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Overview

* More details on control processor (StrongARM)
— Overall architecture
— Typical functions
— Processor features

* Microengines
— Architecture and features

— Differences to conventional processors
— Pipelining and multi-threading
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S
Purpose of Control Processor

* Functions typically executed by embedded control proc:

Bootstrapping
Exception handling
Higher-layer protocol processing
Interactive debugging
Diagnostics and logging
Memory allocation

Application programs (if needed)

User interface and/or interface to
the GPP

Control of packet processors
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System-level View

 Embedded processor can control one or multiple

Interfaces:
General-Furpose
GPF | - Processor = GPP

Embedded

-l RISC -
Processors
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S
StrongARM Architecture

 ARM V4 architecture with:
— Reduced Instruction Set Computer (RISC)
— Thirty-two bit arithmetic with configurable endianness
— Vector floating point provided via coprocessor
— Byte addressable memory
— Virtual memory support
— Built-in serial port
— Facilities for kernelized operating system
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L
StrongARM Memory Architecture

Memory architecture
— Uses 32-bit linear address space
— Byte addressable
Memory Mapping
— Allocation of address space to different system components
— Access to memory is translated into access to component
— Needs to be carefully crafted
StrongARM assumes byte addressable memory
— Underlying memory uses different size (SDRAM)
— How does this work?
Support for Virtual Memory
— For demand paging to secondary storage
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StrongARM Memory Map
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Shared Memory Address Issues

 Memory is shared between StrongARM and
Microengines
¢ Same data, but different addresses

« What impact does this have?

— Pointers need to be translated
— Data structures with pointers cannot be shared. Why?
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e
StrongARM Peripherals

* Peripherals on StrongARM:
« UART

* Four 24-bit countdown timers
— Can be configured to 1, 1/16, 1/256 of StrongARM clock

* Four general purpose pins
— For special off-chip devices
* One real-time clock
— Tick per second

« Clock is for large granularity timing (e.g., route aging),
counters are for small granularity
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S
StrongARM Misc

« StrongARM can support kernelized OS
— Kernel at highest priority
— Kernel controls 1/0 and devices
— User-level processes with lower privileges

e Coprocessor 15

— MMU configuration

— Breakpoints for testing
e Summary

— StrongARM is full-blown processor with powerful and general
features

Tilman Wolf m 10

University of Massachusetts Amherst



S
Microengines

* Microengines are data-path processors of IXP1200

. . IXP1200 chi
e IPX1200 has 6 microengines l —
: ___{ SRAM PCl access Embedded
e Simpler than StrongARM RISC
processor
* A bit more complex to use (StrongARM)
« Often abbeviated as uk multiple, Microengine 1
scratch | independent | - :
memaory _ul internal [ Microengine 2
\\\ buses Microengine 3
-W—- § Microengine 4
Microengine 5
_.—{ gg{iﬁ;’: IX access - .
Microengine 6
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S
Microengine Functions

* UEs handle ingress and egress packet processing:
— Packet ingress from physical layer hardware
— Checksum verification
— Header processing and classification
— Packet buffering in memory
— Table lookup and forwarding
— Header modification
— Checksum computation
— Packet egress to physical layer hardware
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S
Microengine Architecture

* UE characteristics:
— Programmable microcontroller
— RISC design
— 128 general-purpose registers
— 128 transfer registers
— Hardware support for 4 threads and context switching
— Five-stage execution pipeline
— Control of an Arithmetic and Logic Unit
— Direct access to various functional units
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S
UE as Microsequencer

e Microsequencer does not contain native operations
— Control unit is much “simpler”

* Instead of using instructions, Uk invokes functional units

« Example 1:
— UE does not have ADD R2,R3 instruction
— Instead: ALU ADD R2, R3
— “ALU” indicates that ALU should be used
— “ADD” is a parameter to ALU

 Example 2:

— Memory access not by simple LOAD R2, Oxdeadbeef
— Instead: SRAM LOAD R2, Oxdeadbeef

Altogether similar to normal processor, but more basic

Tilman Wolf m 14

University of Massachusetts Amherst



Microengine Instruction Set (1)

Instruction

Description

Arithmetic, Rotate, And Shift Instructions

ALU
ALU_SHF
DBL_SHIFT

Perform an anthmetic operation
Perform an anthmetic operation and shift
Concatenate and shift two longwords

Branch and Jump Instructions

BR, BR=0, BR!=0, BR=0, BR>=0, BR<0,
BR<=0, BR=count, BRl=count

BR_BSET, BR_BCLR

BR=BYTE, BRI=BYTE

BR=CTX, BRI=CTX

Branch or branch conditional

Branch if bit set or clear
Branch if byte equal or not equal
Branch on current context

BR_INP_STATE Branch on event state
BR_ISIGNAL Branch if signal deasserted
JUMP Jump to label
RTN Return from branch or jump
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Microengine Instruction Set (2)

Reference Instructions
CSR CSR reference
FAST WR Write immediate data to thd_done C5Rs
LOCAL_CSR_RD, LOCAL_CSR_WR Read and write CSHs
R_FIFO RD Read the receive FIFO
PCI_DMA lssue a request on the PCI bus
SCRATCH Scratchpad memory request
SODRAM SDRAM reference
SRAM SRAM reference
T FIFO WR Write to transmit FIFO

« CSR = Control and Status Register

Tilman Wolf m 16

University of Massachusetts Amherst



Microengine Instruction Set (3)

Local Register Instructions

FIND_BST, FIND_BSET_WITH_MASK
IMMED

IMMED_B0, IMMED_81, IMMED_B2, IMMED_B3
IMMED_W0, IMMED_W1

LD _FIELD, LD FIELD W CLR

LOAD_ADDR

LOAD BSET RESULT1, LOAD BSET RESULT2

Find first 1 bit in a value

Load immediate value and sign extend
Load immediate byte to a field

Load immediate word to a field

Load byte(s) into specified field(s)
Load instruction address

Load the result of find_bset

Miscellaneous Instructions

CTX_ARB
NOP

HASH1 48, HASH2 48, HASH3 48
HASH1 64, HASH2 64, HASH3 64

Perform context swap and wake on event
Skip to next instruction

Perform 48-bit hash function 1, 2, or 3
Perform 64-bit hash function 1, 2, or 3
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.
Microengine Memories

e UEs views memories separately
— Not one address space like StrongARM

* Requires programmer to decide on memories to use
— Different memories require different instructions

« Also: instruction store is in different memory than data
— Not a van-Neumann/Princeton architecture...
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B
Execution Pipeline

* UEs have five-stage pipeline:

Stage Description
1 Fetch the next instruction
2 Decode the instruction and get register address(es)
3 Extract the operands from registers
4 Perform ALU, shift, or compare operations and set

the condition codes
2 Write the results to the destination register

 In proper pipeline operation, one instruction is executed
per cycle
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Pipelining

clock stage 1 stage 2 stage 3 stage 4 stage 5
1 inst. 1 - - - -
fime 2 inst. 2 inst. 1 - - -
3 inst. 3 inst. 2 inst. 1 - -
s inst. 4 inst. 3 inst. 2 inst. 1 -
5 inst. 5 inst. 4 inst. 3 inst. 2 inst. 1
¥ inst. 6 inst. 5 inst. 4 inst. 3 inst. 2
' 7 inst. 7 inst. 6 inst. 5 inst. 4 inst. 3
8 inst. 8 inst. 7 inst. & inst. 5 inst. 4
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e
Pipelining Problems

 What can lead to cases where pipeline does not operate
as desired?

— Data dependencies
— Control dependencies
— Memory accesses

« What happens in either case?
 How can these cases be made less frequent?
 How can the impact be reduced?
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Pipeline Stalls

 K: ADD R2, R1, R2
o K+1.: ADD R3, R2, R3
clock stage 1 stage 2 stage 3 stage 4 stage 5
_ 1 inst. K inst. K-1 inst. K-2  inst. K-3  inst. K-4
fime 2 inst. K+1 inst. K inst. K-1 inst. K-2 inst. K-3
3 inst. K+2 inst. K+1 inst. K inst. K-1 inst. K-2
= inst. K+3 inst. K+2  inst. K+1 inst. K inst. K-1
5 inst. K+3 inst. K+2  inst. K+1 - inst. K
i inst. K+3 inst. K+2  inst. K+1 - -
' [ inst. K+4 inst. K+3  inst. K+2  inst. K+1 -
8 inst. K+5 inst. K+4  inst. K+3  inst. K+2  inst. K+1

e Control dependencies, memory have even bigger impact
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S
Hardware Threads

e UEs support four hardware thread contexts
— One thread can execute at any given time
— When stall occurs, uk can switch to other thread (if not stalled)

* Very low overhead for context switch
— “Zero-cycle context switch”
— Effectively can take around three cycles due to pipeline flush

e Switching rules
— If thread stalls, check if next is ready for processing
— Keep trying until ready thread is found
— If none is available, stall uE and wait for any thread to unblock

e Improves overall throughput
« Side note: why not have 24 uks with 1 thread?
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mrea ing lllustration
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e
Processor Component Proportions

1

. “Random” RISC
processor (MIPS

R7000)

300 MHz,
16k/16k caches,
25 um, 1997

 Memory takes
most area

OC-DATA

OC-DATA

- I ; }
DCACH SI:_TMB D-TAG B :
D-TAG @D
I-TA '
D-CACHE SET C/D I ! I-CACHE SET 1 I

MMU
CONTRO

INTEGER CONTROL
- TAG

INTEGER DATAPA
SET B

— 1 SYSTEM/ CACHE
' CONTROL

oC - TAG OC - TAG
SETC SETA

DC TAG
SET D
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Next Class

« Continue with Microengines

— Instruction store, hardware registers
— FBl and FIFO
— Hash unit

« SDK
 Read chapters 20 & 21
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