ECE 697J — Advanced Topics
In Computer Networks

Software-Based Router Architectures
9/25/03

Tilman Wolf m 1

University of Massachusetts Amherst

S
TCP Connection Recognition

* Track currently active connections

o Algorithm:
For each IP datagramw th TCP segnent {

}

Extract | P source, S, destination, D, address
Extract source port, P,, and destination port , P,

Create/update entry in hash table C
using (S, D, P,, P,) as key

| f segnent has RESET bit set, delete entry
Else if segnent has FIN bit set,
mar k connection closed in on direction
Else if segnent has SYN bit set,
mar k connection as established in one direction
Delete entry if both directions are closed

Mark conpl etely established if both directions are
est abl i shed

Tilman Wolf m 2

University of Massachusetts Amherst

TCP Splicing

On TCP connection establishment, node chooses
random sequence number

When two connections are “spliced together”, sequence
numbers need to be adjusted:

Host TCP connection #1 . TCP connection #2 Host
A - = splicer |.e =

— -

- —
Wl r] el) - Jel 3 ol 2
sequence 200 sequence 50 sequence 860 sequence 1200

Need to keep offset between connections and adjust

each paCket: Connection Sequence Connection Sequence
& Direction Number & Direction Number

Incoming #1 200 Incoming #2 1200

Outgoing #2 860 Outgoing #1 50

Change 660 Change -1150

Tilman Wolf m 3

University of Massachusetts Amherst

Packet Processing in Software

« Can we write a packet processing application?
— We could, but inefficient
— OS has better access to hardware resources
— OS can access packet data without copying

 Embedded System
— Stand-alone device
— Software is optimized for particular task
— No other functionality
— Possibly difficult to program

* OS Implementation
— Packet processing part of OS kernel
— Benefits: OS abstractions, device drivers, reusable for all users

Tilman Wolf m 4

University of Massachusetts Amherst

Interrupts and Priorities

 What is an interrupt?
— Event that signals to operating system
— Hardware interrupts: raised by device
— Software interrupts: raised by software

— “Interrupt handler” is called to process interrupt

* Priorities

— Interrupts have different priorities

— Examples?

— Higher priority interrupts can interrupt lower priority code
— Kernel software can specify desired interrupt level

Tilman Wolf

University of Massachusetts Amherst

Packet Processing and Interrupts

Interrupt levels for packet
processing:

— Highest to device driver

— Lower to protocol processing and

Applications

application
— Why?
Requires queues between

packel quene

Interrupt levels between levels | ——e-

protocol
processing

— Why?
Processing in high interrupt
should be kept brief

What if CPU cannot keep up?

device drivers
handling frames

— Livelock
Only few priority levels supported

NIC, NIC,

- lowesi! priarily

~—— medium prioriiy

-a—— hichest priorily

Tilman Wolf m

University of Massachusetts Amherst

e
Kernel Threads

Thread is piece of software that runs in its own context
— Similar to process, just light-weight

Different threads can run in different priorities
— More fine-grained than interrupt levels
— Scheduling policy allocates CPU to threads

Thread synchronization handles access to shared data

— Mutual exclusion: only one thread has access to data structure
— Notification: thread blocks until event occurs

How should threads be assigned to protocol software?
— One thread per layer

— One thread per protocol

— Multiple threads per protocol

— Protocol threads plus timer management

— One thread per packet 3

Tilman Wolf m 7

University of Massachusetts Amherst

One Thread per Layer

 Different layers ., senas —

applications

- 1 am. recelves
have different L gueus
priorities r,: -~ Laver 4
* Requires ’ y
gqueues -,
between layers quedte
y ;’: 4~®r_fH ~— Layer 3
i
- -,
guUeue
; 4b®::. ~— Layer 2
PaCkels arrive - ¥ - pckels leave

Tilman Wolf m

University of Massachusetts Amherst

Per Protocol Threads

 Example: UDP and TCP
e Each protocol has queue

e Multiple threads per protocol:
— Handle incoming and outgoing packets separately

applications

' 3
E|LI-E:LIE-* c::|LI-E.‘LI-E!
Y Y

Tilman Wolf m 9

Timer Management Threads

« Timer management is fundamental functionality for all
protocols

* Timer thread handles all timers in system

* Problem: timer can range from mircoseconds to minutes

— Shorter timers need higher priority

— Why?
applications
A
queus
— (er,
."'-_-- -
fmer thread —as- @

Y

Tilman Wolf m

University of Massachusetts Amherst

10

One Thread per Packet

e Layers introduce overhead
— Queuing
— Context switching

* Requires many threads
* Packet is processed entirely by one thread
¢ “Run to completion” programming model

Tilman Wolf m 11

University of Massachusetts Amherst

Asynchronous vs. Synchronous

e Asynchronous programming
— Program is structured around interrupts

* Synchronous programming
— Program is structured around threads
— “packet centric”

e Synchronous is easier to understand
— Thread abstraction handles notification and mutual exclusion

— Possibly less efficient
— Probably less complex to understand

Tilman Wolf m 12

University of Massachusetts Amherst

Next Class

« Hardware-based router architectures
— Read chapter 8

* Router design paper
— Read paper

Tilman Wolf m 13

University of Massachusetts Amherst

