ECE 697J — Advanced Topics
In Computer Networks

Embedded Control Processor
11/04/03

Tilman Wolf m 1
University of Mas tts Amherst

Overview

* More details on control processor (StrongARM)
— Overall architecture
— Typical functions
— Processor features

* Microengines
— Architecture and features

— Differences to conventional processors
— Pipelining and multi-threading

Tilman Wolf m 2

University of Massachusetts Amherst

S
Purpose of Control Processor

* Functions typically executed by embedded control proc:

Bootstrapping
Exception handling
Higher-layer protocol processing
Interactive debugging
Diagnostics and logging
Memory allocation

Application programs (if needed)

User interface and/or interface to
the GPP

Control of packet processors

l IXP1200 chip
SRAM Embedded
-.-{ Tty PCl access RISC
processor
(StrongARM)
multiple, Microengine 1
scratch [independent | - :
memory _'. internal .' Microengine 2
% buses i :
\\ Microengine 3
\ Microengine 4
Microengine 5
SDRAM

=

dCCess

IX access

Microengine b

Other administrative functions

j

Tilman Wolf

University of Massachusetts Amherst

System-level View

 Embedded processor can control one or multiple

Interfaces:
General-Furpose
GPF | - Processor = GPP

Embedded

-l RISC -
Processors

IXP1200 IXP1200 IXP1200 IXP1200
physical
i inferfaces I

(a) (b)

Tilman Wolf m 4

University of Massachusetts Amherst

S
StrongARM Architecture

 ARM V4 architecture with:
— Reduced Instruction Set Computer (RISC)
— Thirty-two bit arithmetic with configurable endianness
— Vector floating point provided via coprocessor
— Byte addressable memory
— Virtual memory support
— Built-in serial port
— Facilities for kernelized operating system

Tilman Wolf m 5

University of Massachusetts Amherst

L
StrongARM Memory Architecture

Memory architecture
— Uses 32-bit linear address space
— Byte addressable
Memory Mapping
— Allocation of address space to different system components
— Access to memory is translated into access to component
— Needs to be carefully crafted
StrongARM assumes byte addressable memory
— Underlying memory uses different size (SDRAM)
— How does this work?
Support for Virtual Memory
— For demand paging to secondary storage

Tilman Wolf m 6

University of Massachusetts Amherst

StrongARM Memory Map

NOHIo0g
S¥207

puwa dodysng
SHSD WVHS
HOdMO|S

8g INVHS

Buyuod |0d [eao

Buyuoa |12d
o1 12d
Ao |3d

=Ny |2d

owowdd it

shal waysis

G owwmddl.

121X YHWNY

SHS D auwbuaoiony
Japx aumbuaoroy

=4S 184
pedynerns

WYHas

<8Ng WVHOS

SIS0

good 0000

good 000¥F

good 0008

good 0006

gooo ooov

good oood

good 0002

4444 4444
SS2UPPY

University of Massachusetts Amherst

Tilman Wolf

Shared Memory Address Issues

 Memory is shared between StrongARM and
Microengines
¢ Same data, but different addresses

« What impact does this have?

— Pointers need to be translated
— Data structures with pointers cannot be shared. Why?

Tilman Wolf m 8

University of Massachusetts Amherst

e
StrongARM Peripherals

* Peripherals on StrongARM:
« UART

* Four 24-bit countdown timers
— Can be configured to 1, 1/16, 1/256 of StrongARM clock

* Four general purpose pins
— For special off-chip devices
* One real-time clock
— Tick per second

« Clock is for large granularity timing (e.g., route aging),
counters are for small granularity

Tilman Wolf m 9

University of Massachusetts Amherst

S
StrongARM Misc

« StrongARM can support kernelized OS
— Kernel at highest priority
— Kernel controls 1/0 and devices
— User-level processes with lower privileges

e Coprocessor 15

— MMU configuration

— Breakpoints for testing
e Summary

— StrongARM is full-blown processor with powerful and general
features

Tilman Wolf m 10

University of Massachusetts Amherst

S
Microengines

* Microengines are data-path processors of IXP1200

. . IXP1200 chi
e IPX1200 has 6 microengines l —
: ___{ SRAM PCl access Embedded
e Simpler than StrongARM RISC
processor
* A bit more complex to use (StrongARM)
« Often abbeviated as uk multiple, Microengine 1
scratch | independent | - :
memaory _ul internal [Microengine 2
\\\ buses Microengine 3
-W—- § Microengine 4
Microengine 5
_.—{ gg{iﬁ;’: IX access - .
Microengine 6

Tilman Wolf m 11

University of Massachusetts Amherst

S
Microengine Functions

* UEs handle ingress and egress packet processing:
— Packet ingress from physical layer hardware
— Checksum verification
— Header processing and classification
— Packet buffering in memory
— Table lookup and forwarding
— Header modification
— Checksum computation
— Packet egress to physical layer hardware

Tilman Wolf m 12

University of Massachusetts Amherst

S
Microengine Architecture

* UE characteristics:
— Programmable microcontroller
— RISC design
— 128 general-purpose registers
— 128 transfer registers
— Hardware support for 4 threads and context switching
— Five-stage execution pipeline
— Control of an Arithmetic and Logic Unit
— Direct access to various functional units

Tilman Wolf m 13

University of Massachusetts Amherst

S
UE as Microsequencer

e Microsequencer does not contain native operations
— Control unit is much “simpler”

* Instead of using instructions, Uk invokes functional units

« Example 1:
— UE does not have ADD R2,R3 instruction
— Instead: ALU ADD R2, R3
— “ALU” indicates that ALU should be used
— “ADD” is a parameter to ALU

 Example 2:

— Memory access not by simple LOAD R2, Oxdeadbeef
— Instead: SRAM LOAD R2, Oxdeadbeef

Altogether similar to normal processor, but more basic

Tilman Wolf m 14

University of Massachusetts Amherst

Microengine Instruction Set (1)

Instruction

Description

Arithmetic, Rotate, And Shift Instructions

ALU
ALU_SHF
DBL_SHIFT

Perform an anthmetic operation
Perform an anthmetic operation and shift
Concatenate and shift two longwords

Branch and Jump Instructions

BR, BR=0, BR!=0, BR=0, BR>=0, BR<0,
BR<=0, BR=count, BRl=count

BR_BSET, BR_BCLR

BR=BYTE, BRI=BYTE

BR=CTX, BRI=CTX

Branch or branch conditional

Branch if bit set or clear
Branch if byte equal or not equal
Branch on current context

BR_INP_STATE Branch on event state
BR_ISIGNAL Branch if signal deasserted
JUMP Jump to label
RTN Return from branch or jump
Tilman Wolf m 15

University of Massachusetts Amherst

Microengine Instruction Set (2)

Reference Instructions
CSR CSR reference
FAST WR Write immediate data to thd_done C5Rs
LOCAL_CSR_RD, LOCAL_CSR_WR Read and write CSHs
R_FIFO RD Read the receive FIFO
PCI_DMA lssue a request on the PCI bus
SCRATCH Scratchpad memory request
SODRAM SDRAM reference
SRAM SRAM reference
T FIFO WR Write to transmit FIFO

« CSR = Control and Status Register

Tilman Wolf m 16

University of Massachusetts Amherst

Microengine Instruction Set (3)

Local Register Instructions

FIND_BST, FIND_BSET_WITH_MASK
IMMED

IMMED_B0, IMMED_81, IMMED_B2, IMMED_B3
IMMED_W0, IMMED_W1

LD _FIELD, LD FIELD W CLR

LOAD_ADDR

LOAD BSET RESULT1, LOAD BSET RESULT2

Find first 1 bit in a value

Load immediate value and sign extend
Load immediate byte to a field

Load immediate word to a field

Load byte(s) into specified field(s)
Load instruction address

Load the result of find_bset

Miscellaneous Instructions

CTX_ARB
NOP

HASH1 48, HASH2 48, HASH3 48
HASH1 64, HASH2 64, HASH3 64

Perform context swap and wake on event
Skip to next instruction

Perform 48-bit hash function 1, 2, or 3
Perform 64-bit hash function 1, 2, or 3

Tilman Wolf

University of Massachusetts Amherst

17

.
Microengine Memories

e UEs views memories separately
— Not one address space like StrongARM

* Requires programmer to decide on memories to use
— Different memories require different instructions

« Also: instruction store is in different memory than data
— Not a van-Neumann/Princeton architecture...

Tilman Wolf m 18

University of Massachusetts Amherst

B
Execution Pipeline

* UEs have five-stage pipeline:

Stage Description
1 Fetch the next instruction
2 Decode the instruction and get register address(es)
3 Extract the operands from registers
4 Perform ALU, shift, or compare operations and set

the condition codes
2 Write the results to the destination register

 In proper pipeline operation, one instruction is executed
per cycle

Tilman Wolf m 19

University of Massachusetts Amherst

Pipelining

clock stage 1 stage 2 stage 3 stage 4 stage 5
1 inst. 1 - - - -
fime 2 inst. 2 inst. 1 - - -
3 inst. 3 inst. 2 inst. 1 - -
s inst. 4 inst. 3 inst. 2 inst. 1 -
5 inst. 5 inst. 4 inst. 3 inst. 2 inst. 1
¥ inst. 6 inst. 5 inst. 4 inst. 3 inst. 2
' 7 inst. 7 inst. 6 inst. 5 inst. 4 inst. 3
8 inst. 8 inst. 7 inst. & inst. 5 inst. 4
Tilman Wolf m 20

University of Massach

@
usetts Amherst

e
Pipelining Problems

 What can lead to cases where pipeline does not operate
as desired?

— Data dependencies
— Control dependencies
— Memory accesses

« What happens in either case?
 How can these cases be made less frequent?
 How can the impact be reduced?

Tilman Wolf m 21

University of Massachusetts Amherst

Pipeline Stalls

 K: ADD R2, R1, R2
o K+1.: ADD R3, R2, R3
clock stage 1 stage 2 stage 3 stage 4 stage 5
_ 1 inst. K inst. K-1 inst. K-2 inst. K-3 inst. K-4
fime 2 inst. K+1 inst. K inst. K-1 inst. K-2 inst. K-3
3 inst. K+2 inst. K+1 inst. K inst. K-1 inst. K-2
= inst. K+3 inst. K+2 inst. K+1 inst. K inst. K-1
5 inst. K+3 inst. K+2 inst. K+1 - inst. K
i inst. K+3 inst. K+2 inst. K+1 - -
' [inst. K+4 inst. K+3 inst. K+2 inst. K+1 -
8 inst. K+5 inst. K+4 inst. K+3 inst. K+2 inst. K+1

e Control dependencies, memory have even bigger impact

Tilman Wolf

University of Massachusetts Amherst

22

S
Hardware Threads

e UEs support four hardware thread contexts
— One thread can execute at any given time
— When stall occurs, uk can switch to other thread (if not stalled)

* Very low overhead for context switch
— “Zero-cycle context switch”
— Effectively can take around three cycles due to pipeline flush

e Switching rules
— If thread stalls, check if next is ready for processing
— Keep trying until ready thread is found
— If none is available, stall uE and wait for any thread to unblock

e Improves overall throughput
« Side note: why not have 24 uks with 1 thread?

Tilman Wolf m 23

University of Massachusetts Amherst

mrea ing lllustration

time t, time t, time t,

I I
Rl E——

‘-— confext switch

w2 [[

h

oot + |

time

--|_

thread 3

Tilman Wolf m 24

@
University of Massachusetts Amherst

e
Processor Component Proportions

1

. “Random” RISC
processor (MIPS

R7000)

300 MHz,
16k/16k caches,
25 um, 1997

 Memory takes
most area

OC-DATA

OC-DATA

- I ; }
DCACH SI:_TMB D-TAG B :
D-TAG @D
I-TA '
D-CACHE SET C/D I ! I-CACHE SET 1 I

MMU
CONTRO

INTEGER CONTROL
- TAG

INTEGER DATAPA
SET B

— 1 SYSTEM/ CACHE
' CONTROL

oC - TAG OC - TAG
SETC SETA

DC TAG
SET D

Tilman Wolf m 25

University of Massachusetts Amherst

FLOATING POINT

UNIT

Next Class

« Continue with Microengines

— Instruction store, hardware registers
— FBl and FIFO
— Hash unit

« SDK
 Read chapters 20 & 21

Tilman Wolf m 26

University of Massachusetts Amherst

	ECE 697J – Advanced Topics in Computer Networks
	Overview
	Purpose of Control Processor
	System-level View
	StrongARM Architecture
	StrongARM Memory Architecture
	StrongARM Memory Map
	Shared Memory Address Issues
	StrongARM Peripherals
	StrongARM Misc
	Microengines
	Microengine Functions
	Microengine Architecture
	uE as Microsequencer
	Microengine Instruction Set (1)
	Microengine Instruction Set (2)
	Microengine Instruction Set (3)
	Microengine Memories
	Execution Pipeline
	Pipelining
	Pipelining Problems
	Pipeline Stalls
	Hardware Threads
	Threading Illustration
	Processor Component Proportions
	Next Class

