
Predictive scheduling of network processors

Tilman Wolf a,*, Prashanth Pappu b, Mark A. Franklin b

a Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
b Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA

Abstract

To provide flexibility in deploying new protocols and services, general-purpose processing engines are being placed in

the datapath of routers. Such network processors (NPs) are typically simple RISC multiprocessors that perform for-

warding and custom application processing of packets. The inherent unpredictability of execution time of arbitrary

instruction code poses a significant challenge in providing service guarantees for data flows that compete for such

processing resources in the network. However, we show that network processing workloads are highly regular and

predictable, which can be exploited for scheduling purposes. We present two such predictive processor scheduling

algorithms that aim at providing service guarantees as well as improving the performance of the NP by increasing the

instruction data locality. Simulation results show that these algorithms provide significantly better performance than

processor scheduling algorithms that do not take packet processing times into consideration.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Network processors; Programmable networks; Fair queuing; Locality-aware scheduling

1. Introduction

Over the past decade there has been rapid

growth in the need for reliable, robust, and high-

performance communication networks. This has

been driven in large part by the demands of the

Internet and general data communications. New

protocols, services, standards, and network appli-
cations are being developed continuously. How-

ever, the ability to deploy these in the current

Internet is greatly inhibited by the need for chan-

ges in the forwarding paths of routers that, for

performance reasons, are usually implemented in

custom logic. To overcome this obstacle, it has

been proposed placing general-purpose processing

engines in the data path of routers. Such network

processors (NPs) extend the traditional store-and-

forward paradigm to store-process-and-forward,

an approach that opens vast possibilities for novel

networking applications.
Scheduling the use of the multiple processing

engines on a given NP is an important element in

determining system performance. Through sched-

uling it is possible to provide fair sharing of the

processing resources between competing flows and

to provide delay bounds for packets traversing the

system. This is crucial since an important goal in

networking is the development of network infra-
structures that provide quality-of-service (QoS)

guarantees.

*Corresponding author.

E-mail addresses: wolf@ecs.umass.edu (T. Wolf), prash-

ant@arl.wustl.edu (P. Pappu), jbf@ccrc.wustl.edu (M.A.

Franklin).

1389-1286/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S1389-1286(02)00452-8

Computer Networks 41 (2003) 601–621

www.elsevier.com/locate/comnet

mail to: wolf@ecs.umass.edu


A second important aspect of scheduling is its

impact on the performance of the processing

system. Typically, the size of on-chip caches of

NPs is very small and instructions for only a

single program can be stored. If, in response to

the needs of an incoming packet, the scheduler
assigns a different program to a processing engine

a large number of cache misses are triggered be-

cause the new instructions have to be swapped

into cache. Our measurements show that this

‘‘cold cache’’ behavior can reduce the overall

processing performance by as much as 25%. De-

veloping a scheduler that is locality-aware and

attempts to reuse currently cached instructions
results in lowering the number of cold cache

misses that occur.

A large number of scheduling schemes have

been proposed for a number of domains in com-

puter science. In particular processor scheduling in

operating systems and link scheduling on routers

have been studied extensively. However, due to NP

system characteristics, neither type of scheduling is
applicable to NPs. These characteristics include:

1. For most packets, the cost of context switching

exceeds the processing time.

2. The processor execution time associated with a

packet arrival is generally unknown since, in the

most general case, it is a function of the type of

processing to be performed, the packet con-
tents, and the state of the processor�s cache

memory.

The first point indicates that traditional CPU

scheduling schemes are not applicable to NPs since

they are based on the ability to switch between

different processes to ensure fairness. The second

point limits the applicability of link scheduling
algorithms for this domain. In link scheduling, it is

assumed that it can be known beforehand how

long a packet occupies the resource. For the case

of a link this depends on the packet size and the

speed of the link. But for the packet processing

associated with NPs, this is not known in advance

since the state of the processor�s cache is generally
unknown. Thus the guarantees on fairness and
delay bounds associated with link oriented sched-

uling algorithms do not apply. This lack of de-

terministic resource usage makes the scheduling

problem for NPs particularly hard. This also im-

pacts how explicit or implicit admission control

and reservations can be done in such an environ-

ment.

Our approach to developing a useful scheduling
algorithm in the NP domain uses processing time

predictions. We present measurement results that

show that typical processing on a NP is regular

and the execution time is highly predictable. Thus,

the time that a packet occupies a processing engine

can be estimated and used for the scheduling de-

cision. Once the processing is completed, the ac-

tual processing time is fed back to the scheduler
for accurate accounting. With this approach long-

term fairness and delay bounds can be ensured,

even if occasionally a predicted processing time is

inaccurate.

We present two scheduling algorithms, which

address the three key challenges in scheduler de-

sign. We would like to achieve:

1. Fairness between independent flows.

2. Bounds on packet delay.

3. High system performance.

Estimation-based fair queuing (EFQ) is a

scheduling scheme that addresses the first point.

Using reservations and admission control, the

requirements of each flow are known and the
scheduler can enforce fair sharing. In this regime,

the NP is typically not overloaded because ad-

mission control is in place. As a result, delay

bounds on conforming flows can be given. A

different situation can occur when the NP is used

in a best-effort network, like the current Internet.

For this regime, we propose another algorithm,

locality-aware predictive (LAP) scheduling, which
reduces cold cache misses and results in higher

processing rates. For each algorithm, we present

simulation results and compare the performance

to other algorithms that do not use processing

time estimations. The results show that EFQ and

LAP can achieve the desired properties of fair-

ness, delay bounds, and high system perfor-

mance.
Section 2 formalizes the scheduling problem and

describes the desired properties of a scheduling

602 T. Wolf et al. / Computer Networks 41 (2003) 601–621



algorithm. Section 3 shows measurement results

on which the processing time predictions are

based. Section 4 introduces EFQ and shows a

proof of the fairness and delay bounds as well as

simulation results. Section 5 discusses the LAP

scheduling algorithm and simulation results that
show the performance gains from instruction data

reuse. Section 6 describes how EFQ and LAP can

be combined in a single system. Related work is

discussed in Sections 7 and 8 summarizes and

concludes this paper.

2. Scheduling problem

A router that is equipped with a NP has two

types of resources for which scheduling is neces-

sary. One is the link (or the interface to the

switching fabric on the input port), the other is the

processing resource on the NP. The link schedul-

ing issues have been studied extensively. A less

investigated area is the scheduling of the proces-
sors in such a system. Since we consider a system

where arbitrary code may be processed by the NP,

we assume that it is not possible to statically

schedule the processing engines (e.g., by limiting

the execution time for each packet to less than the

interarrival time of packets). This also limits the

ability to combine the processor scheduling and

the link scheduling into a single scheduler, since
packet processing time does not necessarily cor-

relate with packet size. As a result, it is necessary

to queue packets and then assign them to proces-

sors as they become available. It is this scheduling

decision where QoS, fairness and efficient proces-

sor operation can be ensured.

The data flow through the NP is illustrated in

Fig. 1. Packets that are queued for processing need

to be assigned to processors when these become

available. The processor scheduler can choose any

one packet from the n queues and assign it to any

of the m processing engines if they are idle. After
processing, packets are again queued in per-flow

queues before the link scheduler assigns them to be

transmitted on the link. This system abstraction

captures the essence of most current NP architec-

tures, where multiple simple processor engines

handle packet processing in parallel [15,16]. To

maintain generality, we do not consider interac-

tions between processing engines (e.g., contention
for memory access) as they are specific to partic-

ular NP designs.

The processor scheduler can view each pro-

cessing engine as a separate resource to be sched-

uled if they individually have capacities exceeding

the requirements of any single flow. The scheduler

can also consider all the processing engines as a

single processing resource, which can be scheduled
using multi-server variants of single server sched-

uling algorithms [3]. In either case, the essential

problem reduces to designing an efficient sched-

uling algorithm for sharing a single processing

resource.

The scheduling algorithms can address different

goals. For our purpose, we are interested in three

key points:

1. Fair sharing of resources: The scheduler should

ensure that flows get access to processors

evenly. That is the processor scheduler should

ensure that no flow exceeds its fair share of pro-

cessor usage.

processor
scheduler

processing
engine 1

processing
engine m

link
scheduler

queue 1

queue n

queue 1

queue n

feedback

feedback

from
switch
fabric

outgoing
link

...

processing
resource

Fig. 1. Scheduler system outline.

T. Wolf et al. / Computer Networks 41 (2003) 601–621 603



2. Low delay: In order to minimize the effect of

processing on the data flow, the scheduler

should also aim at reducing the overall delay

that a packet experiences. This also implies that

the delay variation (i.e., jitter) should be mini-
mized.

3. Good performance: The scheduler should be

work-conserving. That is if a processor is idle

and a packet is available for the processor, the

scheduler should not keep the processor idle.

In addition, the scheduler should avoid ‘‘cold’’

instruction caches, which reduce the perfor-

mance of the processing system. This effect is
explained in more detail below.

These goals are almost identical for scheduling in

the link bandwidth domain. However, there is one

key reason, why link oriented scheduling algo-

rithms cannot be simply used for processor sched-

uling: In theory, processing time of an arbitrary

piece of instruction code on a general-purpose
processor cannot be determined beforehand (be-

cause it is a version of the halting problem for

turing machines). Most bandwidth scheduling

algorithms rely on knowledge of packet sizes

(which corresponds to transmission times on the

link resource). Another reason is that transmissions

of packets of the same size always take the same

time. However in processor scheduling, the pro-
cessing time of a packet depends on the packet

data and the state of the processor as it was left by

the previous packet (i.e., the state of the on-chip

cache). Therefore it is necessary to consider new

scheduling algorithms that take these issues into

account.

Despite the theoretically arbitrary processing

times for packets, the processing characteristics in
real systems show high levels of regularity, which

can be exploited for scheduling.

3. Processing characteristics

The scheduling algorithms presented in this

paper are based on the assumption of predictable
packet processing times. This section presents

some measurement results of processing charac-

teristics in the NP environment.

3.1. Predictability of processing times

The nature of packet processing causes the ap-

plications to repeatedly execute the same code over

the packets that are passed through the processor.
This leads to good predictability of processing

times as the following results show.

3.1.1. Measurements

The processing time of packets depends on a

variety of factors: instruction code (‘‘appli-

cation’’), packet data, processor state, proces-

sor configuration, etc. To illustrate the impact of
application, packet data, and packet size, we

performed measurements of packet processing

times. Four applications were considered: en-

cryption, compression, forward error correction

(FEC), and IP forwarding. The first three are in

the category of ‘‘payload-processing applications’’

[27]. IP forwarding is a ‘‘header-processing ap-

plication’’. For the measurements, the Washing-
ton University Gigabit Switch [4] enhanced with

the single-processor linecard [9] was used. The

processor engine in this system is a single 167

MHz Pentium. The software environment for the

processing utilized the crossbow/active network

node operating system [7,8]. The static object

code size for the applications ranges from 4 kB

(IP forwarding) to 34 kB (CAST encryption).
Several thousand packets were sent through the

programmable router and the overall processing

time (from interface to interface) for each packet

measured. The interarrival time of packets was

large enough to not cause queuing delays. This

process was repeated for different packet sizes and

applications.

Fig. 2 shows the processing time for packets of
different sizes using the three applications. The

error bars indicate the 95% percentile of processing

time. For encryption and FEC, the processing

times are very close to the average. For compres-

sion, which is a data dependent computation, the

variations are slightly higher. Note that we use

time as the metric for processing cost. This is done

to simplify the description of the scheduling algo-
rithm and its analysis. In a realistic network,

processing cost should be translated to processor

cycles per second and then adapted to the partic-

604 T. Wolf et al. / Computer Networks 41 (2003) 601–621



ular router system, where the packets get pro-

cessed, as described in [11].

3.1.2. Processing time approximation

For IP forwarding, the processing time is prac-

tically constant for all packet sizes, however, the

processing times of the three payload processing

applications are clearly dependent on the packet

size. The per packet processing time for these ap-

plications can be extrapolated for packets of size 0.

With these observations, we can define the esti-
mated processing time te of a packet of length l
when processed by application a as

teða; lÞ ¼ aa þ bal; ð1Þ
where aa is the per packet processing cost and ba is

the per byte processing cost of application a. Thus,
the processing requirements of these applications
can then be described by two parameters: aa and

ba. Using the measurements discussed in the pre-

vious section, the average values for these appli-

cation parameters are given in Table 1. To simplify

notation, teðpÞ be the estimated processing time of

packet p, which is of length l and uses applica-

tion a.

3.1.3. Online estimation

The parameters aa and ba in Table 1 have been

determined from traces. But it is also possible to

determine these parameters online and improve

them using simple linear least squares regression

techniques. As packets are processed the scheduler

can maintain variables denoting the sums,
P

te;i,P
li,

P
t2e;i,

P
l2i ,

P
ðte;iliÞ for each application a.

These variables are updated on the arrival of a new

ðcnþ1; lnþ1Þ pair and on completion of processing of

a packet. The parameters to be used in the esti-

mation can then be computed as regression coef-

ficients:

ba ¼
P

n te;ili �
P

n te;i
P

n li=nP
n l

2
i �

P
n li

P
n li=n

; ð2Þ

aa ¼
X
n

te;i � ba

X
n

li: ð3Þ

It should be noted that there are also applica-

tions, where the processing time cannot be as

nicely correlated to packet size as shown above.

An example for such an application is MPEG

encoding. For MPEG encoding a whole video
frame is required to perform effective compres-

sion. With unencoded video frames typically ex-

ceeding a packet size, processing can only be

performed once several packets of a flow are

buffered. In this case the processing time varies

significantly between packets, but it can be ex-

pected to be more evenly distributed over frames

(i.e., I-frame to I-frame). In such a case the pa-
rameters should be maintained for the group of

packets constituting a single frame, which are

Table 1

Packet processing parameters

Application a Per-packet cost aa

(ls per packet)
Per-byte cost ba

(ls per byte)
Cold cache penalty pa

(ls per packet)
Expansion factor ca

IP forwarding 51 0 70 1

Encryption 320 1.3 170 1

Compression 970 7.6 950 0.13–0.34

FEC coding 320 9.2 175 1.14

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e 

in
 m

ic
ro

se
co

nd
s

packet size in bytes

Reed-Solomon FEC (top curve)
Huffman compression

CAST encryption
IP forwarding (bottom curve)

Fig. 2. Packet processing times for programmable router ap-

plications. The error bars indicate the 95% percentile of pro-

cessing times.

T. Wolf et al. / Computer Networks 41 (2003) 601–621 605



always processed together. Even if the processing

time cannot be estimated accurately at all, the

proposed scheduling algorithms still perform

correctly (e.g., EFQ still guarantees fairness) al-

beit at a cost of lower performance (e.g., in-

creased packet delay).

3.2. Cold cache penalty

Typical NPs are equipped with small on-chip

caches (16–32 kB) due to die size limitations. These

caches can only hold data for the most recently

executed program. Data in the instruction cache

can be reused by the processor if subsequent
packets require the same program. Data cache

information containing packet-dependent data can

less easily be reused, since it changes with every

packet. Changing the program that a NP executes,

causes the caches to become cold, which results in

an execution time penalty associated with the ini-

tial loading of the cache with new application in-

structions. This can have a significant negative
effect on overall NP performance.

With the same measurement setup as above, this

effect of ‘‘cold caches’’ can also be shown and

quantified. These measurements are shown for the

encryption application in Fig. 3. When sending a

stream of packets, which require the same appli-

cation, the first packet encounters a cold cache.

For subsequent packets, the processing time is
reduced due to locality in the instruction code and

the resulting warm cache. The measurements in-

dicate that the cold cache penalty is independent of

the packet size. Table 1 shows the average cold

cache penalty, pa, for all applications.

The LAP scheduler discussed in Section 5 aims

at minimizing this cold cache penalty by assigning
packets to processors that just completed pro-

cessing the same application as required by the

packet.

3.3. Reservations

A key component of QoS is the definition of the

service that is requested by a flow. While this is
straightforward and well understood for link re-

sources, reservations for computational resources

are not as clearly defined.

3.3.1. Bandwidth expansion

Processing of packets on routers can affect the

size of the packets after the processing is com-

pleted. For many types of applications (e.g., en-
cryption, routing lookup) the packet size is not

changed, but a few applications can significantly

change the bandwidth of a flow (e.g., compression,

FEC). To take these changes into account, we

define an expansion factor, ca, that is the average

output bandwidth divided by the input bandwidth.

For a single packet, ca is defined as the size of the

packet after processing divided by the size of the
packet before processing. This factor is also shown

in Table 1. Note that the expansion factor can be

dependent on packet size and data as for the

compression application.

3.3.2. Admission control

In an environment, where we want to be able to

give service guarantees to data flows, it is typically
necessary to explicitly reserve resources for that

flow. This happens during the flow setup and al-

lows the network to route a new flow in such a

fashion that enough bandwidth is available on the

chosen path. Now that we have shown that the

processing requirements for a stream of data can

be described in a simple manner, we can integrate

this information into the flow setup process.
A reservation for a flow j with incoming

bandwidth Bj that is processed by application a

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e 

in
 m

ic
ro

se
co

nd
s

packet size in bytes

1st packet
2nd packet
3rd packet
4th packet
5th packet

Fig. 3. Cold cache effects on packet processing times. The re-

sults are shown for the encryption application.

606 T. Wolf et al. / Computer Networks 41 (2003) 601–621



needs to reserve caBj bandwidth on the outgoing

link. The amount of processing Pj that is re-

quired (as fraction of one processor) depends on

the bandwidth of the flow, the average size of

packets lj, and the application parameters. The

fraction Bj=lj is the average number of packets
per second that a router needs to process. For

each, a processing time of teða; lÞ (see Eq. (1)) is

necessary:

Pj ¼
Bj

lj
teða; lÞ ¼

Bj

lj
ðaa þ balÞ: ð4Þ

Thus, flow j can be admitted to any router that has

Pj processing power and caBj outgoing bandwidth

available.

3.3.3. Processing location

When using reservations, it is necessary to de-

termine the path of the flow and the location(s),
where processing should happen. Ideally, the al-

location of resources should be optimal (e.g., best

performance or lowest cost). Determining the best

path in a traditional network can easily be done

(e.g., shortest path on delay metric). However,

with additional processing steps in programmable

networks, it is necessary to develop a new ap-

proach. By combining the transmission and pro-
cessing cost in a single metric and by modifying the

network graph data structure to consider pro-

cessing, we have shown that an optimal route can

be computed efficiently [6]. The details of this work

are beyond the scope of this paper.

The estimations for processing requirements for

packets can be used in a scheduling algorithm that

enforces the fair sharing of processing resources
according to each flows reservation.

4. Estimation-based fair queuing

For EFQ, it is assumed that the NP operates in

a regime, where admission control is performed,

flows reserve bandwidth and processing, and the
routers are operated below maximum load. EFQ is

built upon the class of rate-proportional servers

(RPS) having desirable properties that permit

processing time estimates to drive the processor

scheduling algorithm.

4.1. Scheduling algorithm

The EFQ scheduler is a mechanism to give

guaranteed bandwidth and computational re-

sources to incoming flows. Guarantees in these
two dimensions mean that a flow always gets its

reserved shares except when:

• A flow requires computational resources in ex-

cess of its reserved capacity and hence only a

fraction of the incoming traffic is processed

and forwarded to the link scheduler, possibly

giving the flow a lesser share of its reserved
bandwidth.

• Or equivalently, a flow exceeds its link share re-

sulting in too many packets being queued up at

the link scheduler, which forces the processor

scheduler not to give the flow its processing

share.

In order to do this, we base EFQ on the design
methodology of RPS.

4.1.1. Rate proportional servers

4.1.1.1. Definition. RPS are a class of scheduling

algorithms designed according to the methodol-

ogy presented in [24] that allow the designer to

trade fairness of the algorithm with implemen-

tation complexity. Generally speaking, a RPS is
a work-conserving server with the following

properties:

• The server has an associated system potential

that is updated to reflect the total work done

by the server.

• Each flow in the system has an associated po-

tential. When a flow becomes backlogged, its
potential is set equal to the system potential.

When a flow is already backlogged, its potential

is updated to reflect the normalized service re-

ceived from the server.

By imposing conditions for the potential func-

tions as given in [24] and by serving packets from

flows such that at any instant the individual po-
tentials of all backlogged flows are equal, it can

be shown that RPS have delay and fairness prop-

erties comparable to generalized processor sharing

T. Wolf et al. / Computer Networks 41 (2003) 601–621 607



(GPS). WF2Q+ [2] is an important example of a

scheduler belonging to the RPS class.

We build on this methodology in designing the

EFQ processor scheduling algorithm for two im-

portant reasons. First, the methodology helps in

designing algorithms with delay bounds and fair-
ness comparable to GPS without the complexity of

GPS emulation. More importantly, the method-

ology provides us with enough flexibility to de-

couple the update of system potential from the

exact finish times of the packets in the queues,

which addresses the problem of not knowing the

exact processing times in advance.

4.1.1.2. Packet selection policy. A scheduling al-

gorithm with optimal fairness would have to

schedule single processing cycles according to the

fluid RPS. However, in NPs, the smallest unit of

processing is a complete packet. Context switching

between packets is not considered here, because

saving and recovering processing state is a rela-

tively expensive operation compared to the short
overall processing time for a packet. Thus, to ap-

proximate a fluid RPS, packets should be sched-

uled in order of their finish time with the earliest

finish time first. While this works perfectly well for

bandwidth schedulers, the lack of the knowledge

of the actual execution times of the packets, makes

an exact implementation infeasible for processor

schedulers.
However, to derive an approximate scheduler of

this class, we can generalize the definition of a

packet-by-packet RPS. Such a scheduler schedules

two packets, j and k, of flows B and C, in the order

in which they are more likely to finish processing.

That is, if F j
b and F k

c are random variables repre-

senting the finish times of these packets in the fluid

RPS, then packet j is scheduled for service before
k, if

P ½F j
b P F k

c �P 0:5: ð5Þ
That is, there is a greater probability of j finishing
before k. Hence, it is the knowledge of the distri-

butions of F j
b and F k

c which determines the accu-

racy with which schedulers can approximate GPS

even if they use the same potential (or virtual time)
functions. Also, since the potentials of individual

flows are updated according to the normalized

service received by the flows from the system, the

finish time F j
b is

F j
b ¼ Pb þ

W j
b

Rb
; ð6Þ

where Pb is the potential and Rb is the rate of ser-

vice reserved by flow B. While these are known in

advance when determining F j
b , W j

b , which repre-

sents the service time required by packet j, is not.
Thus, the random variable F j

b is directly deter-

mined by W j
b .

Start-time fair queuing (SFQ) [14] (with a

modified system virtual time) and WF2Q+ [2] are

scheduling algorithms belonging to this class that

represent the extremes with respect to the amount

of knowledge of F j
b . SFQ does not use any infor-

mation about the service time of a packet and

hence, according to the above policy, SFQ sched-

ules packets in increasing order of Pb, which makes
it suitable for processor scheduling. WF2Q+, on

the other hand, assumes that the exact service

times of all packets are known in advance and thus

determines the right order of servicing packets

with probability 1.

4.1.1.3. Misordering delay. Different schedulers

using the same potential functions, and ordering
packets for execution according to the above de-

fined policy, can give varying delays to flows based

on their knowledge of the random variables W j
b .

To quantify these delays, assume that a scheduler

of this class can be characterized by random

variables vbj;ck , which denote the event that the

scheduler (with its knowledge of W j
b and W k

c )

makes a mistake in ordering packets j and k. That
is, P ½vbj;ck ¼ 0� is the probability that the scheduler

orders the packets of these two flows correctly,

while P ½vbj;ck ¼ 1� is the probability that the

scheduler makes a mistake in the ordering. Then,

the average misordering delay, db, as seen by a

packet of flow B is the additional delay caused by

the scheduler misordering packets of flow B and

flow C, which is

db ¼ P ½vbj;ck ¼ 1�Rc

R
Pc

�
þ W j

c

Rc
� Pb �

W i
b

Rb

�
: ð7Þ

This accounts for the time spent by the server in

servicing additional traffic from flow C before

608 T. Wolf et al. / Computer Networks 41 (2003) 601–621



processing packets from flow B. It is these addi-

tional delays caused by misordering of packets

that we intend to reduce using the estimates of the

packet execution times we derived in Section 3.1,

which improves the schedulers knowledge of W j
b .

4.1.2. Estimation-based fair queuing

EFQ is a scheduling discipline designed for

processor schedulers that uses the estimates of

the packet execution times in ordering packets of

various flows for processing. While the packet se-

lection policy of any RPS can be changed to use

these estimates, EFQ is derived by modifying
WF2Q+ which is known to have the tightest delay

bounds and low time-complexity among band-

width schedulers. EFQ, like WF2Q+, uses a notion

of system virtual time (system potential), defined

by

V ðt þ sÞ ¼ max V ðtÞ
�

þ s; min
i2BðtþsÞ

Si

�
; ð8Þ

where BðtÞ represents the set of backlogged flows

at time t and Si the start-tag associated with flow i
as defined below. The above definition of V ðtÞ
makes WF2Q+ a RPS. It differs from SFQ, in that

it has a linear component, which ensures that the

delay bounds provided are within one packet ser-

vicing time of a corresponding GPS server [2].

For each flow i in the system, EFQ maintains a

start tag, Si (potential of flow i), a finish tag, Fi,
and an estimated finish time tag, EFi. Consider a

packet k of flow i, with a reserved rate ri, that
arrives at time aki . When this packet reaches the

head of the queue, Si is updated using

Si ¼ maxðFi; V ðaki ÞÞ; ð9Þ

if queue i is empty, else

Si ¼ Fi: ð10Þ
EFi is updated using

EFi ¼ Si þ
teðpki Þ
ri

; ð11Þ

where teðpki Þ is the estimated number of instruc-

tions required to process packet k (see Eq. (1)).

When the processor finishes processing this packet,

the actual finish tag Fi is updated using feedback

from the processor:

Fi ¼ Si þ
Ak
i

ri
; ð12Þ

where Ak
i is the actual number of instructions re-

quired to process packet k. This ensures that each
flow is correctly charged for processing time, even
if the initial estimate was incorrect.

Given these tags, the EFQ scheduler, schedules

packets in increasing order of their estimated finish

time tags EFi.

4.1.3. Example

The following illustrates the behavior of EFQ

and compares it to that of SFQ and WF2Q+.
Consider a set of flows, all of which send packets

of the same length but at different rates and are

processed by the same application. Fig. 4 shows six

such flows, with flow 1 reserving 50% of the pro-

cessing resource and the rest of the flows reserving

10% each. The size of a packet in Fig. 4 represents

the actual processing time of that packet. Note,

however, that the estimates for all packets are the
equal, since they all have the same length and are

processed by the same application.

WF2Q+ achieves an optimally fair schedule,

because it is assumed the scheduler knows the

actual processing times. Thus, the packets of flow

1 and the other flows alternate (due to the rate

reservations). Out of flows 2–6, the packet of flow

2 is processed first, because it has the lowest

Fig. 4. EFQ scheduling example. The upper half shows the

input to the scheduler, the lower half the scheduling sequence

for different scheduling algorithms. All packets are of the same

length and are processed by the same application. The figure

shows the actual execution times of packets as their size and the

processing order derived by different scheduling disciplines.

T. Wolf et al. / Computer Networks 41 (2003) 601–621 609



actual execution time and therefore the lowest

finish time.

EFQ expects all packets to have the same exe-

cution times. Thus, EFQ could pick any order of

packets 2–6 to alternate with packets from flow 1.

The worst case, which introduces most misorder-
ing delay, is shown in Fig. 4. Here, the packet of

flow 2 is processed after packets of flows 6, 5, 4,

and 3 are processed, which all use more process-

ing time than expected by scheduler. As a result,

the packet from flow 2 experiences an additional

delay due to the variation in actual processing

times of these packets. However, these variations

are much smaller (and bounded, for the applica-
tions in consideration) than the total processing

times of the packets themselves. In particular,

these delays are much smaller than those intro-

duced by SFQ.

As shown in the example, in the worst case SFQ

could delay the processing of the first packet of

flow 1 until packets from all other flows are pro-

cessed. This is due to all initial packets having the
same start time.

In summary, EFQ processes most packets in the

same order as WF2Q+. When either a flow re-

serves a much higher rate than others or has

greatly differing processing requirements (due to

differing packet sizes or applications), the varia-

tions in the actual executions times compared to

estimated execution times do not change the
scheduling order. Even in the case when the

scheduling order of packets in EFQ varies from

that of WF2Q+, the additional delay that is ex-

perienced by a packet is bounded by the variation

in execution times as opposed to the total execu-

tion times of packets as in SFQ.

4.1.4. Analysis

From the example given above, it can be seen

that for N flows, in the worst case, SFQ introduces

a misordering delay of

dSFQ ¼
XN
i¼1

Amax
i

R
� Amax

a

Ra
: ð13Þ

This is obtained by using 8k : vaj;bk ¼ 1 with the
misordered packets being of maximum size and

using 8b : Pb ¼ Pa in Eq. (7), since the scheduler

can make a mistake only when Pb 6 Pa. Results

below also show that SFQ actually favors (i.e.,

gives lesser delays to) flows with packets which

require greater average normalized service (i.e.,

higher tavge ðpaÞ=Ra).
To analyze EFQ, assume that for a given

packet length, the packet execution time esti-

mates obtained in Section 3.1 can be represented

by uniform random variables W j
a lying in the

range ½teðpjaÞ � V j
a ; teðpjaÞ þ V j

a �. The EFQ sched-

uler misorders packet j and k when it determines

that

Pa þ
teðpjaÞ
Ra

P Pb þ
teðpkbÞ
Rb

; ð14Þ

but the actual processing times are such that

Pa þ
Aj
a

Ra
6 Pb þ

Ak
b

Rb
: ð15Þ

In the worst case, we get

Aj
a

Ra
� Ak

b

Rb
6 Pb � Pa 6

Aj
a

Ra
� Ak

b

Rb
þ V max

a

Ra
þ V max

b

Rb
: ð16Þ

Hence from Eq. (7), the misordering delay for
packet j due to packet k is limited to

da ¼ P ½vaj;bk ¼ 1�Rb

R
V max
b

Rb

�
þ V max

a

Ra

�
ð17Þ

and the worst case misordering delay is bounded

by

dEFQ ¼
XN�1

i¼1

V max
i

R
� V max

a

R
þ V max

a

Ra
: ð18Þ

From the above equation we can see that as the

number of flows increases, dEFQ only increases with

the variations in execution times as opposed to

dSFQ which increases with total processing times.

Also note that, with a better estimation, e.g., by

including higher order moments in characterizing

W j
a , EFQ can more accurately determine the right

scheduling order, resulting in a smaller dEFQ and

thus approximating WF2Q+.

4.2. Evaluation

In this section, we present simulation experi-

ments to demonstrate the improved performance

of EFQ as compared to SFQ.

610 T. Wolf et al. / Computer Networks 41 (2003) 601–621



4.2.1. Simulation setup

To compare the delay characteristics of the two

schedulers, we use the following simulation setup.

First, we use the traces of actual execution times of

packets from different flows that are processed by
different applications on the programmable router.

These traces are then used by a packet generator to

feed the two simulated schedulers: SFQ and EFQ.

The speed of the processor in the simulator is 2

GHz (about 10 times the speed of the processor on

the smart port card [9] on which the actual mea-

surements were made). The system has 32 flows

with different packet sizes, which are processed by
the four different applications. All the flows reserve

the same processing rate and adjust their sending

rates to just saturate their share of the processing

resource. It is assumed that no queuing delays

occur, so the simulation results only consider sched-

uling delays.

4.2.2. Packet delay

Fig. 5 shows the delays of various packets of a

flow, which is processed by the forwarding appli-

cation. The interarrival time of the packets of the

flow is approximately 163 ls, which is just enough
to saturate the flow�s share of processing resources.
Note the high and bursty delays experienced by the

packets of the flow when scheduled by SFQ as

shown in Fig. 5(a). Since SFQ, always schedules

packets with the minimum virtual time, a single

packet of a flow can be delayed in the worst case

by the equivalent of the sum of one packet pro-

cessing time of all other flows. In the simulation
this translates to a worst case misordering delay of

8218 ls. The maximum delay actually observed in

Fig. 5(a) is about 6100 ls, implying an observed

maximum misordering delay of 6100� 163 ¼ 5937

ls.
For EFQ, much lower delays can be seen in Fig.

5(b). This illustrates two things. First, given the
small execution time of forwarding as compared to

other applications, the finish times of the packets

of this flow were so different compared to the finish

times of the packets of other flows that the errors

in estimates did not change the scheduling order

(i.e., Eq. (16) was not satisfied for most compari-

sons of finish times). Second, the worst case delay

that could be experienced by these packets is only
1312 ls which would occur if there were maximum

variations in the estimated execution times for

packets from all other flows at the same time. In

the simulation, the maximum misordering delay

observed is about 900� 163 ¼ 737 ls, which is

about one order of magnitude smaller than for

SFQ.

Fig. 6 shows the delays experienced by a flow
being processed by the CAST encryption applica-

tion, with the average packet size of the flow being

200 bytes and has a higher average processing time

per packet compared to the forwarded flow. While

the average delays experienced by the packets

when scheduled using EFQ is close to the inter-

arrival time of the packets indicating a very low

misordering delay, the average delays seen in Fig.
6(a) are about three times the interarrival time of

the packets. Fig. 7 shows the delays experienced by

a flow being processed by the FEC application

which requires much greater processing time per

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

) 

Packet Number

sfq

(a)

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

) 

Packet Number

efq

(b)

Fig. 5. Packet delays for a flow processed by IP forwarding: (a) SFQ and (b) EFQ.

T. Wolf et al. / Computer Networks 41 (2003) 601–621 611



packet compared to the above flows. Here, the

average delays seen by the packets when scheduled

by SFQ are actually less than the interarrival time
of the packets. This indicates an average negative

misordering delay, while delays due to EFQ are

just about the interarrival time of the packets. Two

important conclusions can be drawn from these

plots:

• SFQ gives much higher misordering delay

bounds than EFQ.
• Across flows, while the misordering delays due

to EFQ are on an average close to zero, they

vary from high positive misordering delays

(e.g., the delay of about 35 times the interarrival

rate seen by the forwarding flow) to low nega-

tive misordering delays when scheduled using

SFQ.

The second point indicates a bias of SFQ.

4.2.3. Biased delay bounds due to SFQ

The bias of SFQ can be explained by the work

conserving nature of the two schedulers. If SFQ
gives high positive misordering delays to some

flows, there should be flows in the system which

get low and in fact negative misordering delays,

while EFQ gives low (close to zero) average mis-

ordering delays for all flows. We actually show a

correlation between the misordering delay experi-

enced by the packets of a flow and the average

processing time per packet to reserved processing
rate ratio (i.e., tavge ðpaÞ=Ra).

SFQ favors and gives less misordering delays to

flows with higher average processing time to re-

served rate ratio over flows with a lower ratio.

Given a set of flows with the same potential, since

SFQ can schedule them in any random order, it is

very likely that a packet of a flow with higher

average processing time to reserved rate ratio is
scheduled before at least a few flows with lower

Fig. 6. Packet delays for a flow processed by CAST encryption: (a) SFQ and (b) EFQ.

Fig. 7. Packet delays for a flow processed by Reed–Solomon FEC: (a) SFQ and (b) EFQ.

612 T. Wolf et al. / Computer Networks 41 (2003) 601–621



ratios, resulting in lower delays for such flows.

EFQ by just using the estimates is able to rightly

reverse this order. Fig. 8 shows the average mis-

ordering delay introduced by the two schedulers

plotted with increasing average packet execution

times. Note that all the flows have the same re-

served processing rates. This plot clearly shows the
above conjectured correlation between average

misordering delay and average processing time per

packet to reserved rate ratio.

4.2.4. Simulation summary

In summary, the simulation shows three main

results. One is that the analytically derived worst

case misordering delay is almost reached by the
SFQ scheduler as shown in Fig. 5(a). Second, EFQ

shows a much lower and smoother scheduling

delay. This is due to the delay depending on the

variance of the processing times rather than the

absolute processing times as in SFQ. Third, SFQ

introduces unfairness by favoring flows with high

processing time to reserved rate ratios. This be-

havior is not shown by EFQ, which provides
fairness over a wide range of processing require-

ments.

Despite the favorable properties of EFQ, it

might not be possible to use it in all networks

because it requires flow reservations. In a best-

effort network, like the current Internet, the re-

quirements of flows are not explicitly expressed.

For such an environment, it is desirable to

schedule packets in a way to maximize overall

system performance and keep up with best-effort

services.

5. Locality-aware predictive scheduling

The LAP scheduling algorithm aims at re-

ducing the cache miss rates that are due to cold

caches. For this purpose, the scheduler esti-

mates the processing time of all packets that are

queued in the system at the time. Based on the

estimates, the scheduler partitions the set of

processing engines of the NP into application
groups. Packets are then sent to processors that

belong to their respective application group. This

requires that the scheduler distinguish between

the different processing engines and not consider

them as one processing resource (as it is done

with EFQ).

5.1. Scheduling algorithm

The execution time of a packet depends on the

state of the cache of the processor when it is pro-

cessed. A cache is said to be cold if the application

required by a newly assigned packet differs from

the application just completed. If the cache is

warm (i.e., not cold), the processing time is teða; pÞ.
If the cache is cold, a penalty of pa is added to
the processing time teða; pÞ. The LAP scheduling

algorithm considers this. To compare LAP�s
performance, we also define throughput-optimal

(T-Opt), which is optimal in terms of least cold

caches, and first-come-first-serve (FCFS), which is

optimal in terms of least delay variation (as de-

fined below).

5.1.1. Locality-aware predictive

LAP tries to group processors such that each

group processes one application and thus keeps a

warm cache for this application. The size of each

group is determined by the amount of process-

ing pending for packets in queue memory. We

define Qt as the set of packets in queue mem-

ory at time t of which the LAP scheduler is
aware. For each application a, LAP computes

the amount of processing time needed by all

-1500

-1000

-500

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
ge

 M
is

or
de

ri
ng

 D
el

ay

Average Packet Execution Time

efq
sfq

Fig. 8. Variation in minimum packet delay for different flows

introduced by SFQ and EFQ.

T. Wolf et al. / Computer Networks 41 (2003) 601–621 613



packets of this application in Qt. This is ex-

pressed as the fraction of processing time for

application a over the total processing time of all

packets in Qt:

fa;t ¼
P

p2QjappðpÞ¼a teða; pÞP
p2Q teða; pÞ

; ð19Þ

where appðpÞ is the application used by packet p.
According to these fractions, fa;t, the set of pro-

cessing engines on the NP are partitioned into

application groups. If n processing engines are

available in total, LAP will assign fa;tn (rounded to

an integer value) of them to process application a.
This way the proportions of processing engines

matches the processing estimates and the number
of cold caches is minimized. The assignment of

processors to applications changes dynamically to

match the required processing times of packets

in Qt as LAP recomputes the partition for each

scheduling decision.

The effectiveness of LAP is based on the as-

sumption that the processing time for packets is

predictable from their size and the application
they execute. LAP performance also depends on

the number of packets that the scheduler is of

and that are available in queue memory. We de-

fine this number as jQtj ¼ q. In the simulation

results below, we can see that LAP performance

increases with more packets in queue memory

(larger q) as LAP can choose from a larger set of

packets.
For comparison purposes we define T-Opt as

the algorithm that achieves maximum locality (and

thus maximum throughput) by being allowed to

pick any packet out of the entire packet stream

(independent of Qt). T-Opt executes all packets of

one application before it switches the processor

to another. Thus, the only cold caches are due to

compulsory cache misses for the first packet of an
application. This strategy, though not realistic for

actual implementation, gives an upper bound on

the possible performance.

A naive instance of best-effort scheduling is

FCFS. In this scheme, packets are assigned to

processors in the order of their arrival. If a pro-

cessor u becomes available at time t, the oldest

packet in queue memory Qt is sent to u: The

schedule does not take any locality into account.

It is optimal in terms of variation in delay for

packets since it does not re-order packets and

keeps the delay for each packet in a given flow the

same.

5.2. Evaluation

In order to evaluate the performance of LAP

several performance metrics need to be defined.

5.2.1. Performance metrics

The performance of a scheduler can be defined

in several (sometimes conflicting) ways. The per-

formance depends in large part on the order of

packet execution and the resulting processing time

for the packet set. We define the following per-

formance criteria:

• Throughput: The throughput is defined as the

amount of data that is processed in a given

amount of time. This is the key performance pa-

rameter, since generally NPs are aimed at pro-

cessing as much data as possible.

• Fraction of cold caches: The fraction of cold ca-

ches is the number of times a packet p is as-
signed to a processor with a cold cache

divided by the total number of scheduled pack-

ets. This fraction is an indicator of how much

locality awareness a scheduling scheme shows.

The lower the fraction, the fewer cold cache

penalties are incurred.

• Delay variation: The delay variation is a metric

similar to the misordering delay in EFQ, but it
is measured in terms of the order of packets in-

stead of actual delay. The delay variation is the

standard deviation of the variation in the order

of packets being processed as compared to their

arrival order. The larger the delay variation, the

more misordering occurs. While it is necessary

to change the order of packet processing to

make use of locality in reducing the negative ef-
fects from cold caches, the goal is to keep the

delay variation low.

Using these performance measurements, LAP

scheduling can be compared to naive and optimal

scheduling.

614 T. Wolf et al. / Computer Networks 41 (2003) 601–621



5.2.2. Simulation

The evaluation of the scheduling algorithms is

done using a trace-driven simulation. Packet traces

were obtained from the packet processing time

measurements described above. Only the three
payload processing applications, FEC, encryp-

tion, and compression, are considered. Traces of

100,000 packets are generated having an equal

share of bandwidth for each application. To sim-

ulate more than three applications, the original

traces are replicated with different application

identifiers. We assume that a processor can only

have one application in its instruction cache at any

time, which is reasonable for the small cache sizes

considered. These traces are used as input to

a discrete event simulator that emulated the

behavior of the scheduler and the processors.

Simulations are performed over a variety of con-

figurations.

5.2.3. Basic operation and adaptation to workload

changes

To illustrate the basic operation of each of the

algorithms, we look at the case where we have

three applications, 16 processors, and 64 packets

in queue memory. The application workload is

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d 

lo
ad

packet number
(a)

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d 

lo
ad

packet number
(b)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d 

to
 a

pp

packet number
(c)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d 

to
 a

pp

packet number
(d)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d 

to
 a

pp

packet number(e)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d 

to
 a

pp

packet number(f )

Fig. 9. Processor assignment comparison between FCFS and LAP. The scheduling assignments for applications 2 and 3 are similar

and only one set is shown: (a) offered load (app 1), (b) offered load (app 2/3), (c) FCFS (app 1), (d) FCFS (app 2/3), (e) LAP (app 1)

and (f) LAP (app 2/3).

T. Wolf et al. / Computer Networks 41 (2003) 601–621 615



such that the first 10,000 packets require equal

processing. Thus, each application on average

should be processed on one third of the processors.

After 10,000 packets, the workload changes, such

that application 1 requires 80% of the processing

and applications 2 and 3 require 10% each (see Fig.
9(a) and (b)). This is used to illustrate the adapt-

ability of the various algorithms to changes in the

workload. Fig. 9(c)–(f) show the FCFS and LAP

scheduling algorithms. The lines show how many

processors have warm caches for each application

(i.e., howmany processors process each application

at that moment) for packets 8000 through 12,000.

Each change in the number of assigned proces-
sors (y-axis) causes a cold cache, which reduces the

overall performance. FCFS scheduling shows the

expected ‘‘random’’ behavior. Since packets are

scheduled in the order of arrival, no locality is

explicitly exploited and the number of processors

executing a given application changes frequently.

This behavior leads to a large number of cold ca-

ches and low performance. A smooth scheduling
behavior is produced by LAP scheduling, because

it partitions the processors according to the pro-

cessing requirements. Fig. 9(e) and (f) show that

the partitioning follows very closely to the offered

load as shown in Fig. 9(a) and (b).

Also, LAP adapts quickly to changes in the

workload. LAP reaches a processor assignment

that corresponds to the offered load within a few
hundred packets of the change in workload (3–4

times the number of packets in queue memory).

During this period, packets from before the

change are still in queue memory and influence the

scheduling decision.

5.2.4. Throughput

Fig. 10 shows a throughput comparison of LAP
with FCFS and T-Opt. The number of processors

considered is 16 and the number of applications is

30. Since LAP depends on the number of packets

in queue memory, this value is varied on the x-axis.
FCFS has the lowest throughput of about 85% of

T-Opt. This can be expected, since FCFS does not

take locality into account. For a very small num-

ber of available packets, LAP is close to FCFS,
since the number of packets from which the algo-

rithm can select is small and locality can only be

maintained for short times. With about 16–64

packets, LAP performs significantly better than

FCFS. For large numbers of packets, LAP con-

verges towards the throughput of T-Opt.

5.2.5. Cold cache fraction

To illustrate the correlation between the use of

locality information and throughput, Fig. 11
shows the cold cache fraction of packets for the

same parameters as used in Fig. 10. The cold cache

fraction gives the percentage of packets that are

executed with a cold cache (i.e., do not make use of

locality). FCFS has the highest rate of cold caches

with about 96%. This is due to the random as-

0.8

0.85

0.9

0.95

1

1 2 4 8 16 32 64 128 256 512

th
ro

ug
hp

ut
 a

s 
fr

ac
tio

n 
of

 T
-O

pt

packets in queue memory

T-Opt
LAP

FCFS

Fig. 10. Throughput for LAP compared to FCFS and T-Opt.

The number of available packets in queue memory is varied

from 1 to 512 packets (30 applications, 16 processors).

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512

co
ld

 c
ac

he
s 

pe
r 

pa
ck

et

selection buffer size

T-Opt
LAP

FCFS

Fig. 11. Cold cache fraction for LAP compared to FCFS and

T-Opt. The number of available packets in queue memory is

varied from 1 to 512 packets (30 applications, 16 processors).

616 T. Wolf et al. / Computer Networks 41 (2003) 601–621



signment of packets to processors in FCFS, which

causes only 1 in 30 assignments to be to a pro-

cessor with warm caches (because there are 30

applications).

The cold cache fraction for LAP shows a trend

that corresponds to the throughput performance
shown in Fig. 10. For small numbers of available

packets, the number of cold caches is close to that

of FCFS. As more packets are available, cold ca-

ches drop and LAP converges towards T-Opt.

5.2.6. Delay variation

Fig. 12 shows the standard deviation of the

variation in packet order for FCFS and LAP. The
delay variation for T-Opt is arbitrarily large and

thus not plotted here. For FCFS, there is no

variation, because packets maintain their order.

One can see that LAP shows increasing delay

variation for increasing numbers of packets in

queue memory. This is expected since the reor-

dering is roughly limited to the number of avail-

able packets. The large variation of delay for
increasing numbers of packets indicates that there

is a tradeoff between achieving more cache locality

and delay variation.

In contrast to EFQ, this delay is considerable.

For EFQ, the overall misordering delay (see Fig. 8)

was on average close to zero. For LAP, this can

not be achieved anymore, as the scheduler aims

at higher system performance (through fewer

cold caches) at the cost of higher packet delay

variations.

5.2.7. LAP complexity

Finally, the usefulness of these scheduling al-

gorithms depends on how efficiently they can be
implemented in hardware. LAP has constant

processing cost per packet, making it well suited

for high performance systems. The following

briefly discusses a possible data structure for LAP

that can be implemented in hardware and has Oð1Þ
update complexity.

There are four components necessary for LAP

scheduling: the current values of the processing
time estimation for each application, the applica-

tion for which each processing engines has a warm

cache, and a list of packets pending processing for

each application in order of packet age, and a list of

all packets in order of packet age. Each of these

structures can be updated in constant time when a

packet is received or scheduled. The update of the

processing time requirements can be done every
time a packet is entered into the packet buffer by

adding its expected processing time. When a packet

is removed, the processing time is subtracted. Sim-

ilarly, the warm caches can be adjusted by incre-

menting and decrementing as processors change the

applications that they process. An update occurs

only when a packet enters or leaves the buffer. Thus,

the complexity is Oð1Þ per packet. Maintaining lists
of packets for different applications that are sorted

by the age of the packets can also be done in con-

stant time. Since the age of packets corresponds to

the arrival order, a simple queue can be used. Up-

dates to queues can be done inOð1Þ time per update.

There has been much work done in implementing

efficient queuing systems of this sort [5].

5.2.8. Evaluation summary

The evaluation indicates that good throughput

performance can be achieved if 32 or more packets

are available to chose from. However, the delay

variation increases significantly causing large-scale

re-ordering of packets in the data stream. There-

fore, the throughput and delay seem to have a

‘‘sweet spot’’ around 16–32 available packets. To
operate the system in this region, the number of

packets to chose from could be limited artificially

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512

st
an

da
rd

 d
ev

ia
tio

n 
of

 v
ar

ia
tio

n 
in

 p
ac

ke
t o

rd
er

packets in queue memory

LAP
FCFS

Fig. 12. Delay variation for LAP compared to FCFS. The

number of available packets in queue memory is varied from 1

to 512 packets (30 applications, 16 processors).

T. Wolf et al. / Computer Networks 41 (2003) 601–621 617



to 16 or 32. If more packets are available, the

scheduler can only chose from the 16 or 32 oldest

packets in the queue.

Another critical observation is that the LAP

algorithm causes the system to perform better as

it becomes more loaded. For small numbers of
packets (i.e., low load), the scheduler might cause

a few cold caches. For more packets, the number

of cold caches approximates the optimum.

In summary, LAP is a good scheduling algo-

rithm for a system that is backlogged. LAP im-

proves the throughput of the system by avoiding

cold caches. One main drawback is the delay that

it might impose on packets.

6. Combination of LAP and EFQ

The EFQ and LAP scheduling algorithms ad-

dress two different problems in NP task schedul-

ing. EFQ ensures fair sharing of resources and

bounds the misordering delay of packets. LAP
increases the throughput of the system as it makes

use of instruction locality. Both schedulers also

operate in different usage regimes of a program-

mable router. LAP performs best when packets are

backlogged in queue memory, which is character-

istic for a system, where the processing resource is

a bottleneck. EFQ ensures fair sharing and delay

bounds when the processing resource is not over-
subscribed. It is also necessary that flows adhere to

the specified data rate to avoid additional packet

delay due to backlog. These differences indicate

that LAP should be used in an active network,

where processing is performed on a best-effort

basis and no explicit flow setup is performed. EFQ

on the other hand requires explicit reservations,

which are only available in a network that is
tightly managed and where resources are con-

trolled. Such a network could provide QoS in

terms of bandwidth and processing resources.

To combine these scheduling principles on a

system, the following points need to be considered.

First, it is necessary to maintain data structures for

both scheduling algorithms in the system to allow

quick transitions between the schedulers. Second,
a policy has to be defined under which circum-

stances these transitions happen. As for the data

structures, it is necessary to maintain per-flow

queues for EFQ to maintain QoS guarantees. At

the same time the LAP data structure can track the

individual packets in terms of application groups.

This could cost in the worst case twice the amount

of memory for control data structures, as a queue
is necessary for each flow and each application.

Also the enqueue and dequeue operations take

twice as many memory accesses, because a packet

has to be enqueued and dequeued in two data

structures. Using two parallel memories might al-

low the parallelization of this operation.

The decision to switch from EFQ to LAP

scheduling or back can be based on several factors.
In a network with admission control, it should

never happen that the NP is permanently over-

loaded. But due to the nature of general-purpose

processing, the reservations for processing re-

sources are based on heuristics (i.e., processing

time estimation). It could happen that a NP be-

comes temporarily overloaded by a set of packets

that require unusually complex processing. In such
a case, it might be desirable to switch to LAP to

increase the system performance. An event that

could trigger such a switch could be when the

overall amount of queued packet data exceeds a

certain threshold. A more accurate trigger could be

the exceeding of a threshold of overall estimated

processing time. Similarly, if the overall amount of

queue data goes below another threshold, the
system could switch back to EFQ.

It should be noted that in the event of a switch

to LAP, the original QoS guarantees (e.g., boun-

ded delay) can not be met anymore. However, by

sacrificing the guarantees temporarily, the system

can get back to a lower level of load and therefore

sooner return to QoS operation.

It might be possible to integrate the ideas of
LAP directly into EFQ. In EFQ, we assume that

the processing resource is not oversubscribed.

Therefore, it is quite possible that at any point of

time when a scheduling decision is necessary more

than one processor is available to handle the

scheduled packet. In such a case, locality infor-

mation could be used to chose a processor, which

has a warm instruction cache. This would reduce
the processing time of a packet and allow more

flows to be admitted to the router.

618 T. Wolf et al. / Computer Networks 41 (2003) 601–621



7. Related work

Most software-based programmable routers

enforce isolation of packet processing between

flows (e.g., malicious packets cannot effect the
proper processing of other packets). However,

QoS issues at the level of processing are addressed

only in a few cases. The commonly used NodeOS

specification [19] asks for packets to be processed

by individual threads to allow for an account-

ing mechanism. However, methods for admission

control and QoS scheduling are not described.

Qie et al. [21] describe the problem of scheduling
computational resources among competing flows,

but relies on being able to pre-determine the pro-

cessing time of packets. Also, the important issue

of correlating the cycle rate of a flow to the bit rate

is not addressed. There are also approaches where

the expressiveness of the processing environment is

restricted (e.g., no loops) to give execution time

guarantees [17], which limits its usefulness to
simple header processing applications.

Packet service disciplines and their associated

performance issues have been widely studied in the

context of bandwidth scheduling in packet-swit-

ched networks [28]. The performance of these dis-

ciplines has been compared to GPS [18], which has

been considered an ideal scheduling discipline based

on its end-to-end delay bounds and fairness prop-
erties. Packet fair queuing (PFQ) disciplines, how-

ever, cannot be used for processor scheduling. PFQ

disciplines like WFQ, WF2Q [1] use a notion of

virtual time, whose correct update in a processor

scheduler, requires precise knowledge of execution

times of various packets in advance. Efforts have

beenmade to design service disciplines which isolate

the scheduler properties that give rise to ideal fair-
ness and delay behavior, without emulating GPS

[12]. Notable among these are a class of schedulers

called RPS [24], which decouple the update of sys-

tem virtual time from the finish times of packets in

queues. But even these service disciplines, while

avoiding the complexity of GPS emulation, sched-

ule packets in order of pre-determined finish times,

which in turn requires the knowledge of execution
times of various packets in advance.

An exception to these disciplines is SFQ [14],

which has been deemed suitable for CPU sched-

uling [13]. Since SFQ does not need prior knowl-

edge of the execution times of packets (packet

lengths in a bandwidth scheduler), it is also ap-

plicable to scheduling computational resources.

However, the worst case delay under SFQ in-

creases with the number of flows and can in fact
worsen in the presence of correlated cross-traffic as

shown in [2]. Our work is aimed at providing a

way of estimating execution times of packets,

which is used on a flow level for admission control

and for QoS scheduling at a packet level.

Cache-affinity scheduling, which uses locality

information for the scheduling decision has been

used mostly in shared memory multiprocessors
[10,23,25,26]. The focus in this domain is to schedule

the same process or thread on processors that can

reuse previously established cache states. While this

is similar to the NP environment, it does not con-

sider the reuse of instruction cache state for different

threads that use the same instruction code (as is

done with packets that use the same application).

An example for scheduling that uses hints about
the processing requirement is [20]. In this work,

the compiler provides information about thread

requirements that are used by the scheduler to

determine a thread execution schedule with high

cache locality.

Salehi et al. show the effect of affinity-based

scheduling on network processing in [22]. While

this also considers the processing of network
traffic, the focus is on the operating system level,

where packet processing is disrupted by a back-

ground workload. This switching between packet

processing and the background workload reduces

locality in execution and can be avoided by ap-

propriate scheduling.

8. Summary

This work proposes to use processing time esti-

mations for packets in scheduling to achieve QoS

guarantees and efficient operation of NPs. To ad-

dress the problem of theoretically unpredictable

processing times, we present measurements of

processing times on a NP system, which indi-
cate that processing on an NP is highly regular

and predictable. Therefore it is possible to use

T. Wolf et al. / Computer Networks 41 (2003) 601–621 619



processing time predictions in admission control

and scheduling decisions.

We present two such predictive processor

scheduling algorithms that operate in two different

operational regimes of networks. EFQ is designed

for QoS networks and can provide guarantees on
fair processor sharing and delay bounds. LAP is

designed for best-effort networks and can reduce

the number of cold cache events and increase the

overall processing throughput. For EFQ an ex-

tensive analysis shows its superior behavior as

compared to naive SFQ. For both algorithms,

simulation results are presented that show the

performance and performance tradeoffs.
The predictive processor schedulers presented in

this work can provide fairness, delay bounds, and

efficient operation, which is an important first step

to integrating the flexibility of programmable

routers into networks that require performance

guarantees.

References

[1] J. Bennett, H. Zhang, Worst case fair weighted fair

queuing, in: Proceedings of IEEE INFOCOM 95, Boston,

MA, April 1995, pp. 120–128.

[2] J.C.R. Bennett, H. Zhang, Hierarchial packet fair queuing

algorithms, in: Proceedings of ACM SIGCOMM, Palo

Alto, CA, August 1996, 43–56.

[3] J.M. Blanquer, B. Ozden, Fair queuing for aggregated

multiple links, in: Proceedings of ACM SIGCOMM 2001,

San Diego, CA, August 2001.

[4] T. Chaney, A. Fingerhut, M. Flucke, J. Turner, Design of a

gigabit ATM switch, in: Proceedings of IEEE INFOCOM

97, Kobe, Japan, April 1997.

[5] Y. Chen, J.S. Turner, Design of a weighted fair queueing

cell scheduler for ATM networks, in: Proceedings of IEEE

GLOBECOM 98, Sydney, Australia, November 1998.

[6] S.Y. Choi, J.S. Turner, T. Wolf, Configuring sessions in

programmable networks, in: Proceedings of the Twentieth

IEEE Conference on Computer Communications (INFO-

COM), Anchorage, AK, April 2001, pp. 60–66.

[7] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner, Router

Plugins––a modular and extensible software framework for

modern high performance integrated services routers, in:

Proceedings of ACM SIGCOMM 98, Vancouver, BC,

September 1998.

[8] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, B.

Plattner, A scalable, high performance active network

node, IEEE Network 31 (1) (1999) 8–19.

[9] J.D. DeHart, W.D. Richard, E.W. Spitznagel, D.E. Tay-

lor, The smart port card: An embedded UNIX processor

architecure for network management and active network-

ing, Technical report WUCS-01-18, Department of Com-

puter Science, Washington University, St. Louis, August

2001.

[10] M. Devarakonda, A. Mukherjee, Issues in implementation

of cache-affinity scheduling, in: Proceedings of Winter

USENIX Conference, January 1992, pp. 345–357.

[11] V. Galtier, K.L. Mills, Y. Carlinet, S. Leigh, A. Rukhin,

Expressing meaningful processing requirements among

heterogeneous nodes in an active network, in: Proceedings

of the Second International Workshop on Software and

Performance, Ottawa, Canada, September 2000.

[12] S.J. Golestani, A self clocked fair queuing scheme for

broadband applications, in: Proceedings of IEEE INFO-

COM 94, Toronto, Canada, June 1994, pp. 636–646.

[13] P. Goyal, H.M. Vin, H. Cheng. A hierarchial cpu scheduler

for multimedia operating systems, in: Proceedings of the

Second USENIX Symposium on Operating System Design

and Implementation (OSDI), Seattle, WA, October 1996,

pp. 107–121.

[14] P. Goyal, H.M. Vin, H. Cheng, Start-time fair queuing: a

scheduling algorithm for integrated services packet switch-

ing networks, in: Proceedings of ACM SIGCOMM, ACM,

Palo Alto, CA, August 1996, pp. 157–168.

[15] IBM Corp. IBM Power Network Processors, 2000.

Available from <http://www.chips.ibm.com/products/wired/

communications/network_processors.html>.

[16] Intel Corp. Intel IXP2800 Network Processor, 2002. Avail-

able from <http://developer.intel.com/design/network/

products/npfamily/ixp2800.htm>.

[17] J.T. Moore, M. Hicks, S. Nettles, Practical programmable

packets, in: Proceedings of IEEE INFOCOM 2001,

Anchorage, AK, April 2001, pp. 49–59.

[18] A.K. Parekh, R.G. Gallager, A generalized processor

sharing approach to flow control: the single node case, in:

Proceedings of IEEE INFOCOM 92, Florence, Italy, May

1992, pp. 915–924.

[19] L. Peterson (Ed.), NodeOS interface specification, Techni-

cal report, AN Node OS Working Group, January 2001.

[20] J. Philbin, J. Edler, O.J. Anshus, C.C. Douglas, K. Li,

Thread scheduling for cache locality, in: Proceedings of the

Seventh International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

Cambridge, MA, October 1996.

[21] X. Qie, A. Bavier, L. Peterson, S. Karlin, Scheduling

computations on a software-based router, in: Proceedings

of IEEE Joint International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS),

Cambridge, MA, June 2001, pp. 13–24.

[22] J.D. Salehi, J.F. Kurose, D. Towsley, The effectiveness of

affinity-based scheduling in multiprocessor networking, in:

Proceedings of IEEE INFOCOM 96, San Francisco, CA,

March 1996.

[23] M.S. Squillante, E.D. Lazowska, Using processor cache

affinity information in shared-memory multiprocessor

scheduling, IEEE Transactions on Parallel and Distributed

Systems 4 (2) (1993) 131–143.

620 T. Wolf et al. / Computer Networks 41 (2003) 601–621

http://www.chips.ibm.com/products/wired/communications/network_processors.html
http://developer.intel.com/design/network/products/npfamily/ixp2800.htm
http://developer.intel.com/design/network/products/npfamily/ixp2800.htm


[24] D. Stiliadis, A. Varma, Rate proportional servers: a design

methodology for fair queuing algorithms, IEEE/ACM

Transactions on Networking 6 (2) (1998) 164–174.

[25] J. Torrellas, A. Tucker, A. Gupta, Evaluating the perfor-

mance of cache-affinity scheduling in shared-memory

multiprocessors, Journal of Parallel and Distributed Com-

puting 24 (1995) 139–151.

[26] R. Vaswani, J. Zahorjan, The implications of cache affinity

on processor scheduling for multiprogrammed, shared

memory multiprocessors, in: Proceedings of Thirteenth

Symposium on Operating Systems Principles, Pacific

Grove, CA, October 1991, pp. 26–40.

[27] T. Wolf, M.A. Franklin, CommBench––a telecommunica-

tions benchmark for network processors, in: Proceedings of

IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), Austin, TX, April

2000, pp. 154–162.

[28] H. Zhang, Service disciplines for guaranteed performance

service in packet switching networks, Proceedings of the

IEEE 83 (10) (1995) 1374–1396.

Tilman Wolf received his Diplom in
Informatics from the Universit€aat
Stuttgart, Germany in 1998. From
Washington University in St. Louis, he
received a M.S. in Computer Science
in 1998, a M.S. in Computer Engi-
neering in 2000, and a D.Sc. in Com-
puter Science in 2002. He is currently
Assistant Professor in the Department
of Electrical and Computer Engineer-
ing at the University of Massachusetts
at Amherst. His research interests are
advanced computer networks, pro-
grammable routers, network processor
design, and benchmarking.

Prashanth Pappu is a doctoral student
in the Applied Research Laboratory
(ARL) in the Department of Com-
puter Science and Engineering at
Washington University in St. Louis.
His research deals with the design,
analysis and implementation of high
capacity, high performance routers.
He received his Master�s degree in
Computer Science from Washington
University in 2002 and his Bachelor of
Technology degree in Computer Sci-
ence from Indian Institute of Tech-
nology (Madras) in 1999.

Mark A. Franklin received his B.A.,
B.S.E.E. and M.S.E.E. from Columbia
University, and his Ph.D. in EE from
Carnegie-Mellon University. He is
currently at Washington University in
St. Louis where he is in the Depart-
ment of Computer Science and Engi-
neering, and is the Hugo F. and Ina
Champ Urbauer Professor of Engi-
neering. He founded the Computer
and Communications Research Center
and, until recently, was the Director of
the Undergraduate Program in Com-
puter Engineering.

Dr. Franklin is engaged in research, teaching and consulting
in the areas of computer and communications architectures,
ASIC and embedded processor design, parallel and distributed
systems, and systems performance evaluation.
He is a Fellow of the IEEE, a member of the ACM, and has

been an organizer and reviewer for numerous professional
conferences including the Workshops on Network Processors
2002 and 2003. He has been Chair of the IEEE TCCA (Tech-
nical Committee on Computer Architecture), and Vice-Chair-
man of the ACM SIGARCH (Special Interest Group on
Computer Architecture).

T. Wolf et al. / Computer Networks 41 (2003) 601–621 621


	Predictive scheduling of network processors
	Introduction
	References


