Computer Communications 34 (2011) 598-606

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at ScienceDirect

Computer Communications

computer
communications

Securing the data path of next-generation router systems

Tilman Wolf*, Russell Tessier, Gayatri Prabhu

Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 9 December 2009

Received in revised form 21 February 2010
Accepted 18 March 2010

Available online 23 March 2010

As the technology used to implement computer network infrastructure advances, networking resources are
becoming more vulnerable to attack. Recent router designs are based on general-purpose programmable
processors, which increase their potential vulnerability. To address this issue, a Secure Packet Processing
platform has been developed that can flexibly protect emerging router systems. Both instruction-level oper-

ation of embedded processors and I/O operations of router ports are monitored to detect anomalous behav-

Keywords:

Network security
Router design
Embedded processor
Processor monitor

ior. If such behavior is detected, a recovery system is invoked to restore the system into an operational state.
Experimental results show that processor-based attacks can generally be determined by a processing mon-
itor within a single instruction. I/O anomalies, including unexpected packet broadcast or delay, can be
detected by an I/O monitor with limited overhead. Overall, the system overhead for secure monitoring is
limited to a fraction of the overall system space, memory, and power budget.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Computer networks, in particular the Internet, are an essential
part of the global communication infrastructure. As our society re-
lies increasingly on data networks for business and personal com-
munication, the value of this infrastructure increases and makes it
more attractive to potential attackers. Networks have been used
for several decades to launch attacks against computer systems
(e.g., remote end-system intrusion). More recently, the network it-
self has become a target for attacks, in which Distributed Denial-
of-service (DDoS) attacks have been used to overwhelm Internet
access links of target systems (e.g., for the purpose of extortion).

Separately, novel functions are being introduced into networks:
ubiquitous network access to personal mobile devices, new net-
work applications and business models, and new protocols for
high-performance and secure communication. To support these
features, the computer networking community is currently in the
process of redesigning the fundamental architecture of the next-
generation Internet [1] (with an intended deployment in the com-
ing decade). The redesign of the Internet architecture encompasses
many aspects ranging from all-optical transmission to sensor net-
works, and distributed protocols and applications. Routers, which
represent the fundamental building blocks of any network, are
the focus of our work.

* Corresponding author. Address: ECE Department, Knowles 211C, University of
Massachusetts, Amherst, MA 01003, USA. Tel.: +1 413 545 0757; fax: +1 413 545
1993.

E-mail addresses: wolf@ecs.umass.edu (T. Wolf), tessier@ecs.umass.edu (R.
Tessier), gprabhu@ecs.umass.edu (G. Prabhu).

0140-3664/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.03.019

Routers need to perform packet processing to implement proto-
cols correctly. Traditionally, this processing has been implemented
in application-specific integrated circuits (ASICs) for performance
reasons. As networks have become more diverse and new proto-
cols have been developed, the fixed functionality of ASICs has been
replaced by software-programmable packet processing systems
using general-purpose processors. This type of data path program-
mability is already available in some Internet routers and is ex-
pected to be present in a majority of network routers in the near
future [2]. These router designs provide more functionality in the
network core and thus increase the area of attack.

The vulnerability of network devices is inherent in their func-
tionality. Routers connect links in a network and are thus remo-
tely reachable. For attackers, this reachability translates into an
easy path for targeting remote exploits onto an important infra-
structure component. Current router systems do not provide
security mechanisms at the hardware level and thus are at signif-
icant risk for attack. A recent study on network devices in today’s
Internet shows that 2.46% of enterprise-class devices and 41.6% of
consumer-class devices exhibit vulnerabilities [3]. As the net-
work’s attack value increases and expanded amounts of network
functionality expose the attack surface, it is only a question of
time until computer network infrastructure becomes a prime tar-
get of attack.

In this paper, we present a router design that provides funda-
mental security capabilities for the data path of next-generation
network systems to protect crucial networking infrastructure.
Our main idea is to expand packet processing systems — which
are the central components in router systems - to include monitor-
ing subsystems that can verify correct operation. In particular,
a monitor can determine when a packet processor deviates from

http://dx.doi.org/10.1016/j.comcom.2010.03.019
mailto:wolf@ecs.umass.edu
mailto:tessier@ecs.umass.edu
mailto:gprabhu@ecs.umass.edu
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

T. Wolf et al./ Computer Communications 34 (2011) 598-606 599

the sequence of operations that is considered correct by monitor-
ing the instruction flow. Our specific contributions in this paper
are:

e The design of a Secure Packet Processing Platform (SPPP), which
uses hardware monitors to detect deviation from normal pro-
cessing behavior at the instruction-level.

o The design of a recovery system for the SPPP that can recover a
router system if problems with packet processing are detected.

o The evaluation of the effectiveness of the system as well as an
estimation of the resource overhead for the SPPP.

The remainder of the paper is structured as follows. Section 2
discusses related work. The overall SPPP architecture is introduced
in Section 3. Performance estimates are presented in Section 4. Sec-
tion 5 summarizes and concludes this paper.

2. Related work

Extensions to the feature set of the original Internet architec-
ture [4] have been proposed in many forms. Many proposed archi-
tectures include software processing in the data path of routers,
spanning active networks [5], programmable routers [2], and con-
figurable protocol stacks [6]. In next-generation networks, where
deviations from the current Internet architecture [1] can be consid-
ered, a variety of protocol features and data path services can be
implemented in routers [7,8]. These services could be imple-
mented on a variety of platforms ranging from workstation routers
[9] to programmable routers [10] and virtualized router platforms
[11]. Most high-performance processing platform use an embed-
ded multi-processor system-on-chip (MPSoC) at their core, for
example a network processor (Intel IXP2400 [12], EZchip NP-3
[13], or LSI APP [14]). Several router designs that use such embed-
ded packet processing platforms have been demonstrated [15,16].

Although our work focuses on packet processing platforms, their
vulnerability is certainly not the only security concern in networks:
end-system vulnerabilities have led to large-scale “bot nets” [17],
various types of DoS attacks have been deployed [18], timing attacks
can affect protocol behavior [19], and protocol vulnerabilities can be
exploited [20]. However, as programmability is increased, the pro-
tection of packet processing becomes an increasingly important con-
cern. So far, this topic has received little attention. Some aspects of
this problem tie into embedded system security due to the embed-
ded nature of packet processing platforms.

A wide range of approaches can be used to attack embedded sys-
tems [21]. Ravi et al. describe mechanisms to achieve physical secu-
rity by employing tamper resistant designs [22]. Wood et al. consider
a networked scenario where systems are exposed to remote attacks
[23]. Embedded systems are also susceptible to side-channel attacks
(e.g., differential power analysis [24]), although we do not consider
this issue in our work. Gogniat et al. [25] have developed a general,
hardware-based architecture to protect embedded systems against
arange of attacks, although the proposed monitors are not described.

To address general security concerns in packet processing sys-
tems, constrained programming environments have been proposed
[26]. However, next-generation networks require a fully functional
general-purpose programming environment. In our work, we
achieve security by monitoring processors. Monitoring has been
used in the system by Arora et al. [27] and the IMPRES system
[28], but we use a finer granularity of monitoring. The SAFE-OPS
system by Zambreno et al. [29] uses information that is collected
across multiple executed instructions to determine valid operation.
This system can detect errors and attacks at the end of such a se-
quence, whereas our monitor may immediately detect the first
instruction that deviates [30].

Abadi et al. [31] also use a control flow graph for monitoring
program execution. Nakka et al. [32] introduce integrity checks
into the micro-architecture and use special check instructions.
Ragel et al. [33] introduce microinstructions to monitor for fault
detection, return address checks, and memory boundary checks.
This differs from our approach in that these approaches require
changes in the machine code to implement the necessary checks.

A completely different approach to ensuring secure execution of
programs is the tagging of non-instruction memory pages with NX
(No eXecute) or XD (eXecute Disable) bits. This approach prevents
a control flow change to a piece of code that belongs to data mem-
ory. This mechanism is useful for the prevention of buffer overflow
attacks. It does not consider a scenario where an attacker over-
writes instruction memory. Another approach to defending against
buffer overflow attacks is described by Shao et al. in [34], where
bound checks are used and function pointers are protected by XOR-
ing them with a secret key.

The use of model comparison to perform anomaly and intrusion
detection has been used in selected networking domains (e.g., mo-
bile ad hoc networks [35]). In our case, the problem is simpler since
our model is derived from a protocol description or the actual bin-
ary of the protocol implementation. Thus, there is no guess-work
on the accuracy of the model; it is exactly the same as the actual
packet processing application.

The majority of previous efforts related to network router
recovery have focused on recovery from hardware faults rather
than network attacks. In Zhou et al. [36], whole packets are copied
from the network router to an attached host processor memory. If
a fault is detected, the router is restarted with the saved packets.
Router state for this system is periodically checkpointed to facili-
tate router restart. In Huang et al. [37], a fault tolerant router struc-
ture is presented. Much of the hardware in the router is replicated
to provide an alternate routing path if a single hardware failure oc-
curs. In Luo and Fan [38], unused processors in a multicore net-
work processor are used to provide redundancy. If a specific core
fails, processing is moved to an idle core. Although effective, none
of these approaches address monitoring and recovery from net-
work attacks that we describe below.

This manuscript provides an extension of our previous work in
secure router design [39]. An I/O monitor has been designed and
implemented in an FPGA-based platform to verify functionality. As
described in Section 3.3, the implementation is flexible enough to
address anumber of router weaknesses. Results presented in Section
4 illustrate the limited overheads needed to provide this security.

3. System architecture

The goal of our work is to design a secure packet processing
platform (SPPP) for next-generation Internet routers. This SPPP
can be embedded on router ports as illustrated in Fig. 1. Before
detailing the SPPP architecture, we briefly discuss the security
model for our work.

3.1. Security model

For our work, we define a security model that is representative
of the current Internet and what we expect from the next-genera-
tion Internet. Attacks on network routers are motivated by a num-
ber of different goals. The following list illustrates this point but is
not meant to be a complete enumeration of all possible scenarios:

e Denial-of-service attack (e.g., disabling links or an entire device,
generating overwhelming traffic, configuring routing loops).

e Modification of stored or monitored data (e.g., tampering with
log files).

600

T. Wolf et al./ Computer Communications 34 (2011) 598-606

next-generation
virtualized
protocol stacks

ol

prdtected
substrate N
router

Secure Packet
Processing
Platform (SPPP)

—1 (sPPP)
switch

Fig. 1. Secure Packet Processing Platform (SPPP) in next-generation virtualized network architecture.

e Extraction of secret information (e.g., reading of cryptographic
key material) and

e Hijacking of a hardware platform (e.g., reprogramming of pro-
cessors to send unsolicited emails).

To illustrate the types of attacks we consider in our work, we
present two specific attack examples. Note that our system design
can defend against a broader range of attacks than these two, but
the vulnerabilities shown are symptomatic of those encountered
in router systems.

3.1.1. Attack examples
Two illustrative attack scenarios are:

e Processing attack: In this scenario, an attacker uses the trans-
mission of a data packet that causes the packet processing pro-
gram to misbehave. The attack could be based on a buffer
overflow, where certain data fields can smash the processor
stack. In many cases, changes to the stack cause the program
to crash. However, it is also possible for an attacker to change
the control flow such that malicious code (e.g., contained in
the packet) is executed. This type of attack has been used suc-
cessfully to gain access to end-systems through widely
deployed and vulnerable software. One of the most famous
examples is the Code Red worm that exploited a vulnerability
in a service of the Windows operating system and used it to
spread itself around the globe [40,41]. As routers provide more
functionality, it becomes more difficult to formally validate the
correct operation of all protocol features in all virtual slices.
Thus, it becomes feasible for this type of attack to be widely
used by attackers.

Denial-of-service attack: In this scenario, we consider a situa-
tion where processing is performed correctly, but the overall
router system still behaves incorrectly. One example is the
use of a multicast function to (intentionally or accidentally)
launch a denial-of-service attack. It can be envisioned that mul-
ticast can be implemented through a loop that iterates over the
interfaces to which a packet needs to be forwarded. If this loop
does not terminate (e.g., due to an incorrect parameter in the
packet or multicast data structure) and continues to duplicate
packets, the outgoing links can easily be saturated while the
router cannot forward any other packets. Such a problem is par-
ticularly damaging in router systems as they are located inside
the network and are typically connected via high-bandwidth

links. Unlike end-systems, which have very limited uplink con-
nections, a router could easily generate a denial-of-service
attack with many Gigabits per second of traffic.

In our system, the monitoring subsystem is able to detect these
attacks and initiate an immediate recovery process that foils the at-
tempt. Itis also possible to use /O monitoring to detect animbalance
of incoming and outgoing packets caused by such an attack.

3.1.2. Security requirements

The above attack scenarios rely on the ability of an attacker to
gain remote access to the system and change its behavior (i.e.,
change in instruction memory) or its data (i.e., change in data
memory). It is important to note that in most attack scenarios a
modification of behavior is necessary even when modification of
or access to data is the ultimate goal of the attack. This leads to
two main security requirements, which ensure that the router con-
tinues to perform correct protocol processing:

e Benign packets should be processed according to protocol spec-
ifications without interference from possible attacks.

e Malicious traffic should be identified as quickly as possible
(packets that belong to a connection that causes malicious pro-
cessing on the SPPP may be discarded).

In addition to these functional requirements, there are several
performance requirements: fast detection, accuracy, low overhead,
and quick recovery.

3.1.3. Attacker capabilities
The capabilities of an attacker that define the potential attack
space include the following:

e An attacker can send arbitrary data and control packets.

e An attacker can modify instruction and data memory through
exploits. We do not specify which exploits can be used, but tar-
get a solution that can deal with the effects of any such attack.

e An attacker cannot modify the source code or binary of the pro-
tocol implementation before it is installed on the router. Thus,
the basis of what we define as correct operation cannot be tam-
pered with. However, once the binary is installed on the router,
the attacker may change the binary as stated above.

e An attacker cannot physically access the router. Thus, attacks
are limited to remote exploits.

T. Wolf et al./ Computer Communications 34 (2011) 598-606 601

While we make constraining assumptions on what the attacker
can do, we believe the defined attacker capabilities are general and
representative of typical network attacks.

3.2. Secure packet processing platform

Any security mechanism for packet processing needs to con-
sider the following important criteria, which are met by our
design:

e Independence: A monitoring subsystem should use indepen-
dent system resources that overlap as little as possible with
the target of a potential attack. In particular, the use of a single
embedded processing system for both protocol processing and
security-related monitoring is a bad choice. If an intruder can
access the protocol processor, then the monitor may be vulner-
able to attacks.

e Low overhead: Embedded packet processing systems require a
lightweight security solution that considers the limitations of
MPSoCs in terms of additional logic and memory for
monitoring.
Fast detection and recovery: A monitoring subsystem should be
able to react as quickly as possible to an attack. In particular,
attacks that simply change memory state or extract private data
may require only a few instructions to cause damage. Therefore,
it is important to be able to detect an attack within a few
instructions. To maintain the operation of a network router, it
is also important to quickly recover from an attack.

The SPPP architecture is shown in Fig. 2. The two key compo-
nents are the monitoring subsystem shown on the right and the
recovery subsystem shown on the left. We discuss each subsystem
in more detail below. It is important to note that computer net-
works can be logically divided into two parts: the data plane,
where data traffic is handled, and the control plane, where routers
exchange control information (e.g., routing updates). The SPPP fo-
cuses on data plane processing since it is the most crucial function-

protocol

ality of a router, but the monitoring concept is equally applicable to
control processors. Control processors are typically simple unicore
processors with small numbers of processing tasks and thus they
are less challenging than data path network processors. Therefore,
we believe that a good solution for data plane processing can also
be used to protect the control plane.

3.3. Monitoring subsystem

The monitoring system consists of two components: the pro-
cessing monitor, which is based on our prior work on security in
embedded single core systems [30], and the [/O monitor, which
is a new component that is designed specifically for network
systems.

3.3.1. Processing monitor

The main idea behind our processing monitor, which is illus-
trated in Fig. 2, is to analyze the binary code of a protocol process-
ing implementation and derive an augmented control flow graph.
The embedded processor reports on the progress of application
processing at run time by sending a stream of information to the
monitoring system. The monitoring system compares the stream
to the expected behavior of the program as derived from the exe-
cutable code. If the processor deviates from the set of possible exe-
cution paths, the processor no longer executes instructions that are
part of the correct program. Thus, it is assumed that an attacker has
altered the instruction store or program counter to alter the behav-
ior of the system. In that case, the recovery subsystem restores the
processing state stored before a particular packet was processed.

Our evaluation of an embedded system benchmark shows that
this monitoring technique can detect deviations from expected
program behavior within a single instruction while only requiring
a small amount of additional logic and memory on the order of one
tenth of the size of the protocol processing implementation binary.

It is important to note that this design does not use intrusion
detection heuristics, which may be slow and computationally
expensive. Instead we use a novel multi-core monitoring platform

off-line program

i analysis
prob?sgsmg) monitoring
Y graph (off-line
Secure Packet Processing Platform (SPPP) run-time
y processing
== shadow memaory E‘j monitor
- memory >
° data instruction
‘g accesses Y _accesses
(8]
= _monitoring |
g » embedded stfeam "~ | comparison
S — processor o) logic
= — - Sdon monitor;
register 7o) call
packet 1/O : stack
T) packet /O logic
interrupt / recovery signal count ; .
L

recovery subsystem

multi-core packet processor

monitoring subsystem

Fig. 2. Architecture of a Secure Packet Processing Platform.

602 T. Wolf et al./ Computer Communications 34 (2011) 598-606

that can detect deviations from normal protocol processing steps
within a few instruction cycles. Such rapid detection is essential
for high-speed networks since the processing time for a packet to-
tals just a few microseconds.

3.3.2. I/O monitor

The I/O monitor is designed to track the I/O behavior of the rou-
ter system. Monitoring takes place at a granularity that is coarser
than the per-instruction monitoring of the processing monitor.
The I/O monitor correlates the flow of outgoing packets to the flow
of incoming packets. By tracking such information, the monitor can
determine when conditions occur that are considered unusual
from a networking perspective. These conditions may not be de-
tected by the processing monitor since they may be caused by
the correct execution of instructions. Examples of such conditions
include the dropping of incoming packets that is not due to conges-
tion and the transmission of large numbers of packets that is not
triggered by incoming packets (e.g., denial-of-service attack, etc.).

The I/O monitor uses information gathered at the I/O interfaces
(i.e., not at the processor cores) to infer the correct operation of the
router. Possible types of information in the design of the I/O logic
are:

e Count: The count of outgoing packets is related to the count of
incoming packets (over a window) to indicate the general flow
of packets. This approach can be extended to account for
dropped packets, multicast, and similar special cases.
Attribution: By uniquely marking incoming packets and passing
this marking through the system, it is possible to attribute out-
going packets to their “origin.” Such attribution allows the iden-
tification of misbehaving processing features (or network
slices). Based on this technique, per-flow or per-slice transmis-
sion limits can be enforced.

Timing: By recording timing information between incoming
and outgoing packets, the system delay can be measured
(assuming that packets can be distinguished using attribution).
Delay information can be used to identify functional and perfor-
mance problems.

Integrity: By recording the CRC or checksum over portions of
the packet that are not rewritten during normal packet forward-
ing (e.g., TCP header and payload when using IP forwarding), the
monitor can verify the integrity of the packet at transmission.
Unauthorized modifications to higher-layer headers and packet
payload can be identified with this process. (This check can be
disabled or limited to some range of the packet for services that
require changes to the packet payload.)

A more detailed architecture of an I/O monitor that implements
attribution and integrity checks is shown in Fig. 3. The I/O monitor
performs the following actions for incoming packets:

(1) An incoming packet is assigned a specific packet identifier
(packet ID) by an input packet control circuit. This identifier
is carried with the packet through the packet processor as
meta-information. The packet ID is also stored in tag storage
to allow for matching against subsequent output packets.
The identifier is unique to the packet (for the lifetime of
the packet in the system). The tag storage may include addi-
tional information (e.g., packet arrival time, payload CRC).

(2) A cyclic redundancy check code (CRC) is computed for the
incoming packet payload by a dedicated CRC circuit. The
resulting CRC is stored in the tag storage under the control
of the input packet control circuit.

After a packet has been processed, it is sent back to the I/O mon-
itor for checking and, ultimately, for transmission. The identifier of

packet processor

in packet IDV out packet ID
A
N input packet output packet
control input control control
Y ¥ vy
> CRC - » tag storage
in CRC
+ output control/ID
compare e
out CRC stored CRC

v Y

input packet match? output packet

Fig. 3. Architecture of a sample I/O monitor.

the packet which was the source for the processed packet is still
associated with the packet as meta-information. When the outgo-
ing packet arrives at the I/O monitor, the following actions are
performed:

(1) The outgoing packet’s identifier is matched against stored
identifiers in tag storage. A missing identifier in tag storage
indicates that the outgoing packet cannot be attributed to
an incoming packet (either because it was sent without a
matching incoming packet or it is a retransmission and the
initial tag has already been “used”). In either case, the trans-
mission can be interpreted as unauthorized (e.g., caused by a
denial-of-service attack) and be blocked.

(2) If the identifier is located in tag storage, its companion CRC is
checked against the CRC of the payload of the processed
packet. This validation protects against malicious modifica-
tion of packet payloads. If there is CRC match, then the
packet is transmitted.

The tag information of a packet is removed when a packet is
transmitted and the buffer slot can be reused by future packets.
If a packet is dropped during packet processing, its identifier and
corresponding CRC can be removed from tag storage following a
timed period measured by a counter.

The /O monitor shown in Fig. 3 can be extended to address
additional packet processing issues. Input and output packet
counts can be easily correlated through the use of the packet iden-
tifiers. Using timestamps, processing delays can be determined. In
Section 4, the overheads associated with a preliminary version of
the I/O monitor are quantified.

3.4. Recovery subsystem

The recovery of the router system after an attack (i.e., deviation
from protocol processing) has occurred is an important aspect of a
security system. Ideally, an attack should have as little impact as
possible to avoid a denial-of-service abuse of the monitoring sys-
tem. It would seem that recovery in network systems is a simple
process because the Internet Protocol inherently does not provide
delivery guarantees and thus packet loss is acceptable (and can be
dealt with through TCP and similar protocols). However, as more
stateful processing features are introduced into the network, we
require more effective recovery mechanisms.

To illustrate the importance of recovery, consider an intrusion
detection system that scans for a signature of malicious traffic in
a stream of packets [42,43]. For effective detection, it is necessary

T. Wolf et al./ Computer Communications 34 (2011) 598-606 603

partial recovery
signature restores
detection detection state

. sigha

A

packet sequence

Fig. 4. Example of state recovery in intrusion detection.

to consider signatures that are split across multiple packets (see
Fig. 4). An attacker could hide a split signature by introducing an
“attack packet” between the packets. The attack could possibly al-
ter or destroy the detection state that was stored at the end of the
first packet. In such a case, the second part of the signature could
not be matched successfully and malicious traffic would reach its
target. To avoid this and many similar problems, we introduce a
recovery mechanism into our Secure Packet Processing Platform.

The recovery mechanism design is based on per-flow check-
pointing. In such a system, processing state is preserved at the
granularity of packets. The recovery mechanism is based on the fol-
lowing process:

(1) When processing a packet, record all memory operations to
a shadow memory. This allows for state recovery if process-
ing of subsequent packets causes a processor failure.

(2) When the processing of a packet has successfully completed,
backup the processor register values to shadow registers and
commit shadow memory operations.

(3) When the processing of a packet causes a processor failure
(as identified by the processing monitor), restore register
values from shadow registers and clear (i.e., do not commit)
shadow memory operations. This step restores the process-
ing state to values stored before processing was started.

The processor pipeline is flushed at the end of packet processing
(successful or not). In the case of processor failure, the packet caus-
ing the problem is discarded.

Our design differs from previous checkpointing approaches
used by microprocessors [44,45] by providing checkpointing at a
finer granularity (a packet). The lack of caches in network proces-
sors simplifies the per-packet backup of critical register and data
values. Note that maintaining the state information for checkpoint-
ing is not significantly more expensive than maintaining per-flow
processing state, which is already necessary to support the level
of custom processing that can be expected to be encountered in
the next-generation Internet.

4. Results

We show results on the monitoring effectiveness for single-core
and multi-core systems.

4.1. Monitoring stream information

As shown in Fig. 2, the monitoring subsystem tracks processing
progress via the monitoring stream provided by the processor. In
our prior work, we have evaluated different monitoring stream
information and their effectiveness for detecting attacks [30]. We
briefly provide an overview on the results from this work, which
was focused on a single-core implementation, before discussing
extensions to multi-core systems.

We consider the following “patterns” as design alternatives for
the monitoring information stream:

o Address pattern: The address of an instruction is a unique indi-
cator, but it does not contain any information about the opera-
tion that corresponds to the instruction. An attacker can simply
replace instructions without being detected.
Opcode pattern: The opcode pattern tracks the instruction
opcode and thus represents a program’s functionality. An
attacker would need to replace a program with an identical
sequence of opcodes.
Load/store pattern: This pattern tracks memory access opera-
tions and their target registers (since target addresses cannot
be determined statically). This pattern shows the same vulner-
abilities as the opcode pattern.
Control flow pattern: The control flow pattern tracks control
flow operations (i.e., branches, calls, returns) and allows the
monitor to track any change in the program counter. This pat-
tern exhibits a vulnerability that is similar to an address pattern
since there it contains no information about the actual opera-
tion of the processor.

e Hashed pattern: A pattern that we developed in prior work and
that addresses the shortcomings of the above patterns is the
hashed pattern [30]. In this case, several pieces of information
(in our case an instruction address and an instruction word)
can be compacted to a smaller hash value. This is particularly
useful since opcodes, operands, etc. can consume a lot of mem-
ory space. This pattern can be used with different lengths of
hash functions. We use the function name hash n to indicate
that an n-bit hash function is used. To circumvent this monitor,
an attacker would need to craft an instruction sequence with
identical hash values, which is very difficult, especially for lar-
ger values of n.

The quantitative tradeoffs between these patterns are consid-
ered below.

4.2. Single-core monitor

The single-core monitor is the basic building block for monitor-
ing. The main performance considerations are the ability to detect
attacks quickly and to do so with low overhead. We use the Mi-
Bench benchmark suite [46] to generate workloads that are similar
to what can be expected on an SPPP. We employ the SimpleScalar
simulator [47] to extract relevant monitoring information and the
objdump utility for binary analysis to generate monitoring graphs.

Table 1 shows the size requirements of different information
streams graphs. As a comparison, the size of the application binary
is also shown. Monitoring graphs require only in the order of 10%
of the size of the application binary and thus do not incur signifi-
cant overhead. The monitoring graph for the hash 4 pattern re-
quires least overhead with an average of 7.1% of the size of the
binary.

Table 2 shows the detection performance of the monitor. The
hash 4 pattern can detect all but 6% of the attacks (due to hash col-
lisions, which can be reduced with a larger hash size). There are no
false positive detections. The important metric is the number of
instructions that are executed until the attack is detected. This de-
lay provides a potential window for the attacker. For the hash 4
pattern, the attack can be detected in a single instruction.

These results show that effective attack detection on real applica-
tions can be achieved with an overhead of less than 10% additional
instruction memory and the logic necessary for implementing the
comparison monitor.

4.3. Multi-core monitor

When monitoring multiple processor cores in a single system, it
is possible to amortize the overhead for storing the monitoring

604 T. Wolf et al./ Computer Communications 34 (2011) 598-606

Table 1
Size of monitoring graph for different MiBench benchmarks and information streams.
Application Binary size (kB) Pattern
Address Opcode Load/store Control flow Hash 4
Size (kB) % of bin. Size (kB) % of bin. Size (kB) % of bin. Size (kB) % of bin. Size (kB) % of bin.
adpcm 953 98 103 80 8.4 65 6.9 81 8.5 59 6.2
basicmath 1023 106 10.3 88 8.6 71 7.0 87 8.5 64 6.2
bitcount 1200 141 11.8 114 9.5 90 7.5 116 9.7 83 6.9
blowfish 969 100 10.3 82 8.5 67 6.9 83 8.5 60 6.2
cre 958 98 103 80 8.4 65 6.8 81 8.4 59 6.1
dijkstra 1107 129 11.6 104 9.4 83 7.5 105 9.5 76 6.9
fft 1001 104 10.3 84 8.4 69 6.8 85 8.5 62 6.2
gsm 1104 126 114 104 9.4 85 7.7 104 9.4 76 6.9
ispell 1186 130 11.0 105 8.9 85 7.1 108 9.1 77 6.5
jpeg 1204 156 13.0 128 10.7 104 8.6 129 10.7 93 7.8
lame 3454 946 274 743 21.5 631 18.3 779 22.6 569 16.5
mad 1430 151 10.5 126 8.8 100 7.0 123 8.6 90 6.3
patricia 1123 129 11.5 105 94 83 7.4 106 9.4 76 6.8
quicksort 1106 127 11.5 103 9.4 82 7.4 104 9.4 75 6.8
rijndael 998 98 9.9 83 8.3 68 6.8 81 8.1 60 6.0
rsynth 1370 148 10.8 122 8.9 97 7.1 121 8.9 88 6.4
sha 955 98 10.3 80 8.4 65 6.8 81 8.4 59 6.1
sphinx 2185 230 10.5 192 8.8 157 7.2 188 8.6 139 6.4
stringsearch 960 100 104 81 8.5 66 6.9 83 8.6 60 6.2
susan 1084 120 11.0 101 9.3 81 7.5 98 9.0 72 6.7
tiff2bw 1668 174 10.4 116 7.0 97 5.8 121 7.2 87 5.2
tiff2rgba 1739 185 10.6 126 7.2 106 6.1 129 74 94 54
tiffdither 1457 159 10.9 127 8.7 104 7.1 131 9.0 94 6.5
tiffmedian 1458 161 111 129 8.8 105 7.2 132 9.1 95 6.5
typeset 1899 369 19.5 336 17.7 315 16.6 302 15.9 256 13.5
Average 11.9% 9.6% 7.9% 9.6% 7.1%
Table 2 1 === E Fo— T T T
Detection rate of monitor for bit flip attacks. The results are based on 100 simulations Thsell Tl
using the gsm application. 0.9 I]
o 08 N *
Monitoring pattern Detection rate of Avg. no. of instr. o) 8 RN
bit flips (%) to detection § < 0.7 - \\\ n
Address 13 49.1 5 2 06f S
Opcode 40 1.2 Q 5 05 AN N
Load/store 24 15.8 _g £ 04l \\\ N
Control flow 26 236 "L AN
Hash 4 94 1 © g 03] N
€ 02t 4 tasks \\ _
16 tasks ------- N
0.1 64 tasks --------]
0]]]]]]

graph among cores that execute the same code. While packet pro-
cessing systems typically do not use SIMD processing, they often
execute the same code independently on multiple cores [48]. Sim-
ilar to how shared instruction stores are used, shared monitoring
graph storage can be employed. To illustrate the effectiveness of
such a sharing architecture, Fig. 5 shows the overhead for monitor-
ing for varying numbers of cores and distinct tasks. Processors that
execute the same task can share the storage used by monitors (but
not the comparison logic). It is assumed that task allocations are
done independently of each other. The overhead is the per-core
overhead relative to a single monitor. As the number of cores in-
creases, more sharing is possible and the overhead decreases. With
an increase in task diversity, sharing becomes more difficult and
the overhead increases. Nevertheless, the relative overhead in a
multi-core architecture with sharing is less than that of a single-
core system. Thus, our proposed monitoring system will require
relatively less system resources when using highly parallel multi-
core packet processors.

4.4. I/O monitor

A preliminary version of the I/O monitor shown in Fig. 3 has
been developed and prototyped using an Altera Stratix Il FPGA.
A series of implementation choices were made regarding the archi-

1 2 4 8 16 32 64 128
number of processor cores

Fig. 5. Multi-core monitoring overhead.

tecture described in Section 3.3. The tag storage is implemented as
an n-slot FIFO. (For simplicity, we assume in-order processing for
this prototype - a requirement that can be loosened in a real sys-
tem.) Each incoming data packet is tagged with a logn-bit packet
identifier generated with a standard counter. The identifier and a
32-bit CRC for the payload portion of the packet is stored in the
tag storage FIFO. As packets arrive at the output packet control por-
tion of the I/O monitor, the identifier is compared against the iden-
tifier at the front of the FIFO. If its value is greater, the intermediate
packets must have been dropped and the next FIFO location is
examined. If the incoming identifier is less than the first identifier
in the FIFO, an unauthorized retransmission is determined. Finally,
the stored CRC and the newly calculated CRC for the outgoing
packet payload are compared to determine if the payload has been
maliciously modified. If a match is determined, the packet is per-
mitted to be transmitted.

The results in Table 3 show the resource requirements for the
prototype implementation (four-input lookup tables (LUT), flip-
flops (FF), and block memory bits) and its performance (maximum

T. Wolf et al./ Computer Communications 34 (2011) 598-606 605

Table 3

Performance and size of 1/O monitor.
Tag storage size LUTs FFs Memory bits Clock rate Throughput

(MHz) (Gbps)

64 packets 356 118 2688 316.86 10.14
128 packets 361 121 5372 308.45 9.87
256 packets 364 124 10,752 306.84 9.82
512 packets 367 127 21,504 317.26 10.15
1024 packets 371 130 43,008 305.62 9.77
2048 packets 375 133 86,016 287.03 9.18
4096 packets 378 136 172,032 265.39 8.49
8192 packets 368 139 344,064 258.60 8.28
16384 packets 372 142 688,128 196.73 6.30

clock rate, throughput). The resource requirements for the imple-
mentation are quite small and are dominated by the need for
memory for tag storage. The throughput performance of around
10 Gigabits per second is sufficient to support state-of-the-art core
routers and thus show that the presented architecture is a feasible
approach to securing the data path in routers.

5. Summary and conclusions

We have presented a novel approach to addressing security vul-
nerabilities within the networking infrastructure itself. Our SPPP
architecture uses monitoring to detect an attack and a recovery
subsystem to limit its impact. Our results show that the proposed
architecture can detect attacks and can be implemented efficiently.
The system may be deployed in next-generation network testbeds
to assess the practical impact of defending network infrastructure.

References

[1] A.Feldmann, Internet clean-slate design: what and why?, SIGCOMM Computer
Communication Review 37 (3) (2007) 59-64.

[2] T. Wolf, Challenges and applications for network-processor-based
programmable routers, in: Proceedings of the IEEE Sarnoff Symposium,
Princeton, NJ, 2006.

[3] A.Cui, Y. Song, P.V. Prabhu, S.J. Stolfo, Brave new world: pervasive insecurity of
embedded network devices, in: Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection (RAID), vol. 5758,
Lecture Notes in Computer Science, Saint-Malo, France, 2009, pp. 378-380.

[4] D.D. Clark, The design philosophy of the DARPA Internet protocols, in:
Proceedings of the ACM SIGCOMM 88, Stanford, CA, 1988, pp. 106-114.

[5] D.L. Tennenhouse, D.J. Wetherall, Towards an active network architecture,
ACM SIGCOMM Computer Communication Review 26 (2) (1996) 5-18.

[6] N.T. Bhatti, R.D. Schlichting, A system for constructing configurable high-level
protocols, in: SIGCOMM '95: Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
Cambridge, MA, 1995, pp. 138-150.

[7] T. Wolf, Service-centric end-to-end abstractions in next-generation networks,
in: Proceedings of the Fifteenth IEEE International Conference on Computer
Communications and Networks (ICCCN), Arlington, VA, 2006, pp. 79-86.

[8] S. Ganapathy, T. Wolf, Design of a network service architecture, in: Proceedings
of the Sixteenth IEEE International Conference on Computer Communications
and Networks (ICCCN), Honolulu, HI, 2007, pp. 754-759.

[9] N.C. Hutchinson, L.L. Peterson, The x-kernel: an architecture for implementing
network protocols, IEEE Transactions on Software Engineering 17 (1) (1991)
64-76.

[10] L. Ruf, K. Farkas, H. Hug, B. Plattner, Network services on service extensible
routers, in: Proceedings of the Seventh Annual International Working
Conference on Active Networking (IWAN 2005), Sophia Antipolis, France,
2005.

[11] T. Anderson, L. Peterson, S. Shenker, J. Turner, Overcoming the Internet
impasse through virtualization, Computer 38 (4) (2005) 34-41.

[12] Intel Corporation, Intel Second Generation Network Processor, 2005. Available
from: <http://www.intel.com/design/network/products/npfamily/>.

[13] EZchip Technologies Ltd., Yokneam, Israel, NP-3 - 30-Gigabit Network
Processor with Integrated Traffic Management, May 2007. Available from:
<http://www.ezchip.com/>.

[14] LSI Corporation, APP3300 Family of Advanced Communication Processors,
August 2007. Available from: <http://www.lsi.com/> .

[15] J.S. Turner, P. Crowley,]. DeHart, A. Freestone, B. Heller, F. Kuhns, S. Kumar, J.
Lockwood, J. Lu, M. Wilson, C. Wiseman, D. Zar, Supercharging PlanetLab: a
high performance, multi-application, overlay network platform, in: SIGCOMM
'07: Proceedings of the 2007 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, Kyoto, Japan,
2007, pp. 85-96.

[16] A.Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford, In VINI veritas: realistic
and controlled network experimentation, in: SIGCOMM "06: Proceedings of the
2006 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Pisa, Italy, 2006, pp. 3-14.

[17] D. Geer, Malicious bots threaten network security, Computer 38 (1) (2005)
18-20.

[18] A. Hussain,]. Heidemann, C. Papadopoulos, A framework for classifying denial
of service attacks, in: SIGCOMM '03: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, Karlsruhe, Germany, 2003, pp. 99-110.

[19] A. Kuzmanovic, E.W. Knightly, Low-rate TCP-targeted denial of service attacks:
the shrew vs. the mice and elephants, in: SIGCOMM ’'03: Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Karlsruhe, Germany, 2003, pp. 75-86.

[20] J. Xia, L. Gao, T. Fei, Flooding attacks by exploiting persistent forwarding loops,
in: IMC ’05: Proceedings of the 5th ACM SIGCOMM Conference on Internet
Measurement, Berkeley, CA, 2005.

[21] S. Parameswaran, T. Wolf, Embedded systems security — an overview, Design
Automation for Embedded Systems 12 (3) (2008) 173-183.

[22] S. Ravi, A. Raghunathan, S. Chakradhar, Tamper resistance mechanisms for
secure, embedded systems, in: Proceedings of the 17th International Conference
on VLSI Design (VLSI Design 2004), Mumbiai, India, 2004, pp. 605-611.

[23] A. Wood, J.A. Stankovic, Denial of service in sensor networks, IEEE Computer
35 (10) (2002) 54-62.

[24] P. Kocher,]. Jaffe, B. Jun, Differential power analysis, in: Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO '99), Lecture Notes in Computer Science, Springer-Verlag, London,
United Kingdom, 1999, pp. 388-397.

[25] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, R. Vaslin,
Reconfigurable hardware for high-security/high-performance embedded
systems: the SAFES perspective, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 16 (2) (2008) 144-155.

[26] M. Hicks, P. Kakkar,].T. Moore, C.A. Gunter, S. Nettles, PLAN: a packet language
for active networks, in: Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming Languages, ACM, 1998, pp. 86-93.

[27] D. Arora, S. Ravi, A. Raghunathan, N.K. Jha, Secure embedded processing
through hardware-assisted run-time monitoring, in: Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition
(DATE’05), Munich, Germany, 2005, pp. 178-183.

[28] R.G. Ragel, S. Parameswaran, IMPRES: integrated monitoring for processor
reliability and security, in: Proceedings of the 43rd Annual Conference on
Design Automation (DAC), San Francisco, CA, USA, 2006, pp. 502-505.

[29] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, N. Memon, SAFE-OPS: an
approach to embedded software security, Transactions on Embedded
Computing Systems 4 (1) (2005) 189-210.

[30] S. Mao, T. Wolf, Hardware support for secure processing in embedded systems,
in: Proceedings of the 44th Design Automation Conference (DAC), San Diego,
CA, 2007, pp. 483-488.

[31] M. Abadi, M. Budiu, U. Erlingsson,]. Ligatti, Control-flow integrity principles,
implementations, and applications, in: ACM Conference on Computer and
Communication Security (CCS), Alexandria, VA, 2005, pp. 340-353.

[32] N. Nakka, Z. Kalbarczyk, RK. Iyer, J. Xu, An architectural framework for
providing reliability and security support, in: Proceedings of the 2004
International Conference on Dependable Systems and Networks (DSN),
Florence, Italy, 2004, pp. 585-594.

[33] R.G. Ragel, S. Parameswaran, S.M. Kia, Micro embedded monitoring for security
in application specific instruction-set processors, in: Proceedings of the 2005
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), San Francisco, CA, 2005, pp. 304-314.

[34] Z. Shao, Q. Zhuge, Y. He, E.H.-M. Sha, Defending embedded systems against
buffer overflow via hardware/software, in: Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC), Las Vegas, NV, 2003, pp.
352-363.

[35] G.F. Cretu, JJ. Parekh, K. Wang, S.J. Stolfo, Intrusion and anomaly detection
model exchange for mobile ad-hoc networks, in: Proceedings of the 3rd IEEE
on Consumer Communications and Networking Conference (CCNC 2006), Las
Vegas, NV, 2006, pp. 635-639.

[36] Y. Zhou, V. Lakamraju, I. Koren, C.M. Krishna, Software-based failure detection
and recovery in programmable network interfaces, IEEE Transactions on
Parallel and Distributed Systems 18 (11) (2007) 1539-1550.

[37] N.-F.Huang, Y.-T. Chen, Y.-C. Chen, C.-N. Kao, J. Chiou, A network processor-based
fault-tolerance architecture for critical network equipments, in: Proceedings of
the Information Networking, Networking Technologies for Broadband and Mobile
Networks, International Conference (ICOIN), Lecture Notes in Computer Science,
3090, Springer-Verlag, Busan, Korea, 2004, pp. 763-772.

[38] Y. Luo, J. Fan, Fault tolerant practices on network processors for dependable
network processing, in: Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), Miami, FL, 2008.

[39] T. Wolf, R. Tessier, Design of a secure router system for next-generation
networks, in: Proceedings of the Third International Conference on Network
and System Security (NSS), Gold Coast, Australia, 2009.

[40] CERT Coordination Center, Carnegie Mellon University, Pittsburgh, PA, CERT
Advisory CA-2001-19 “Code Red Worm Exploiting Buffer Overflow In IIS
Indexing Service DLL, July 2001.

http://www.intel.com/design/network/products/npfamily/
http://www.ezchip.com/
http://www.lsi.com/

606 T. Wolf et al./ Computer Communications 34 (2011) 598-606

[41] D. Moore, C. Shannon,]. Brown, Code-Red: a case study on the spread and
victims of an internet worm, in: IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurment, Marseille, France, 2002, pp.
273-284.

[42] H.-]. Jung, Z. Baker, V. Prasanna, Performance of FPGA implementation of bit-
split architecture for intrusion detection systems, in: Proceedings of the 20th
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island, Greece, 2006.

[43] A. Das, D. Nguyen, J. Zambreno, G. Memik, A. Choudhary, An FPGA-based
network intrusion detection architecture, IEEE Transactions on Information
Forensics and Security 3 (1) (2008) 118-132.

[44] B.T. Gold, J.C. Smolens, B. Falsafi, J.C. Hoe, The granularity of soft-error
containment in shared memory multiprocessors, in: Proceedings of the
Workshop on System Effects of Logic Soft Errors, Urbana-Champaign, 2006.

[45] R. Teodorescu, J. Nakano,]. Torrellas, SWICH: a prototype for efficient cache-
level checkpointing and rollback, IEEE Micro 26 (5) (2006) 28-40.

[46] M.R. Guthaus,].S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
MiBench: a free, commercially representative embedded benchmark suite, in:
Proceedings of the IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, 2001.

[47] D. Burger, T.M. Austin, The Simple Scalar tool set, version 2.0, Tech. Rep. 1342,
Department of Computer Science, University of Wisconsin in Madison, June
1997.

[48] Q. Wu, T. Wolf, On runtime management in multi-core packet processing
systems, in: Proceedings of the ACM/IEEE Symposium on Architectures for
Networking and Communication Systems (ANCS), San Jose, CA, 2008,
pp. 69-78.

	Securing the data path of next-generation router systems
	Introduction
	Related work
	System architecture
	Security model
	Attack examples
	Security requirements
	Attacker capabilities

	Secure packet processing platform
	Monitoring subsystem
	Processing monitor
	I/O monitor

	Recovery subsystem

	Results
	Monitoring stream information
	Single-core monitor
	Multi-core monitor
	I/O monitor

	Summary and conclusions
	References

