ECE 697J – Advanced Topics in Computer Networks

Hardware-Based Router Architectures 9/30/03

Traditional Software Router

• System architecture so far:

- Problem: single CPU bottleneck
 - Limited aggregated data rate

Aggregate Data Rate

• How is aggregate data rate defined?

"The aggregate data rate is defined to be the sum of rates at which traffic enters or leaves a system. The maximum aggregate data rate of a system is important because it limits the type and number of network connections the system can handle"

- Examples?
 - Workstation is limited by PCI bus
 - Firewall by processing with limited processing capability
- Is this really the most important metric?
 - Aggregate Packet Rate just as important

Aggregate Packet Rate

"For protocol processing tasks that have a fixed cost per packet, the number of packets processed is more important than the data aggregate rate"

• Packet rate depends on packet size:

Technology	Network Data Rate	Packet Rate For Small Packets	Packet Rate For Large Packets
	In Gbps	In Kpps	In Kpps
10Base-T	0.010	19.5	0.8
100Base-T	0.100	195.3	8.2
OC-3	0.156	303.8	12.8
OC-12	0.622	1,214.8	51.2
1000Base-T	1.000	1,953.1	82.3
OC-48	2.488	4,860.0	204.9
OC-192	9.953	19,440.0	819.6
OC-768	39.813	77,760.0	3,278.4

Aggregate Packet Rate

University of Massachusetts Amherst

Time Per Packet

 Aggregate packet rate determines time per packet (on single CPU)

Technology	Time per packet for small packets (in us)	Time per packet for large packets (in us)
10Base-T	51.20	1.214.40
100Base-T	5.12	121.44
OC-3	3.29	78.09
OC-12	0.82	19.52
1000Base-T	0.51	12.14
OC-48	0.21	4.88
OC-192	0.05	1.22
OC-768	0.01	0.31

- Packet processing requires in the order of 100s of instructions per packet
- Single CPU router lacks scalability

Scalability

- What does scalability mean?
 - A system (design) is scalable if it can easily be extended in "size" and performance
 - E.g., router design can be used with more ports or faster links
- This is an extremely important criteria
 - Designing a system is expensive
 - Being able to extend to new requirements easily is important
 - Performance requirement increase really fast (related to Moore's Law)
 - Systems will eventually be used in a different context than they were designed
- How can we make a network system (router) more scalable?

Advanced Router Architectures

- Changing requirements:
 - Increasing link speed
 - Increasing number of ports
 - Increasing routing tables
 - Increasing processing complexity
- Scalable system design:
 - Exploit parallelism wherever possible
 - Per-port, per-flow, per-packet, instruction-level
 - One Processing engine per port (instead of single CPU)
 - Multiple processors per port
 - "Better" processors
- Note: Comer focuses mostly on processing on a single port

Processing Power

- Overcoming processing bottlenecks:
 - Specialized hardware (ASICs)
 - Fine-grained parallelism
 - Symmetric coarse-grain parallelism
 - Asymmetric coarse-grain parallelism
 - Special-purpose coprocessors
- Other improvements:
 - NICs with onboard processing
 - Smart NICs
 - => basically same as per-port processing engines

Parallelism in Processors

- Fine-grained parallelism
 - Exploits instruction-level parallelism
 - Examples: VLIW, SMT, etc.
 - Limited due to workload
- Symmetric coarse-grain parallelism
 - Multiple parallel identical CPUs
 - Inter-processor communication can limit performance
- Asymmetric coarse-grain parallelism
 - Multiple parallel different CPUs
 - E.g., one processor for layer 2, one for layer 3
- Special-purpose coprocessors
 - Custom logic for lookups, checksums, etc.
 - High-performance but not (fully) programmable
- Key question becomes how such a system can be programmed

Next Class

- We can achieve high processing power on port
- How can we interconnect ports in a scalable way?
- Read Chapter 10 (Switching Fabrics)