
Tilman Wolf 1

ECE 697J ECE 697J –– Advanced Topics Advanced Topics 
in Computer Networksin Computer Networks

Software-Based Router Architectures
9/25/03



Tilman Wolf 2

TCP Connection RecognitionTCP Connection Recognition
• Track currently active connections
• Algorithm:

For each IP datagram with TCP segment {
Extract IP source, S, destination, D, address
Extract source port, P1, and destination port , P2
Create/update entry in hash table C 

using (S, D, P1, P2) as key
If segment has RESET bit set, delete entry
Else if segment has FIN bit set, 

mark connection closed in on direction
Else if segment has SYN bit set, 

mark connection as established in one direction
Delete entry if both directions are closed
Mark completely established if both directions are 
established

}



Tilman Wolf 3

TCP SplicingTCP Splicing
• On TCP connection establishment, node chooses 

random sequence number
• When two connections are “spliced together”, sequence 

numbers need to be adjusted:

• Need to keep offset between connections and adjust 
each packet:



Tilman Wolf 4

Packet Processing in SoftwarePacket Processing in Software

• Can we write a packet processing application?
– We could, but inefficient
– OS has better access to hardware resources
– OS can access packet data without copying

• Embedded System
– Stand-alone device
– Software is optimized for particular task
– No other functionality
– Possibly difficult to program

• OS Implementation
– Packet processing part of OS kernel
– Benefits: OS abstractions, device drivers, reusable for all users



Tilman Wolf 5

Interrupts and PrioritiesInterrupts and Priorities
• What is an interrupt?

– Event that signals to operating system
– Hardware interrupts: raised by device
– Software interrupts: raised by software
– “Interrupt handler” is called to process interrupt

• Priorities
– Interrupts have different priorities
– Examples?
– Higher priority interrupts can interrupt lower priority code
– Kernel software can specify desired interrupt level



Tilman Wolf 6

Packet Processing and InterruptsPacket Processing and Interrupts
• Interrupt levels for packet 

processing:
– Highest to device driver
– Lower to protocol processing and 

application
– Why?

• Requires queues between 
interrupt levels
– Why?

• Processing in high interrupt 
should be kept brief

• What if CPU cannot keep up?
– Livelock

• Only few priority levels supported



Tilman Wolf 7

Kernel ThreadsKernel Threads
• Thread is piece of software that runs in its own context

– Similar to process, just light-weight

• Different threads can run in different priorities
– More fine-grained than interrupt levels
– Scheduling policy allocates CPU to threads

• Thread synchronization handles access to shared data
– Mutual exclusion: only one thread has access to data structure
– Notification: thread blocks until event occurs

• How should threads be assigned to protocol software?
– One thread per layer
– One thread per protocol
– Multiple threads per protocol
– Protocol threads plus timer management
– One thread per packet



Tilman Wolf 8

One Thread per LayerOne Thread per Layer
• Different layers 

have different 
priorities

• Requires 
queues 
between layers



Tilman Wolf 9

Per Protocol ThreadsPer Protocol Threads
• Example: UDP and TCP
• Each protocol has queue
• Multiple threads per protocol:

– Handle incoming and outgoing packets separately



Tilman Wolf 10

Timer Management ThreadsTimer Management Threads
• Timer management is fundamental functionality for all 

protocols
• Timer thread handles all timers in system
• Problem: timer can range from mircoseconds to minutes

– Shorter timers need higher priority
– Why?



Tilman Wolf 11

One Thread per PacketOne Thread per Packet
• Layers introduce overhead

– Queuing
– Context switching

• Requires many threads
• Packet is processed entirely by one thread
• “Run to completion” programming model



Tilman Wolf 12

Asynchronous vs. SynchronousAsynchronous vs. Synchronous

• Asynchronous programming
– Program is structured around interrupts

• Synchronous programming
– Program is structured around threads
– “packet centric”

• Synchronous is easier to understand
– Thread abstraction handles notification and mutual exclusion
– Possibly less efficient
– Probably less complex to understand



Tilman Wolf 13

Next ClassNext Class
• Hardware-based router architectures

– Read chapter 8

• Router design paper
– Read paper


