ECE 697J - Advanced Topics in Computer Networks

Packet Processing – III 9/18/03

Packet Processing Functions

- Basic network system functionality
 - Address lookup
 - Error detection and correction
 - Fragmentation/re-assembly
 - Queuing
 - Scheduling
 - Security
 - Traffic measurement/shaping
 - Protocol demultiplexing
 - Packet classification

Address Lookup

- Related to forwarding
 - Send packet toward destination
 - Table driven
- Layer 2
 - MAC address lookup
 - Exact match
- Layer 3
 - IP address lookup
 - Longest prefix match
- Cost depends on size of table and type of lookup

IP Forwarding

- Forwarding decision is made based on routing table
 - There is an important difference between a routing table and a forwarding information base (FIB) (or forwarding table)
- Routing is always done on the most specific prefix
 - Most specific prefix = longest prefix
- Example routing table:

Destination	Address	Next-Hop	Interface	
Address	Mask	Address	Number	
192.5.48.0	255.255.255.0	128.210.30.5	2	
128.10.0.0	255.255.0.0	128.210.141.12	1	
0.0.0.0	0.0.0.0	128.210.30.5	2	

- Routing information contains outgoing interface (and next hop)
- How to implement routing lookup?
 - Sequential search impractical (30,000 entry table)

Routing Tree

• Example routing tree:

string	prefix	node
01011	0	а
10000	10000	Ь
10001	10001	с
10101	101	d
11001	1100	е
11010	11010	f
11011	11011	g
11101	111	h

(a)

Error Detection and Correction

- Bit errors can occur in packet
- Layer 2
 - Cyclic Redundancy Check (CRC)
- Layer 3
 - Header checksum
- Significant computation overhead
 - Layer 2 CRC done in hardware
 - Layer 3 checksum computed over packet header
- Error correction not done by network system why?
 - More overhead
 - Error correction handled by upper layers

Fragmentation and Reassembly

- MTU
- IP fragments and reassembles
- ATM segments and reassembles
- Fragmentation straightforward
- Reassembly more complex why?
 - Pieces of packet can arrive out of order
 - Pieces need to be buffered (chained buffer)
 - How much memory is needed?

Queuing

- Packet processing store and forward
 - Incoming packet placed in queue
 - Outgoing packet placed in queue
- FIFO structure
 - How big?
 - How many queues?
 - Where to place them?
- How are packets selected from queues?
 - Priority mechanisms (a.k.a. scheduling)
- Packet discard
 - Finite queue size
 - Tail drop
 - Random early discard probabilistic

Priority Mechanisms

- Priority Queuing
 - Starvation
- Weighted Round Robin
 - Number of packets processed from a queue depending on weight
 - Weight depends on priority and average packet size
 - Why could this be unfair?
- Weighted Fair Queuing
 - Use packet size rather than number of packets

Scheduling

- Two types
 - Link (queue) scheduling
 - Resource scheduling
- Co-ordination of activities in network system
- Resource allocation
 - Process multiple packets
 - Process multiple protocols
 - Multiple processors
- Important when priorities are involved
- Scheduler must be fair

Security

- Authentication
- Privacy
 - VPN
- Encryption
 - Covers entire packet payload
 - Computationally intensive!
 - Performed by special hardware

Traffic Measurement, Shaping

- Traffic measurement
 - Examine header contents
 - Collect real time statistical information
- Traffic policing
 - Enforcement of QoS guarantee
 - Hard boundary discard packet
- Traffic shaping
 - Softer form of policing
 - Does not discard packet
 - Smooth out bursty traffic
 - Leaky bucket, token bucket

Timer Management

- Fundamental function
- Timers used for
 - Protocols
 - ARP for retransmission and cache management
 - IP for re-assembly
 - TCP for retransmission
 - Scheduling
- Multiple independent timers required
 - Cost can be high
- How do we manage multiple timers with one clock?
 - Priority data structure
 - Granularity issues

Protocol Demultiplexing

- Differentiate between protocols at each layer of stack
- One protocol is used to process packet
- Example:
 - Layer 2 Ethernet, ATM
 - Layer 3 IP, ARP
- Use type information from header at each layer
- Layered processing

Packet Classification

- Map packet into a "flow" or category depending on header information
- Flow set of packets that share common characteristics
- Packet handled differently depending on flow
- Different from protocol demultiplexing
 - Maintains state information (flow table)
 - Packet classified over multiple layers
- Rule based

Packet Classification

- Software or hardware based methods
 - Software usually run on network processors
 - Software more flexible
 - Hardware better performance, more expensive
- Static vs. dynamic packet classification
 - Static : Header values determined a priori
 - Dynamic : Rules can change over time
 - Dynamic : Usually implemented in software

Example : Web Traffic

- Ethernet frame contains IP datagram
- IP datagram contains TCP segment
- TCP segment has destination port 80 (HTTP)

Software Classification

Three classification rules required

 if ((frame type == 0x0800) && (IP type == 6) && (TCP port == 80))
 packet matched classification
 else

packet does not match classification

- Maximum number of comparisons is fixed
- Can be optimized by re-ordering comparisons
 if ((TCP port == 80) && (IP type == 6) && (frame type == 0x0800))
 packet matched classification

else

packet does not match classification

• Average number of comparisons determined by order of tests

Hardware Classification

- Uses parallel hardware to extract required fields
- Example : need to compare 0x(0800060050)

Special Packet Classification

- Can get complicated
 - Multiple rule sets
 - Variable size headers
- Hybrid classifiers

Dynamic Classification

- Performed by software
 - Flexible
 - More processing overhead
- Flow creation
 - "n-tuple" → n fields from packet headers
 - TCP flags used to determine status of flow
- Flow table
 - Store flow record
 - Expensive operation to update flow record

Flow Creation

- 5-tuple
 - Most commonly used version

VERS	HLEN		SERVICE	IP TOTAL LENGTH		
IP IDENT		FLAGS	FRAG. OFFSET			
IP 1	LLL		IP TYPE	IP HDR. CHECKSUM		
IP SOURCE ADDRESS						
IP DESTINATION ADDRESS						
TCP SOURCE PORT		TCP DESTINATION PORT				
TCP SEQUENCE						
TCP ACKNOWLEDGEMENT						
HLEN	NOT US	SED	CODE BITS		TCP WINDOW	
TCP CHECKSUM			SUM	TCP URGENT PTR		
Start Of TCP Data						

Flow Forwarding

- Flow determines how to dispose packet
 - − Classification : packet \rightarrow flow
 - Forwarding : flow \rightarrow next hop
- Create "route cache"
 - Stores next hop information for a flow
 - Provides next hop information
 - Avoid routing table lookup, more efficient
 - Drawback :
 - Route cache needs to be updated when routing table changes

Current Network Systems

- Features
 - Use of classification instead of demultiplexing
 - De-centralized architecture, interfaces forward packets
 - Fast data path, slow data path
- Conventional CPU to handle exceptions
- Scalability

Summary

- Overview of packet processing functionality
 - Table lookup
 - Classification
 - Dynamic (flow based) classification
 - Queuing/Scheduling
- Task level granularity
 - Building blocks
- Next class
 - Read IP lookup paper
 - Chapter 7

