
A Network Processor Performance and Design Model with
Benchmark Parameterization

Mark A. Franklin and Tilman Wolf
Departments of Computer Science and Electrical Engineering

Washington University in St. Louis, MO, USA
�jbf,wolf�@ccrc.wustl.edu

Abstract

Network processors have become central ele-
ments in the design of modern routers. With higher
line speeds and more demanding functional require-
ments, design of network processors has increased
in difficulty. In this paper an analytic performance
model for a multiprocessor-based single chip net-
work processor is presented and used to aid in the
design process. The model contains a number of
workload parameters that have been obtained from
a benchmark that reflects typical processing char-
acteristics associated with packet processing. The
system parameters include the number of proces-
sors per chip, the processor multithreading level,
the sizes of on-chip data and instruction caches, and
the number of required off-chip memory channels.
Using the presented model, an optimal design can
be obtained that maximizes the overall processing
power per chip area. The presented results give an
understanding of how to configure a network pro-
cessor optimally and what effect changes in system
parameters have on the overall performance.

1 Introduction

Two design considerations are important for con-
temporary network processors (NPs). One is the
flexibility to adapt to new functional requirements;
another is the ability to provide scalable perfor-
mance in response to increasing line rates. Such
requirements can lead to a host of potential architec-
tures as can be seen when examining the multitude
of commercial designs available.

While commercial designs have a number of
common characteristics, we focus on three of these.

First, to deal with high line rates, NPs employ paral-
lel processors. Network workloads inherently lend
themselves to high levels of parallelism due to in-
dependence between different packet flows. Sec-
ond, to reduce the latency effects of off-chip in-
struction and data access, the processors employ on-
chip caches and multithreading techniques. Third,
various state information (e.g., routing tables) and
packet data is stored in separate off-chip memories,
which require an on-chip memory interface.

In this paper, we develop a performance model
to quantify the design alternatives associated with
these three architectural elements and optimize the
design to maximize overall processing power per
area. This represents a starting point for developing
a coherent approach and theory of NP architecture
design.

The idealized single-chip NP architecture that is
used in our work is shown in Figure 1. It con-
tains a number of identical multithreaded general-
purpose processors, each having its own instruc-
tion and data caches. To satisfy off-chip memory
bandwidth requirements, groups of processors are
clustered together and share a memory interface. A
scheduler assigns packets from independent flows
to the different processors thus achieving speedup
by exploiting parallelism. Thus, after assignment of
a flow to a processor, all packets of the same flow
are routed to the same processor. More detail on the
architecture can be found in [7]. Packet scheduling
issues in this environment are considered in [6].

2 The Performance Model

The system parameters used in the performance
model are listed in Table 1. The entire system has
� clusters with � RISC processors in each cluster.

Each cluster has a single memory interface with an
area (in units of mm�) of ������� and the entire
chip has a single I/O interface with an area of �����.
Each processor has an area of ��	�
 �� and has its
own instruction and data caches of size �� and ��
bytes and chip areas of ����� and ����� respectively.

Each cache is shared among the � threads that can
be supported in hardware by each processor. We
assume that context-switching is done in hardware
with zero cycle overhead. This means that if one
thread stalls on a memory miss, another thread can
immediately start processing with no cycle delay.
The processor is a typical RISC processor that ide-
ally executes one instruction per cycle when no haz-
ards are present. We also assume that the on-chip
SRAM cache can be accessed in a single cycle.

The goal of our work is to find the “optimal”
configuration of a network processor for a given
workload. Optimal, in this context, means obtaining
the maximum processing power per chip area. In
the remainder of the paper we develop analytic ex-
pressions for the processing power,
��, (Instruc-
tions Per Second) and the area, ����, associated
with a given architecture configuration (e.g., num-
ber of processors, sizes of caches, etc.). From these
expressions we can obtain
������� and find its
maximum as a function of the various configuration
parameters, thus developing an “optimal” architec-
ture. In the remainder of this section, we discuss
obtaining
�� and ���� in terms of system and
workload characteristics.

2.1 Processing Performance

For a single processor, processing power can be
expressed as the product of the processor’s utiliza-
tion, ��, and its clock rate, ����. The processing
power of the entire NP can be expressed as the sum
of processing power of all the processors on the
chip. Thus, with � clusters of processors and �
processors per cluster:

�� �

��
���

��
���

������ � ������� � (1)

If all processors are identical and run the same
workload, then on average the processing power is:

�� � � � � � �� � ����� (2)

A key question is how to determine the utiliza-
tion of the processors. In the extreme case where
there are a large number of threads per processor,

large caches that reduce memory misses, and low
memory miss penalties, the utilization approaches
�. However, a large number of thread contexts and
larger caches require more chip area. Our goal is to
find the optimal configuration of these parameters
in terms of processing power per chip area. Thus,
we need to develop a cost function for different con-
figurations that reflect the required chip area.

2.2 Chip Area

The on-chip area equation for an NP configura-
tion in our general architecture is:

�����	 � ����� �

��
���

���������

��
���

���	�
�
 �� � ������� � � ����������� (3)

This is the summation over all the system compo-
nent areas shown in Figure 1. With identical pro-
cessor configurations, this can be simplified to:

�����	 � ����� �� � ���������

� � ���	
 �� � ����� � �������� (4)

The processor size, ��	
 ��, depends on the number
of hardware threads and is therefore expressed as
��	
 ��, a function of �. We model the processor
size in terms of two components. The first compo-
nent, size ��	��
�
�, is independent of the number of
supported threads. It represents the basic processor
logic (e.g., ALU, pipeline control, branch predic-
tion, etc.). The second component, size ��	 �������,
relates to logic associated with a thread (e.g., thread
context registers, associated logic, etc.). This thread
component is modeled as increasing linearly with
the number of threads, �. While this might be opti-
mistic for large numbers of threads, it is a reason-
able assumption for the relatively small number of
threads considered here. Thus, the processor size is:

��	
 �� � ��	��
�
� � � � ��	�������� (5)

The size of a memory or I/O bus also consists of a
basis area plus the on-chip area of the pin drivers
and pads. The total size depends on the width of the
bus:

ASIC

cache cache cache

...

packet demult iplexer & scheduler

transmisison interface

to switching
fabric

from network

off-chip memory

cache

...

... ...

memory channel

processor 1 processor n processor n

memory channel

processor 1

I/O channel and demux

off-chip memory

cluster 1 cluster m

... ...

threads

...1 t

threads

...1 t

threads

...1 t

threads

...1 t

Figure 1. Overall Network Processor Architecture

Component Symbol Description

processor ���� processor clock frequency
� number of simultaneous threads on processor
�� processor utilization

program a ������ frequency of load instructions
�����	� frequency of store instructions
��
�� i-cache miss probability for cache size ��
�	
�� d-cache miss probability for cache size ��
	�
��
�� prob. of dirty bit set in d-cache of size ��
���
�� complexity (instr. per byte of packet)

caches �� instruction cache size
�� data cache size
�������� cache line size of i- and d-cache

off-chip memory �
��� access time of off-chip memory

memory channel ��	���
�� width of memory channel
����
�� memory channel clock frequency
��
�� load on memory channel

I/O channel ��	���� width of I/O channel
����� clock rate of I/O channel
��� load on I/O channel

cluster � number of processors per cluster

ASIC � number of clusters and memory channels
���� actual size of component �, with

� � ������
� ��� ��� ��������

Table 1. System Parameters.

������� � ��������
�
����������� ������������
(6)

The number of pins depends on the bus clock,
�������, and the required bus bandwidth, ������.
Thus:

������� � ��������
�
��

�
������

�������

�
������������

(7)
with the equivalent equation being used for the I/O
channel.

Equation 4 and the subsequent Equations 5-7 de-
fine the space of available architecture configura-
tions (e.g., �, �, �, etc.) and determine the net-
work processor chip area. However, before this
can be used in the evaluation of the overall perfor-
mance metric
��������	 , the processor utiliza-
tion must be determined so that
�� from Equa-
tion 2 can be evaluated. In particular, the processor
utilization, ��, depends on the performance of the
memory system.

2.3 Memory System

The performance of the network processor is de-
termined by the utilization of the individual pro-
cessing engines. A processor is fully utilized as
long as memory misses do not cause a processor
stall. Other stalls due to hazards, such as branch
misprediction, are not considered here since, with
modern processor and compiler designs, they gen-
erally have a relatively small effect compared to the
effects of cache misses. Using the model proposed
and verified by Agarwal [1], the utilization ����� of
a multithreaded processor is given as a function of
the cache miss rate 	��

, the off-chip memory ac-
cess time ����, and the number of threads � as:

�	��� � ��
�

��
���

�
�

	��

�����

��
��

������

�

(8)
To illustrate the overall trend in this equation, we
can simplify Equation 8 by ignoring the second and
higher order terms of the summation. Thus:

����� �
�

��� ���� � 	��

�
� (9)

Note from this expression that, as expected, the uti-
lization decreases with increasing miss rates and
with increasing miss penalties for off-chip mem-
ory accesses. However, the larger the number of
threads, �, the less the impact of ���� and 	��

,
since more threads are available for processing
and processor stalls are less likely. In the limit
�	
��� ����� � �. While it is desirable to run pro-
cessors at high utilization there is an area cost with
this as indicated in Equation 5. This impacts over-
all performance since the added processor area due
to more thread contexts leads to less area available
for caches and thus can lead to higher miss rates.
On the other hand, more threads can also help mask
cache misses and thus can be beneficial. Thus, there
is a design tradeoff here, which can be understood
more fully only after expressions for the memory
access time, ����, and the cache miss rate, 	��

,
are obtained.

2.3.1 Off-Chip Memory Access

We assume the memory channel implements a FIFO
service order on the memory requests in such a
way that they can be interleaved in a split trans-
action fashion. The total off-chip memory re-
quest time, ����, thus has three components: the
bus access time, ��, the physical memory ac-
cess time, ����� , and the cache line transmission
time, �����
��� (all represented in terms of numbers
of processor clock cycles):

���� � �� � ����� � �����
���� (10)

The DRAM access time and the cache line trans-
mission time are straightforward to determine. The
queuing time, however, depends on the load on the
memory channel, which depends on the number of
processors that share the memory channel, the num-
ber of threads per processor, and the cache miss
rates. This system component can be simply mod-
eled as a single server queuing system with � pro-
cessors that generate requests. The request distri-
bution can be modeled as geometrically distributed
random variables (as suggested in [1]). Based on
the average cache miss rate of a thread (see Equa-
tion 14 below), the parameter of the geometric ran-
dom variable is 	��

. The number of requests
per processor is limited to �, which corresponds
to the situation where all the processor threads are
stalled and the processor is idle until a memory re-
quest is served. The service time for the memory

channel is taken to be deterministic with parameter
�������
���.

This model can be slightly modified to make it
more suitable for the analytical evaluation. Instead
of considering � processor sources each providing
up to � requests, we model the system as a single
finite source having up to � � � requests. Since each
of the � sources generates requests at a mean rate
	��

, the single source model generates requests
at a rate � � 	��

.

Assuming an exponential distribution rather than
a geometric and ignoring the limit of � � � cus-
tomers, the queuing system can be approximated
by a M/D/1 queuing system. The request rate is
� � � � 	��

 and the deterministic service rate is
� � �������
���.

The M/D/1 model is a reasonable approximation
to the real system, which has a finite source pop-
ulation. Figure 2 shows the average queue length
for the simulated real finite source system and the
analytic result for the M/D/1 system. The num-
ber of threads in this example is � � �, the num-
ber of processors is � � �, and the service time
�����
��� � ��. The M/D/1 model has no con-
straint on the maximum number of requests and
therefore reaches a much larger queue length for
very high loads (i.e., �
��). For a more typical
load of ����� � ��� � � � ��
, the difference between
M/D/1 and the other models is relatively small. Fur-
thermore, below 50% load the queue length is small
enough for both models to have relatively little ef-
fect on the overall performance. Therefore, we will
use the M/D/1 model for an approximation of the
queuing time ��.

The bus access time, ��, is then given by the
queuing time of the M/D/1 system, which is

�� �
������

���� ������
�

��������

���������

�

����
�������

� (11)

With a fixed DRAM access time, ����� , and a
transmission time of

�����
��� �
��������

���������

�

����
�������

 (12)

we can substitute in Equation 10 to obtain the mem-
ory access time:

���� � ����� �

�
� �

������

���� ������

�
�

��������

���������

�

����
�������

� (13)

0.01

0.1

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

qu
eu

e
le

ng
th

load

real
M/D/1

Figure 2. Comparison of Average Mem-
ory Queue Length for Different Queu-
ing Models.

2.3.2 On-Chip Cache

The remaining component needed to evaluate the
utilization expression (Equation 8) is the cache miss
rate 	��

. For a simple RISC style load-store pro-
cessor running application �, the miss probability is
given as [4]:

	��

� � ���
�����������
������ ����
�
 (14)

where ���
� and ���
� are the instruction and data
cache miss rates, and ������ and �
����� are the fre-
quency of occurrence of load and store instructions
associated with application �. The instruction and
data cache miss rates depend on the application, the
cache sizes that have been implemented, and the ef-
fects of cache pollution due to multi-threading.

Cache pollution from multi-threading reduces
the effective cache size that is available to each
thread. On every memory stall, a thread gets to
request one new cache line (replacing the least re-
cently used line). While the thread is stalled, � � �
other threads can replace one line. In steady-state,
each thread can use �

�
of the available cache. If the

working set size of a thread is very small, its ef-
fective cache usage could be less than �

�
(and the

other threads use slightly more). In a network pro-
cessor, we expect the cache sizes to be smaller than
the working set size due to chip area constraints,
which leads to equal sharing of the available cache
between threads. Thus, the effective cache size that
is available to a thread is:

��
��� �
��
�

 ��
��� �

��
�
� (15)

The application characteristics that are necessary
for evaluating Equation 14 are derived from a com-
munications benchmark that is discussed in Sec-
tion 3.

2.4 Memory and I/O Channels

The expression for miss rate, 	��

, (Equa-
tion 14) and for total memory access time, ����,
(Equation 10) can now be substituted into Equa-
tion 8 to obtain processor utilization. In order to
do this, we need to fix the memory channel load,
�����, because �� depends on �����. Thus, with
the memory channel load given, we can determine
the utilization of a single processor. This gives us
the memory bandwidth, ������
�, required by a sin-
gle processor:

������
� � �� � ���� � �������� � �����

������ � �
����� ���� � �� � ��������� (16)

In this equation, we have to consider the case where
a dirty cache line needs to be written back to mem-
ory. The probability of the dirty bit being set on
a cache line is ������. In Equation 14, consid-
ering dirty cache lines was not necessary, since a
write-back does not stall the processor. In practice,
the write-back only increases the required memory
bandwidth slightly and Equation 16 can be approx-
imated by

�������
� � �� � ���� � �������� � 	��

� (17)

The number of processors, �, in a cluster is then
the number of processors that can share the memory
channel without exceeding the specified load

� �

�
��������� � ������� � �����

������
�

�
� (18)

This gives us a complete cluster configuration for
all ranges of cache sizes and thread contexts. Fi-
nally, we need to determine the bandwidth that is
required for the I/O channel. The I/O channel is
used to send packets to the processing engines and
back out. Thus, each packet traverses the I/O chan-
nel twice. From Equation 21 (below), we get a rela-
tion between the number of instructions executed in
processing a packet and the size of the packet. This
“complexity” is a parameter that is characteristic for
each application. The I/O channel is operated at a

load of ���; thus, the I/O channel bandwidth for the
entire network processor is:

���� � � �

��

���	� � ���
� (19)

Finally, the network processor is limited in the
number of pins that the package can have. As a
rough estimate, we add the number of pins required
by the I/O and memory channels, which depends
on their respective width, to the control pins for the
network processor:

	����	 � 	����� �� � 	������� � 	�����������
(20)

We can see later that, for our basic architecture,
the number of pins that can be supported do not
pose a practical limit on the network processor.

2.5 Optimization

With the performance and area of the network
processor expressed in terms of cache configu-
rations, application characteristics, and memory
channel load, we can find the maximum
�������.
Since the optimization space is discrete (other than
the memory channel load) and relatively small, we
can do this by exhaustive search.

3 Workload & System Characteristics

Before we can optimize the network processor
configuration, we have to define the workload and
system parameters.

3.1 Network Processor Workload

To properly evaluate and design network proces-
sors it is necessary to specify a workload that is typ-
ical of that environment. This has been done in the
development of the benchmark CommBench [5].
Applications for CommBench were selected to in-
clude a balance between header-processing appli-
cations (HPA) and payload-processing applications
(PPA). HPAs process only packet headers that gen-
erally makes them computationally less demanding
than PPAs that process all of the data in a packet. A
list of the applications is given in Table 2.

For each application, the following properties
have been measured experimentally: computational
complexity, load and store instruction frequencies,
instruction cache and data cache miss rate, and dirty

HPA PPA

Deficit round robin CAST encryption
IP header fragmentation JPEG transcoding
Radix tree routing Reed-Solomon FEC
TCP filtering ZIP compression

Table 2. Benchmark Applications.

bit probability. The complexity of an application
can be obtained by measuring the number of in-
structions that are required to process a packet of a
certain length (for header-processing applications,
we assumed 64 byte packets):

���	� �
����� ������ �!�� ���

	����� ����
(21)

The cache properties of the benchmark applica-
tions were also measured to obtain ���
�, ���
�,
and ������
�. This was done with a processor and
cache simulator (Shade [2] and Dinero [3]) and
cache sizes ranging from ��" to �����". A 2-
way associative write-back cache with a linesize of
�� bytes was simulated. The cache miss rates were
obtained such that cold cache misses were amor-
tized over a long program run. Thus, they can be
assumed to represent the steady-state miss rates of
these applications.

We aggregate the application parameters from
CommBench into two workloads that we consider
for the evaluation of our analysis:

� Workload A: Header-processing applications.

� Workload B: Payload-processing applications.

These workloads are such that there is an equal dis-
tribution of processing requirements over all appli-
cations within each workload. Table 3 shows the
aggregate complexity and load and store frequen-
cies of the workloads. Note that the complexity
of payload processing is significantly higher than
for header processing. This is due to the fact that
payload processing actually touches every byte of
the packet payload (e.g., transcoding, encryption).
Header processing typically only reads few header
fields and does simple lookup and comparison oper-
ations. The aggregate cache miss rates for instruc-
tion and data cache are shown in Figure 3. The x-
axis corresponds to the effective cache size avail-
able to a thread as given in Equation 15. Both work-
loads achieve instruction miss rates below ���� for
cache sizes of ��" or more. The data cache miss

Workload W ���	�� �����
� �
����
�

A - HPA 9.1 0.2319 0.0650
B - PPA 249 0.1691 0.0595

Table 3. Computational Complexity
and Load and Store Frequencies of
Workloads.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64 128 256
m

is
s

ra
te

 in
 %

cache size in kB

i-miss, workload A
d-miss, workload A
i-miss, workload B

d-miss, workload B

Figure 3. Aggregate Cache Perfor-
mance of Workloads.

rate for workload A also drops below ���� for ��".
For workload B, though, the data cache miss rate
only drops below �� for ���" or larger caches.

3.2 System Parameters

The system parameters for the network processor
are listed in Table 4. The values for the on-chip area
of different components are approximate for .18�m
CMOS technology. It should be noted that exact
values are hard to obtain from industrial sources.
The performance model can of course be used with
more accurate parameter sets.

4 Design Results

This section presents and discusses the optimiza-
tion results and performance trends for various sys-
tem parameters.

4.1 Optimal Configuration

Table 5 shows the overall best configuration for
both workloads. There are several important points
that can be seen from this table:

Parameter Value(s)

���� 200 MHz � � � 800 MHz
� � � � � ��
�� 1 kB � � � 1024 kB
�� 1 kB � � � 1024 kB
�������� 32 byte
����� 60 ns
��������� 16 bit � � � 64 bit
����� � � � � �
������� up to 72 bit
��� ����
�������
 ����� 200 MHz
��	��
�
� 1 mm�

��	������� 0.25 mm�

�����
 ����� 0.10 mm� per kB
��������
�
�
 ������
�
� 10 mm�

����������
 �������� 0.25 mm�

��#�
$� up to 400 mm�

Table 4. System Parameters for Opti-
mization.

� The optimal number of threads in both cases
is � � �, which indicates that it is not neces-
sary to have a large number of threads to obtain
good performance.

� The cache sizes are in the range of 16kB to
32kB, which yields an effective cache size of
8kB to 16kB per thread. These values corre-
spond to knees in the i-miss curves in Figure 3.
Note that for the d-cache of workload B a small
cache size gives better results since there is
no clear knee in the curve that makes a larger
cache pay off.

� Both configurations use the fastest processor
because there is no cost in the model associ-
ated with higher clock rates. Also the widest
memory channel is used, because it amortizes
the basis cost ��������
�
� over a wider chan-
nel.

� The number of processors per cluster, �, is 31
and 20. This is relatively high, because a wider
memory channel with more processors sharing
it amortizes the basis cost better. When limit-
ing the width of the memory channel to smaller
sizes (e.g., 48 bit), the same configuration as in
Table 5 with a smaller � (e.g., 24) and a larger

� (e.g., 3) is the overall best. The
�������
value for this configuration is slightly lower
(e.g., 173 MIPS/mm�).

� The number of clusters per system is 2 or 3,
which is limited by the overall chip area and
the I/O channel width. With smaller memory
channels and smaller � the number of possible
cluster increases.

� The width of the I/O channel is much higher
for workload A, because the processing com-
plexity is much smaller for header-processing
applications. Therefore data moves more
quickly into and out of the network proces-
sor. For payload processing, the data remains
on the processor for a longer time. Thus, the
width of the I/O channel is smaller.

� The overall processing power for both work-
loads is about the same (although workload B
uses more chip area). Due to the lower com-
plexity of header processing, this translates
into a much larger throughput for workload A.

Note that these results are optimistic and do not
account for certain factors. For example, packet
classification is assumed to be done off-chip and no
resources are consumed in maintaining and manag-
ing memories and routing tables.

4.2 Performance Trends

The optimal configurations of the network pro-
cessor are very specific to a particular workload. To
get more general results, we now look at the impact
of different system parameters on the overall per-
formance by varying them. Unless noted otherwise,
parameters are fixed to: � � �, ���� � ��� MHz,
� � �, �� � �� kB, �� � �� kB, ��������� � ��
bit, and workload A. Note that these parameters
correspond to the optimal configurations for work-
load A shown in Table 5. Also, ����� is cho-
sen to be such that it yields the maximum perfor-
mance. When using the term “performance,” we
mean
������� (not
��). Some of the config-
urations discussed below exceed the limits on total
chip area, width of the I/O channel, and pin count.
They are still shown as they might become feasible
in the future.

Parameter workload A Workload B

���� 800 MHz 800 MHz
� 2 �

� 2 �
�� 16 kB 32 kB
�� 16 kB 16 kB
��������� 64 bit 64 bit
����� ��
� ���

	��

 ������ ������
���� ����� �����
�� ��
�� ��
��
� 31 ��

������� 71 �

	����	 199+	���������� 195+	����������

�� 48324 MIPS 45934 MIPS
���� 272 mm� 322 mm�

������� 178 MIPS/mm� 142 MIPS/mm�

Table 5. Optimal Configurations.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

M
IP

S
/m

m
^2

qu
eu

e
le

ng
th

memory channel load

workload A
workload B

queue length

Figure 4. Performance Depending on
Memory Channel Load.

4.2.1 Memory Channel

One critical parameter for the memory channel per-
formance is the load, �����. Figure 4 shows the
performance of the network processor depending
on the chosen load. It also shows the queue length
given by the M/D/1 queuing model. For high loads
the queuing time is so high that it impacts the per-
formance of the processors. For most configura-
tions the best load is about ����� � ��
.

The width of the memory channel also affects
the performance of the network processor. Figure 5
shows that for one thread the memory channel per-

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

M
IP

S
/m

m
^2

number of threads

width=16bit
width=32bit
width=48bit
width=64bit

Figure 5. Performance Depending on
Memory Channel Width and Number of
Threads.

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

M
IP

S
/m

m
^2

number of threads

clock=200MHz
clock=400MHz
clock=600MHz
clock=800MHz

Figure 6. Performance Depending on
Processor Clock Rate and Number of
Threads.

formance does not impact the overall performance,
because the system is mostly limited by �����
and ��. For two or more threads, a four-fold in-
crease in memory channel bandwidth (from 16 bit
to 64 bit) yields up to twice the performance.

4.2.2 Processor

The processor can be configured in terms of clock
rate and the number of thread contexts. Figure 6
shows the performance gains for higher clock rates
over different numbers of threads. For one or two
threads, the performance increases practically linear
with clock speed. For larger numbers of threads, the

1
4

16
64

256
1024

i-cache size1
4

16
64

256
1024

d-cache size

1

2

4

8

16

opt. # of threads

Figure 7. Optimal Number of Threads for Cache Configuration.

 150
 100
 50

2 4 8 16 32 64 1282565121024

i-cache size2
4

8
16

32
64

128
256

512
1024

d-cache size

0
20
40
60
80

100
120
140
160
180

MIPS/mm^2

Figure 8. Performance Depending on Cache Configuration (Workload A).

 120
 80
 40

2 4 8 16 32 64 1282565121024

i-cache size2
4

8
16

32
64

128
256

512
1024

d-cache size

0
20
40
60
80

100
120
140

MIPS/mm^2

Figure 9. Performance Depending on Cache Configuration (Workload B).

amount of available cache per thread is less, which
leads to more cache misses and possible memory
stalls. Thus, the increase in performance is limited
by off-chip memory accesses that cause processor
stalls.

The performance impact of the number of avail-
able thread contexts can also been seen in Fig-
ures 5 and 6. In both graphs, the optimal number
of threads is two. For larger number of threads,
there are two factors that limit their benefits. One
is the higher cache miss rate due to memory pollu-
tion. The other is the additional area cost for the
thread context.

To illustrate the impact of the cache pollution,
Figure 7 shows the optimal number of threads for
a given i-cache and d-cache configuration. This
shows that if larger caches were available, more
threads could be used for optimal performance.
This indicates that with advances in on-chip mem-
ory technology, it can be expected that the number
of threads in a processing engine will increase in the
future.

4.2.3 Cache Memory

The size of on-chip caches is also an important con-
figuration parameter. Since on-chip SRAM is ex-
pensive in terms of area cost, the amount of memory
should be minimized, while still maintaining good
cache hit rates to allow efficient execution of appli-
cations. Figures 8 and 9 show the performance of
different cache configurations for both workloads.
The performance is low for small caches due to high
miss rates. It is also low for very large caches, since
much chip area is used. The optimum for workload
A lies at �� � �� kB and �� � �� kB. The optimum
for workload B is at �� � �� kB and �� � �� kB.
With � � �, each thread uses effectively half of the
available cache.

Another observation is that the performance is
relatively sensitive to deviations from the optimal i-
cache size. The d-cache size is less sensitive, but
still has much impact on the overall performance.
This leads to the conclusion that it is important to
configure the memory system of network proces-
sors for the particular workload.

4.2.4 Chip Area Usage

Finally, to give a rough idea on how the chip area of
a network processor is used, we evaluate what frac-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n

ca
ch

e
ar

ea

fraction processor area

Figure 10. Chip Area Distribution for
Top 1% of Configurations.

tion of the total area is used for the processor (in-
cluding thread contexts), the cache, and the mem-
ory and I/O channels. Figure 10 shows the fraction
of processor area versus the fraction of cache area.
The remaining fraction (to add up to 1) is the mem-
ory and I/O channel area. The top 1% (� ���) of
all configurations are shown. Thus, the processor
area typically makes up for 25-40% of the chip area.
The cache area accounts for 20-60% and the mem-
ory and I/O channel area for 20-60%. The centroid
lies at 34% for processors, 38% for cache, and 27%
for memory and I/O channel.

4.3 Summary of Results

The above results of our performance model can
be used to extract a few general design guidelines
for network processors:

� The cache configuration has a big impact on
the overall performance, which is sensitive to
the workload.

� Two to four hardware contexts for threads is
optimal. With large on-chip caches, more
threads perform better.

� Higher processor clock rates and memory
channel bandwidths are directly related to
performance improvements for four or less
threads.

� The chip area is roughly evenly split between
processors, caches, and memory interfaces.

These results are somewhat dependent on the
particular workload and systems parameter that are
used. The main contribution of this work are not
the design results per se but the performance model
that can be used with other workloads and systems
parameters.

5 Conclusions

The network processor model and the associated
performance expressions represent an attempt at de-
veloping a coherent approach to designing NPs.
The approach is driven by the requirements of appli-
cations, the constraints associated with technology,
and the selection of design alternatives within a gen-
eral architecture. While the presented architecture
is relatively simple, it could handle line rates on the
order of Gbps given current ASIC technology.

Several extensions to the model can be pursued
to account for trends in commercial network pro-
cessor design:

� Specialized co-processors and instruction sets:
Certain time consuming networking tasks oc-
cur frequently. To deal with such tasks, it is
often worthwhile to develop customized logic
for use with specialized processor instructions
or co-processors.

� More sophisticated memory management: In
the current model, every packet is transmitted
to a processing engine and back. For header-
processing applications only the header of the
packet is needed. Many commercial NPs store
part of the packet (i.e., the header) in faster
on-chip SRAM and the payload in off-chip
DRAM.

� Trace-driven simulation instead of mean-value
analysis: The proposed model provides a first
step towards understanding design tradeoffs.
Using actual packet and instruction traces for
a system simulation is the next step towards
more accurate results.

These extensions are current work in progress.
We believe that this work will help formalize NP
design and provide a method for fast and accurate
exploration of the vast network processor design
space.

References

[1] A. Agarwal. Performance tradeoffs in mul-
tithreaded processors. IEEE Transactions on
Parallel and Distributed Systems, 3(5):525–
539, Sept. 1992.

[2] R. F. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profil-
ing. In Proc. of ACM SIGMETRICS, Nashville,
TN, May 1994.

[3] J. Edler and M. D. Hill. Dinero IV Trace-
Driven Uniprocessor Cache Simulator, 1998.
http://www.cs.wisc.edu/˜markhill/DineroIV/.

[4] J. L. Hennessy and D. A. Patterson. Com-
puter Architecture – A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., San Mateo,
CA, second edition, 1995.

[5] T. Wolf and M. A. Franklin. CommBench -
a telecommunications benchmark for network
processors. In Proc. of IEEE International Sym-
posium on Performance Analysis of Systems
and Software (ISPASS), pages 154–162, Austin,
TX, Apr. 2000.

[6] T. Wolf and M. A. Franklin. Locality-aware
predictive scheduling for network processors.
In Proc. of IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), pages 152–159, Tucson, AZ, Nov.
2001.

[7] T. Wolf and J. S. Turner. Design issues for high
performance active routers. IEEE Journal on
Selected Areas of Communication, 19(3):404–
409, Mar. 2001.

