe
implementation of these languages exists. Safe dialects of C and C++ use techniques such
as restriction in memory management to prevent any implementation errors. Examples of
such methods are shown in [25, 32, 35].

Static Code Analyzers, analyze software without actually executing programs built from
that software [81]. In most cases the analysis is performed on the source code and in the other
cases on some form of the object code. The quality of the analysis performed by these tools
ranges from those that only consider the behavior of simple statements and declarations, to
those that include the complete source code of a program in their analysis. The information
collected by these analyzers can be used in a range of applications, starting from detecting
coding errors to formal methods that mathematically prove program properties. Examples
of static code analyzers are shown in [3, 17, 26].

In dynamic code analysis, the source code is instrumented at compile time and then
test runs are performed to detect vulnerabilities. Even though performing dynamic code
analysis is more accurate than static analysis (more information of the execution is available
at runtime compared to compile-time), dynamic code checking might miss some errors as
they may not fall on the execution path while being analyzed. Some well known dynamic
code analyzers are shown in [31, 38, 45].

Behavior-based anomaly detection compares a profile of all allowed application behavior
to actual behavior of the application. Any deviation from the profile will raise a flag as a
potential security attack [48] . This model is a positive security model as this model seeks
only to identify all previously known good behaviors and decides that everything else is
bad. Behavior anomaly detection has the potential to detect several type of attacks, which
includes unknown and new attacks on an application code. Most of the time, the execution
of system calls is monitored and is recorded as an anomaly if it does not correspond to one of
the previously gathered patterns. A threshold value for the number of anomalies is decided
a priori and when the threshold is reached, the anomaly can be reported to the system and
subsequent action, such as terminating the program or declining a system call can be taken.
On the negative side, behavior anomaly detection can lead to a high rate of false positives.
For instance, if some changes are made to the application after a behavior profile is created,

178 S. Parameswaran, T. Wolf

behavior-based anomaly detection will wrongly identify access to these changes as potential
attacks. Some examples of this technique are described in [40, 50, 82].

Sandboxing is a popular method for developing confined execution environments based
on the principle of least privilege, which could be used to run untrusted programs. A sandbox
limits or reduces the level of access its applications have to the system. Sandboxes have
been of interest to systems researchers for a long time. Butler Lampson, in his 1971 paper
[58], proposed a conceptual model highlighting properties of several existing protection and
access-control enforcement mechanisms. Other examples are given in [36, 37, 53].

Compilers play a vital role in enabling the programs written via language specifications
to run on hardware. The compiler is the most convenient place to insert a variety of solu-
tions and countermeasures without changing the languages in which vulnerable programs
are written. The observation that most of the security exploits are buffer overflows and are
caused by stack based buffers, has made researchers propose stack-frame protection mech-
anisms. Protection of stack-frames is a countermeasure against stack based buffer overflow
attacks, where often the return address in the stack-frame is protected and some mechanisms
are proposed to protect other useful information such as frame pointers. Another commonly
proposed countermeasure is to protect program pointers in the code. This is a countermea-
sure which is motivated by the fact that all code injection attacks need code pointers to be
changed to point to the injected code. Since buffer overflows are caused by writing data
which is over the capacity of the buffers, it is possible to check the boundaries of the buffers
when the data is written to prevent buffer overflow attacks. Solutions proposed as compiler
support for bounds checking are also discussed in this section. Some examples of the tech-
niques are given in [4, 14, 16].

Safe library functions attempt to prevent vulnerabilities by proposing new string ma-
nipulation functions which are less vulnerable or invulnerable to exploitations. In [65] the
authors propose alternative string handling functions to the existing functions which assume
strings are always NULL terminated. The new proposed functions also accept a size para-
meter apart from the strings themselves. In [61], another safe string library is proposed as
a replacement to the existing string library functions in C. Other examples are shown in [5,
10, 27].

Operating system based solutions, use the observation that most attackers wish to execute
their own code and have proposed solutions preventing the execution of such injected code.
Most of the existing operating systems split the process memory into at least two segments,
code and data. Marking the code segment read-only and the data segment non-executable
will make it harder for an attacker to inject code into a running application and execute it
[24, 33, 41].

3.2.2 Countermeasures against side channel attacks

There are several countermeasures against side channel attacks. These have been divided
into six categories:

1. Masking
2. Window method
3. Dummy instruction insertion
4. Code/algorithm modification
5. Balancing
6. Other methods

To mask code execution and to confuse an adversary, noise can be injected during code
execution. Examples of masking techniques are presented in [78, 86, 87]. Substitution Boxes

Embedded systems security—an overview 179

(SBOXes), often used in cryptology, can also be masked in the execution. Some examples
for the SBOX masking techniques are presented in [28, 42, 46].

A window method can be applied in Public Key Cryptosystems to prevent power analysis
based side channel attacks. In the window method, a modular exponentiation can be carried
out by dividing the exponent into certain sizes of windows, and performing the exponentia-
tion in iterations per window by randomly choosing the window [69].

Dummy instructions can be placed to provide random delays. This confuses the adversary
when attempting to correlate the source implementation with the power profile. Chari et
al. [20] claimed that countermeasures involving random delays (i.e., dummy instructions
used to provide random delays in an execution) should be performed extensively, otherwise
they can be undone and re-ordered, causing a successful attack. Several dummy instruction
approaches are presented in [1, 6, 43].

Public Key Cryptosystems like RSA and ECC have been severely attacked using Simple
Power Analysis (SPA), mainly because of the conditional branching in the encryption. Such
vulnerabilities in the program can be prevented by modifying the implementation or replac-
ing with a better new algorithm to perform the same task. Key code modification techniques
to prevent power analysis are explained in [6, 20, 23].

The software code can be modified in such a way that complementary events are coded to
negate the effects of the actual computations. Examples of such code balancing techniques
are presented in [21, 29, 79]. Evidently, balancing at the gate level is the most appropriate
solution to prevent power analysis, since the power is consumed/dissipated depending on
the switching activities in gates. Hardware balancing is primarily performed by placing two
gates in parallel, one complements the other when switching. Various hardware balancing
techniques are given in [30, 34, 39].

Some of the other techniques include signal suppression circuits, which can be used to
reduce the Signal-to-Noise Ratio (SNR) to prevent the adversary from differentiating the
power profile. Examples for the suppression circuits are given in [52, 67, 74]. Software level
current balancing approaches are performed by modifying the source and inserting nops to
keep the current constant [66].

May et al. [62] proposed a non-deterministic processor design, where the independent in-
structions are identified and executed out-of-order in a random choice by the processor. This
infringes the conventional attack rule removing the correlation between multiple executions
of the same program, thus preventing the adversary from comparing different runs for power
analysis. Several other improved versions of the non-deterministic processor architecture are
proposed in [49, 63].

Randomizing the clock signal [83] for the secure processor to confuse the adversary is
another countermeasure proposed to prevent power analysis. This prevents the adversary
from analyzing the clock signals to identify certain significant instruction executions in the
power profile. More examples on handling the clock signal to prevent power analysis are
presented in [8, 9, 21, 29, 55].

Power analysis can also be prevented by designing special instructions whose power
signature is difficult to analyze [46] or whose power consumption is data independent [80].
Several examples of creating extensible instructions are given in [39, 47, 84, 85]. Such
extensible instruction designs can also be adapted to prevent power analysis attacks.

4 Summary

In summary, embedded systems require special security considerations due to their inherent
characteristics and unique usage scenarios. Research work in the field of embedded system

180 S. Parameswaran, T. Wolf

security is in the process of identifying attack scenarios, developing counter measures, and
novel system designs with inherent security properties.

Acknowledgements We would like to thank Roshan Ragel, Angelo Ambrose and Jorgen Peddersen for
their contributions in putting together this article.

References

1. Aciiçmez O, Koç ÇK, Seifert J-P (2007) On the power of simple branch prediction analysis. In: ASI-
ACCS ’07: proceedings of the 2nd ACM symposium on information, computer and communications
security. ACM, New York, pp 312–320

2. Arora D, Ravi S, Raghunathan A, Jha NK (2005) Secure embedded processing through hardware-
assisted runtime monitoring. In: Proceedings of the design, automation and test in Europe (DATE’05),
vol 1

3. Ashcraft K, Engler D (2002) Using programmer-written compiler extensions to catch security holes. In:
SP ’02: proceedings of the 2002 IEEE symposium on security and privacy. IEEE Computer Society,
Washington, p 143

4. Austin TM, Breach SE, Sohi GS (1994) Efficient detection of all pointer and array access errors. In:
PLDI ’94: proceedings of the ACM SIGPLAN 1994 conference on programming language design and
implementation. ACM, New York, pp 290–301

5. Baratloo A, Singh N, Tsai T (2000) Transparent run-time defense against stack smashing attacks. In:
Proceedings of 9th USENIX security symposium, June 2000

6. Barbosa M, Page D (2005) On the automatic construction of indistinguishable operations. In: Cryptog-
raphy and coding. Lecture notes in computer science, vol 3796. Springer, Berlin, pp 233–247

7. Barrantes EG, Ackley DH, Palmer TS, Stefanovic D, Zovi DD (2003) Randomized instruction set emu-
lation to disrupt binary code injection attacks. In: CCS ’03: proceedings of the 10th ACM conference on
computer and communications security. ACM, New York, pp 281–289

8. Benini L, Macii A, Macii E, Omerbegovic E, Pro F, Poncino M (2003) Energy-aware design techniques
for differential power analysis protection. In: DAC ’03: proceedings of the 40th conference on design
automation. ACM, New York, pp 36–41

9. Benini L, Micheli GD, Macii E, Poncino M, Scarsi R (1999) Symbolic synthesis of clock-gating logic
for power optimization of synchronous controllers. ACM Trans Des Autom Electron Syst 4(4):351–375

10. Bhatkar S, DuVarney DC, Sekar R (2003) Address obfuscation: an efficient approach to combat a broad
range of memory error exploits. In: 12th USENIX security symposium, Washington, DC, August 2003

11. Biham E, Shamir A (2003) Power analysis of the key scheduling of the AES candidates. In: Second
advanced encryption standard (AES) candidate conference, pp 343–347

12. Boneh D, DeMillo RA, Lipton RJ (1997) On the importance of checking cryptographic protocols for
faults. In: Lecture notes in computer science, vol 1233. Springer, Berlin, pp 37–51

13. Boneh D, DeMillo RA, Lipton RJ (2001) On the importance of eliminating errors in cryptographic
computations. J Cryptol 14(2):101–119

14. Bray B (2002) Compiler security checks in depth. Available at http://www.codeproject.com/tips/
seccheck.asp, February 2002

15. Brumley D, Boneh D (2003) Remote timing attacks are practical. In: Proceedings of the 12th USENIX
security symposium, August 2003

16. Bulba and Kil3r (2000) Bypassing stackguard and stackshield. Phrack Mag 10(56)
17. Bush WR, Pincus JD, Sielaff DJ (2000) A static analyzer for finding dynamic programming errors. Softw

Pract Exp 30(7):775–802
18. CERT Coordination Center (2004) Vulnerability notes database. CERT Coordination Center
19. CERT Coordination Center (2005) CERT/CC vulnerabilities statistics 1988–2005. CERT Coordination

Center
20. Chari S, Jutla C, Rao JR, Rohatgi P (1999) A cautionary note regarding evaluation of AES candidates

on smart-cards. In: Second advanced encryption standard (AES) candidate conference, Rome, Italy.
http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm

21. Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis
attacks. In: CRYPTO, pp 398–412

22. Chaumette S, Sauveron D, New security problems raised by open multiapplication smart cards
23. Chevalier-Mames B, Ciet M, Joye M (2004) Low-cost solutions for preventing simple sidechannel analy-

sis: side-channel atomicity. IEEE Trans Comput 53(6):760–768

http://www.codeproject.com/tips/seccheck.asp
http://www.codeproject.com/tips/seccheck.asp
http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm

Embedded systems security—an overview 181

24. Chew M, Song D (2002) Mitigating buffer overflows by operating system randomization. Technical Re-
port CMU-CS-02-197, Department of Computer Science, Carnegie Mellon University, December 2002

25. Condit J, Harren M, McPeak S, Necula GC, Weimer W (2003) CCured in the real world. In: PLDI ’03:
proceedings of the ACM SIGPLAN 2003 conference on programming language design and implemen-
tation. ACM, New York, pp 232–244

26. Cousot P, Halbwachs N (1978) Automatic discovery of linear restraints among variables of a program. In:
POPL ’78: proceedings of the 5th ACM SIGACT-SIGPLAN symposium on principles of programming
languages. ACM, New York, pp 84–96

27. Cowan C, Barringer M, Beattie S, Kroah-Hartman G, Frantzen M, Lokier J (2001) Formatguard: auto-
matic protection from printf format string vulnerabilities. In: Proceedings of the 10th USENIX security
symposium. USENIX Association, Berkeley, pp 191–200

28. Daemen J, Peeters M, Assche GV (2001) Bitslice ciphers and power analysis attacks. In: FSE ’00:
proceedings of the 7th international workshop on fast software encryption. Springer, London, pp 134–
149

29. Daemen J, Rijmen V (1999) Resistance against implementation attacks: a comparative study of the AES
proposals. URL: http://csrc.nist.gov/CryptoToolkit/aes/round1/pubcmnts.htm

30. Danil S, Julian M, Alexander B, Alex Y (2005) Design and analysis of dual-rail circuits for security
applications. IEEE Trans Comput 54(4):449–460

31. Deeprasertkul P, Bhattarakosol P, O’Brien F (2005) Automatic detection and correction of programming
faults for software applications. J Syst Softw 78(2):101–110

32. DeLine R, Fahndrich M (2001) Enforcing high-level protocols in low-level software. SIGPLAN Notes
36(5):59–69

33. Designer S (1997) Non-executable stack patch. Available at http://www.usenix.org/events/sec02/
full_papers/lhee/lhee_html/node7.html

34. Dhem J-F, Feyt N (2001) Hardware and software symbiosis helps smart card evolution. IEEE Micro
21(6):14–25

35. Dhurjati D, Kowshik S, Adve V, Lattner C (2003) Memory safety without runtime checks or garbage
collection. In: LCTES ’03: proceedings of the 2003 ACM SIGPLAN conference on language, compiler,
and tool for embedded systems. ACM, New York, pp 69–80

36. Erlingsson Ü, Schneider FB (2000) SASI enforcement of security policies: a retrospective. In: NSPW
’99: proceedings of the 1999 workshop on new security paradigms. ACM, New York, pp 87–95

37. Evans D, Twyman A (1999) Flexible policy-directed code safety. In: IEEE symposium on security and
privacy, pp 32–45

38. Fink G, Bishop M (1997) Property-based testing: a new approach to testing for assurance. SIGSOFT
Softw Eng Notes 22(4):74–80

39. Fiskiran A, Lee R (2004) Evaluating instruction set extensions for fast arithmetic on binary finite fields.
In: Proceedings of the 15th IEEE international conference on application-specific systems, architectures
and processors, pp 125–136

40. Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA (1996) A sense of self for Unix processes. In: SP ’96:
proceedings of the 1996 IEEE symposium on security and privacy. IEEE Computer Society, Washington,
p 120

41. Frantzen M, Shuey M (2001) StackGhost: hardware facilitated stack protection. In: 10th USENIX secu-
rity symposium, pp 55–66

42. Gebotys C (2006) A table masking countermeasure for low-energy secure embedded systems. IEEE
Trans Very Large Scale Integr Syst 14(7):740–753

43. Gebotys CH, Gebotys RJ (2003) Secure elliptic curve implementations: an analysis of resistance to
power-attacks in a DSP processor. In: CHES ’02: revised papers from the 4th international workshop on
cryptographic hardware and embedded systems. Springer, London, pp 114–128

44. Gebotys CH, White BA (2006) Methodology for attack on a Java-based PDA. In: CODES+ISSS ’06.
ACM, New York, pp 94–99

45. Ghosh AK, O’Connor T (1998) Analyzing programs for vulnerability to buffer overrun attacks. In: Pro-
ceedings of the 21st NIST-NCSC national information systems security conference, pp 274–382

46. Goubin L, Patarin J (1999) Des and differential power analysis (the “duplication” method). In: CHES
’99: proceedings of the first international workshop on cryptographic hardware and embedded systems.
Springer, London, pp 158–172

47. Großschädl J, Savas E (2004) Instruction set extensions for fast arithmetic in finite fields gf (p) and
gf (2m). In: CHES, pp 133–147

48. Hofmeyr SA, Forrest S, Somayaji A (1998) Intrusion detection using sequences of system calls. J Com-
put Secur 6(3):151–180

49. Irwin J, Page D, Smart NP (2002) Instruction stream mutation for non-deterministic processors. In:
ASAP ’02: proceedings of the IEEE international conference on application-specific systems, architec-
tures, and processors. IEEE Computer Society, Washington, p 286

http://csrc.nist.gov/CryptoToolkit/aes/round1/pubcmnts.htm
http://www.usenix.org/events/sec02/full_papers/lhee/lhee_html/node7.html
http://www.usenix.org/events/sec02/full_papers/lhee/lhee_html/node7.html

182 S. Parameswaran, T. Wolf

50. Joglekar SP, Tate SR (2004) Protomon: embedded monitors for cryptographic protocol intrusion detec-
tion and prevention. In: Proceedings on the international conference on information technology: coding
and computing (ITCC’04), vol 1. IEEE Computer Society, Washington, p 81

51. Kc GS, Keromytis AD, Prevelakis V (2003) Countering code-injection attacks with instruction-set ran-
domization. In: CCS ’03: proceedings of the 10th ACM conference on computer and communications
security. ACM, New York, pp 272–280

52. Kessels J, Kramer T, den Besten G, Peeters A, Timm V (2000) Applying asynchronous circuits in con-
tactless smart cards. In: Advanced research in asynchronous circuits and systems (ASYNC 2000), pp 36–
44

53. Kiriansky V, Bruening D, Amarasinghe SP (2002) Secure execution via program shepherding. In: Pro-
ceedings of the 11th USENIX security symposium. USENIX Association, Berkeley, pp 191–206

54. Kocher P, Jaffe J, Jun B (1999) Differential power analysis. In: Lecture notes in computer science,
vol 1666. Springer, Berlin, pp 388–397

55. Kocher P, Jaffe J, Jun B (1999) Using unpredictable information to minimize leakage from smartcards
and other cryptosystems. US Patent 6327661

56. Koeune F, Standaert F-X (2006) A tutorial on physical security and side-channel attacks. In: Foundations
of security analysis and design III: FOSAD 2004/2005, pp 78–108

57. Koopman P (2004) Embedded system security. Computer 37(7):95–97
58. Lampson BW (1971) Protection. ACM Oper Syst 8(1):18–24
59. Mangard S (2003) A simple power-analysis (SPA) attack on implementations of the AES key expansion.

In: Lee PJ, Lim CH (eds) Proceedings of the 5th international conference on information security and
cryptology (ICISC 2002). Lecture notes in computer science, vol 2587. Springer, Berlin, pp 343–358

60. Mao S, Wolf T (2007) Hardware support for secure processing in embedded systems. In: Proceedings of
44th design automation conference (DAC), pp 483–488, San Diego, CA, June 2007

61. Messier M, Viega J (2005) Safe C string library. Available at http://www.zork.org/safestr/
62. May D, Muller HL, Smart NP (2001) Non-deterministic processors. In: ACISP ’01: proceedings of the

6th Australasian conference on information security and privacy. Springer, London, pp 115–129
63. May D, Muller HL, Smart NP (2001) Random register renaming to foil dpa. In: CHES ’01: proceedings

of the third international workshop on cryptographic hardware and embedded systems. Springer, London,
pp 28–38

64. Milenkovic M, Milenkovic A, Jovanov E (2005) Hardware support for code integrity in embedded
processors. In: CASES ’05: proceedings of the 2005 international conference on compilers, architec-
tures and synthesis for embedded systems. ACM, New York, pp 55–65

65. Miller TC (1999) Strlcpy and strlcat—consistent, safe, string copy and concatenation. In: 1999 USENIX
annual technical conference. USENIX Association, Monterey, pp 175–178

66. Muresan R, Gebotys CH (2004) Current flattening in software and hardware for security applications.
In: CODES+ISSS, pp 218–223

67. Muresan R, Vahedi H, Zhanrong Y, Gregori S (2005) Power-smart system-on-chip architecture for em-
bedded cryptosystems. In: CODES+ISSS ’05: proceedings of the 3rd IEEE/ACM/IFIP international con-
ference on hardware/software codesign and system synthesis. ACM, New York, pp 184–189

68. Necula GC (1997) Proof-carrying code. In: Conference record of POPL ’97: the 24th ACM SIGPLAN-
SIGACT symposium on principles of programming languages, Paris, France, January 1997, pp 106–119

69. Nedjah N, de Macedo Mourelle L, da Silva RM (2007) Efficient hardware for modular exponentiation
using the sliding-window method. In: ITNG ’07: proceedings of the international conference on infor-
mation technology. IEEE Computer Society, Washington, pp 17–24

70. Wikipedia Foundation Inc. (2006) Pirate decryption definition. The free encyclopedia. http://en.
wikipedia.org/wiki/Pirate_decryption

71. Quisquater J, Samyde D (2001) Electro magnetic analysis (EMA): measures and counter-measures for
smart cards. In: E-smart, pp 200–210

72. Ragel RG, Parameswaran S (2006) IMPRES: integrated monitoring for processor reliability and security.
In: Proceedings of the design and automation conference 2006 (DAC’06). ACM, San Fransisco, pp 502–
505

73. Ragel RG, Parameswaran S, Kia SM (2005) Micro embedded monitoring for security in application
specific instruction-set processors. In: Proceedings of the international conference on compilers, archi-
tectures, and synthesis for embedded systems (CASES’05). ACM, San Francisco

74. Rakers P, Connell L, Collins T, Russell D (2001) Secure contactless smartcard ASIC with DPA protec-
tion. IEEE J Solid-State Circuits, pp 559–565

75. Rao JR, Rohatgi P (2001) Empowering side-channel attacks. Cryptology ePrint Archive, Report
2001/037

76. Ravi S, Raghunathan A, Chakradhar S (2004) Tamper resistance mechanisms for secure, embedded
systems. In: 17th international conference on VLSI design, January 2004

http://www.zork.org/safestr/
http://en.wikipedia.org/wiki/Pirate_decryption
http://en.wikipedia.org/wiki/Pirate_decryption

Embedded systems security—an overview 183

77. Ravi S, Raghunathan A, Kocher P, Hattangady S (2004) Security in embedded systems: design chal-
lenges. Trans Embed Comput Syst 3(3):461–491

78. Rostovtsev A, Shemyakina O (2005) AES side channel attack protection using random isomorphisms.
Cryptology ePrint Archive, Report 2005/087

79. Sakai Y, Sakurai K (2006) Simple power analysis on fast modular reduction with generalized mersenne
prime for elliptic curve cryptosystems. IEICE Trans Fundam Electron Commun Comput Sci E89-
A(1):231–237

80. Saputra H, Vijaykrishnan N, Kandemir M, Irwin MJ, Brooks R, Kim S, Zhang W (2003) Masking the
energy behavior of des encryption. 01:10084

81. Wikipedia Foundation Inc. (2006) SCA definition. The free encyclopedia. http://en.wikipedia.org/
wiki/Static_code_analysis

82. Sekar R, Bendre M, Dhurjati D, Bollineni P (2001) A fast automaton-based method for detecting anom-
alous program behaviors. In: SP ’01: proceedings of the 2001 IEEE symposium on security and privacy.
IEEE Computer Society, Washington, p 144

83. Sprunk E (1999) Clock frequency modulation for secure microprocessors. US Patent WO 99/63696
84. Tillich S, Großschädl J (2006) Instruction set extensions for efficient AES implementation on 32-bit

processors. In: CHES, pp 270–284
85. Tillich S, Großschädl J (2007) Power-analysis resistant AES implementation with instruction set exten-

sions. In: Paillier P, Verbauwhede I (eds) Proceedings of the 9th international workshop on cryptographic
hardware and embedded systems (CHES 2007), Wienna, Austria, September 10–13. Lecture notes in
computer science, vol. 4727. Springer, Berlin, pp 303–319

86. Trichina E, Seta DD, Germani L (2003) Simplified Adaptive Multiplicative Masking for AES. In: CHES
’02: revised papers from the 4th international workshop on cryptographic hardware and embedded sys-
tems. Springer, London, pp 187–197

87. Wayner P (1998) Code breaker cracks smart cards’ digital safe. In: New York Times, p C1
88. Wolf W (2005) Multimedia applications of multiprocessor systems-on-chips. In: DATE ’05: proceedings

of the conference on design, automation and test in Europe. IEEE Computer Society, Washington, pp 86–
89

89. YongBin Zhou DF (2005) Side-channel attacks: ten years after its publication and the impacts on cryp-
tographic module security testing. Cryptology ePrint Archive, 2005/388

http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Static_code_analysis

	Embedded systems security-an overview
	Abstract
	Introduction
	Characteristics and vulnerabilities of embedded systems
	Characteristics
	Vulnerabilities

	Attacks and countermeasures
	Attacks on embedded systems
	Software attacks
	Side channel attacks

	Countermeasures
	Countermeasures against software attacks
	Countermeasures against side channel attacks

	Summary
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

