ECE 697J – Advanced Topics in Computer Networks

The Intel Internet Exchange Architecture 10/30/03

University of Massachusetts Amherst

Tilman Wolf

Overview

- We have looked at
 - Network processor concepts
 - Different NP architectures
 - Commercial examples
- Next few weeks
 - In-depth look at one particular architecture
 - Intel Internet Exchange Architecture
 - Intel IXP1200 network processors
- Looking at details of platform will bring up some issues that we have ignored so far
- Good opportunity to discuss some software concepts

University of Massachusetts Amherst

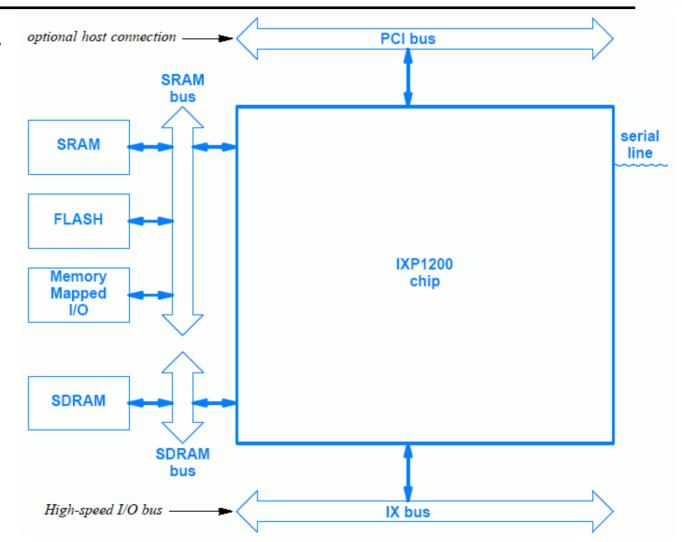
Intel IXA

- Intel Internet eXchange Architecture (IXA)
 - Intel's offering of network processors
 - Combination of NP hardware and software environment
- IXA Hardware:
 - Intel offers several network processors
 - We'll discuss IXP1200 (Internet eXchange Processor)
 - IXP1200 is one of the most widely used NPs in research
- IXA Software:
 - Software Development Environment (SDK 2.0) for packet processors and control processor
 - Allows detailed simulation without hardware
 - Controls hardware
- We'll start with hardware

Intel IXP NPs

- Intel offers variety of network processors
- IXP1200
 - OC-3 to OC-12
 - Diverse applications, one of the first NPs
- IXP420, IXP421, IXP422, IXP425
 - Low-end, access points, home office
 - VPN, VoIP, firewall, wireless
- IXP2400
 - OC-12 to OC-48
 - Network access and edge
- IXP2800
 - OC-48 to OC-192
 - Network edge and core
- IXP2850
 - Added encryption coprocessors
 - VPNs, SANs

IXP1200



IXP1200 Features

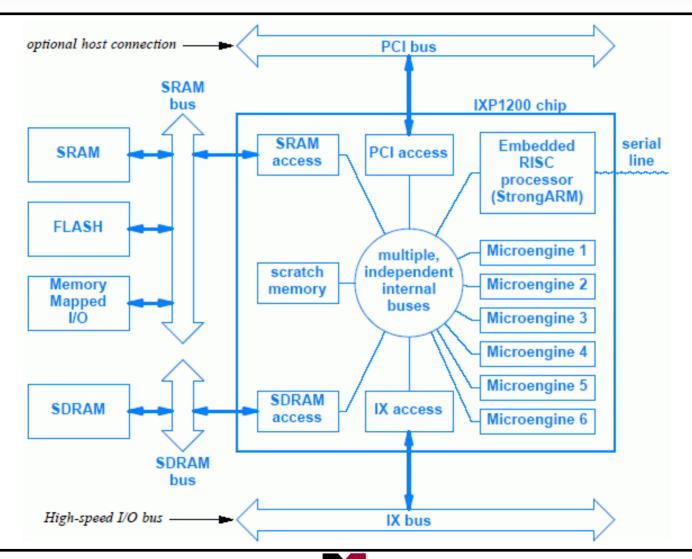
- Single chip with
 - One embedded RISC processor
 - Six programmable packet processors
 - Multiple, independent onboard buses
 - Processor synchronization mechanisms
 - Small amount of onboard memory
 - One low-speed serial line interface
 - Multiple interfaces for external memories
 - Multiple interfaces for external I/O buses
 - A coprocessor for hash computation
 - Other functional units

System Architecture

- Two memory buses
- One PCI bus
- One IX bus for network interfaces
- Serial line interface
- SRAM bus also for FlashROM

IXP1200 Bus Speeds

Bandwidth for buses:


Type	Bus Width	Clock Rate	Data Rate
Serial line	(NA)	(NA)	38.4 Kbps
PCI bus	32 bits	33-66 MHz	2.2 Gbps
IX bus	64 bits	66-104 MHz	4.4 Gbps
SDRAM bus	64 bits	≤ 232 MHz	928.0 MBps†
SRAM bus	16 or 32 bits	≤ 232 MHz	464.0 MBps

- IX bus provides more bandwidth than PCI (as expected)
 - Connection to network interfaces
 - Connection to other IXPs for multi-chip architectures
- SDRAM provides more bandwidth than SRAM

Internal IXP1200 Components

Quantity	Component	Purpose
1	Embedded RISC processor	Control, higher layer protocols, and exceptions
6	Packet processing engines	I/O and basic packet processing
1	SRAM access unit	Coordinate access to the external SRAM bus
1	SDRAM access unit	Coordinate access to the external SDRAM bus
1	IX bus access unit	Coordinate access to the external IX bus
1	PCI bus access unit	Coordinate access to the external PCI bus
several	Onboard buses	Internal control and data transfer

IXP1200 Organization

10

IXP1200 Processor Hierarchy

Different processors:

Processor Type	Onboard?	Programmable?
General-Purpose Processor	no	yes
Embedded RISC Processor	yes	yes
I/O Processors	yes	yes
Coprocessors	yes	no
Physical Interfaces	no	no

- General-Purpose Processor
 - CPU of host system on which IXP resides
 - High-level functions, like routing
- Embedded RISC Processor (StrongARM)
 - Runs conventional operating system (e.g., Linux)
 - Manages Microengines, configures system, processes exceptions
- I/O Processors (Microengines)
 - Fast path, main packet processors

IXP1200 Coprocessors

- Hash Unit
 - Computes 48-bit or 64-bit hash in hardware
 - Adaptive polynomial hash function
 - Anybody have any idea why this could be useful?? ©
- Four timers
- Real-time clock
- JTAG interface for testing
- IX bus controller
- FBI (FIFO Bus Interface) unit

IXP1200 Memory Hierarchy

Different Memories:

Memory Type	Maximum Size	On Chip?	Typical Use
GP Registers	128 regs.	yes	Intermediate computation
Inst. Cache	16 Kbytes	yes	Recently used instructions
Data Cache	8 Kbytes	yes	Recently used data
Mini Cache	512 bytes	yes	Data that is reused once
Write buffer	unspecified	yes	Write operation buffer
Scratchpad	4 Kbytes	yes	IPC and synchronization
Inst. Store	64 Kbytes	yes	Microengine instructions
FlashROM	8 Mbytes	no	Bootstrap
SRAM	8 Mbytes	no	Tables or packet headers
SDRAM	256 Mbytes	no	Packet storage

IXP1200 Memories

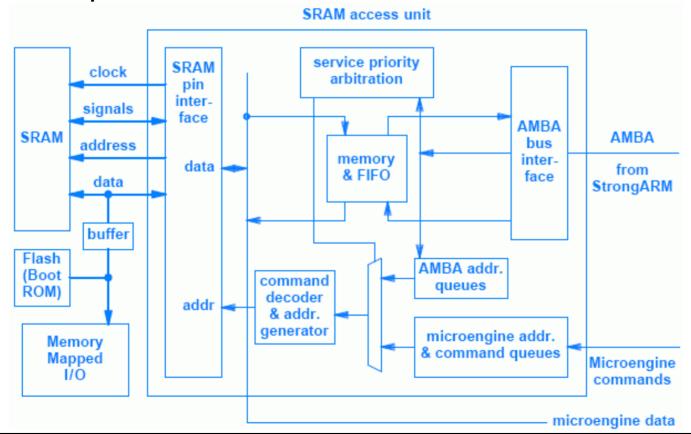
- Caches are transparent to programmer
- Memories that programmer focuses on:
 - SRAM, SDRAM, Scratch (Stratchpad)
- Other memory features:

Memory Type	Addressable Data Unit (bytes)	Relative Access Time	Special Features
Scratch	4	12-14	synchronization via test-and-set and other bit manipulation, atomic increment
SRAM	4	16-20	stack manipulation, bit manipulation, read/write locks
SDRAM	8	32 - 40	direct transfer path to I/O devices

University of Massachusetts Amherst

14

Synchronization


- How to implement synchronization between processors/threads?
- Example: shared packet counter
- Problem: increment requires read and write
 - Write after write (WAW) causes problems
- Solution?
 - Semaphore: atomic test and set operation
- Other problems
 - Deadlocks

Memory Addressing

- Addressable data units vary with memory type
 - Smallest addressable unit
- Typical units:
 - Word (16 bits)
 - Longword/long (32 bits)
 - Quadword (64 bits)
- Programmer needs to carefully plan memory layout
 - Address needs to be adapted to addressable units
 - Data structures that cross boundaries require multiple accesses

Complexity

- Each unit has many components
- Example: SRAM access unit

Next Class

- More details on IXP1200 will be covered
 - Embedded RISC Processor (StrongARM core) Chapter 19
 - Packet Processing Hardware (Microengines, FBI) Chapter 20
- Read Chapters 19 and 20