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Abstract Security is an important aspect of embedded system design. The characteristics
of embedded systems give rise to a number of novel vulnerabilities. A variety of different
solutions are being developed to address these security problems. In this paper, we provide
a brief overview of important research topics in this domain.
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1 Introduction

Security in embedded systems is a topic that has received an increasing amount of attention
from industry and academia in recent years. Embedded systems are being deployed in a wide
range of application areas ranging from control of safety-critical systems to data collection in
hostile environments. These devices are inherently vulnerable to many operational problems
and intentional attacks due to their embedded nature. Network connectivity opens even more
avenues for remote exploits. In response, security solutions are being developed to provide
robustness, protection from attacks, and recovery capabilities.

In this article, we provide an overview on embedded system security. We discuss how
the characteristics of embedded systems lead to a set of potential vulnerabilities. We also
provide a brief survey of attacks on embedded systems and corresponding countermeasures.
For other overview articles on embedded system security, see [57, 77].
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2 Characteristics and vulnerabilities of embedded systems

Many of the inherent characteristics of embedded systems have direct impact on security-
related issues. We discuss some of their implications on vulnerabilities in embedded sys-
tems.

2.1 Characteristics

Embedded systems are used in special application domains where conventional workstation
or server computers are not suitable due to functionality, cost, power requirements, size, or
weight. The specialization of embedded system often comes with one or more drawbacks of
the following type:

• Limited processing power implies that an embedded system typically cannot run appli-
cations that are used for defenses against attacks in conventional computer systems (e.g.,
virus scanner, intrusion detection system).

• Limited available power is one of the key constraints in embedded systems. Many such
systems operate on batteries and increased power consumption reduces system lifetime
(or increases maintenance frequency). Therefore embedded system can dedicate only lim-
ited power resources to providing system security.

• Physical exposure is typical of embedded systems that are deployed outside the imme-
diate control of the owner or operator (e.g., public location, customer premise). Thus,
embedded systems are inherently vulnerable to attacks that exploit physical proximity of
the attacker.

• Remoteness and unmanned operation is necessary for embedded system that are deployed
in inaccessible locations (e.g., harsh environment, remote field location). This limitation
implies that deploying updates and patches as done with conventional workstations is
difficult and has to be automated. Such automated mechanisms provide potential targets
for attacks.

• Network connectivity via wireless or wired access is increasingly common for embedded
systems. Such access is necessary for remote control, data collection, updates. In cases
where the embedded system is connected to the Internet, vulnerabilities can be exploited
remotely from anywhere.

These characteristics lead to a unique set of vulnerabilities that need to be considered in
embedded systems.

2.2 Vulnerabilities

Embedded system are vulnerable to a range of abuses that can aim at stealing private infor-
mation, draining the power supply, destroying the system, or hijacking the system for other
than its intended purpose. Examples of vulnerabilities in embedded systems are:

• Energy drainage (exhaustion attack): Limited battery power in embedded systems makes
them vulnerable to attacks that drain this resource. Energy drainage can be achieved by
increasing the computational load, reducing sleep cycles, or increasing the use of sensors
or other peripherals.

• Physical intrusion (tampering): The proximity of embedded systems to a potential at-
tacker create vulnerabilities to attacks where physical access to the system is necessary.
Examples are power analysis attacks or snooping attacks on the system bus.
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• Network intrusion (malware attack): Networked embedded systems are vulnerable to the
same type of remote exploits that are common for workstations and servers. An example
is a buffer overflow attacks.

• Information theft (privacy): Data stored on an embedded system is vulnerable to unau-
thorized access since the embedded system may be deployed in a hostile environment.
Example of data that should be protected are cryptographic keys or electronic currency
on smart cards.

• Introduction of forged information (authenticity): Embedded systems are vulnerable to
malicious introduction of incorrect data (either via the system’s sensors or by direct write
to memory). Examples are wrong video feeds in security cameras or overwriting of mea-
surement data in an electricity meter.

• Confusing/damaging of sensor or other peripherals: Similar to the introduction of mali-
cious data, embedded systems are vulnerable to attacks that cause incorrect operation of
sensors or peripherals. An examples is tampering with the calibration of a sensor.

• Thermal event (thermal virus or cooling system failure): Embedded systems need to op-
erate within reasonable environmental conditions. Due to the highly exposed operating
environment of embedded systems, there is a potential vulnerability to attacks that over-
heat the system (or cause other environmental damage).

• Reprogramming of systems for other purposes (stealing): While many embedded systems
are general-purpose processing systems, they are often intended to be used for a particular
use. These systems are vulnerable to unauthorized reprogramming for other uses. An
example is the reprogramming of gaming consoles to run Linux.

In order to defend embedded systems from these attacks, it is necessary to consider dif-
ferent types of attacks and countermeasures in more detail.

3 Attacks and countermeasures

Security threats to embedded systems can be classified by the objectives of the attacks or
the means to launch the attack [76, 77]. As illustrated above, objectives of the attack can be
to prevent privacy, overcome integrity or reduce availability. The means used to launch an
attack can be either physical, logical or side channel based. Typical privacy attacks strike
at authenticity, access control and confidentiality. Logical attacks on the other hand can be
either software based or cryptographic.

Examples of physical attacks include microprobing, reverse engineering and eavesdrop-
ping. The resources available for reverse engineering increase significantly if someone with
manufacturing knowledge attempts to maliciously compromise the system. Integrated cir-
cuits may be vulnerable to microprobing or analysis under an electron microscope, once
acid or chemical means have been used to expose the bare silicon circuitry [70]. Eavesdrop-
ping is the intercepting of conversations by unintended recipients which are performed when
sensitive information is passed via electronic media, such as e-mail or instant messaging.

Fault injection attacks [12, 13], power analysis attacks [59] (both Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [54]), timing analysis attacks [15] and electro
magnetic analysis attacks [75] are examples of side channel attacks. Side-channel attacks
are performed based on observing properties of the system while it performs cryptographic
operations.
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3.1 Attacks on embedded systems

3.1.1 Software attacks

Code injection attacks are examples of software attacks which today comprise the majority
of all software attacks. The malicious code can be introduced remotely via the network.

Cryptographic attacks exploit the weakness in the cryptographic protocol information to
perform security attacks, such as breaking into a system by guessing the password. A short
list of common crypto and protocol vulnerabilities is given in [77]. Solutions proposed in
the literature to counter cryptographic attacks include run-time monitors that detect security
policy violations [53] and the use of safe proof-carrying code [68].

Most of the recent security attacks result in demolishing code integrity of an application
program [64]. They include dynamically changing instructions with the intention of gain-
ing control over a program execution flow. Attacks that are involved in violating software
integrity are called code injection attacks. Code injection attacks often exploit common im-
plementation mistakes in application programs and are often called security vulnerabilities.
The number of malicious attacks always increases with the amount of software code [18,
19]. Some of the attacks include stack-based buffer overflows, heap-based buffer overflows,
exploitation of double-free vulnerability, integer errors, and the exploitation of format string
vulnerabilities.

3.1.2 Side channel attacks

Side channel attacks are known for the ease with which they can be implemented, and for
their effectiveness in stealing secret information from the device without leaving a trace
[89]. Adversaries observe side channels such as power usage [59], processing time [15]
and electro magnetic (EM) emissions [71] while the chip is processing secure transactions.
The adversary feeds different input values into the system, while recording the side channels
during the execution of a cryptographic algorithm (e.g., encryption using a secret key). These
recorded external manifestations are then correlated with the internal computations. Side
channel attacks can be performed successfully at either the sender or the receiver to identify
the secret keys used for encryption and/or decryption.

Power dissipation/consumption of a chip is the most exploited property to determine
secret keys using side channel attacks [56, 89]. Kocher et al. [54] first introduced power
analysis attacks in 1999, where secret keys used in an encryption program were successfully
discovered by observing the power dissipation from a chip. Devices like Smart Cards [11,
22], PDAs [44] and Mobile Phones [88] have microprocessor chips built inside, performing
secure transactions using secret keys.

3.2 Countermeasures

3.2.1 Countermeasures against software attacks

There are several countermeasures proposed in the literature to defend against code injec-
tion attacks performed by exploiting common implementation vulnerabilities. These can be
divided into nine groups based on: (1) the system component where the proposed counter-
measure is implemented; and (2) the techniques used for the countermeasures. Following
are the nine groups discussed here:
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1. Architecture based countermeasures
2. Safe languages
3. Static code analyzers
4. Dynamic code analyzers
5. Anomaly detection techniques
6. Sandboxing or damage containment approaches
7. Compiler support
8. Library support
9. Operating system based countermeasures

As return addresses of functions are the most attacked target of buffer overflows, there are
many hardware/architecture assisted countermeasures that aim to protect these addresses.
Some of these techniques are described in [2, 7, 51, 73]. Another technique to counter code
injection attack is to ensure code integrity at runtime. The authors in [72] have proposed a
microarchitectural technique to ensure program code integrity at runtime and thereby pre-
venting code injection attacks. An embedded monitoring system to check correct program
execution is proposed in [60].

Safe languages such as Java and ML are capable of preventing some of the implementa-
tion vulnerabilities discussed here. However, everyday programmers are using C and C++
to implement more and more low and high level applications and therefore the need for safe
implementation of these languages exists. Safe dialects of C and C++ use techniques such
as restriction in memory management to prevent any implementation errors. Examples of
such methods are shown in [25, 32, 35].

Static Code Analyzers, analyze software without actually executing programs built from
that software [81]. In most cases the analysis is performed on the source code and in the other
cases on some form of the object code. The quality of the analysis performed by these tools
ranges from those that only consider the behavior of simple statements and declarations, to
those that include the complete source code of a program in their analysis. The information
collected by these analyzers can be used in a range of applications, starting from detecting
coding errors to formal methods that mathematically prove program properties. Examples
of static code analyzers are shown in [3, 17, 26].

In dynamic code analysis, the source code is instrumented at compile time and then
test runs are performed to detect vulnerabilities. Even though performing dynamic code
analysis is more accurate than static analysis (more information of the execution is available
at runtime compared to compile-time), dynamic code checking might miss some errors as
they may not fall on the execution path while being analyzed. Some well known dynamic
code analyzers are shown in [31, 38, 45].

Behavior-based anomaly detection compares a profile of all allowed application behavior
to actual behavior of the application. Any deviation from the profile will raise a flag as a
potential security attack [48] . This model is a positive security model as this model seeks
only to identify all previously known good behaviors and decides that everything else is
bad. Behavior anomaly detection has the potential to detect several type of attacks, which
includes unknown and new attacks on an application code. Most of the time, the execution
of system calls is monitored and is recorded as an anomaly if it does not correspond to one of
the previously gathered patterns. A threshold value for the number of anomalies is decided
a priori and when the threshold is reached, the anomaly can be reported to the system and
subsequent action, such as terminating the program or declining a system call can be taken.
On the negative side, behavior anomaly detection can lead to a high rate of false positives.
For instance, if some changes are made to the application after a behavior profile is created,
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behavior-based anomaly detection will wrongly identify access to these changes as potential
attacks. Some examples of this technique are described in [40, 50, 82].

Sandboxing is a popular method for developing confined execution environments based
on the principle of least privilege, which could be used to run untrusted programs. A sandbox
limits or reduces the level of access its applications have to the system. Sandboxes have
been of interest to systems researchers for a long time. Butler Lampson, in his 1971 paper
[58], proposed a conceptual model highlighting properties of several existing protection and
access-control enforcement mechanisms. Other examples are given in [36, 37, 53].

Compilers play a vital role in enabling the programs written via language specifications
to run on hardware. The compiler is the most convenient place to insert a variety of solu-
tions and countermeasures without changing the languages in which vulnerable programs
are written. The observation that most of the security exploits are buffer overflows and are
caused by stack based buffers, has made researchers propose stack-frame protection mech-
anisms. Protection of stack-frames is a countermeasure against stack based buffer overflow
attacks, where often the return address in the stack-frame is protected and some mechanisms
are proposed to protect other useful information such as frame pointers. Another commonly
proposed countermeasure is to protect program pointers in the code. This is a countermea-
sure which is motivated by the fact that all code injection attacks need code pointers to be
changed to point to the injected code. Since buffer overflows are caused by writing data
which is over the capacity of the buffers, it is possible to check the boundaries of the buffers
when the data is written to prevent buffer overflow attacks. Solutions proposed as compiler
support for bounds checking are also discussed in this section. Some examples of the tech-
niques are given in [4, 14, 16].

Safe library functions attempt to prevent vulnerabilities by proposing new string ma-
nipulation functions which are less vulnerable or invulnerable to exploitations. In [65] the
authors propose alternative string handling functions to the existing functions which assume
strings are always NULL terminated. The new proposed functions also accept a size para-
meter apart from the strings themselves. In [61], another safe string library is proposed as
a replacement to the existing string library functions in C. Other examples are shown in [5,
10, 27].

Operating system based solutions, use the observation that most attackers wish to execute
their own code and have proposed solutions preventing the execution of such injected code.
Most of the existing operating systems split the process memory into at least two segments,
code and data. Marking the code segment read-only and the data segment non-executable
will make it harder for an attacker to inject code into a running application and execute it
[24, 33, 41].

3.2.2 Countermeasures against side channel attacks

There are several countermeasures against side channel attacks. These have been divided
into six categories:

1. Masking
2. Window method
3. Dummy instruction insertion
4. Code/algorithm modification
5. Balancing
6. Other methods

To mask code execution and to confuse an adversary, noise can be injected during code
execution. Examples of masking techniques are presented in [78, 86, 87]. Substitution Boxes
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(SBOXes), often used in cryptology, can also be masked in the execution. Some examples
for the SBOX masking techniques are presented in [28, 42, 46].

A window method can be applied in Public Key Cryptosystems to prevent power analysis
based side channel attacks. In the window method, a modular exponentiation can be carried
out by dividing the exponent into certain sizes of windows, and performing the exponentia-
tion in iterations per window by randomly choosing the window [69].

Dummy instructions can be placed to provide random delays. This confuses the adversary
when attempting to correlate the source implementation with the power profile. Chari et
al. [20] claimed that countermeasures involving random delays (i.e., dummy instructions
used to provide random delays in an execution) should be performed extensively, otherwise
they can be undone and re-ordered, causing a successful attack. Several dummy instruction
approaches are presented in [1, 6, 43].

Public Key Cryptosystems like RSA and ECC have been severely attacked using Simple
Power Analysis (SPA), mainly because of the conditional branching in the encryption. Such
vulnerabilities in the program can be prevented by modifying the implementation or replac-
ing with a better new algorithm to perform the same task. Key code modification techniques
to prevent power analysis are explained in [6, 20, 23].

The software code can be modified in such a way that complementary events are coded to
negate the effects of the actual computations. Examples of such code balancing techniques
are presented in [21, 29, 79]. Evidently, balancing at the gate level is the most appropriate
solution to prevent power analysis, since the power is consumed/dissipated depending on
the switching activities in gates. Hardware balancing is primarily performed by placing two
gates in parallel, one complements the other when switching. Various hardware balancing
techniques are given in [30, 34, 39].

Some of the other techniques include signal suppression circuits, which can be used to
reduce the Signal-to-Noise Ratio (SNR) to prevent the adversary from differentiating the
power profile. Examples for the suppression circuits are given in [52, 67, 74]. Software level
current balancing approaches are performed by modifying the source and inserting nops to
keep the current constant [66].

May et al. [62] proposed a non-deterministic processor design, where the independent in-
structions are identified and executed out-of-order in a random choice by the processor. This
infringes the conventional attack rule removing the correlation between multiple executions
of the same program, thus preventing the adversary from comparing different runs for power
analysis. Several other improved versions of the non-deterministic processor architecture are
proposed in [49, 63].

Randomizing the clock signal [83] for the secure processor to confuse the adversary is
another countermeasure proposed to prevent power analysis. This prevents the adversary
from analyzing the clock signals to identify certain significant instruction executions in the
power profile. More examples on handling the clock signal to prevent power analysis are
presented in [8, 9, 21, 29, 55].

Power analysis can also be prevented by designing special instructions whose power
signature is difficult to analyze [46] or whose power consumption is data independent [80].
Several examples of creating extensible instructions are given in [39, 47, 84, 85]. Such
extensible instruction designs can also be adapted to prevent power analysis attacks.

4 Summary

In summary, embedded systems require special security considerations due to their inherent
characteristics and unique usage scenarios. Research work in the field of embedded system
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security is in the process of identifying attack scenarios, developing counter measures, and
novel system designs with inherent security properties.
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