
Tilman Wolf 1

ECE 697J ECE 697J –– Advanced Topics Advanced Topics
in Computer Networksin Computer Networks

Microengine Programming I
11/18/03

Tilman Wolf 2

OverviewOverview
• Lab 2: IP forwarding on IXP1200

– Any problems with Part I?

• Microengine Assembler
– Instructions
– Preprocessor
– Structured Programming Directives

• Lab 2: Classification on IXP1200
– Simple packet classification

Tilman Wolf 3

Microengine AssemblerMicroengine Assembler
• Assembly languages matches the underlying hardware

– Intel developed “microengine assembly language”

• Assembly is difficult to program directly
– Assembler supports higher-level statements

• High-level mechanisms:
– Assembler directives
– Symbolic register names and automated register allocation
– Macro preprocessor
– Pre-defined macros for common control structures

• Balance between low-level and higher-level
programming

Tilman Wolf 4

Assembly Language SyntaxAssembly Language Syntax
• Instructions:
label: operator operands token
– Operands and token are optional
– Label: symbolic name as target for branch
– Operator: single microengine instruction or high-level command
– Operands and token: depend on operator

• Comments:
– C-style: /* comment */
– C++-style: // comment
– ASM-style: ; comment
– Benefit of ASM style: remain with code after preprocessing

• Directives:
– Start with “.”

Tilman Wolf 5

Operand SyntaxOperand Syntax
• Example: ALU instruction

alu [dst, src1, op, src2]
– dst: destination for result
– src1 and src2: source values
– op: operation to be performed

• Notes:
– Destination register cannot be read-only (e.g., read transf. reg.)
– If two source regs are used, they must come from different banks
– Immediate values can be used
– “--” indicates non-existing operand (e.g., source 2 for unary

operation or destination)

Tilman Wolf 6

ALU OperatorsALU Operators

Tilman Wolf 7

Other OperatorsOther Operators
• ALU shift/rotate:

– alu_shf [dst, src1, op, src2, shift]
– shift specifies right or left and shift or rotate (e.g., <<12, >>rot3)

• Memory accesses:
– sram [direction, xfer_reg, addr1, addr2, count]
– direction is “read” or “write”
– addr1 and addr2 are used for base+offset and scaling

• Immediate:
– immed [dst, ival, rot]

– Immediate has upper 16 bit all 0 or all 1
– Rotation is “0”, “<<8”, or “<<16”
– Also direct access to individual bytes/words: immed_b2, immed_w1

Tilman Wolf 8

Symbolic Register NamesSymbolic Register Names
• Assembler supports automatic register allocation

– Either entirely manual or automatic – no mixture possible

• Symbolic register names:
– .areg loopindex 5

– Assigns the symbolic name “loopindex” to register 5 in bank A

• Other directives:

Tilman Wolf 9

Register Types and SyntaxRegister Types and Syntax
• Register names with relative and absolute addressing:

• Note: read and write transfer registers are separate
– You cannot read a value after you have written it to a xfer reg

• Also: some instruction sequences impossible:
– Z <- Q + R
– Y <- R + S
– X <- Q + S

Tilman Wolf 10

ScopingScoping
• Scopes define regions where variable names are valid

– .local directive:

• Outside scope registers
can be reused

• Scopes can be nested
– Names are “shadowed”

Tilman Wolf 11

Macro PreprocessorMacro Preprocessor
• Preprocessor functionality:

– File inclusion
– Symbolic constant substitution
– Conditional assembly
– Parameterized macro expansion
– Arithmetic expression evaluation
– Iterative generation of code

• Macro definition
– #macro name [parameter1, parameter2, …]

lines of text
#endm

Tilman Wolf 12

Macro ExampleMacro Example
• Example for a=b+c+5:

– #macro add5 [a, b, c]
.local tmp

alu[tmp, c, +, 5]
alu[a, b, +, tmp]

.endlocal
#endm

• Problems when tmp variable is overloaded:
– add5[x, tmp, y]

– Why?

• One has to be careful with marcos!

Tilman Wolf 13

Preprocessor StatementsPreprocessor Statements

Tilman Wolf 14

Structured Programming DirectivesStructured Programming Directives
• Structured directives are similar to control statements:

Tilman Wolf 15

ExampleExample
• If statement with structured directives:

– .if (conditional_expression)
/* block of microcode */

.elif (conditional_expression)
/* block of microcode */

.else
/* block of microcode */

.endif

• While statement:
– .while (conditional_expression)

/* block of microcode */
.endw

• Very useful and less error-prone than hand-coding

Tilman Wolf 16

Conditional ExpressionsConditional Expressions
• Conditional expressions may have C-language operators

– Integer comparison: <, >, <=, >=, ==, !=
– Shift operator: <<, >>
– Logic operators: &&, ||
– Parenthesis: (,)

• Additional test operators

Tilman Wolf 17

Context SwitchesContext Switches
• Instructions that cause context switches:

– ctx_arb instruction
– Reference instruction

• ctx_arb instruction:
– One argument that specifies how to handle context switch
– voluntary
– signal_event – waits for signal
– kill – terminates thread permanently

• Reference instruction to memory, hash, etc.
– One argument
– ctx_swap – thread surrenders control until operation completed
– sig_done – thread continues and is signaled completion

Tilman Wolf 18

Indirect ReferencesIndirect References
• Sometimes memory addresses are not known at compile time

– Indirect references use result of ALU instruction to modify immediately
following reference

– “Unlike the conventional use of the term [indirect reference], Intel’s indirect
reference mechanism does not follow pointers; the terminology is
confusing at best.” ☺

• Indirect reference can modify:
– Microengine associated with memory reference
– First transfer register in a block that will receive result
– The count of words of memory to transfer
– The thread ID of the hardware thread executing the instruction

• Bit patterns specifying operation and parameter must be loaded into
ALU
– Uses operation without destination: alu_shf[--,--,b,0x13,<<16]
– Reference: scratch[read,$reg0,addr1,addr2,0],indirect_ref

Tilman Wolf 19

Transfer RegistersTransfer Registers
• Memory transfers need contiguous registers

– Specified with .xfer_order
– .local $reg1 $ref2 $ref3 $ref4
.xfer_order $reg1 $reg2 $reg3 $reg4

• Library macros for transfer register allocation
– Allocations: xbuf_alloc[]
– Deallocation: xbuf_free[]
– Example: xbuf_alloc[$$buf,4] allocates
$$buf0, …, $$buf3

• Allocation is based on 32-bit chunks
– Transfer of 2 SDRAM units requires 4 transfer registers

Tilman Wolf 20

Lab 2 Lab 2 –– Part IIPart II
• Packet Classification
• Traffic types:

– ARP traffic
– UDP over IP traffic
– Web traffic over TCP over IP
– SSH traffic over TCP over IP
– Non-web and non-SSH traffic

over TCP over IP
– Non-TCP and non-UDP IP

traffic (e.g., IP-over-IP tunnel)

Tilman Wolf 21

Classification CodeClassification Code
// START ECE 697J CLASSIFICATION
xbuf_extract(ip_upp_pro, $pkt_buf_ip, BYTEOFFSET0,

IP_UPPER_LAYER_PROTOCOL);
.if (ip_upp_pro == TCP_PACKET)

xbuf_extract(tcp_dport, $pkt_buf_ip, BYTEOFFSET18,
TCP_DEST_PORT);

.if (tcp_dport == TCP_SSH)
move(output_intf, 0x0000008);

.else
move(output_intf, 0x00000008);

.endif
.else

move(output_intf, 0x00000000);
.endif
// END ECE 697J CLASSIFICATION

Tilman Wolf 22

Lab 2 Lab 2 –– Part II QuestionsPart II Questions
• Extend the given forwarding code to implement the classification as

described above.
• Determine the traffic mix. What fraction of the traffic belongs to each

of the six classes?
• Use the execution coverage window in the simulator to verify that

the instruction coverage of your classifier matches the traffic mix
results.

• Assume that the classification step was really critical for
performance. In your implementation, you have a choice of making
classification decisions in different orders (e.g., check for UDP
packets before checking the type of TCP packet etc.). In what order
should packets be classified given the traffic mix in this example? In
general, if the traffic mix is known, in what order should classification
be done?

Tilman Wolf 23

Final ProjectsFinal Projects
• Ideas for final projects:

– Implement a packet filter on IXP1200 hardware
• E.g., don’t forward telnet packets, but ssh packets

– Analysis of memory contention on IXP1200
• Write code to generate different amounts of load on memory
• Analyze memory latency distribution and model it

– Packet forwarding processing analysis
• Count number of instructions spent on various steps of forwarding
• Analyze impact of different # of uEs and threads
• Compare to layer 2 bridging

– Anything else?
• Project report ~15 pages with many interesting graphs

and illustrations
• Final presentation: 20-30 minutes on 12/9/03

Tilman Wolf 24

Next ClassNext Class
• Microengine Programming II

– Read chapter 25
– Ramu will give lecture

• Help Session for Lab 2 – Part II
– Ning will answer any questions (except “What is the solution?”)

• Lab 2 – Part II due 11/25
• Questions

– What do you want to do for lab 3?
– Do you want to change grade percentage from 20% labs and

40% final project to 30%/30%?

