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Transparent transmission control protocol (TCP) acceleration is a technique to increase TCP throughput
without requiring any changes in end-system TCP implementations. By intercepting and relaying TCP
connections inside the network, long end-to-end feedback control loops can be broken into several smal-
ler control loops. This decrease in feedback delay allows accelerated TCP flows to react more quickly to
packet loss and thus achieve higher throughput performance. Such TCP acceleration can be implemented
on network processors, which are increasingly deployed in modern router systems. In our paper, we
describe the functionality of transparent TCP acceleration in detail. Through simulation experiments,
we quantify the benefits of TCP acceleration in a broad range of scenarios including flow-control bound
and congestion-control bound connections. We study accelerator performance issues on an implementa-
tion based on the Intel IXP2350 network processor. Finally, we discuss a number of practical deployment
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issues and show that TCP acceleration can lead to higher system-wide utilization of link bandwidth.
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1. Introduction

The transmission control protocol (TCP) is a commonly used
transport layer protocol in the Internet. It provides reliability, flow
control, and congestion control services on top of the lossy, best-ef-
fort network layer. There are a number of control mechanisms
implemented in TCP that determine when a packet is considered
lost, when to retransmit, and when to slow down the rate of trans-
mission. Over the past decades, many components of the TCP pro-
tocol have been fine tuned to incrementally increase the overall
TCP performance. In all these approaches, the network itself was
considered an interconnect that simply moves data from one
end-system to another. Only small changes in the network func-
tionality were considered (e.g., RED, FRED, etc.) to support TCP
performance.

In our work, we make use of recently developed network pro-
cessor technology to implement TCP accelerators inside the net-
work. We discuss how this approach can significantly improve
the performance of TCP connections and how it can be incremen-
tally deployed. The significance and potential impact of this work
is considerable since the deployment of such TCP accelerators im-
proves the performance that any network user can experience
without changing anything on end-systems.

The idea of a TCP accelerator is to terminate TCP connections on
a router and then relay the data to a second connection towards
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the end system. It is possible to have numerous TCP accelerators
in a single end-to-end connection. TCP is a rate-adaptive protocol,
and the performance improvement in TCP acceleration comes from
reducing the delay in the feedback loop that determines the send-
ing rate and when to retransmit packets. It is important to note
that this feedback loop is always active and retransmissions are of-
ten necessary due to the TCP behavior of continuously increasing
the transmission rate until packet loss occurs. As a result, even un-
der ideal conditions (no packet loss due to link errors and no con-
tention for bandwidth), retransmissions happen. The shorter the
feedback loop is to trigger the retransmission, the higher the over-
all performance of the connection.

In this paper, we present the fundamental concepts of TCP
acceleration, a detailed performance study, and a discussion of
deployment issues. The specific contributions are:

e TCP acceleration as a novel approach to improving TCP throughput:
We present the concepts of TCP acceleration on its context to
related work. We show a detailed algorithm of how TCP acceler-
ation is implemented on a node.

e Simulation results of TCP acceleration performance in various net-
working scenarios: We show the performance improvements
gained from TCP acceleration in different settings. We show that
accelerated TCP connections achieve higher bandwidth than
conventional TCP connections on these bottleneck links. While
some of this bandwidth gain is obtained at the cost of non-accel-
erated TCP connections, we show that TCP acceleration can lead
to a higher overall utilization of bottleneck links and thus a more
effective network system as a whole.
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e Prototype implementation on a network processor: A prototype
implementation on the Intel IXP2350 network processor is used
to demonstrate the feasibility of a high-performance implemen-
tation of TCP acceleration.

e Discussion of deployment issues: For new network technology, it
is imperative that it can be easily integrated with current Inter-
net software and hardware. One major challenge is that in most
realistic scenarios the end-system software (e.g., TCP/IP stack)
cannot be changed. The TCP acceleration technique that we
present here is completely transparent to end-systems. All the
functionality is implemented on routers. Further, the proposed
TCP acceleration technique can be deployed incrementally. Even
a single router with TCP acceleration can improve the through-
put performance of some TCP flows. We show simulation results
on an Internet-like topology with realistic traffic that show
improvements in system-wide utilization.

Section 2 introduces the related work on which transparent TCP
acceleration is based. Section 3 describes the functionality of a TCP
acceleration system in detail. The performance impact of TCP
acceleration is quantified in Section 4 where we present results
from simulations. Details of our prototype implementation on
the Intel IXP2350 network processor are presented in Section 5.
Section 6 discusses the practical aspects of a potential deployment
of TCP acceleration. Finally, Section 7 summarizes and concludes
this paper.

2. Related work

There has been a large body of work on improving TCP through-
put, which has often focused on developing TCP improvements on
the end-system. We are addressing acceleration techniques inside
the network.

2.1. TCP acceleration techniques

The performance of an end-to-end transport protocol degrades
in long-haul data transmission over lossy links. A recent study on
overlay networks by Liu et al. [1] has shown that breaking a long
end-to-end TCP connection into multiple shorter TCP “relay” con-
nections can improve efficiency and fairness. The theoretical re-
sults from this study are the basis of our work. The main
difference is that we are considering a transparent use of TCP relay
nodes inside the network. This means that the end-system does
not have to be configured to use overlay networks. From a practical
point of view, this is an important aspect as changes in end-system
software are difficult to deploy.

Other examples of work show how the use of multiple TCP con-
nections can improve throughput. Split TCP connections are used
to cope with differences in the communication media that could
cause the congestion control window to close. The idea is to split
the connection at the boundary in order to isolate performance is-
sues that are related to a particular medium. This was imple-
mented in [-TCP [2,3]. Ananth and Duchamp introduce the idea
of implementing a single logical end-to-end connection as a series
of cascaded TCP connections [4]. The Snoop Protocol [5] adopts a
proxy-based approach to improve TCP performance. The proxy ca-
ches packets and performs local retransmissions across a wireless
link by monitoring the acknowledgments to TCP packets generated
by the receiver.

2.2. The end-to-end argument

It has been argued in the design of the Internet that it is desir-
able to provide certain functions (e.g., error detection, reliability) in

an end-to-end fashion rather than implementing them repeatedly
on each hop [6]. In this sense, TCP acceleration violates this end-to-
end principle. The reason why we feel this alternate design view is
justified is due to the performance improvement that accelerated
TCP can provide. This is similar to I-TCP described above and other
TCP improvements for wireless environments [7].

2.3. TCP processing on routers

In addition to theoretical work on TCP connections, there are
numerous examples where some sort of TCP processing has been
implemented inside the network (i.e.,, on a router). A commonly
used technique for building application layer firewalls involves
inserting a TCP proxy in the communication path of the two com-
municating end points. Spatscheck et al. show in [8] that TCP con-
nection splicing improves TCP forwarding performance by a factor
of two to four as compared to simple IP forwarding on the same
hardware.

Layer 4 switches that provide load balancing and transport layer
caching functionality often perform TCP traffic redirection. These
are examples where simple TCP-level processing of packets on rou-
ters can improve the TCP forwarding performance [9,10].

2.4. TCP processing on network processors

In order to implement a TCP accelerator, it is necessary to aug-
ment routers with the ability to store packets and perform TCP-
compliant processing of packets. Network processors (NPs) are
ideal systems to perform this task. NPs are usually implemented
as embedded multiprocessor systems-on-a-chip with considerable
amounts of processing power and memory and are software pro-
grammable [11]. NPs implement packet processing functions on
the input and output ports of routers. Commercial examples of net-
work processors are the Intel IXP2350 [12], the EZchip NP-3 [13],
and the LSI APP [14]. Network processors have been used in a num-
ber of scenarios to provide advanced packet processing functions
ranging from simple forwarding [15] to complex functions like net-
work measurement [16].

In the context of TCP processing, network processors have been
used to offload TCP processing from high-end server systems
[17,18]. Moving complex TCP processing from end-systems into
specialized networking hardware reduces the system load and
frees up resources. In our work, the TCP accelerator provides sim-
ilar functionality as a TCP-offloading system. Instead of providing
an interface between the network and a host, the TCP accelerator
acts as a connector between two TCP connections inside the net-
work. Packets are buffered and forwarded using a modified TCP
state machine. Zhao et al. have implemented TCP processing on a
network processor on a router in order to splice two TCP connec-
tions for load-balancing purposes [19]. Except for the initial con-
nection setup, the processing complexity of splicing is very
simple and can be performed on a per-packet basis. TCP accelera-
tion requires more TCP processing to be performed on the network
processor since packets get buffered and potentially retransmitted.

NPs are just the first step to experimenting with TCP accelera-
tion. If TCP acceleration becomes a mainstream functionality of
routers (similar to how NAT [20] and firewalling [21] have become
a ubiquitous function of home gateways), then ASIC-based imple-
mentations are likely to become available and present better
power and performance tradeoffs.

3. Transparent TCP acceleration

The functionality of TCP accelerator nodes is implemented on
routers that can be added transparently and incrementally to the
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network. In this section, we first describe the overall idea of trans-
parent TCP acceleration from the perspective of an end-to-end con-
nection traversing the network. Then, we view TCP acceleration
from a router’s point of view.

3.1. Network topology

Fig. 1(a) illustrates a conventional TCP connection where only
the end-systems participate in Layer 4 processing. The network
performs Layer 3 forwarding on datagrams and does not alter
any of the Layer 4 segments. Fig. 1(b) illustrates how TCP acceler-
ation nodes (denoted by ‘A’) change this paradigm. An accelerator
node terminates TCP connections and opens a second connection
to the next Layer 4 node. This allows the accelerator node to shield
the TCP interactions (e.g., packet loss) from one connection to an-
other. As a result, the feedback control loops, which implement the
fundamental mechanisms of reliability, flow control, and conges-
tion control, are smaller with lower delay. As a result, accelerated
TCP can react faster and achieve higher throughput than conven-
tional TCP.

3.2. Node architecture

Before we quantify the performance improvement from TCP
Acceleration in Section 4, we discuss how an accelerator node
implements this functionality.

3.2.1. Acceleration example

To illustrate the behavior of an individual TCP accelerator node,
Fig. 2 shows a space-time diagram for an example connection over
conventional routers and TCP accelerators. For simplicity, unidirec-
tional traffic with 1-byte packets is assumed. The initial sequence
number is assumed to be 1. As Fig. 2(a) illustrates in this example,
conventional routers just forward segments without interacting on
the transport layer. In contrast, the TCP accelerator node in
Fig. 2(b) actively participates in the TCP connection (e.g., responds
to SYN, DATA, ACK, and FIN segments). By receiving packets and
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(b) Accelerated TCP Connection

Fig. 1. Conventional and accelerated TCP connections. Systems that implement TCP
functionality are marked with ‘A’.

acknowledging them to the sender before they have arrived at
the receiver, the TCP accelerator effectively splits one TCP connec-
tion into two connections with shorter feedback loops. In order to
be able to retransmit packets that may get lost after an acknowl-
edgment has been sent to the sender, the accelerator node requires
a buffer (shown on the side of Fig. 2). The following example shows
the typical behavior of the TCP accelerator:

e Immediate response to sender: SYN and DATA packets are
immediately buffered and acknowledged. The only exception
is the first arrival of DATA 3, where no buffer space is
available.

e Local retransmission: When packets are lost, they are locally
retransmitted (e.g., DATA 3). Due to a shorter RTT for both con-
nections, a shorter timeout can more quickly detect the packet
loss.

e Flow control back pressure: When the connection from the
accelerator node is slower than the one to it, buffer space will
fill up and no additional packets can be acknowledged and
stored. This will cause the sender to detect packet loss and
slow down.

The most important observation in Fig. 2 is that the end-systems
do not see any difference to a conventional TCP connection (other
than packet order and performance).

3.2.2. Acceleration algorithm

The detailed interactions of a TCP accelerator node with a flow
of packets from a connection are shown in Algorithm 1. The steps
of the algorithm are:

e Lines 1-2: A packet is received and classified. The variable p rep-
resents the packet and f represents the flow to which the packet
belongs.

e Lines 3 and 35-36: If a packet is not a TCP packet, it is forwarded
without further consideration.

e Lines 4-10: If a packet is a SYN packet (indicating connection
setup) and no flow record exists, then a flow record is estab-
lished. A SYN/ACK is returned to the sender and the SYN is for-
warded towards the destination (“upstream” and “downstream”
respectively). Since the SYN can get lost, a timer needs to be
started for that packet. If the SYN/ACK gets lost, the original sen-
der will retransmit the SYN and cause a retransmission of the
SYN/ACK.

e Lines 11-19: If data are received from the upstream sender and
buffer space is available, then the packet is buffered and for-
warded downstream. If no buffer space is available, the TCP
accelerator needs to propagate back-pressure to slow down
the sender. In this case, the packet is not acknowledged and per-
ceived as a packet drop by the sender. The congestion control
mechanism of the sender will slow down the sending rate until
buffer space becomes available. Packets are only forwarded
when the downstream connection does not have too much out-
standing data (lines 15-18).

e Lines 20-26: If an ACK is received, then buffer space in the com-
plementary flow (flow in the opposite direction, denoted by f)
can be released. This reduces the amount of outstanding data
and (potentially several) packets can be transmitted from the
buffer space of f.

e Lines 27-31: If a FIN is received, connection teardown can be
initiated.

e Lines 32-33: If a packet does not match the above criteria, it is
handled as an exception.

e Lines 39-40: Whenever a timeout occurs, the packet that has ini-
tiated the timer is retransmitted.
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Fig. 2. Message sequence chart of an example connection comparing conventional and accelerated TCP connections.

Algorithm 1. TCP acceleration algorithm

1: p = receive_packet()

2: f = classify(p)

3: if (is_.TCP(p)) then

4: if (is-SYN(p)) then

5: if (Irecord_exists(f)) then
6: establish_buffer space(f)
7: end if

8: send(SYN/ACK, upstream)
9: send(p, downstream)

10: start_timer(p)

11: else if ((is DATA(p))&&(record exists(f))) then

12: if (‘buffer_full(f)) then

13: store(p,f)

14: send(ACK, upstream)

15: if (outstanding ACKs(f) + size_of (p) <

max_window(f) then

16: send(p, downstream)

17: start_timer(p)

18: end if

19: end if

20: else if ((is_ACK(p))&&(record_exists(f))) then

21: stop_timer(p)

22: release((p).f)

23: while (outstanding ACKs(f)+
size_of (next _stored_packet(f)) <
max_window(f) do

24: send(next_stored_packet(f), f)

25: start_timer(next_stored_packet (f))

26: end while

27: else if ((is_FIN(p))&&(record_exists(f))) then

28: send(FIN/ACK, upstream)

29: send(p, downstream)

30: start_timer(p)

31: mark_buffer_for_removal(f)

32: else

33: handle_exception(p, f)

34: end if

35: else

36: send(p, downstream)

37: end if

38:

39: when (timeout(p))

40: retransmit(p)

The flow control window size that is advertised by an accelera-
tor node is the amount of free buffer space up to half of the total
buffer space allocated to the connection (maximum 64 kB). In

addition to the state maintenance as described above, a RTT esti-
mator needs to be maintained for each flow according to the TCP
specification. The timers for each transmitted packet can be imple-
mented efficiently as described in [22]. Since each connection re-
quires buffer space, it might not be possible to accelerate all
connections traversing an accelerator node. In such a case, only a
subset of connections is accelerated (not considered in Algorithm
1). This can be performed as part of the packet classification step
in Line 2.

3.2.3. NP software components

Fig. 3 shows the architecture of a TCP acceleration node on a
network processor. The NP implements two processing paths for
packets. Packets that cannot be accelerated due to resource con-
straints or non-TCP protocols are forwarded without any modifica-
tion. In order to identify such packets, it is necessary to have a
packet classification mechanism (e.g., simple 5-tuple hash func-
tion). Packets that are accelerated require Layer 3 and Layer 4 pro-
cessing, which involves IP input processing, TCP acceleration, and
IP output processing. The TCP accelerator has access to a large
memory to store TCP state (connection state as well as data buf-
fers). It is important to note that packets which are processed in
the TCP accelerator are not addressed to the router system that
performs the acceleration. Instead, the router transparently inter-
cepts these packets and performs the acceleration. The end sys-
tems are also unaware of this processing that is performed by
the router.

3.2.4. Processing and memory resources

TCP processing requires additional computational and memory
resources as compared to plain IP forwarding. The processing con-
sists of IP input and output processing as well as TCP processing.
The total processing requirements in terms of the number of pro-
cessing cycles are presented in Section 5. The memory require-
ments are determined by the size of the TCP connection state
(tens of bytes) and the TCP buffer size (tens of kilobytes). The buf-
fer requirements for a TCP accelerator are determined by the max-
imum window size that is allowed on a connection. The accelerator
needs to reliably buffer all packets that have not been acknowl-
edged by the receiver plus all packets that can possible be sent
by the sender. Thus, the ideal buffer size is two times the maxi-
mum window size of the connection.
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Typical network processor systems are equipped with multiple
processor cores (4-16) and large SRAM and DRAM memories
(1-8 MB SRAM, 64-256 MB DRAM). Assuming a maximum win-
dow size of 64 kB, a buffer of 128 kB needs to be allocated for
maximum efficiency. With this configuration a total of 1000 con-
nections can be supported by 128 MB of memory. This is sufficient
to support most TCP connections on low-speed edge routers.

3.3. Cross-layer protocol issues

One observation on TCP Acceleration is that it slightly changes
the “delivery guarantees” of TCP. In a conventional TCP connection,
receiving an ACK at the sender implies that the destination has re-
ceived the acknowledged data. In the case of TCP Acceleration, this
is no longer true. Instead, an ACK signifies that the next accelerator
has received the acknowledged data and will try to relay it to the
destination (or the next accelerator node). It may be conceivable
that an accelerator node that has acknowledged a packet may go
down before passing the packet to the next node. In that case, there
would be a discrepancy between what the sender thinks the recei-
ver has received and what the receiver really has received.

However, in most operating systems it is not possible (or at
least not easily) to determine is data that has been placed in a
TCP socket has been acknowledged. Instead, network applications
use application-layer protocols to determine correct delivery of
messages. Thus, this change in ACK semantics has very little prac-
tical impact.

4. TCP performance of acceleration

The key question about the performance of TCP acceleration is
how much benefit can be gained for the cost of implementing an
almost complete TCP/IP stack on a network processor. The theoret-
ical foundation of the performance of accelerated TCP can be illus-
trated with the equation that has been derived for TCP throughput
performance (i.e., bandwidth bw) [23]:

MTU
RTT - Vloss

Assuming a constant maximum transfer unit (MTU), a larger round-
trip time (RTT) and a higher link loss rate (loss) causes the through-
put performance to degrade. It is clear that with accelerated TCP, we
can achieve lower round-trip times due to the separation of

bWTCP =122 (1)

Router with Network Processor

1 packet R IP L,
classification forwarding
IP input N TCP IP output
processing acceleration processing
TCP TCP state

accelerator memory

Fig. 3. System architecture of TCP acceleration node.

feedback loops. The reduced RTT, however, also increases the num-
ber of packets sent on a link. If there is contention on this link, then
the loss rate increases. Therefore it is not easily possible to derive an
analytic result for the overall performance of accelerated TCP.
Therefore, we present a number of simulation experiments that
help in obtaining a quantitative understanding of the performance
impacts. First, we explore TCP connections that are bound by the
flow-control functionality in TCP. Then, we explore the more com-
plex case of congestion-control bound TCP connections. These
experiments were carried out on the ns-2 [24] simulator.

The FullTcp agent (with Reno congestion control) was modified
to create a new agent that is aware of the TCP acceleration mech-
anism. Additionally, a new application module was developed to
pull data from the TCP receive buffer and transfer it to the next
accelerator node or the end system. This application is used to sim-
ulate the functionality of the TCP accelerator node.

4.1. Flow control

In the following subsections, we explore different aspects of TCP
acceleration by varying accelerator node placement, varying the
amounts of data transferred, and constraining available processing
resources. The results shown here are a subset of a wider range of
results which were presented in our previous work [25]. In each
case, we compare the speedup offered by TCP acceleration to that
of regular TCP:

bWaccelerated TCP
speedup bWregulur TCcP (2)
By “regular TCP” or “conventional TCP” we mean a standard ns-2
FullTcp and TCPReno agent on the same topology. The total end-
to-end delay for all experiments is 100 ms (unless stated other-
wise). Unless explicitly specified, link bandwidths are 100 Mbps,
the RED queuing discipline is used, and processing delay is negligi-
ble. The FTP application is used to provide data transfer. In all cases,
there is no background traffic that competes with the data transfer.

4.1.1. Single relay node

First, we explore the speedup offered over regular TCP for differ-
ent placements of a single accelerator node over a link. The place-
ment of the node is varied by changing the distance (in terms of
delay) of the accelerator node from the source. The results are
shown in Fig. 4 and show that evenly spaced accelerator nodes
are best as they cut the link delay for both sides into half. Unevenly

1.5 n

Speedup

05 N

0 1 1 1 1
0 20 40 60 80 100
Delay from source [ms]

Fig. 4. Speedup of accelerated TCP over regular TCP depending of location of node.
The x-axis shows the distance of the accelerator from the source with a total end-to-
end delay of 100 ms.
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Fig. 5. Speedup of accelerated TCP over regular TCP depending on connection
duration. The x-axis shows the amount of data that is transferred.

split connections can still benefit from acceleration as the speedup
is always greater than 1.

4.1.2. Connection duration

One question that is particularly important in the context of
web transfers is the connection duration. Many web documents
consist of small objects and TCP connections to download them
are often very short. We obtain Fig. 5 by exploring the connection
duration with a single accelerator node in the middle of the topol-
ogy. There is some overhead in accelerated TCP only for the initial
ACK. Transfers of a few kilobytes already achieve an overall speed-
up of 1.5. The maximum speedup for a single accelerator node is 2
and large file transfers converge to this value.

4.1.3. Multiple acceleration nodes

The maximum speedup with a single acceleration node is 2. The
question arises as to how much speedup multiple acceleration
nodes can achieve. The results in Fig. 6 assume evenly spaced
acceleration nodes totaling an end-to-end delay of 100 ms. The
maximum speedup increases linearly with the number of nodes.
This is due to the reduced round-trip time for each connection,
which allows faster acknowledgment of sent data and transmission
of the next window. It should be noted that in this case the connec-
tion throughput is flow-control-limited, not congestion-control-

10 - N

Speedup

0 1 1 1 1
0 2 4 6 8 10

Number of relay nodes
Fig. 6. Speedup of accelerated TCP over regular TCP depending on number of

accelerators. The x-axis shows the number of evenly spaced acceleration nodes with
a total end-to-end delay of 100 ms.

27 4

15 4

Speedup

05 N

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Processing delay [ms]

Fig. 7. Speedup of accelerated TCP over regular TCP depending on processing delay
of acceleration node. The x-axis shows the amount of delay introduced due to
acceleration processing.

limited. In the latter case, the speedup would be limited by the
available bandwidth.

4.1.4. TCP processing delay

The previous experiments assume that the processing delay for
TCP acceleration is negligible. As we have discussed in Section
3.2.4, TCP acceleration can incur a significant processing cost and
it is important to see what impact this has on the achievable
speedup. The results for a single accelerator node with varying pro-
cessing delay are shown in Fig. 7. Even with a processing delay of
40 ms (which is very large, even for complex packet processing
functionality), accelerated TCP still performs better than regular
TCP. Processing delays in the lower millisecond range have hardly
any impact on the overall performance.

4.1.5. Acceleration with limited memory

In addition to processing power, TCP acceleration also requires a
significant amount of buffer space to be maintained per connec-
tion. In Fig. 8, we vary the maximum window size on the acceler-
ator node and plot the speedup obtained over regular TCP. The
window size is half the amount of data that must be stored on
the node in the worst case. The accelerator performs best if the
window size is at least as large as the maximum window size used
by the sender and receiver. Smaller window sizes linearly decrease

1.5 -

Speedup

05 - -

0 L L L L L
20K 40K 60K 80K 100K

Maximum window size [bytes]

120K

Fig. 8. Speedup of accelerated TCP over regular TCP depending on maximum
window size. The x-axis shows the amount of data that can be stored on an
acceleration node.



S. Ladiwala et al./ Computer Communications 32 (2009) 691-702 697

1000

N
>
o
©
()
Lo

100

Speedup

1 L PR M M |

0.001 0.01 0.1 1 10 100
Packet loss [%]

Fig. 9. Speedup of accelerated TCP over regular TCP depending on packet loss rate.

the throughput. Larger window sizes do not improve performance,
because the sender cannot utilize the larger window.

4.1.6. Acceleration of lossy links

One scenario where accelerated TCP significantly outperforms
regular TCP is on lossy links (e.g., wireless links). The throughput
is higher because local retransmissions from the accelerator node
can repair the loss locally and do not require end-to-end retrans-
missions. Fig. 9 shows the speedup of a single accelerator node
(“2 hops”) and three accelerator nodes (“4 hops”) over regular
TCP for different packet loss rates. For loss rates around 1-10%,
the speedup on a multihop topology is close to 10-fold. For higher
loss rates (which are unlikely to be encountered in a realistic net-
work) the speedup is even higher. This is due to conventional TCP
performing extremely poorly under these conditions. Thus, the rel-
ative benefit of accelerated TCP is higher.

4.2. Congestion control

The previous results show that TCP acceleration can signifi-
cantly increase the throughput for flow-control limited connec-
tions. This case is applicable when there is no congestion in the
network or when the connection duration is so short that the
TCP window has reached the size where congestion becomes an
issue.

The following set of results show that there are also benefits to
using TCP acceleration for connections whose throughput is lim-
ited by congestion control. In this context, we also explore the is-
sue of fairness between accelerated and non-accelerated TCP flows.

4.2.1. Throughput under congestion

First, we explore how accelerated TCP connections behave in
comparison to conventional TCP flows. The simulation results
shown in Fig. 11 were derived from an ns-2 simulation with an ex-
tremely simple topology shown in Fig. 10. The nodes adjacent to
the bottleneck link provide acceleration services to some of the
connections. Unless noted otherwise, 10 connections start at time
t =0 at the left-most node and connect to the rightmost node.

100Mbps @ 10Mbps @ 100Mbps
30ms U 40ms U 30ms
no loss no loss no loss

Fig. 10. Setup of ns-2 simulation for experiments with TCP congestion. Nodes
denoted with “(A)” provide TCP acceleration.

Fig. 11 shows two experiments — one with 9 conventional and 1
accelerated TCP flow, and one with 1 conventional and 9 acceler-
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Fig. 11. Throughput of accelerated TCP flows (bold) and conventional TCP flows
(thin).
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ated TCP flows. In Fig. 11(a), one can observe that conventional TCP
connections reach steady state at an average bandwidth of just be-
low the fair share of the link speed. The overhead for protocol
headers does not allow a full use of the entire bandwidth for “use-
ful” data. Even between identical connections (as in this experi-
ment), there is a certain level of “unfairness”. The average
bandwidth that is achieved by each connection differs by around
10% even after t=600s. Nevertheless, all connections show
roughly the same behavior. In Fig. 11(a), one of the conventional
TCP flows is replaced with an accelerated TCP flow, where the
nodes before and after the bottleneck link implement TCP acceler-
ation. The average throughput for the accelerated flow (shown in
bold) increases by approximately 60% over non-accelerated flows.
This is expected as we have decreased the TCP control loop on the
congested link from an RTT of 200 ms to an RTT of 80 ms. Looking
at Eq. (1), we expect the performance to increase by a factor of
20ms — 2.5 due to the decrease of the RTT. However, this improve-
ment in RTT is counterbalanced by an increase in the loss rate due
to more “pressure” on the bottleneck link. The accelerated flow in-
creases the number of packets in the queue and thus increases the
loss rate. The combination of lower RTT and higher loss rate yields
a performance improvement of a factor of 1.6.

When further increasing the number of accelerated flows, we
observe the behavior shown in Fig. 11(b). The performance
improvement for each accelerated flow diminishes as more flows
have the same “competitive advantage” and is only around a factor
of 1.1. The conventional TCP flow observes a significant reduction
in performance to about 0.7 times the original bandwidth. This
raises the immediate question of fairness of TCP acceleration.

4.2.2. Connection startup

Fig. 12 shows the startup behavior of nine flows starting at time
t =0 and one additional flow starting at time t =20 s. In Fig. 12(a),
all connections are conventional TCP and it can be observed that
the late flow requires a longer time to reach fair link sharing than
the other flows. In Fig. 12(b), the late flow is an accelerated TCP flow
that reaches the fair share of the link much more quickly than a con-
ventional TCP flow. It eventually does reach a higher bandwidth
than the fair share as shown in Fig. 11. Finally, Fig. 12(c) shows a
late regular TCP flow competing with accelerated flows. In this case,
the late flow requires more time to gain the same throughput as in
Fig. 12(a). Nevertheless, the accelerated flows do allow the conven-
tional TCP connections to behave roughly the same.

4.2.3. Fairness

From Fig. 11(b), we see that TCP acceleration takes away band-
width from conventional TCP flows and thus raises the question of
fairness. The issue of TCP-friendly bandwidth consumption has
been studied in the context of rate-controlled flows [26]. For TCP
acceleration, two points of view can be taken:

e TCP acceleration is unfair. Clearly, as shown in Fig. 11(b), an
accelerated TCP flow receives more bandwidth on the bottleneck
link than a conventional TCP flow. Since in both cases the end-
to-end connections have the same RTT and loss rate, both types
of connections should receive the same bandwidth.

e TCP acceleration is fair. Fairness is only achieved when both con-
nections have the same RTT and the resulting loss rate. Thus, in
most practical cases, absolute fair sharing of the bottleneck link
is not practically possible. In principle, TCP acceleration only
changes the RTT of an accelerated flow. All other aspects of
TCP are the same as on conventional TCP.

We do not attempt to judge which view is the right one. Since
there is nothing fundamentally different between accelerated
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Fig. 12. Throughput of accelerated TCP flows (bold) and conventional TCP flows
(thin) with delayed start.

TCP and conventional TCP, the use of TCP accelerators can probably
not be detected and discouraged easily. Therefore it can be ex-
pected that such an acceleration service will become more widely
used and a necessary feature to remain competitive in the market.
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4.2.4. Link utilization

The throughput improvements shown above address the per-
formance seen by one particular user. Another question about
the benefit of TCP acceleration is how the use of this service im-
pacts the overall system. To explore this question, we look at the
utilization of the bottleneck link. If the utilization increases with
the use of more accelerated TCP connections, then we can infer
that there is not only an individual benefit but also a global benefit.

In our experiments, 10 flows of conventional TCP achieve a link
utilization of 76.4%. The cause for the utilization being less than
100% lies in the oscillating behavior of TCP’s congestion control
mechanisms. Connection back-offs in AIMD congestion control
can cause buffer underflows that lead to underutilized links. The
longer the RTT, the more severe these oscillations are. With even
a single accelerated TCP flow (in addition to nine conventional
TCP flows), we observe a link utilization of 85.6%, which illustrates
the more efficient behavior of TCP connections with shorter RTTs.
Additional accelerated TCP flows do not further increase the
utilization.

4.3. Summary of simulation results
From the above results, we can extract a few key observations:

e Flow-control limited connections can achieve significant
throughput improvements when using TCP acceleration (Figs.
4 and 6).

e Even a processing delay in the order of 10 ms (10% of the RTT)
can still yield a speedup of 1.5x (Fig. 7).

e Links with high loss rates benefit extremely from TCP accelera-
tion (Fig. 9).

e TCP acceleration provides competitive advantage to connections
competing for bottleneck link bandwidth (Fig. 11).

e The utilization of bottleneck links increases with the fraction of
accelerated TCP connections leading to better system-wide
performance.

These results show that there are a number of benefits associated
with the use of transparent TCP acceleration.

5. System implementation of TCP accelerator

To illustrate the feasibility of high-performance TCP accelera-
tion, we have implemented a prototype system on an Intel
IXP2350 network processor.

5.1. IXP2350 prototype

The design of the prototype implementation is shown in Fig. 13.
Packets that need to be accelerated are processed by the TCP Pro-
cessing component. This component accesses the connection state
and connection buffer to determine the appropriate action (as
described in Algorithm 1). The processing component can be repli-

cated across threads on the same microengine and across multiple
microengines to improve system utilization. However, our current
prototype uses a single instance of TCP processing, which allows us
to analyze the performance of the system without having to con-
sider interactions across multiple instances. The prototype uses
approximately 128 kB of memory per connection to buffer packets.
With typical SRAM memories and the use of larger DRAM, TCP
acceleration could be scaled to support thousands of flows.

5.2. Implementation results

We have evaluated the implementation of our TCP accelerator
using the cycle-accurate simulator provided by Intel. The results
are shown in Table 1. The processing cost for each component of
the algorithm is reported in processor cycles on the 900 MHz mic-
roengines and in microseconds. The ranges for data transmission
times are a result of different packet sizes. The minimum and max-
imum reported correspond to 64-byte and 1516-byte packets.

The results show that the delay caused by TCP acceleration pro-
cessing on the IXP2350 is in the order of tens of microseconds. This
is about an order of magnitude more than Layer 3 forwarding, but
several orders of magnitude less than what would degrade acceler-
ation speedup as shown in Fig. 7. This illustrates that network pro-
cessors are ideal for supporting a large number of accelerated TCP
flows inside the network.

6. Practical deployment

The main argument for transparency in TCP acceleration is that
it allows for incremental deployment. As we have mentioned be-
fore, not needing to change the TCP/IP protocol stack in end-sys-
tems is a key aspect of implementing acceleration functions in
routers. This independence from end-systems also gives hope that
TCP acceleration can have practical impact in today’s Internet
infrastructure. It could be conceivable that internet service provid-
ers (ISPs) provide acceleration technology initially to their pre-
mium customers (which might not exceed the maximum number
of accelerated connections on any given router). Also, it is possible
to make acceleration available as a best-effort feature, where rou-
ters accelerate a TCP connection if buffer memory is available at
connection time. This issue of practical deployment is further ex-
plored in this section.

Table 1
Processing cost for TCP accelerator on the Intel IXP2350.

replication across threads
and microengines
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Queue
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Processing Cycles Time (ps) Algorithm
SYN/SYN + ACK 473 0.52 Lines 4-10
DATA receive 1876-33,948 2.08-37.72 Lines 11-19
ACK transmit 772 0.86
ACK receive 247 0.28 Lines 20-26
DATA transmit 2322-32,726 2.58-36.36
FIN/FIN + ACK 1014 1.13 Lines 27-31
Timeout 2311-33,080 2.57-36.75 Lines 39-40
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Fig. 13. Implementation of TCP acceleration on IXP2350 network processor.
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6.1. Accelerator placement

There is one key constraint on the placement of a TCP accelera-
tor. All TCP packets of an accelerated connection need to pass
through the accelerator node for it to work properly. Due to the
transparency of the accelerator, the end-system is not aware of
the placement of the node and thus cannot “force” traffic on a cer-
tain route. It is therefore possible that packets take different routes
and thus cause incorrect behavior.

Routing changes do happen in networks, but there are topolog-
ical aspects that can guarantee proper operation if the TCP acceler-
ator is placed appropriately. Many end-systems and subnetworks
have only a single access link to the Internet (e.g., hosts connected
through access routers or stub-domains). In such a case, there are
no options for routing alternatives and traversal of that router is
guaranteed. These routers are particularly suitable for TCP acceler-
ation as they match the performance characteristics that can be
achieved by an implementation on network processors.

6.2. Accelerated edge router

Fig. 4 shows that TCP acceleration provides the most benefit
when the accelerator is placed in the middle of the connection.
One drawback of edge routers is that they are very close to the
end-system in terms of connection delay. Therefore it is often only
possible to obtain minor gains by using TCP acceleration.

We have performed a measurement experiment to quantify the
delay in TCP connections on the router that connects our campus
to the Internet. To obtain the data, we have used an Endace GIGE-
MON system which contains a DAG 4.3GE [27] card. The results are
shown in Fig. 14. The x-axis shows the delay on the LAN side of a
connection and the y-axis shows the delay on the WAN side of a
connection. In general, we can see that the WAN delay - as ex-
pected - is higher than the LAN delay for most connections. The
diagonal lines indicate the 50%/50% boundary of LAN/WAN delay,
the 10%/90% boundary, and the 1%/99% boundary. While there
are connections that are approximately balanced in terms of
round-trip time on both sides, the majority has a very short RTT
on one side and a long RTT on the other side. Thus, potential
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Fig. 14. Round-trip time measurement of TCP connections on UMass Internet

access link. The graph separates the portion of the RTT on the LAN side of the edge
router from the RTT portion on the WAN side.

performance improvements are somewhat limited if TCP accelera-
tion is restricted to edge routers only.

This indicates that it would be desirable to push TCP accelera-
tion deeper into the network core where delays are balanced and
acceleration benefits are higher. There are several practical con-
straints that currently limit such a deployment. First of all, it is
not uncommon to use asymmetric routes in the core of the Inter-
net. TCP acceleration in its current form cannot be used in the pres-
ence of asymmetric routes because both directions of traffic need
to be visible to the system. Further, network processor technology
can only provide very simple packet processing functions at data
rates of 10 Gbps and higher. Implementing the TCP acceleration
function as described in our paper would be challenging at best.

Another approach to addressing the problem of limiting TCP
acceleration to the network edge is to identify the flows where
the placement of the edge router is balanced in RTT terms. In
Fig. 14, we can see a considerable number of flows in the upper
right area that are prime candidates. These show roughly a 50%/
50% split in RTT and higher overall RTT. It is a question for future
research as to how to identify such flows.

6.3. Realistic topology

When deploying a feature incrementally, it is important to
understand when a critical mass is reached where benefits are
clearly observable. This question requires the exploration of TCP
acceleration on an entire network topology. We have used a simu-
lation setup with 200 nodes and a transit stub topology with eight
transit domains nodes [28]. We simulate 400 flows over a duration
of 30 s. Flow sources and destinations are randomly chosen from
the stub domains so that almost all (>95%) of the flows are forced
to pass through at least one transit domain node. TCP acceleration
is implemented for a varying number of flows on the transit do-
main nodes. Roughly 50% of the transit domain edges are con-
gested. We measure the overall throughput of the entire network
to judge how efficient a particular configuration operates.

Fig. 15 shows the performance increase of a network with TCP
acceleration over a network with just conventional TCP. This is ex-
pressed as a speedup compared to the baseline case of 100% con-
ventional TCP flows and 0% accelerated TCP flows. With 70% of
connections using TCP acceleration, we can achieve a 1.5x speedup
and with 90% of connections using TCP acceleration, we can obtain
a 2x speedup. It is important to note that this does not mean that
we need 70% or 90% of all routers to support TCP acceleration. It is
sufficient that a connection encounters one or a few TCP accelera-
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Fig. 15. Simulation results on stub domain topology.
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tion nodes along its path. Thus, the required number of routers
with the TCP acceleration service is much lower.

6.4. Practical deployment issues

When discussing a large deployment of TCP acceleration nodes,
there are some important practical issues that need to be
considered:

e TCP acceleration shifts some of the “control of the network
stack” from operating system vendors to network equipment
vendors. Since TCP congestion control algorithms have been lim-
ited to end-systems, their implementation has been the purview
of operating system developers. Thus, the control of what func-
tions to put into the transport layer of the protocol stack has
been with them. With deployment of TCP acceleration, transport
layer functionality migrates into network equipment, where its
development is controlled by network equipment vendors.

e Related to the above point is the issue of how deployment of
new congestion control algorithms can be achieved. With more
parties being involved, this step seems to become more com-
plex. However, TCP acceleration nodes simplify the process
because changes in a few devices can impact a large fraction
of traffic. Traditionally, non-transparent changes to TCP conges-
tion control required changes in all deployed operating systems.
With TCP acceleration, it is possible to simply change the con-
gestion control algorithm that is used between acceleration
nodes. Congestion control involving end-systems remains
unchanged. Thus, a connection may use traditional congestion
control for the first and last hop, but advanced congestion con-
trol on all hops in between.

e The use of TCP acceleration makes research on new congestion
control algorithms more difficult. Since a connection may
involve one or more TCP accelerators, their operation may inter-
fere with experimental validation of new congestion control
algorithms. To avoid such interference, traffic would need to
be encapsulated in UDP (just for the purpose of experimenta-
tion). Once a new algorithm is developed, it can be deployed
as described above.

These issues do not present insurmountable obstacles, but need to
be considered in the case of a real deployment.

6.5. Technical limitations

While the overall results for TCP acceleration paint a positive
picture on the potential impact of such a service, there are a num-
ber of technical limitations in the current approach:

e The requirement for both directions of traffic to traverse the
same node for acceleration is a limitation in terms of where
the system can be deployed. As we have shown above, there
are flows that can benefit from acceleration on the network
edge, but it would be desirable to push TCP acceleration towards
the core to gain more throughput improvements for a larger
fraction of the traffic.

o The performance of network processors plays a role in the delay
that is introduced by TCP acceleration. Only connections where
this delay is relatively short compared to the overall end-to-end
delay should be accelerated. It is challenging to identify these
connections among all other connections.

e It is possible that the accelerator acknowledges a packet that
later cannot be delivered to the receiver. Most Internet protocols
use application-layer semantics that can detect and recover
from this condition.

e The acceleration only works on packets where the TCP header is
available in cleartext. IPSec connections encrypt all packet head-
ers and payloads beyond layer 3. Therefore TCP acceleration is
not possible on such connections. The acceleration of SSL on
the other hand is possible, because TCP headers are visible.

e TCP options are limited to those that are supported by the accel-
erator. This may restrict the features of the TCP connection that
the sender and receiver can use.

Despite these open issues, we feel that the performance results
that we present in this paper show an exciting potential for
improving TCP performance transparently and deploying such
accelerators incrementally in the current Internet.

7. Summary

In this work, we have introduced transparent TCP acceleration
techniques that can speedup TCP connections without end-system
support. We have discussed how such an acceleration system oper-
ates and how it can be implemented. Simulation results show that
TCP acceleration can provide significant performance improve-
ments for flow-control limited connections. Even for connections
that are traversing congested links, a user can experience better
performance and link utilization can be increased. We have
presented an implementation of the accelerator on the Intel
[XP2350 network processor and have used it to study accelerator
performance. A discussion of deployment issues emphasizes the
potential for practical impact in today’s Internet.
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