ECE 697J – Advanced Topics in Computer Networks

Design Trade-Offs in Network Processors 10/23/03

NP Architectures

- Numerous different design goals
 - Performance
 - Cost
 - Functionality
 - Programmability
- Numerous different system choices
 - Use of parallelism
 - Types of memories
 - Types of interfaces
 - Etc.
- We consider
 - Design tradeoffs on high level (qualitative tradeoffs)
 - Impact of different configurations on one particular architecture (quantitative tradeoffs)

Design Tradeoffs (1)

- Low development cost vs. performance
 - ASICs give higher performance, but take time to develop
 - NPs allow faster development, but might give lower performance
- Programmability vs. processing speed
 - Similar to tradeoff between ASIC and NP
 - Co-processors pose the same tradeoffs
 - Complexity of instruction set
- Performance: packet rate, data rate, and bursts
 - Difficult to assess the performance of a system
 - Even more difficult to compare different systems
- Per-interface rate vs. aggregate data rate
 - NP usually limited to one port

Design Tradeoffs (2)

- NP speed vs. bandwidth
 - How much processing power per bandwidth is necessary?
 - Depends on application complexity
- Coprocessor design: lookaside vs. flow-through
 - Lookaside: "called" from main processor, need state transfer
 - Flow-through: all traffic streams through coprocessor
- Pipelining: uniform vs. synchronized
 - Pipeline stages can take different times
 - Tradeoff between slowing down or synchronization
- Explicit parallelism vs. cost and programmability
 - Hidden parallelism is easier to program
 - Explicit parallelism is cheaper to implement

Design Tradeoffs (3)

- Parallelism: scale vs. packet ordering
 - Why is packet order important?
 - Giving up packet order constraint gives better throughput
- Parallelism: speed vs. stateful classification
 - Shared state requires synchronization
 - Limits parallelism
- Memory: speed vs. programmability
 - Different types of memories give performance
 - Increases difficulty in programming
- I/O performance vs. pin count
 - Packaging can be major cost factor
 - More pins give higher performance

Design Tradeoffs (4)

- Programming languages
 - Ease of programming vs. functionality vs. speed
- Multithreading: throughput vs. programmability
 - Threads improve performance
 - Threads require more complex programs and synchronization
- Traffic management vs. blind forwarding at low cost
 - Traffic management is desirable but requires processing
- Generality vs. specific architecture role
 - NPs can be specialized for access, edge, core
 - NPs can be specialized towards certain protocols
- Memory type: special-purpose vs. general-purpose
 - SRAM and DRAM vs. CAM

Design Tradeoffs (5)

- Backward compatibility vs. architectural advances
 - On component level: e.g., memories
 - On system level: NP needs to fit into overall router system
- Parallelism vs. pipelining
 - Depends on usage of NP
- Summary:
 - Lots of choices
 - Most decisions require some insight in expected NP usage
 - Tradeoffs are all qualitative
- Consider quantitative impact of NP configuration!

A Network Processor Performance and Design Model with Benchmark Parameterization

Mark A. Franklin Tilman Wolf

Challenges in NP Design

- Need for powerful network processors
 - Increasing link speeds
 - Increasing application complexity
- NPs different from other processors
 - NPs can exploit much more parallelism
- Vast design space
 - How many processors, how much cache, how many I/O and memory channels?
 - General-purpose vs. specialized processors
- Performance models of traditional processors do not apply
- => We propose performance model specific to NPs

Contribution

- General NP system model
 - Makes use of parallelism in network workloads
 - Applicable to a broad range of NPs
- Analytical performance model
 - Measure of processing power of NP configuration
 - Measure of cost in terms of chip area used
- Optimization of NP configuration
 - Model used to maximize MIPS/area
 - General design tradeoffs (e.g., # threads, cache sizes, ...)
- General philosophy:
 - "If area is not used efficiently, then it might as well be used for another parallel processing engine instead."

Outline

- General NP system
- Performance model
 - Performance definition
 - Processor utilization
 - Memory system
 - I/O channel
 - Area cost
- Application benchmark
 - Parameterization of model
- Optimization results
- Summary

NP System Model

- Single Chip Multi-processor
- Clusters:
 - Processors
 - Per-proc cache
 - Memory channel
- Processors are simple RISC cores
- Off-chip router functions:
 - Queuing
 - Packet demux

Tilman Wolf

Design Parameters (1)

• Parameters that are considered in model:

Component	Symbol	Description	
processor	clk_{p}	presser cleak frequency	
	t	number of simultaneous threads in processor	
	$ ho_P$	processor utilization	
program a	f_{load_a}	frequency of load instructions	
	f_{store_a}	frequency of store instructions	
	$mi_{c,a}$	i-cache miss probability for cache size c_i	
	$md_{c,a}$	d-cache miss probability for cache size c_d	
	$dirty_{c,a}$	prob. of dirty bit set in d-cache of size c_d	
	$compl_a$	complexity (instr. per byte of packet)	
caches	c_i	instruction cache size	
	c_d	data cache size	
	linesize	cache line size of i- and d-cache	
off-chip memory	$ au_{DRAM}$	access time of off-chip memory	

Design Parameters (2)

memory channel	$width_{mchl}$	width of memory channel
	clk_{mobl}	memory channel clock frequency
	$ ho_{mchl}$	load on memory channel
I/O channel	$width_{io}$	width of 1/O channel
	clk_{io}	clock rate of I/O channel
	$ ho_{io}$	load on I/O channel
cluster	n	number of processors per cluster
ASIC	m	number of clusters and memory channels
	s(x)	actual size of component x , with
		$x \in \{ASIC, p, c_i, c_d, io, mchl\}$

- Develop performance model:
 - 1. Processor utilization
 - 2. Cache miss rate and memory access time
 - 3. Memory channel utilization
 - 4. Cluster configuration

Processing Power

- RISC: one instruction every cycle unless stalled
- Utilization ρ_p gives fraction of "useful" cycles
- Total processing power:

$$IPS = \sum_{j=1}^{m} \sum_{k=1}^{n} \cdot \rho_{p_{j,k}} \cdot clk_{p_{j,k}}$$

If all processors are identical in configuration and workload:

$$IPS = m \cdot n \cdot \rho_p \cdot clk_p$$

• Question: How to determine ρ_p ?

Tilman Wolf

Processor Utilization

- Cache misses cause processor stalls
 - Reduce utilization
- Multithreading hides memory access latencies
- Processor utilization [Agarwal 1992]:

$$\rho_p(t) = 1 - \frac{1}{\sum_{i=0}^t \left(\frac{1}{p_{miss} \cdot \tau_{mem}}\right)^i \frac{t!}{(t-i)!}}$$

- Utilization decreases with
 - more cache misses (p_{miss})
 - longer memory accesses (τ_{mem})
 - Fewer threads (t)
- Need to determine τ_{mem} and p_{miss}

Memory System

- Memory access time has three components:
 - Queuing time until request is served
 - DRAM access time
 - Memory line transmission time

$$\tau_{mem} = \tau_Q + \tau_{DRAM} + \tau_{transmit}$$

- DRAM access time fixed by technology used.
- Transmission time:

$$\tau_{transmit} = \frac{linesize}{width_{mchl}} \cdot \frac{clk_p}{clk_{mchl}}$$

• Queuing time depends on load on memory channel.

Queuing Approximation

- Processors in cluster generate memory requests
 - Single server queuing system
 - Deterministic service time
 - Geometrically distributed inter-request time
- Approximation with waiting time in M/D/1 queue:

$$\tau_Q = \frac{\rho_{mchl}^2}{2(1 - \rho_{mchl})} \cdot \frac{linesize}{width_{mchl}} \cdot \frac{clk_p}{clk_{mchl}}$$

On-Chip Caches

• Miss rate is combination of i-cache and d-cache misses:

$$p_{miss,a} = mi_{c,a} + (f_{load_a} + f_{store_a}) \cdot md_{c,a}$$

- Miss rates of application depend on effective cache size.
- Threads compete for cache => cache pollution
- Cache is effectively split among threads.
 - Effective cache size:

$$c_{i,eff} = \frac{c_i}{t}, \quad c_{d,eff} = \frac{c_d}{t}$$

• We now have expression for processor utilization.

Memory and I/O Channel

- How many processor can share one memory channel?
- Processor utilization and miss rates gives memory bandwidth $bw_{\rm mchl,1}$ of one processor.
- Number of processors that can share memory channel:

$$n = \left\lfloor \frac{width_{mchl} \cdot clk_{mchl} \cdot \rho_{mchl}}{bw_{mchl,1}} \right\rfloor$$

- Bandwidth for I/O channel depends on application:
 - Complex applications: little I/O
 - Simple applications: more I/O
 - Formal definition of "complexity" in paper
- Performance equation complete.

Chip Area

• Summation over all chip components:

$$area_{NP} = s(io) + \sum_{j=1}^{m} (s(mchl) + \sum_{k=1}^{n} (s(p_{j,k}, t) + s(c_{i_{j,k}}) + s(c_{d_{j,k}})))$$

- Processor size depends on number of thread contexts: $s(p,t) = s(p_{basis}) + t \cdot s(p_{thread})$
- Memory channel size depends on channel width:

$$s(mchl) = s(mchl_{basis}) + width_{mchl} \cdot s(mchl_{pin})$$

Model Summary

- With IPS performance of system and chip area:
 Compute IPS/area
- Necessary parameters:
 - Application parameters (load/store freq., cache miss rates, ...)
 - Technology parameters (processor clock, component sizes, ...)
- => Benchmark for application parameters

CommBench

- Network processor benchmark
- Benchmark applications:
 - Header-processing applications (HPA)
 - Payload-processing applications (PPA)

HPA	PPA
Deficit round robin	CAST encryption
IP header fragmentation	JPEG transcoding
Radix tree routing	Reed-Solomon FEC
TCP filtering	ZIP compression

- Two workloads:
 - A: HPA
 - B: PPA
- More details in [Wolf, Franklin 2000].

Application Parameters

- Workload characteristics for model evaluation
- Simple parameters
 - Can easily be measured
 - Easily adaptable to other workloads

Technology Parameters

- 0.18 µm CMOS technology
- Exact values are hard to get from industrial sources
 - Performance model also works with more accurate parameters
- Varied parameters:
 - Processor clock
 - # of threads
 - Cache sizes
 - Memory channel bandwidth and load

Parameter	Value(s)
clk_p	200 MHz 800 MHz
t	116
Ci	1 kB 1024 kB
C_d	1 kB 1024 kB
linesize	32 byte
$ au_{DRAM}$	60 ns
$width_{mchl}$	16 bit 64 bit
ρ_{mchl}	01
width _{io}	up to 72 bit
$ ho_{io}$	0.75
$clk_{mchl}, \ clk_{io}$	200 MHz
$s(p_{basis})$	1 mm^2
$s(p_{thread})$	0.25 mm^2
$s(c_i), s(c_d)$	$0.10 \text{ mm}^2 \text{ per kB}$
$s(mchl_{basis}), s(io_{basis})$	10 mm^2
$s(mchl_{pin}), s(io_{pin})$	0.25 mm^2
s(ASIC)	up to 400 mm^2

Results

- Optimal configurations
- Performance trends (take optimal configuration and vary parameter)
 - Memory channel
 - Processor clock and threads
 - Caches
- Note: performance metric is MIPS/mm²

Optimal Configuration

- Processor:
 - 800 MHz
 - 2 threads
 - ~96% utilization
- Chip configuration:
 - 2-3 clusters with 20-30 processors
 - 16-32 kB caches (instruction and data)
- Memory channel:
 - ~90% load
 - 64 bit width
- Off-chip memory:
 - 120-140 cycles access time
- Area:
 - 140-180 mm²

Tilman Wolf

Parameter	workload A	Workload B
clk_p	800 MHz	800 MHz
t	2	2
m	2	3
c_i	16 kB	32 kB
C_d	16 kB	16 kB
$width_{mchl}$	64 bit	64 bit
$ ho_{mchl}$	0.91	0.89
p_{miss}	0.187%	0.286%
$ au_{mem}$	137.6	121.6
$ ho_p$	0.974	0.957
n	31	20
$width_{io}$	71	3
$pins_{NP}$	$199 + pins_{control}$	$195 + pins_{control}$
IPS	48324 MIPS	45934 MIPS
area	272 mm^2	322 mm^2
IPS/area	178 MIPS/mm^2	142 MIPS/mm^2

Memory Channel

- Best load ~90%
- Low load:
 - Waste of area for memory channel
- High load:
 - Very long
 queue length in
 M/D/1 model
 - High memory access time

Processor Clock

- Practically linear growth with processor clock speed
- Less
 significant with
 more threads
 - Less cache per thread
 - Performance
 limited by off chip memory
 access time

Cache Configuration

Summary

- NP performance model
 - Determines processing performance of NP configuration
 - Relates processing power to area of system-on-a-chip
 - Uses simple workload characteristics and technology parameters
- Optimal configuration for given scenario
- Performance trends as "rules of thumb:"
 - Cache configuration has big impact on performance
 - Two to four thread contexts is optimal
 - Higher processor clock rates and memory channel directly translate into higher performance
- Model can aid in first-order NP design

Next Class

- Do you want help session on homework?
- If yes:
 - Next Tuesday: help session
 - Thursday: Introduction to Intel IXA, read chapter 18
- If no:
 - Tuesday: Introduction to Intel IXA, read chapter 18