ECE 697J – Advanced Topics in Computer Networks

Switching Fabrics 10/02/03

Router Data Path

- Last class:
 - Single CPU is not fast enough for processing packets

Switching Fabric

- Requirements:
 - Designed for use inside a single network system
 - Provide interconnection between ports and control processor
 - Support transfer of unicast, multicast, and broadcast packets
 - Scale with data rate on input/output
 - Scale with packet rate on input/output
 - Scale with number of input/output ports
 - Low overhead (e.g., "headers" inside fabric)
 - Low cost
- Not all requirements can be achieved
- Tradeoffs necessary (e.g., cost vs. bandwidth)

Switching Fabric Types

- Synchronous vs. asynchronous
 - Sync: regular traffic (e.g., fixed cells), async: variable size (e.g., packets)
 - In practice synchronous fabrics are used
 - Packets are divided into fixed-sized cells
- Multiplexing:
 - Time Division: single or few paths shared among many ports
 - Space Division: many paths used for less delay
- We'll look at:
 - SDM: fully connected, crossbar
 - TDM: shared bus, shared memory
 - Multistage: Banyan

Fully Interconnected Fabric

Separate physical data path between each port pair

• Problem?

Crossbar Fabric

- Switched interconnect interface hardware
- Allows multiple simultaneous connections
- Controller decides on assignment of active connections
- Problems?

Contention

- What happens if multiple input ports send to the same output port?
 - Causes "port contention"
 - Is this a problem of the fabric architecture?
- How can contention be addressed?
 - Queues that buffer packets

7

Queuing

- Variety of queuing designs possible
- Input queuing:
 - Packets are buffered on input side until output is available
 - Problem: head of line blocking
- Output queuing:
 - Bursts from inputs to one output are buffered on output side
 - Problem: queue size, switch fabric speedup
- Virtual queuing:
 - Partial output queues are maintained on input size
 - Each port gets rate or virtual time assigned for sending
 - Problem: requires complex coordination

Shared Bus Fabric

- Full interconnect and crossbar can be costly (N²)
- Shared bus uses one path for all ports (cost is 2N)

- Disadvantage: lower aggregate data rate
 - Hardware needs to operate at N times faster than ports
- What granularity is best for access: packet, cells?

Shared Memory Fabric

- Input ports deposit packets in memory for output ports
- Problem: cost of memory interfaces

Tilman Wolf

Multistage Fabrics

- None of the fabrics so far really scales
 - Full interconnect: squared cost with port number
 - Crossbar: limitations in controller
 - Bus: interconnect needs to be N times faster than port
 - Shared Memory: memory interfaces are costly and not scalable
- Multistage fabrics:
 - Multiple "steps" between input and output
 - Provides multiple data paths, but not as many as fully connected
 - Packets can be queued or not on each stage
- Nice properties:
 - Scalability
 - Self routing

Switching Elements

- Switching element is basic component:
 - Two inputs, two outputs
 - Two different settings:
 - Straight through
 - Crossover
 - Setting is determined by "label"
- Multiple switching elements make up larger fabric
- Various topologies possible:
 - Banyan
 - Benes
 - Delta
 - Etc.

Banyan Switch

• From 2-port switch to 4-port switch:

• Can be applied recursively

Tilman Wolf

Banyan Switch

Tilman Wolf

Banyan Switch

- Scalability due to recursive structure
 - More ports will require more stages (grows with log n)
- Contention can occur
 - How?
 - Usually due to overloading of one output
- Can there be a traffic configuration that causes blocking without overloading one output?
- Other multistage switch fabrics:
 - Different recursive rules
 - Additional stages: distribution to avoid blocking
- Practical note:
 - Standards define Switch Fabric Interfaces

Next Class

- This completes "traditional" network systems
- Next class:
 - New "applications" for networks
 - Basically advanced functionality pushed into routers
 - First step towards "programmable" network systems
- Read:
 - Application papers (two)