
Design Tradeoffs for Embedded Network
Processors

Tilman Wolf1 and Mark A. Franklin2

1 Department of Computer Science,
Washington University, St. Louis, MO, USA

wolf@ccrc.wustl.edu
2 Departments of Computer Science and Electrical Engineering,

Washington University, St. Louis, MO, USA
jbf@ccrc.wustl.edu

Abstract. Demands for flexible processing have moved general-purpose
processing into the data path of networks. With the development of
System-On-a-Chip technology, it is possible to put a number of proces-
sors with memory and I/O components on a single ASIC. We present a
performance model of such a system and show how the number of pro-
cessors, cache sizes, and the tradeoffs between the use of on-chip SRAM
and DRAM can be optimized in terms of computation per unit chip
area for a given workload. Based on a telecommunications benchmark
the results of such an optimization are presented and design tradeoffs for
Systems-on-a-Chip are identified and discussed.

1 Introduction

Over the past decade there has been rapid growth in the need for reliable, ro-
bust, and high performance communications networks. This has been driven in
large part by the demands of the Internet and general data communications.
To adapt to new protocols, services, standards, and network applications, many
modern routers are equipped with general purpose processing capabilities to
handle (e.g., route and process) data traffic in software rather than dedicated
hardware. Design of the network processors associated with such routers is a
current and competitive area of computer architecture. This paper is aimed at
examining certain tradeoffs associated with the design of these embedded net-
work processors.

In the current router environment, single processor systems generally cannot
meet network processing demands. This is due to the growing gap between link
bandwidth and processor speed. Broadly speaking, with the advent of optical
WDM links, packets are arriving faster than single processors can deal with
them. However, since packet streams only have dependencies among packets of
the same flow but none across different flows, processing can be distributed over
several processors. That is, there is an inherent parallelism associated with the
processing of independent packet flows. Thus, the problems of complex synchro-
nization and inter-processor communications, typically encountered with paral-
lelization arising from scientific applications, are not present. From a functional



and performance standpoint it is therefore reasonable to consider developing
network processors as parallel machines.

There are a host of advantages associated with integrating multiple process-
ing units, memory, and I/O components on a single chip and developing what
is referred to as a SOC (System-On-a-Chip) network processor. Chief among
them are the ability to achieve higher performance and, by using fewer chips,
lower cost. Such implementations are however limited by the size of the chip
that is feasible (for cost and technology reasons), the packaging technology that
can be utilized (to achieve given pin requirements), and the power which can
be dissipated (at a given frequency).Therefore, one important design decision
for such multiprocessor chips is how many processors and how much associated
cache should be placed on a single chip. This is important since, for a given chip
size, more processors imply smaller caches and smaller caches lead to higher
fault rates. High fault rates, in turn, impact performance and also the required
off-chip memory bandwidth. Bandwidth requirements for off-chip memory ac-
cess and network traffic I/O are yet another important design constraint. In this
paper, we address these optimization issues. In particular, our contributions are:

– Development of a performance model for a general single chip multiproces-
sor oriented towards network processing, but applicable across a range of
application domains. Such a model easily accommodates future technology
changes that drive the design space.

– Exploration of the design tradeoffs available and development of optimal
architecture configurations. In particular the model permits examination of
the interactions between number of processors, size of on-chip caches, type
of on-chip cache (SRAM, DRAM), number of off-chip memory channels, and
characteristics of the application workload.

– Development of selected network processor design guidelines.

Two metrics are associated with the performance model presented. The first
is processing power per unit chip area, and the second is the total processing
power for a fixed size chip. Model evaluation is performed for a realistic network
processor workload over a range of design parameters. The derived set of design
curves can be used as guidelines for future network processor designs.

Section 2 that follows characterizes the overall system design in more detail.
Section 3 covers the analysis of the optimization problem. Section 4 introduces
the application workload that was used for the optimization results that are
shown in Section 5. Section 6 summarizes the work and presents conclusions.

2 Multiple Processor Systems-On-a-Chip

For the remainder of the paper we focus on a single SOC architecture consisting
of multiple independent processing engines (Figure 1). The memory hierarchy
consists of on-chip, per-processor instruction and data cache, and shared off-chip
memory. A cluster of processors shares a common memory channel for off-chip
memory accesses. The I/O channel is used by the system controller/scheduler to
send packets requiring processing to the individual processors.



ASIC

cache cache cache

...

packet demultiplexer & scheduler

transmisison interface

to switching
fabric

from network

off-chip memory

cache

...

... ...

memory channel

processor
1

processor
n

processor
n

memory channel

processor
1

I/O channel and demux

off-chip memory

cluster 1 cluster m

... ...

Fig. 1. Multiprocessor Router Port Outline.

Typically, a packet is first received and reassembled by the Transmission
Interface on the input port of the router. The packet then enters a Packet
Demultiplexer which uses packet header information to determine the flow to
which the packet belongs. Based on this flow information the Packet Demul-
tiplexer now decides what processing is required for the packet. The packet is
then enqueued until a processor becomes available. When a processor becomes
available, the packet and the flow information is sent over the I/O channel to one
of the processors on the network processor chip. After processing has completed,
the packet is returned to the Packet Demultiplexer and enqueued before being
sent through the router switching fabric to its designated output port. A more
detailed functional description of the above design can be found in [8]. Here, we
consider the single chip design optimization problem associated with selection
of the:

– Number of processors per cluster.
– Instruction and data cache size per processor.
– Cache memory technology (SRAM vs. DRAM).
– Bandwidth and load of the memory channels.
– ASIC size.
– Application workload.

Table 1 lists the parameters that are considered. The processors are assumed
to be simple pipelined, general purpose RISC cores (e.g., MIPS [6], ARM [1],
or PowerPC [5]). VLIW or superscalar processors are not considered since they
require significantly more silicon real-estate than simple RISC cores. A study of



different multi-processor architectures [3] has shown that single chip multipro-
cessors are highly competitive with super-scalar and multithreaded processors.
Also, super-scalar processors are optimized for workloads with few complex tasks
rather than many simple and highly parallelized tasks that are found in the net-
work processor environment.

Table 1. System Parameters.

Component Symbol Description

processor clkp processor clock frequency

program fload frequency of load instructions

fstore frequency of store instructions

mic i-cache miss probability for cache size ci

mdc d-cache miss probability for cache size cd

dirtyc prob. of dirty bit set in d-cache of size cd

compl complexity (instr. per byte of packet)

caches ci instruction cache size

cd data cache size

linesize cache line size of i- and d-cache

tcache.dram time for cache access (only DRAM)

off-chip memory tmem time to access off-chip memory

memory channel widthmchl width of memory channel

clkmchl memory channel clock frequency

ρ load on memory channel

I/O channel widthio width of I/O channel

clkio clock rate of I/O channel

cluster n number of processors per cluster

ASIC m number of clusters and memory channels

s(x) actual size of component x, with
x ∈ {ASIC, p, ci, cd, io, mchl}

3 Analysis

Given that we are interested in the amount of traffic the system can handle, we
view the design problem as one of selecting the parameter values which maximize
the throughput assuming chip area constraints, reasonable technology parame-
ters, and the operational characteristics of a benchmark of network processing
programs.1

Throughput in this environment corresponds to the number of packets that
can be processed in a given time. This is determined by a combination of the
instruction processing requirements of a given application (e.g., number of in-
structions necessary for routing table lookup, packet encoding, etc.), and the
number of instructions that can be executed per second on the network proces-
sor. We assume that all packet processing tasks are performed in software on
1 In this treatment we do not consider latency issues and assume that these require-

ments are met if the design can keep up with the incoming packet rate.



the RISC microprocessors. Thus, the throughput is proportional to the number
of Instructions Per Second (IPS) that can be executed on the system. Given
a typical RISC instruction set, network application benchmark characteristics,
and various other parameters (e.g., CPU clock rate, cache miss times, etc.), an
optimal system configuration, that maximizes IPS, can be determined.

3.1 Configurations

We begin by defining the fundamental chip area limitations for this system.
The network processor chip size limits the number of processors, the amount of
instruction and data cache per processor, and the number of memory channels
that may be present. Let s(ASIC) be the size of the network processor chip,
s(pk), s(cik

), and s(cdk
) respectively the sizes of a processor k, instruction cache

cik
, and data cache cdk

, and s(mchl) and s(io) the sizes of a memory channel and
an I/O channel. With n processors per cluster and m clusters, all valid solutions
must satisfy the following inequality:

s(io) +
n·m∑

k=1

(s(pk) + s(cik
) + s(cdk

)) +
m∑

k=1

s(mchl) ≤ s(ASIC). (1)

With identical processors, cache configurations, and I/O channels this be-
comes:

s(io) + m · [s(mchl) + n · (s(p) + s(ci) + s(cd))] ≤ s(ASIC). (2)

Further, we can assume that the best performance is achieved with a set of
design parameters which result in an area as close to s(ASIC) as possible. That
is, we need to investigate only configurations that try to “fill” the available chip
area. Another potential constraint concerns chip I/O pin limitations with a given
packaging technology. We show later that this is not a significant constraint for
the optimized systems considered.

3.2 Single Processor

Consider first the performance model for a single processor in terms of the num-
ber of instructions per second (IPS) that can executed by the processor. This
metric is highly dependent on the processor architecture, however it does capture
the effect of application instruction mix and memory hierarchy performance.

The number of executed instructions per second for a single processor, IPS1,
depends on the processor clock speed and the CPI:

IPS1 =
clkp

CPI
(3)

In an ideal RISC processor, where there are no cache misses, branch mispre-
dictions, or other hazards, all instructions can be pipelined without stalls and
the CPI is 1. While in a realistic system the CPI increases with the occurrence
of hazards, for this analysis, we only consider memory hazards since other haz-
ards, like branch mispredictions, are relatively rare and cause only brief stalls



(1-2 cycles) in the short pipeline RISC processors considered here. This model
constraint can be easily removed if greater accuracy is required. If SRAM is
used as cache memory, a cache access can be done in one processor clock cycle
and no stall cycles are introduced by cache hits. If DRAM is used for the in-
struction and data caches, then the basic pipeline clock cycle increases from 1
to tcache.dram · clkp. Thus:

CPI =
{

1 + pmiss · penalty, for SRAM
tcache.dram · clkp + pmiss · penalty, for DRAM

(4)

where pmiss is the probability for an instruction cache miss or a data cache miss.
The probability that a cache miss occurs, depends on the application being
executed and the parameters associated with the caches. Using load and store
frequencies and cache miss probabilities results in:

pmiss = mic + (fload + fstore) · mdc. (5)

Note that Equation 5 considers only cache misses resulting from memory
reads. Writes to memory, which are caused by replacing dirty cache lines, do
not cause processor stalls. Assuming no contention for the memory channel, the
miss penalty of a cache miss in turn depends on the memory access time and the
time it takes to transfer a cache line over the memory bus (in processor clock
cycles):

penalty = clkp ·
(

tmem +
linesize

widthmchl · clkmchl

)
. (6)

With a cache miss, one cache line of size linesize is transferred over the
memory channel. Additionally, if the replaced cache line was dirty, one cache
line is written back to memory. The off-chip memory bandwidth generated by
a single processor, BWmchl,1, therefore depends on the number of instructions
executed and how many off-chip accesses are generated. Thus:

BWmchl,1 = IPS1 · linesize · (mic + (fload + fstore) · mdc · (1 + dirtyc)). (7)

The I/O bandwidth for a processor depends on the complexity of the ap-
plication that is running. Complexity in the context of network processors is
defined as the number of instructions that are executed per byte of packet data
(header and payload). Applications with a high complexity require little I/O
bandwidth, since more time is spent processing. Thus, the I/O bandwidth of a
single processor, BWio,1, is

BWio,1 = 2 · IPS1

compl
. (8)

The factor of 2 is present since every packet has to be sent first from the
scheduler to the processor chip, and then later back out to the network. In the
next section, this basic model is extended to the multiple processor situation.



3.3 Multiple Processors

Consider the case where multiple processors in a cluster share a common memory
channel. Since the processors contend for the memory channel, it is necessary
to account for the delay tQ that is introduced by queuing memory requests.
Equation 6 becomes:

penalty = clkp ·
(

tmem + tQ +
linesize

widthmchl · clkmchl

)
. (9)

To model the queuing delay, we approximate the distribution of memory
requests due to cache misses by a exponential distribution. This reflects the
bursty nature associated with memory locality processes.2 Thus, the queuing
system can be approximated by a M/D/1 queuing model. The deterministic
service time corresponds to the duration of a cache line transfer over the memory
channel. Given the load, ρ, on the memory channel, the average queue length
for an M/D/1 queue can be expressed as:

NQ =
ρ2

2(1 − ρ)
. (10)

Multiplying by the time associated with a single non-blocked request, we
obtain the average time for a request entering the system as:

tQ =
ρ2

2(1 − ρ)
· linesize

widthmchl · clkmchl
. (11)

The obtained cache miss penalty for the multiprocessor case (Equation 9)
can now be used with Equation 4 to determine the CPI of a processor and
Equation 3 then provides the number of instructions executed. If we know the
number of processors, n, then multiplying by IPS1 by n will result in the overall
IPScluster. Using Equation 7 for the memory bandwidth generated by a single
processor, n is the maximum number of processors that can be accommodated
in a cluster without exceeding a selected load ρ:

n =
⌊

widthmchl · clkmchl · ρ
BWmchl,1

⌋
, (12)

IPScluster = n · IPS1. (13)

Knowing n, the size of such a cluster, s(cluster), can be determined as the
sum of all of its components (the I/O channel is not considered here, since it
is shared over several clusters). Since n processors in a cluster share a single
memory channel:
2 Using a cache simulator, we measured the distribution of memory request interar-

rival times for the benchmark applications (Section 4). This was compared to an
exponential distribution with the same mean. For 2kB instruction and data cache,
the standard deviation of the measured interarrival times, on average, comes within
a factor of 0.70 of the standard deviation of the exponential distribution.



s(cluster) = s(mchl) + n · (s(p) + s(ci) + s(cd)). (14)

Before turning to the optimization problem, we briefly discuss workloads that
consist of multiple applications.

3.4 Multiple Applications
So far we have considered only a single program to be executed on the processors.
A more realistic assumption is that there is a set of programs that make up the
processor workload. The above analysis can easily be extended to accommodate
such a workload notion.

Let the network processing workload W consist of l applications a1, a2, ..., al.
Each application i is executed on a fraction qi of the total data stream (

∑
qi = 1).

The actual number of instructions that are executed by an application ai depends
on qi and on its complexity, compli. Let ri be the fraction of instructions executed
that belong to application ai.

ri =
qi · compli∑l

k=1 qk · complk
, i = 1, ..., l (15)

The fraction ri determines the contribution of each application to memory
accesses and associated pipeline stalls. The load and store frequencies fload,i and
fstore,i of each application ai, the cache miss rates mic,i, mdc,i, and the dirty bit
probability dirtyc,i are determined experimentally. The resulting average cache
miss probability pmiss,W for workload W is

pmiss,W =
l∑

i=1

ri · (mic,i + (fload,i + fstore,i) · mdc,i). (16)

Similarly, the memory bandwidth BWmchl,1,W of a processor for workload
W becomes:

BWmchl,1,W = IPS1 · linesize · ∑l
i=1 ri · (mic,i+

(fload,i + fstore,i) · mdc,i · (1 + dirtyc,i)).
(17)

The new definitions of pmiss,W and BWmchl,1,W can be replaced in the above
formulas to obtain n and IPS.

3.5 Optimization
The optimization process can be targeted either to a single cluster or to an entire
chip containing multiple clusters:

– Processor cluster: The optimization of a processor cluster for different con-
figurations helps to identify and understand basic design tradeoffs. It does
not take into account global system components, like the I/O channel, and
ASIC size constraints.

– Complete ASIC: The optimization of the complete system accounts for ASIC
size and includes the I/O channel.



Based on the optimization goal, different optimization functions can be cho-
sen. For the processor cluster, we define the number of instructions per second
per area (IPSAcluster) as:

IPSAcluster =
IPS

size(cluster)
. (18)

To find the maximum IPSAcluster, theoretically any parameter shown in Ta-
ble 1 can be varied. Practically, though, certain parameters, like s(x) or linesize,
are fixed and the optimization space can be limited to a smaller set of variables,
such as clkp, ci, cd, ρ, and whether the cache is implemented with on-chip SRAM
or DRAM.

The complete ASIC optimization considers an integrated system consisting
of several processor clusters on one chip. The number of clusters, m, is limited
by the area constraint (Equation 2). The goal is to maximize the total number
of instructions per second, IPSASIC , that can be executed on the ASIC.

IPSASIC = m · IPScluster. (19)

Due to the limited number of possible configurations, either optimization
problem can be solved by exhaustive search over the configuration space.

4 Workload Definition

To properly evaluate and design network processors it is necessary to specify a
workload that is typical of that environment. This has been done in the de-
velopment of the benchmark CommBench [7]. Applications for CommBench
were selected to include a balance between header-processing applications (HPA)
and payload-processing applications (PPA). HPA processes only packet headers
which generally makes them computationally less demanding than PPA that
process all of the data in a packet.

For each application, the following properties have been measured experimen-
tally: computational complexity, load and store instruction frequencies, instruc-
tion cache and data cache miss rate, and dirty bit probability. The complexity
of an application can be obtained by measuring the number of instructions that
are required to process a packet of a certain length (for header-processing appli-
cations, we assumed 64 byte packets):

compl =
instructions executed

packet size
(20)

The cache properties of the benchmark applications were also measured to
obtain mic,i, mdc,i, and dirtyc,i. This was done with the cache size ranging from
1kB to 1024kB. For this purpose, a processor and cache simulator (Shade [2] and
Dinero [4]) where used. A 2-way associative write-back cache with a linesize of
32 bytes was simulated. The cache miss rates were obtained such that cold cache
misses were amortized over a long program run. Thus, they can be assumed to
represent the steady-state miss rates of these applications.

We consider two workloads for the evaluation of our analysis: considered:



– Workload A - HPA: Header-processing applications.
– Workload B - PPA: Payload-processing applications.

These workloads are such that there is an equal distribution of processing
requirements over all applications within each workload. Table 2 shows the ag-
gregate complexity and load and store frequencies of the workloads. Note that
the complexity of payload processing is significantly higher than for header pro-
cessing. This is due to the fact that payload processing actually touches every
byte of the packet payload and typically executes complex transcoding algo-
rithms. Header processing on the other hand, typically only reads few header
fields and does simple lookup and comparison operations. The aggregate cache
miss rates for instruction and data cache are shown in Figure 2. Both workloads
achieve instruction miss rates below 0.5% for cache sizes of 8kB or more. The
data cache miss rate for workload A also drops below 0.5% for 8kB. For work-
load B, though, the data cache miss rate only drops below 1% for 32kB or larger
caches.

Table 2. Computational Complexity and Load and Store Frequencies of Workloads.

Workload complW fload,W fstore,W

A - HPA 9.1 0.2319 0.0650

B - PPA 249 0.1691 0.0595

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64 128 256

m
is

s 
ra

te
 in

 %

cache size in kB

i-miss, workload A
d-miss, workload A
i-miss, workload B

d-miss, workload B

Fig. 2. Aggregate Cache Performance of Workloads.

5 Evaluation

For the optimization of the network processor we have to define a design space
that reflects current ASIC technology. Table 3 shows the values, or ranges of
values, of each system parameter considered. For the feature size of components,
we assume .25µm technology.

Given the analysis of Section 3 and the workload and system properties of
Section 4, the optimal configuration of a network processor can now be deter-
mined.



Table 3. System Parameters for Optimization.

Parameter Value(s)

clkp 50MHz . . . 400MHz

ci 1kB . . . 1024kB

cd 1kB . . . 1024kB

linesize 32byte

tmem 40ns . . . 80ns

tcache.dram 15ns

widthmchl 4bit . . . 64bit

clkmchl 200MHz

Parameter Value(s)

ρ 0 . . . 1

widthio up to 64bit

clkio 200MHz

s(ASIC) 100mm2 . . . 400mm2

s(proc) 2mm2

s(ci), s(cd) SRAM: 0.15mm2 per kB
DRAM: 0.015mm2 per kB

s(mchl), s(io) 10mm2 + width · 0.25mm2

5.1 Cluster Optimization

This optimization looks only at the configuration of a cluster without considering
ASIC chip size constraints or the I/O channel. Under these conditions, no area
fragmentation occurs and design tradeoffs can be easily observed. For the two
workloads, and the SRAM and DRAM configurations, we evaluate the effect
of memory channel bandwidth and load, processor speed, and off-chip memory
access time.

As base parameters, we use a memory channel bandwidth of BWmchl =
800MB/s, a off-chip memory access time of tmem = 60ns, and a processor clock
speed of clkp = 400MHz. Starting out with this configuration, we vary different
parameters to see their effects on the overall system performance. Table 4 shows
the optimal configuration for the base parameters.

For workload A, an 8kB instruction cache is sufficient to achieve very low
instruction cache misses (see Figure 2). Workload B, requires a 16kB instruction
cache. Since there is no “knee” in the data cache miss curve, the optimization
results are 16kB and 32kB for data caches, which achieve less than 0.3% miss
rate for workload A and less than 1% for workload B. Larger caches do not im-
prove the miss rates significantly, but require much more chip area. The memory
channel load for these configurations ranges from 69% to 79%. The number of
processors per clusters is 6 and 16 when SRAM is present, and about 6 time
larger, 40 and 91, when DRAM is present. The DRAM results stem from a
combination of several effects: a) the processor speed is limited by the on-chip
DRAM access time, b) the limited processor speed permits more processors to
share a single memory channel, and c) DRAM takes about one tenth the area of
SRAM. Despite the slower processing speed of DRAM configurations, they still
achieve 50% − 75% of the ISPA rating of the SRAM configurations.

One important observation is that increasing processor speed only affects
SRAM cache configurations. This can be seen in Figure 3, where the IPSAcluster

for different workloads and on-chip memory configurations is plotted over a set
processor clock speeds. In the SRAM case, the total processing per area increases
with faster processor clocks, since IPS1 from Equation 3 increases. For DRAM
cache, though, the effective processor speed is bound by the time it takes to
access on-chip DRAM.



Table 4. Optimal configuration of cluster with base parameters of BWmchl =
800MB/s, tmem = 60ns, and clkp = 400MHz.

Workload On-chip Memory n ci (kB) cd (kB) ρ IPSA (MIPS/mm2)

A - HPA SRAM 16 8 16 0.72 50.31

B - PPA SRAM 6 16 16 0.69 25.55

A - HPA DRAM 91 8 16 0.78 25.20

B - PPA DRAM 40 16 32 0.79 19.38

0

5

10

15

20

25

30

35

40

45

50

55

60

65

50 100 150 200 250 300 350 400

IP
SA

 in
 M

IP
S/

mm
^2

processor clock in MHz

SRAM, workload A
SRAM, workload B
DRAM, workload A
DRAM, workload B

Fig. 3. Optimal IPSAcluster for different processor speeds (BWmchl = 800MB/s and
tmem = 60ns).

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

IP
SA

 in
 M

IP
S/

mm
^2

M/
D/

1 q
ue

ue
 le

ng
th 

(N
_Q

)

load on memory interface (rho)

SRAM, workload A
SRAM, workload B
DRAM, workload A
DRAM, workload B

queue length

Fig. 4. Optimal IPSAcluster for different memory channel loads ρ (BWmchl =
800MB/s, tmem = 60ns, and clkp = 400MHz).

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 200 400 600 800 1000 1200 1400 1600

IP
SA

 in
 M

IP
S/

mm
^2

memory channel bandwidth in MB/s

SRAM, workload A
SRAM, workload B
DRAM, workload A
DRAM, workload B

Fig. 5. Optimal IPSAcluster for different memory channel bandwidths (tmem = 60ns
and clkp = 400MHz).



The effect of the memory channel load, ρ, on the IPSAcluster is shown in
Figure 4. Also shown on this figure is NQ, the queue length associated with
the M/D/1 model of the memory channel. The largest number of instructions
executed can be achieved for memory channel loads of ρ = 0.6 . . . 0.85, which
corresponds to the region where the queue length is small (< 3). While smaller
loads cause lower queuing delays, they also require more chip area per processor
since fewer processors share the fixed size channel. Higher loads increase the
queuing delay significantly, which in turn causes processors to stall very long on
cache misses.

Figure 5 shows the IPSAcluster for different memory channel bandwidths.
For SRAM configurations, a faster memory channel improves the IPSAcluster

by about 20MIPS/mm2, from 100MB/s to 1600MB/s. This is due to the
reduced transfer time for a cache line. These improvements are less significant
for the DRAM configuration, since the processors operate at a much slower rate
(bound by the on-chip DRAM access time) and the reduction in memory transfer
time has less of an impact on the total CPIDRAM (see Equation 4).

Different types of off-chip memories with different access times can also be
used. The effect of the memory access time tmem on the processing power per
area is very limited. The total IPSAcluster decreases slightly for slower memories
(2-5% for tmem = 80ns over tmem = 40ns), but the memory access time is only
a small component in the cache miss penalty (Equation 6). More important is
the actual memory bandwidth and the load on the memory channel as shown in
Figures 4 and 5.

5.2 ASIC Optimization
For the ASIC optimization, ASIC size constraints have to be considered as well
as the I/O channel. To illustrate the optimization space, Figure 6 shows the
optimal IPSASIC of a 400mm2 ASIC with workload A and SRAM caches. The
memory channel bandwidth is 800MB/s, the processor clock speed is 400MHz,
and the off-chip memory access time is 60ns. One can see that there is a distinct
optimum for 8kB instruction and 16kB data cache. Cache configurations that
vary significantly from this optimum show a steep decline in overall performance.
This emphasizes the importance of an optimally configured system.

Table 5. ASIC configurations with maximum processing power (s(ASIC) = 400mm2).

Workload Cache m n ci cd ρ tmem BWmchl clkp I/O pins IPS
Type (kB) (kB) (ns) (GB/s) (MHz) (MIPS)

A - HPA SRAM 3 20 8 8 0.8 40 1.6 400 365 19700

B - PPA SRAM 6 10 4 8 0.86 40 1.6 400 389 12600

A - HPA DRAM 1 145 8 16 0.63 40 1.6 ≥673 148 9450

B - PPA DRAM 1 64 16 16 0.92 40 1.6 ≥673 131 8050

3 As explained in Section 5.1, the processor clock speed has no impact on the per-
formance, as long as it is faster than the on-chip DRAM access time. Thus, any
frequency above 67MHz will achieve the same performance in this configuration.



1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k

10
24

k

1k

4k

16k

64k

256k

1024k

0

2500

5000

7500

10000

12500

15000

17500

MIPS

d-cache size
in kB

i-cache size
in kB

Fig. 6. Total processing capacity, IPSASIC , for different instruction and data cache
sizes (BWmchl = 800MB/s, tmem = 60ns, clkp = 400MHz and s(ASIC) = 400mm2).

The maximum IPSASIC found in any system configuration is shown in
Table 5 for both workloads and cache technologies. It is not surprising that
the optimum is achieved for the fastest technology parameters in all categories
(BWmchl = 1.6GB/s, tmem = 40ns, and clkp = 400MHz for SRAM caches).
The maximum processing capacity is almost 20000MIPS for an SRAM cache
configuration with 8kB for data and 8kB for instructions. The DRAM cache
configurations, again, achieve about half the performance of the SRAM caches.
Note however, that the optimal DRAM configurations obtained do not take into
account other factors which would likely make this design infeasible. For exam-
ple, electrical bus loading would preclude having 145 processors associated with
a single memory bus. Nevertheless, with improved DRAM implementations, the
model will permit analysis of alternative configurations.

One important thing to note in Table 5 is that the maximum number of
I/O pins (that is the number of data pins for the memory channels and the I/O
channel) does not exceed 400. Even when adding pins that are necessary for
signaling, control, and power, the total pin count does not go beyond current
packaging technologies.

6 Summary and Conclusions

In this paper, we consider a multiprocessor System-on-a-Chip that is specialized
for the telecommunications environment. Network traffic can be processed by
special application software that executes on a set of processors contained on a
single chip. The problem analyzed is that of determining the optimal number of
processors, associated cache sizes, and memory channels that should be present
in such a design given a set of defining parameters and constraints with the
principal constraint being the total chip area available.



An analytical model of the system has been presented that reflects the com-
putational power per area of a cluster and the total processing power of an ASIC.
Using application statistics from a telecommunications benchmark, a workload
was defined and used in the optimization process. Results for various cluster and
ASIC configurations were presented and analyzed. The following key technology
tradeoffs for System-on-a-Chip designs can be derived:

– The processor clock frequency has significant impact on configurations with
on-chip SRAM caches. For on-chip DRAM caches, it does not improve the
performance for clock rates higher that the memory access speed.

– Higher memory channel bandwidth improves both SRAM and DRAM config-
urations. The impact is larger for SRAM configurations. The optimal mem-
ory channel load for SRAM caches is in the range of 65% to 85% and for
DRAM caches in the range of 70% to 92%.

– For the workload considered, the access delay of off-chip memory has little
impact on the system performance.

– Optimal DRAM cache configurations achieve on average only half of the
processing power of SRAM cache configurations, however, with current tech-
nologies, other implementation constraints likely make them a less desirable
alternative than SRAM.

– Tradeoff trends are the same for both of the workloads considered. This
indicates that they are independent of the particular workload for which the
system is optimized.

These general observations along with the use of the model can be utilized
to guide the design of network processors.

References

1. ARM Ltd. ARM9E-S - Technical Reference Manual, Dec. 1999.
http://www.arm.com.

2. R. F. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. In Proc. of ACM SIGMETRICS, Nashville, TN, May 1994.

3. P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Characterizing pro-
cessor architectures for programmable network interfaces. In Proc. of 2000 Inter-
national Conference on Supercomputing, Santa Fe, NM, May 2000.

4. J. Edler and M. D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator,
1998. http://www.neci.nj.nec.com/homepages/edler/d4/.

5. IBM Microelectronics Division. The PowerPC 405TM Core, 1998.
http://www.chips.ibm.com/products/powerpc/cores/405cr wp.pdf.

6. MIPS Technologies, Inc. JADE - Embedded MIPS Processor Core, 1998.
http://www.mips.com/products/Jade1030.pdf.

7. T. Wolf and M. A. Franklin. CommBench - a telecommunications benchmark for
network processors. In Proc. of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 154–162, Austin, TX, Apr. 2000.

8. T. Wolf and J. S. Turner. Design issues for high performance active routers. IEEE
Journal on Selected Areas of Communication, 19(3):404–409, Mar. 2001.


