Intel® IXP1200 Network
Processor Family

Hardware Reference Manual

December 2001

Part Number: 278303-009

Intel® IXP1200 Network Processor Family m

Revision History

Revision Date | Revision | Description
8/30/99 001 Beta 1 release.
10/29/99 002 Beta 3 release.
3/2/00 003 Beta 4 release.
6/5/00 004 Version 1.0 release.
9/27/00 005 Version 1.1 release.
12/20/00 006 Version 1.2 release.
6/1/01 007 Version 1.3 SDK release.
8/10/01 008 Version 2.0 SDK release. Miscellaneous changes.
12/07/01 009 Version 2.01 SDK release. Miscellaneous changes.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IXP1200 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries
*Other names and brands may be claimed as the property of others.

ii Hardware Reference Manual

intel.

Contents

Intel® IXP1200 Network Processor Family

1 o] o [8 Tox 1T o TR 15
1.1 ADOUL thiS DOCUMEBNTcoviiiiiie ittt e e e 15
1.2 Related DOCUMENTALIONciiiiiiiiiieiiiiiee et e e 15
1.3 (7] 0177=T o1 1o TP PPRPOPRRR 16

1.3.1 Data TermMiNOIOQYuceeiieeeeeiiiiiiiiiieiee e e e e e s esseeeeerr e e e e e s e e s sneanrrnrreeeeeeees 16
1.3.2 DEfiNItIONS...ciiiiiiiiei i 16

2 Technical INrOUCTIONueiiiiiiee et seb e e e 17
2.1 OVEBIVIBW ...ttt s s s e s e e e e e e e e e e e e e e et et et e aeeeee e teee et et a b e e e aeseeeeaeeaaaaaeeees 17
2.2 IXP1200 FUNCLioNal UNILS......cooviiiiiiiiiiiiiiiii i 18
2.3 Key ArchiteCtural FEAtUIEScoiii it 19
2.4 Some ArchiteCtural CONCEPLSuuuiiiiieaie et 21

241 REIEIEINCES ...vviiiii e e 21

2.4.2 Signals and Synchronizationcc.uveeiiiiiiiiiniii e, 22

2.4.3 Context Swapping and Threadsc..eeeiiiiiiiiiiiiiiee e 23

244 SOME EXAMPIES ...ttt 24

2.4.5 Local Data Storage and Block Transfers...........oooccviviiiiiiiniiiie, 25

2.4.6 CONCUIMEICY ettt et et et e et eeeeabteessbbbab s e e e e e e e e e e e aaaaaaaaes 26

2.5 Typical Packet Data FIOW..........cc.uuuiiiiiiiiiae e 26
2.6 EXternal INTErfaCesooooiiiiiiieeee sttt 29
2.7 INternal ArChItECIUIEcoiiieeeeeeee et 30
2.7.1 SHUONGARMY COl .. i a e e e e 31

2.7.2 MICTOBNGINES .ottt e e e e e e et e e e e e e e e e e e aenanbeaeees 33

2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit....37

2.7.3 SRAM UNitueiiiiiiiiiii sttt e et e e e et ee e s snaaeaeean 37

2.7.4 SDRAM UNI..iiiiiiiiiiiieee ettt ee et e e e e staeae e e snsnaeaeeans 41

2.7.4.1 Internal SDRAM Bandwidth and Internal Data Busses 42

2.7.4.2 Chained ReferencCes..........ccccvviiiiiiiiiii e 42

2 A8 S T = @ B U T T PSP 43

2.7.6 IXBUS UNIL ooiiiiiiiiiic ettt e et e et e e e st e e e s sttnaeaeean 45

2.7.6.1 REAAY BUS....ciiiiiiiiiiiitieeieee ettt 46

2.7.6.2 IXData BUS MOUESccoeiiiiiiiieeeeee e 47

2.7.6.3 Scratchpad RAM ...t 47

2.7.6.4 Hashing UNit........coooiiiiiiiiiiee e e e 47

2.7.6.5 IXB3208 Bus Scaling FabriC............cccccuviviiiirieii e, 48

2.8 Software Development TOOIScuviiree i 49

3 S (o] 0 7 1Y O = SR PSRUPPR 51
3.1 OVEBIVIBW ...ttt s s s et e e e e e e e e e e e e e e et et et e et ee e e e tese et et a b e e aeseeaeaeaaaaaaeaens 51
3.2 ARM® ArChILECIUIE ...t e e e e e e e e e e e e e e et e e e eeeeee s reraraaes 51

3.2.1 COPIOCESSOIS .. eee e e e e e e e e ettt ettt et bttt e e e e e e e e e e e e e aaaaaaaseeeeeanes 51

3.2.2 Memory Management Unit (MMU) ... 52

3.2.2.1 MMU Faults and CPU ADOIScovveiiimiiiiiiiiiicie e, 52

3.2.2.2 DAta ADOIS ...ueiciii i 52

3.2.2.3 Interaction of the MMU, Icache, Dcache, and Write Buffer 52

3.2.2.4 MMU Enable/Disable..........ccccuvviiiiiiiiiiie e 53

3.2.3 Instruction Cache (ICACNE)cccvveeiiiiiieeee e 54

Hardware Reference Manual iii

Intel® IXP1200 Network Processor Family int6I
®

3.2.3.1 Icache Operation.........cccveeeeeiiiiciiiieeir e e s a e e 54

3.2.3.2 Icache Validityc.cuueiiiiieiii e 54

3.2.3.3 Icache Enable/Disable and ReSetccccccoeiiiiiiiiiiiieiieneennens 54

3.2.4 Data Caches (DCAChES)ccoouiiiiiiiiiiiie e 55

3.2.4.1 Main Data CacChe.........ccooiiiiiiiiiiiie e 55

3.2.4.2 MiNi CACRE ..o 55

3.2.4.3 Dcaches Enable/Disable and ReSet...........cccuviiiiiiiiiiiiiiiiiins 55

3.2.4.4 Dcache OPerationcccccceveviiiciiiiieiiiee e e 55

3.2.4.5 Software Dcache FIUSh ... 57

3.2.5 WIE BUFFEI e 57

3.2.5.1 Write Buffer Operation.............cccocuvieiiriiee i ee e 58

3.2.5.2 Enabling and Disabling the Write Buffer..........c.cccccceeeeeiviinnnns 58

3.2.6 REAd BUfEI ..eeiiii i 58

3.2.6.1 Read Buffer Operationccccccvviriirieee e ee e e 59

3.2.7 ARM* Instruction Set and TiMiNGcccoovviiiiiiireeeeee e 60

3.2.8 EXCEPUONS....eeiiiiiiii et a e e e 60

3.2.8.1 EXCEpPtion PrioritieS.....cuviieeeiiiecceiiiieieeee e s e e e e e e e e 61

3.2.8.2 Exception Vector Tablecccovivieeiiiie e, 61

3.2.8.3 Hard RESEL 61

3.2.8.4 ADOI .. it 62

3.2.8.5 Undefined INStrUCHIONcooiiiiiiiiiiiiiiiee e 63

3.2.9 StrongARM* Core Debug SUPPOItccoeriiiiiiiiiiiiiieeee e 63

3.2.9.1 Instruction Breakpoint...........cooiiuiiiiiiiiiiiieeeieiieeee e 63

3.2.9.2 Data Breakpoint...........eeveeieeriiiiiiiiiieireeee e e ssssieieeeeree e e e e s s snenes 63

3.3 =T 0 Lo V1Y, - o PSR 64
3.4 FIQ and IRQ INTEITUPLS......cii et e e et r e e e e e e s e s r e e e e e e s e e s e nnnnrenes 66
3.5 Internal Peripheral UNItS..........oociiiiiicec e ee e e e e e 68
5.1 UART i 68

3.5.1.1 RECEIVE PrOCEAUIE......ciiiiiiiiie ettt 69

3.5.1.2 Transmit ProCEAUIE........ovuiiiee ittt 69

T I 0 1 =T £SO RP 69

3.5.3 Real-Time CIOCK (RTC) ...cccceiiiiiieiieee ettt e e s s ssieereee e e e e e e 70

3.5.3.1 RTC Setup ProCeAUIESccccumviiireiiiee e eeseeeiereee e e e e e e e e 71

3.5.3.2 Using the RTC Alarmccoooiiiiiiiiieieeee e cesecieeeee e e 71

3.5.3.3 Determining the Trim Values...........cccceviiiiiiiiiiiiiieeeeee s 72

3.5.4 General PUrpose /O (GPIO)uuiiiiiiiiiaiiiiiiieeee e 72

3.6 BOOt SEQUEINCE. ...ttt e e e e e e 73
Y ITol feTT oo |1 L= TP PRRPTPP 75
4.1 OVEBIVIBW ...ttt ettt ettt ettt et e e e e e e s e e bbb b et e e e e e e e e e e e e e annnbbbbeaneaaaaaeeans 75
4.2 Microengine BIOCK Diagrameeeiiiiaiiiiiiiiiieieeee e 76
4.2.1 MUIItNread SUPPOIT.....ueeeiieiee et 76

4.2.2 CONLIOL STOTE ...t e e e e e e e eeeeeaens 77

4.2.3 128 General-Purpose Registers (GPRS).......coccuviiieiiiiiieaieiiiiieee e 77

4.2.4 128 Transfer REQISIEIS......cooii it 77

4.2.5 ALU @nd Shifter....c.eeeiiiiiiiiiieee e 77

4.2.6 Command BUS ArDIter..........ooo it 77

A.2.7 LOCAI CSRS ..ttt e e e 78

4.3 Microengine INSIIUCHION Set...........uuiiiiiiiiiiiiii e 78
4.4 EXECULION PIPEINE.....iiiiiiiiiiie e e 79
4.5 BranCh DECISIONScoiiiiiiiiiiii ettt e e e e e e e e e e e e anneees 80

Hardware Reference Manual

4.6

4.7

4.8

4.9

4.10

411

412
4.13
4.14
4.15

4.16
4.17

Intel® IXP1200 Network Processor Family

451 Class 3 INSIUCHIONSeeeieiiiiiiiie e 81
452 Class 2 INSIUCHIONSeeeieiiiiiiiee ettt 82
453 Class 1 INSIUCHIONSvvvieeiiiiiiie ittt 83
4.5.4 Postponed Branch DECISIONceveeiiiiiiciiiiiiiieiee e e e 84
455 Deferred BranCh ...t 85
4.5.6 Setting Condition Codes Earlyccceveeiiiiiiiiiiiiiiiiiie e 86
457 GUESS BIranCh........uuiiiiiiiiiiii e 86
EXECULION SEALES ..ottt e e a e e 87
4.6.1 RESEE STALE....eiiiiiieiii et 87
T S (0] o] o 1= To] = L= RS 87
4.6.3 RUNNING SEALE....eeiiiiie i e e s e e e e e e e e e s 88
4.6.4 PaAUSEA StAE.......eveiiiiiiiiiie ettt 88
Programming the MICTOENGINEScccvviiiiiiiiee e e s 89
4.7.1 Starting Point of Program EXECULIONccvvviiieireeee e e e e e e 89
MiICrOENQINE REGISIEIS.....uuiiiiiiiiiee i e e ereeeaee s 90
4.8.1 General-PurpoSe REQISIEIS......uuuiiiiieeiiiiiiiiiee e e s e e s e e e 90
4.8.2 TransSfer REQISIEIS.....cccoo i it e e e e e 91

4.8.2.1 Managing SoliCited ACCESSES.....uuvriieeiiiiiiiiiiiiireeeee e e e e seieneeeeees 92

4.8.2.2 Managing Unsolicited Autopush ACCESSEScccccvvvveeeriiiivnnnnn 93
ALU @Nd SHiIfter ... 94
4.9.1 CONitioN COUESuiiiiiiiiiiee ettt e 95
4.9.2 MUIPIY SUPPOIL...ciiii e ettt e e e s e eer e e e e e e e e s s erreeeeeeeenanns 96
(@1 g =T o1 oo J @01 (=) 4 RS 97
0 Tt R o P U Y=Y o £ RS 98
4.10.2 Context Event Arbiter (Waking a Thread)cccoeevevvvviiiiniieeeeen s 100
Interfacing to Other Functional UNitS..........c.ovvveieiiiiiiiiiiececccee e 101
4.11.1 References Using Transfer REQIStErsccccccvvevveiiiiiiiiiiiiieieeee e 102

4.11.1.1Setting Up the Transfer Registers.........ccccvvveveveeeeeeviiicvvinnn, 103

4.11.1.21ssuing @ COMMANGccccvurieiiieieee e s s e e e e e e e sneaeeeeees 103

4.11.1.3Command Serviced iN QUEUEccceeeeeeeeieiieeeeeieiieeeeeeeeeeeeeeeees 106

4.11.1.4Moving Data to and from Transfer Registersccccuvvveeeee. 106

4.11.1.5Signaling Completionc..eeuiiiiiiiiiie e 107
4.11.2 PCIDMA Lottt e et e e e e e et e e e e e e e nrees 107
4.11.3 FAST _WR INSLUCLON.......cciiiiiiiiiiiei s e e e e e e e e e e e e e e e avanaens 108
4.11.4 INdireCt REfErENCES ... 108
LOCAI CSRS ittt ettt e e e e e e s ab bbb reae e e e e e e e aaan 111
FiNd Bit Set INSIIUCHONSceiiiiiieiiiiiiee e 112
INPUL STATES ... e e et e e e e e e e et et e e e e eeeeeeaessnnnnenennan 115
Inter-Processor COMMUNICALIONSuuuiiiiiiieiiie it e e e e e 115
4.15.1 Generating StrongARM?* Core INterruptS.......coeeeeeiiiniiiiiiiiieeeeee e 116
4.15.2 Generating Inter-thread Signal EVENtS ... 117
4.15.3 Communication EXampPle ... 118
Chained SDRAM REfErEeNCES.....ccociiiiiiiiiiiie et 119
DebUQQING SUPPOIT ...ttt ettt e e e e e e e e eeaaaae e s 119
4.17.1 Determining If a Microengine iS EXECULINGccccvveriiiiiiiiiiiiiiiieeeeniies 119
4.17.2 Stopping, Starting, and Hopping the Microengines...........ccccceeeeevnnnnns 120
4.17.3 Brea@KPOINTS ...cceeiiiiiiiiiiiiiieee ettt e e e e e 120
4.17.4 Reading Microengine GPR and Read Transfer Registers 122
4.17.5 Creating @ JOUINAIcooiiiiiiiiiiieii et a e 122

Hardware Reference Manual \%

Intel® IXP1200 Network Processor Family int6I
®

5 O I T o T PP PPRP T TPPRR 125
5.1 OVEBIVIBW ...ttt ettt ettt ettt e e e e e e e e e s bbbt e e e e e e e e e e e e e easnnnbebbeeeaaaans 125
5.2 Hardware DeSCHIPHION.oiiieiieie ettt e e e e e bee e 127

5.2.1 PCIBUS ADIEEE ..ttt 127
5.2.2 DMA ChanNEISceiiiiiieiiiiie ettt 128
5.2.2.1 Allocation of the DMA Channels..........ccccccoiiiiiiiiiiieniiieennnee 128
5.2.2.2 StrongARM* Core Initiated DMA Channel Operation.............. 129
5.2.2.3 Microengine Initiated DMA Channel Operation....................... 130
5.2.2.4 SDRAM-t0-PCI Transfer........cccuieiiiieiie e 131
5.2.2.5 PCI-t0-SDRAM Transfer........cccvieiiiiiiiieenieeee e 131
5.2.3 150 MESSAgE UNIteiiiiiiiiiiicceeeeee e 132
5.2.3.1 1,0 Inbound FIFO Operation...........ccccververinmeierireeenneee e 133
5.2.3.2 1,0 Outbound FIFO Operationcccucvevrrveeerneeennneenneeenen 134
5.2.4 Mailbox and Doorbell REQISEIScccvveeviiiiiiiiirieeee e 135
5.25 PClHINEITUPL PiN.ceeeiriiii e e e e e e 140
5.3 PCl TranSACHONS....cciiiiiiiiiee ittt e e e s snneeeeas 141
5.3.1 Generating the ADAressccccveiiiiiiiiie e 141
5.3.1.1 Target Transactions - Internal Address Generation 142
5.3.1.2 Master Transactions - PCl Address Generation...................... 142
5.3.1.3 Master Configuration Transactions - PCI Address Generation143
5.3.2 Enabling PCI BUS TranSaCtioNScc.couiiiiiiiiiiiiiieieiee e 143
5.3.3 PCIl Target TranSACONSuuiiiiiiiiiaiaiiiiiiiiiieie et e eee e 143
5.3.3.1 Unsupported PCI Cycles AS Targetoooeceviieeieeieeeenniins 143
5.3.3.2 Memory Write to SDRAM (Target WIite).........cccuvvveeeeeieerinnnnne 144

5.3.3.3 Memory Read, Read Line, Read Multiple to SDRAM
QI Lo [= a3 =T T) PP 144
5.3.3.4 Type 0 Configuration WIite..........ccuveverreeeiiiiiciiiieeieeee e e 145
5.3.3.5 Type 0 Configuration Readccccceveeereiiiiiniiiieieiee e 145
5.3.3.6 WIEE 10 CSR ..eiiiiiiiiiiiee ettt sare e 145
LR e T A 3= T To I (o I O] = PRSP 146
5.3.3.8 WIrite t0 [50 AAAreSSocuvveiieiiiiiie st 146
5.3.3.9 Read to 150 AAIrESSovvireiiiiieiriee e 146
5.3.4 PCl Master TranSaCtONS.........cuvvieiiiiiieee ettt 147
5.3.4.1 Unsupported PCI Cycles AS MaSter...........cccovvvvvvreneeeeeeninninns 147
5.3.4.2 Memory Write, Memory Write and Invalidatecccccceee... 147
5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple ... 148
5.3.4.4 1/O W c.eeei ittt ettt e a e st e e e snanaee s 149
5.3.4.5 IO REAU......ceteeiie ittt ettt 149
5.3.4.6 Configuration WIe...........cooi it 150
5.3.4.7 Configuration Readccoovciiiiiiiiiiie e 150
5.3.4.8 SpeCial CYCle......uuuviiiiiiieiee i 150
5.3.4.9 TACK REAUoeviiiiiiiiiie ittt 151
5.3.4.10PCl Request Operationcccuuuueeieeiiaeneeiiiiiieieee e e e 151
5.3.4.11Master Latency TiMeroooiiiiiiiiiiiiiiee e 151
5.35 EIMOrs AS PCI TarQet...ceuuuuuuieieiieeee et 152
5.3.5.1 Address Parity ErrOr ...t 152
5.3.5.2 Write Data Parity Error..........occuueiiiiiiiiiii e 152
5.3.5.3 Read Data Parity Error..........cccccuvvieiiieeee e 152
5.3.6 Errors AS PCIMASIENcoooiiiiiiiieeee ettt 152
5.3.6.1 MaASter ADOMccoiiiiiiiiiiiiiiee et 153
5.3.6.2 Write Data Parity ErTor..........ccccviieiiiiie e 153
5.3.6.3 Target Abort ON WItecoceovii i 153

vi

Hardware Reference Manual

6 FBI Unit

6.1
6.2

6.3

6.4

6.5

6.6

Intel® IXP1200 Network Processor Family

5.3.6.4 Read Data Parity Error.......ccccccvveeeeiiiiiiiieeee e 153
5.3.6.5 Target Abort ON REaAd.........cuvvveeveeiiiiiiiiieeeeee e 154
.. 155
FBI ArCIITECIUN ...ttt e e e e e e e e e s 156
Push/Pull ENGINe INLEITACEceeiiiiiiiiieee e 158
6.2.1 Push and PUIl ENQINEScooiiiiiiiiiiei et 159
6.2.2 Microengine Initiated FBI Referencesccccooooviiiiieiiiiiiiiiiiiiiiiee 159
6.2.3 StrongARM* Core Initiated FBI References...........cccccceeiiiiiiiniiiiiinen. 160
6.2.4 FBI Signal Events (10 MiCrOENJINES)eeeiiiieiiiiiiiiiiieeee e 160
6.2.5 CommAaNd OFAEIINGueeiiiiiiiiiiiiiiie e a e 160
6.2.6 FBI Command Bus Arbiter Signaling........cccccovieiiiiiiiiiiiiiiiiiieee, 160
6.2.7 Scratchpad Test and Set/Clear INStructions............cuveeeveeieiniiiiiviieennn. 161
6.2.8 Scratchpad Increment INSrUCION...........eiiiiiiiiiiiiiiieee e 161
6.2.9 HAaSh INSIIUCLION ...t 161
ScratChpad MEMIOIYcoooiiiiiiiiei ettt e e e e e e e b e ee e 162
6.3.1 Read and Write OperationsS..........ccccuureiiiiiiaiaee e 162
6.3.2 Bit WIite OPErationsScceeiiiiiiiiiiiiiiiiiiiet et 163
6.3.3 Auto Increment OPErationscccuuiiiiiiiieiae e 164
HASH UNIL.. ettt e e e e e e e e e 165
6.4.1 Hashing OPErationccoiiiiiiiiiiiiiiieiiee e 165
6.4.2 Hash AlGOrthM ... 167
FBI CSRS .ttt ettt ettt ettt bttt e bt na b e an e e nane s 168
6.5.1 CSR Reads and WILEScouiiiiiiiiiiieiiiee et 168
6.5.2 FAST_WR SUPPOI..cc.utiiiiiiieiiiieeitiie ettt ettt e e sbe e bee e 168
6.5.3 FBI CSR DescCription SUMMAIYuueiiiiiieiaiiiiiiiiiiiieee e e e 169
6.5.3.1 IX Bus Receive RegiSterS......cccccceeiiiiiiiiiiiiiiieiee e 169
6.5.3.2 IX Bus Transmit REQISErS........ccceuiiiiiiiiiiiiiiieiea e 170
6.5.3.3 IX Bus and Ready Bus Configuration Registers...................... 170
6.5.3.4 Ready Bus Control REQISLErSc.covvvvevviiiiiiiieee e 171
6.5.3.5 Hash Unit Configurations RegiStersccccccevveeeeveriicinvvnnnnn, 171
6.5.3.6 FBI Interrupt/Signal REJIStErsSccoveivvviiiiiiieee e 171
6.5.3.7 Thread Status REQISErS.......cciiiiiiiiiiiiiiie it 172
6.5.3.8 Miscellaneous REQISLErS ...t 172
6.5.4 Cycle COUNt REGISTELeiiiiiiiiiiiiitiieee et 172
6.5.5 Self DeSIrUCt REQISTENeueeiiiiiiieiii et 172
6.5.6 Thread Status Registers (THREAD_DONE)ccccocciiiiiiiiiiiiiiiiee, 173
IX BUS INTEITACE ...ttt e e e e e e 174
6.6.1 Configuring the IX Bus and Ready BUS...........cccooiiiiiiiiiiiiiiieiiiee 174
6.6.2 IX Bus and Ready BUS MOUESccuuvuiiiiiiiiiiiiiiiiieeee e 177
6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes....177
6.6.2.2 1-2 MAC Mode and 3+ MAC MOdEcccuveeriieeiiieeiiie e 177
6.6.2.3 Shared IX BUS MOAEcceevmiiiiiiieieenec e 178
6.6.2.4 STAtUS MOAEooiiiiiiiiic e 182
6.6.3 REAUY BUS....ciiieeiii ittt a e 183
6.6.3.1 Ready BUS SEQUENCETuuuiiiiieeeeeiiiiiineieere e e e e e sessnvnnaeeeees 184
6.6.3.2 Ready Bus Master and Slave Modesccccceeeeeeviiiivinnnennnnn. 185
6.6.3.3 Ready BUS INSIIUCLIONScceiiiiiiiiiiiiiiiiieeceee e 185
6.6.3.4 Reading the MAC FIFO Ready Flags........ccccccceeeiiiniiiiiiiineen. 190
6.6.3.5 Receive Ready FIagsccuueeiiiiiiiiiiiiiiiiitee e 191
6.6.3.6 Transmit Ready FIagscccccevvveeiiiiiiiiie e 191
6.6.3.7 AUtOpUSh OPErationccevviiiiiieeei e e e e 191

Hardware Reference Manual Vii

Intel® IXP1200 Network Processor Family int6I
®

viii

6.6.3.8 Interpreting The Receive Ready Flags.........cccccovvveeveeienniininns 193
6.6.3.9 FIOW CONLIOleeiiiiiiiiiie i 195
6.6.3.10Ready Bus COMMUNICALIONSueeiiiiieeieaiiiiiiieieeeaeae e 195
6.6.3.11Example Ready Bus Sequencer Programs...........cccccceeeeeeenne 199
6.6.4 Receive State Machine and RFIFO - Receiving Data From IX Bus.....200
6.6.4.1 Issuing a Receive REQUESL............eeeviiiiiiiiiiiiiiiiieieeee e 201
6.6.4.2 Receive Request Format (RCV_REQ Register)cccoeu.e 202
6.6.4.3 Processing Receive REQUESEScvvvveeeiiiiiiiiiiiieiiieeeee e e 204
6.6.4.4 Receive Data Control Information Format (RCV_CNTL
=T o153 (=1 o PSP 206
6.6.4.5 Interpreting the Byte Enable Pins (FBE#[7:0])ccevveeeriinnnne 209
6.6.4.6 Reading the RFIFOcccoviviiiiiiiie e 211
6.6.4.7 Receive Scheduler Thread...........coceeeeviiiiiiiiiiiiiieee e 213
6.6.5 Transmit State Machine and TFIFO - Transmitting Data on the
D =10 PRSP 215
6.6.5.1 Initiating a Transmit Request (TFIFO Format)ccoeneeee 216
6.6.5.2 Transmitting TFIFO Data.........cccccvvvrieieeer e e e 218
6.6.6 Transmit Scheduler Thread..........cccoiiieiiiiiiiee i 218
6.6.6.1 Assigning a Transmit Thread - Examplescccccceeeeeevviinnnns 219
6.6.7 IX BUS AIDITEI oo 220
6.6.8 Slow Ports and Fast POIS........ccccoeviiiiieiiiie e 221
6.6.8.1 Maintaining Packet Order..........ccccveveeiieeeeeiiiiiiieeeee e 223
6.6.8.2 Issuing Receive ReqUESLES.........ccuveeiieieeei i 225
6.6.8.3 Fast POrt MOUESceveiiiiiiiie ittt 227
6.6.8.4 Timing Considerations for Back-to-Back Reads...................... 228
6.7 FBI Error SPeCIfiCatiONSooiuiiiiiiie et 229
B.7.1 CABNCEL .. e a e 229
6.7.2 RECEIVE FaIl ... 230
6.7.3 RECEIVE EITON ...ttt e e e 231
ST AN 1Y N U 1 T SRR 233
7.1 OVEBIVIBW ...ttt ettt ettt e e e e e e e e e s bbbt e e et e e e e e e e e e aaannbbebbaeeaaaaens 233
7.2 SDRAM BUS CONfIQUIAtIONScoeiiiiiiiieiieee et 233
7.2.1 Bank, Row, and Column Pin ASSIGNMENtS..........cccevieiiiiiiiiiiiiiiiieeaeeenn, 234
7.2.2 Initializing the SDRAM INterface........cccccviiiiiiiiiiiiiiiieieee e 235
7.2.2.1 Configuration Registers (SDRAM_MEMCTLO)cccceeeeririnnnnne 236
7.2.3 SDRAM BUS COMMANGAS.......uuiiiiiiiiiiiiaaaii ittt e ee e e 237
7.2.3.1 NO Operation (NOP)......ccuuiiiiiiiiiieiee e 238
7.2.3.2 Load Mode REQISIENccvveeei et e e 238
7.2.3.3 ACHVE. ...ttt 239
7.2.3.4 REAU......oeiiii ittt 239
7.2.3.5 WIEB ettt ettt ettt e e e aee s 239
7.2.3.6 BUISt TEIMINALE.......uuiiiiiiiiieie et 239
7.2.3.7 Self Refresh......coo e 239
7.2.3.8 PreCharge.......ccoooiiiiiiiiie ettt e e e 239
7.2.3.9 Unsupported SDRAM CommMandsc.cooevevcvvvrinneeeneeeninnnnns 240
7.3 Interfacing to the SDRAM UNit.......cccoiiiiiiiiiiiiee e e 240
7.3.1 SDRAM Command Service Priority LOQIC.......ccccuveereeeeeiiiiiiiiiieeeeeeeenn 240
7.3.1.1 Priority 0: Chained Referencedcccccccoevvviiiiviiieieec e, 242
7.3.1.2 Priority 1: Refresh ReqUESESuuvevieiieiiiiiiiieeeeee e, 242
7.3.1.3 Priority 2: Round Robin ReqQUESES.........ccooiiiiiiiiiiiiieeeeeeeee 242

7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests... 242

Hardware Reference Manual

Intel® IXP1200 Network Processor Family

7.3.2 Read-Modify-WIItEuueiiiiieee s 243

7.3.3 Chained RefErenCeS.........covvi it 243

7.3.4 Active Memory Optimization..........ccccuveeiieieeeee e e e e e e severeeee e 244

7.4 Microengine SDRAM TranSactionScccuuvveeiierieeniisiiiiiieer e e e e e e e ssseereeeeeeee s 245
7.4.1 Microengines Command QUEUESeuueerereeeeiirrinrinerreeeeeeesssnnsnrnneeeens 245

7.4.2 SDRAM BYLE AlIGNET ...uvviiiiiiie ittt a e e e e e 245

7.5 PCl SDRAM TranSACHONSccicveiiriie e 246
7.6 StrongARM* Core SDRAM TranSacCtioONScuveeveeereeviiiiiieieeeeeeeeesesssvnsnnneeens 247
7.6.1 StrongARM* Core and Microengine SDRAM Address Space.............. 247

7.6.1.1 SDRAM CSRSccuiiiiiiiieiiie ettt 248

7.6.1.2 SDRAM non-Prefetch Memory (256 Mbytes)............ccccvvvveeeee. 248

7.6.1.3 SDRAM Prefetch Memory (256 Mbytes)cccccccvviiiiiiiiennnn. 248

7.6.1.4 Cache Flush Area (16 KDYtes)ccooviiiiiiiiiiiieiiieeeee e 248

7.7 SDRAM and the IX BUS INterface..........oooiiiiiiiiiiie e 248
7.7.1 SDRAM t0 TFIFO OPErationc...uuueeiiiiiaeaaiiiiiiieieiee e 248

7.7.2 Receive FIFO to SDRAM OpPEerationccouiiiviiieiieieaaeeee i 249

7.7.3 SDRAM and IX Bus Data Path Operation............cccceeeeieieiinniiiiiiieeeenn. 249

SRAM UNIL. .ttt ettt ettt e bt e e bt e e s ebe e e e abe e e sabb e e sabee e nabbeeenees 251
8.1 OVEBIVIBW ...ttt ettt e e e e e oo e ettt et e e e a2 e e e s bt bbbeeeeeaaaaeesaaannnbbneeeees 251
8.2 SRAM BUS CONfIQUIALIONS.......uuiiiiiiiiieee et 251
8.3 SSRAM AJAIESS SPACEieeeeiiiiiee ettt e et e e e e e e e e e aabebbeeeee s 252
8.3.1 Pipelined vs. Flow Thru SRAM DEVICES........ccoviiiiuiiiiiiiiiiaiee e 253

8.4 BOOIROM AQUAIrESS SPACE ...ceiiiiieeiei ittt a ettt e e e e e e e aeeeeaaaaeas 255
8.5 SIOWPOIt ADArESS SPACE.etiiiiiiiieiee ettt e e e e 257
8.6 SIOW INtEIfACE LOGIC ..ciiiiiiiiiiiiiiee et 258
8.7 SRAM CSRS....eiiiitie ettt bbbt e e e abe e aaae e 258
8.8 Advanced SRAM COMMEANGS........uuuuiiiiiiaaaaai ittt ee e e e e e e s eeeeeeaaa e e e aanees 259
8.8.1 PUSh POP REQISIEIS.....ueiiiiiiiieii e 260

8.8.2 SRAM LOCK CAM oottt ettt ettt ettt nnee e snnee 263

8.8.2.1 ReadlLock and MiIiCrOENQINEScceeiiiiuiiiiiiiiieee e 263

8.8.2.2 ReadlLock and StrongARM* COreccccvviveveeeeeeies e 264

8.8.2.3 Maintaining Read_lock Order..........ccooevvivviviieeiie e 264

8.8.2.4 Filling the Read_Lock Fail QUeUeccceeeveveeeeeeiii e, 265

8.8.2.5 Application Example: Read_lock..........ccccoeviiiiiiiiiiiiiiiiiieee, 265

8.8.3 BitTest & Set/Bit TeSt & Clearueeueeiiiiiiiiiiiiiiiieeeeee e 265

8.8.4 SRAM JOUMMAING ...ttt 266

8.9 Interfacing to the SRAM URNIt.......oooiiiiiie e 267
8.9.1 SRAM MAP ..ttt 267

8.9.2 Microengine SRAM TranSacCtioNSc.eceiiiieiiiiiiiiiiiiieee e 268

8.9.3 StrongARM* Core SRAM TranSactioNS...........ooveiiiiiiiiiiiiiieeae e 269

8.9.4 SRAM BUISt COUNT ...ttt 271

8.9.5 SRAM Command ServiCe PrOILYcccoueriiiiiiiiiiiiiiieee e 271

8.9.6 Read-Modify-WIILEooiiiiiiiiiiiee e 272

Hardware Reference Manual (¢

Intel® IXP1200 Network Processor Family int9I
®

Figures

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
5-1
5-2
5-3
5-4
55
5-6
5-7
5-8
5-9
5-10
5-11

D 2 00 I 2] (0Tl 1q DI Vo - o[RS 18
Thread waiting for SIgNal...........eeeeiiiiee e 22
Thread synchronizing With Signal...........ccoociiiiiiiiee e 22
(O70] 01 (=) STV o] o 1T [24
Microengine Transfer Registers and internal data pathsccccccceeeeeeiiiinnnns 25
Typical Packet Data Flow in the IXP1200 (Simplified)ccccceveeeiiiiiicciiiieeeen, 27
StrongARM BIOCK DiIagramcooiiiiiiiiiiiiecce e eee e e e e e 31
Microengine internal StTUCIUMEcuviviieeeiiiie e e e 33
SRAM Unit external iINterfacesoviiiiiiiieiiie e 38
SRAM Unit BIOCK DIaQramcccceeiiiiiiiiiiiiie et e e e se s e e e e e e e e s s s snnrnnnneeaeeae e 38
SDRAM Unit BIOCK DIGQramcccooiiiiiiiiiiieeeeee e e s ssiniee e e e e e e e e s ssnenrnaeane e e e e e e s 41
PCI Unit BIOCK DIGQIaM ...ccceieiiiciiieiiie e e e e st e e e e e e e e s s ssansennene e e e e e e s s ennnnnes 43
IX BUS dAA FIOW ...t 45
Simplified IX Bus Unit BIOCK Diagramcceveeeieiiiiiiiiiiieiieeeeee e e s sesseviineeeeeeaeeens 46
Developer’'s Workbench - Thread History Displaycccovccvvviieiiieee e, 50
StrongARM* COre MemOrY MaPuuueuuiiirieieeeeeeeeeeeeeeee e e e e e e e e eee e eeeeenenennannnes 65
FIQ and IRQ INTEITUPLS......ci it ee e e se e e e e e e e s e r e e e e e e e e e s ennnnrenes 67
BT =T 2] (o Ted 1q DI Vo - o o P 70
Microengine BIOCK DIagramuuevieereeiiiiiiiiiiiieieereeeeesssessniennereeesae e e s e e snnsnenees 76
Class 3 Branch DECISIONcciiiuiiieiiiiiiiie ittt 81
Class 2 Branch DECISIONcciiiuiiieiiiiiiiie ettt 82
Class 1 Branch DECISIONccciiiuiiieiiiiiiiie ittt e 83
Postponed Branch DECISIONuuiiiiiiieeiiiiiiiiieeie e e e e e e s s e e e e e e e e e nnnaennees 84
EXECULION SEALES ...eeiiiiiiiiiie ettt ettt ee e et e e s s snbeeeeesnee 87
(€] o AN [0 [111 oo PR 90
Transfer Register AAAreSSiNgcoovviiiiiiiiiiieie e 91
U T (1 (=T o A I o 1 T PSSR 93
Microengine Shift and Rotate Procedureccccveeeeiieeieiiiicieeeee e 95
Context Arbitration POlICYcuieeeiiiiicciiiieeee e r e e 101
Microengine References Using Transfer Registerscccccvvvvevveeeeeiiiivcvveennnn, 103
Command Bus Arbitration POIICYccuvviiiiiiiee e 106
INAIFECE REFEIENCES ..ot 108
Reading and Writing LOCAl CSRS.........ccooiiiiiiiiiieeicee e e e e 112
Load Bit Set and Find Bit Set EXECULIONccoiiiiiiiiiiiiiiieiiiiiee e 114
SrONGARM INTEITUPTS .eeeveeeeeieieetetitie s s s e s s e e e e e e e e e e e e e aeeeeeeeeeeeeeeeeerenenrnsnnnnnnn e ns 116
Inter-thread Signal EVENLS..........uuiiiiiiieei e r e e e e e 117
StrongARM* Core and Microengine CommuniCation...........cccceeevveeicuvveveeeeeeeenn. 118
PCI Unit BIOCK DIGQIamccoiiiiiiiieeiee e e e s s ssciiie e e e e e e e s e s svnneane e s s e e e e e e snnnnnnees 126
O 1O Y ¢ o (= S PP TP 127
DMA DeSCrPtOr REAASceveeiiiiiiiieeee e ee e r e e e e e s e e nnraeneees 128
DMA Channel Operations Initiated by Microengingecccccccvveveviee e ciccinennn, 131
150 OVEIVIEW DIBGIAM ...ceiiiiieiiie ittt 132
Circulation Of MFAScoiiiiie e e 135
How the StrongARM* Core Generates Doorbell Interrupts to a PCI Device..... 137
How the PCI Device Generates Doorbell Interrupts to the StrongARM* Core.. 138
How the StrongARM* Core Initializes Doorbell Interrupts........ccccceeeeeiieiivvnnnnnn. 139
[O I 101 =T ¢ 1] K 140
Target Transactions - Internal Address Generationcccccvvveeeeeeeeeiesrcvvnnnnn 142

Hardware Reference Manual

5-12
5-13
6-1
6-2

6-4
6-5

6-7
6-8

6-10
6-11
6-12
6-13
6-14
6-15
6-16

6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
8-3

8-5
8-6

Intel® IXP1200 Network Processor Family

Master Transactions - Internal Address Generation...........cccceeevvvieeeeinieeeeennns 142
Master Configuration TranSacCtioNSuuveiiiieeeeiiiiiiiieiir e e e e 143
FBI UNit BIOCK DIiaQramc.ccieeieiiieiciiiiieie e e e esieee e e e e e e e s s s snnnaneen e e e e e e s 156
Push/Pull Engine Interface BIOCK Diagram............cccoccuvieiiieeeeeeieiicciiiiieeeeeee e 158
Scratchpad Memory MapPingeeeeeeeeeeeeeiiiiiiieieeeee e e e s sse s e e e e e e e e e s snnrnneeeeeees 163
How SRAM Transfer Registers are USed............ooccvviiiiiiiiee e icccciiiiieece e 165
Hash Operation FIOW.........c.uvieiiiiiiiciiiieie e eer e e e e e e s 166
IX BUS INEEITACE ..ottt et 174
RCV_RDY_CTL REQISIEN ..eeviie e e ettt ettt e e e e e e s s e e e e e e e 175
XMIT_RDY_CTL REQISIEI ..ttt ettt 175
RDYBUS_TEMPLATE_CTL REQISIENeviiiiiiiieieiiiiiee e 176
RDYBUS_SYNCH_COUNT_DEFAULT ReQIStercccoviiiieeeiiiiiiee e 176
RDYBUS_TEMPLATE_PROGX REQISIEIS......cciiiiiiiiieeiiiiie et 177
TK _OUT OULPUL 1.ttt e ettt s e s s s e e e e e e e e e aeaeeeeeeeeeanennnes 178
Dual IXP1200 System Using Dynamic Token Passingccccccoovvvvvvvevenenennnn. 179
Shared IXP1200 System Using Fixed Token Passingccccccceeveeveviicvvvnnnnnnn. 180
Shared IXP1200 System Using Dynamic Token Passingccccccceevvvvvicvvvvnnnnn 181
Receive State Machine Behavior when EOP Occurs on the Last IX Bus

D= = N 3o [PSR 182
[RYCT= 1o VA WIS 21 (o Tod [D IT- To | - o NP 183
Ready BUS INSIrUCtION SEQUENCEuuuiiiiiiiieeeieeiiiiieie e e e e e e s e s srnareee e e e e e e s 184
MAC DevVvice SEqUENCET FIOWc.eeeiiiiiiiieiee e e e e e e e 190
Master-to-Slave and Master-to-Master Chained Ready Bus Configuration 196
Data Flow for Get and Send INStrUCHIONScooovviiiiieiiiiiieeeeee e 197
Receive State Machine and RFIFO - Receiving Data From IX Bus.................. 201
Issuing a Receive ReqUESE FIOWuuiiiiiieeoii e 202
RCV_REQ RegiSter FOIMALcccuuiiiiiiiiieiie et e e e e s n e e e ae e 203
RCV_CNTL ReQISter FOIMAL........ccueviiiiiiiieiee e is sttt ee e e e e e s sssnrenreen e e e ae e s 206
Quadword Addresses for RFIFO........ccoccoiiiiiiiiiieeee e 211
Format For 32-bit Unidirectional IX Bus Mode with 64-bit Status..................... 212
Format for All Other MOUESuuiiiiiiiiiiee e 212
Intel 21440 Multiport 10/100 Mbps Ethernet Controller Status Format............. 213
Receive Scheduler DeciSion TIMEccuiviiiiiiiiieeiiie et 214
IX Bus Transmit Transfer STEPSccccuvurviiiieiie e e e 215
TFIFO Format and Quadword Word AdAresseeceeeeieieieieieieeeeeeeeeeeeeeveeeens 217
IX BUS ArDITEr FIOW.....eiiiiiiiiiiie it 220
SIOW POIMS VS. FASE POISveiiiiiiiiiiie ettt e 222
Sequence Number Assignment for One Fast POrt...........ccccccvcvevveeeee i 225
SDRAM Interface External CONNECLIONScooiiiiiiiiiiiiiiee e 234
SDRAM AAArESSING ...ceeeiiiiiiieeiieiee e e e s s e steee e e e e e e e s s s aer e e e e e e s s e s annrenraneeees 235
Load Mode Register COmMMANGcc.uvveiieeieeeiieiiiiiiiee e e e e e e e s s sssrerrreeeeeeeee e s 238
ST T Y, T 1= = Vo o SO 240
Command Service Priority Logic Arbitration POlICYccccvvevvrieeee i, 241
BanK SWItCNINGci it e e e e e e a e e 244
SRAM EXternal CONNECLIONScoiuuiiieiiiiiiite ettt naaeeee s 252
MemOory CONfIQUIALIONSeeiiiieeeies e e e e e e e e e s 253
Pipelined vs. FIow Thru SSRAM DEVICEccccvviiiiiiiiieiiiieeee e s e s ceievieeeeeaaaee s 254
FIOW TRIU DEVICEeveiiiiiiiiiie ettt et 255
BOOtROM AQUrESSING....uuveeeeiieeieeiiisiiiirrieere e ee e s s e s ssssrarererreaeeeesasnsnnresrnaereeaeeeaes 256
20T 4 2@ 1Y I T3 11 o PSR 256

Hardware Reference Manual Xi

Intel® IXP1200 Network Processor Family int6I
®

Xii

8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15

£ (0177 = o A I 4T PR 258
SRAM Unit BIOCK DIagramcceoiiiiiiiiieiiieeeeee e es st ee e e e e e s e s nanvaeeneeaeee s 259
VY 0T o I @ o =T - i o] =R 260
o T @] o 1Y - 1o o SRS 261
Uy A @ =T 11T o PRSI 262
PUSh-POP AAAreSSING ...ccceiiiiiiieiee et e e e et r e e e e e e s e nnnneneees 262
4= Y= Lo [0Tl o o [SRR 264
[24=T= Lo [0Tl QY o] o] o7 L1 o] o S 265
SRAM Journaling AddreSS SPACE.......cccuuviiriiieeeeiiiesiiiiiieer e e e e e e s rreeeeae s 266

Hardware Reference Manual

n

Tables

®

11
2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1

3-3
3-4

3-6
3-7

4-2
4-3

4-5
4-6

4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

5-2
5-3

6-1
6-2
6-3
6-4

6-6
6-7

6-9

Intel® IXP1200 Network Processor Family

(= 1= S I =T 0 11 o (o o |2 RS 16
Summary of StrongARM* Core Internal Connectionscccccevveveevieeiicvenvnennenn. 32
Summary of Microengine Internal ConnNectionscccceeeveveviviieiieeeeeee e 36
Calculation of Internal and External Bandwidths.............ccccovviiieiiiiiiiineiiiiieneee 37
Summary of SRAM Unit Internal ConNNECLiONScccovvviiiiiiiiiiieiee e 40
Summary of SDRAM Unit Internal ConNeCtioNS..........ccooovvvciiiieiireee e, 42
Summary of PCI Unit internal CONNECLIONS..........cevvvieeiiiiiieeee e 44
Summary of IX Bus Unit Internal ConNeCtioNSccoovvvcviviiiiieiee e 48
Valid MMU, Dcache, and Write Buffer Combinations..........c.ccoccevveiviiiiienininennn. 53
Effects of the Cacheable and Bufferable Bits on the Data Caches..................... 56
StongARM Core INStruction TiIMINGccccvvviiiiiiree e e e e esreereeee e 60
T Col=T [0 Ta TY 4= Tox (] ¢S 61
UART Supported Data FOMALScccuvviiiiiiieie e ee e e e s ssenreeeeeeeae e 68
e O = =T 1] (T ¢ R 71
GPIO Pins and IX BUS MOGEScoiuiiiiiiiiiiiie sttt saiaee e 72
Summary of Microenging INStrUCtiONSccvviiieiieiee e 78
EXECULION PIPEIINE ... e e e e 79
Instructions Categorized DY ClasS......ccuuuiiiiiiieeiiie e 80
Class 3 INSIIUCTIONS ... ettt e e e nnbe e e e e e 81
Class 2 INSIIUCTIONSuveiee ettt ettt et e e e s et ee e e e e 82
Class 1 INSIIUCTIONSuveiee ettt ettt et e e e snbe e e e e e 83
Transfer Register Usage (SoliCited ACCESS).......cccvvriiiiiiiieeie e e e e 91
Transfer Register Usage (UnSOoliCited ACCESS)......uuurririieiieeiiiiiiiiiiiiireeeeeeseesnnnnns 92
y U@ o= - 11T I 94
CEX_SWAP INSITUCIONS ..ceeci i e e e e e e e e eeees 98
Signal Event Request MethodsS ... 98
Explicitly Requested Signal EVENLSuiiiiiieieiiiii e sreeen e e e 99
NONEXPIICIt SIGNAI EVENESviiiiiiee e c e e e r e e e e e e 99
Instructions Using Transfer REQISIEISuuvivieeiieiiiciieee e 102
BUS ULIIZALION.eeiiiiiiiee et 107
Fast_wr 10-Bit Immediate Data..........cccvveereeieeeiii e 108
Indirect Reference INSIIUCLIONS.eviiiiiiiiie e 109
LOCAI CSRS ...ttt ettt e et e e ne e 111
RESUIt REGISIEN BIlS.....uuiiiiiiiiieeee i it e e e s s s r e e e s e e s s e er e e e e e e e s 113
Journal Register Initialization OFAEercceeiiiieiciiiiiie e 123
FIFO POINTEIS ...ttt et e e e e e s nbe e e e e eneeee 133
Doorbell INterrupt REQISTENSvvveeie i e e e s 136
Doorbell Interrupt FUNCHONSccooei it 137
Master Configuration TranSaCtiONScc.vvviriiierieei e e 143
FBI RESOUITES. ...ttt et e e e e e e s e s bbb e e e e e e e e e e s 156
FBI Push and Pull Task Prioriti€S.........cuviieiiiiiiieiiiiiiee e 159
Instructions Assigned to FBI Command QUEUESeeeevveeeeeiiiiiiiiniiieineneeeenns 159
10-Bit IMMeEdIiate Dat@........c.veeeeiiiiiiie it 168
Receive REqUEST REJISIEIS.......cciiiietieeee e e e e 169
Sequence NUMDErS REJISEISuuuiiiiiee et e e s e e e e enenrraeee e 169
IX BUS TransSmit REQISIEIS.......cccciiiiiieiiieeie e e e e e s s rreer e e e e e e 170
IX Bus and Ready Bus Configuration RegiSters..........ccccvvverierieereeviiciivennneeens 170
Ready BUs CONtrol REQISIEISccciiieiieiie e e s e n e e e e e e s 171

Hardware Reference Manual Xiii

Intel® IXP1200 Network Processor Family int9I
®

Xiv

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
7-1
7-2
7-3
7-4
75
7-6
7-7
7-8
8-1
8-2
8-3
8-4
8-5

Hash Unit Configurations REQISIErScoiccviiiiiie e 171
FBI Interrupt/Signal REQISEISuvuviiiieee it e e 171
Thread Status REQISIEISuviiiiiiiiie e e e e e 172
MiSCEIlaNEOUS REQISIEIS ... e s e e e e e e e 172
NOP INStruction VariatioNSccoiiuiiiiiiiiiiiiie e 185
rXrdy INStrUCtion VariatioNS..........ccccvvviiiiieiie e rrr e e e e e 186
tXrdy INStrUCtioN VariatioNSceevviiee e i 187
RxAutopush Instruction Variationscocccciviiriiieee e e e 188
TxAutopush Instruction Variationsccccvvuviiiiieeeee e e e e 188
fIWCtl INStrUCHION VANAtiONS.coiiiiiiiiie e 188
Getl INStrUCHON VariatiONScoiiviiee ettt 189
Get2 INSIrUCHION VariatiONScoiiviiieeiiiiiie e 189
send INStrUCHION VariatioNSoovieieiiiiiiiee e 190
64-bit Mode ENdian FOrMAt.........uuiiiiiiiiiiieiiiiiee e 209
Byte Enable Signaling Based On Endian Formatccoccvvviveeieeeie e, 209
32-bit Mode ENdian FOrMALt........ccuuiieiiiiiiiieiiiiiee e 210
Byte Enable Signaling Based On Endian Formatcccccvvvviveeieeeee e, 210
(0 T (o1 IS £= 1 (=L PP 229
RECEIVE Fail STAIES ...ooiiiiiiie e 230
RECEIVE EITON SEALES ..ooiivtiii ettt ettt e e 231
SDRAM CONfIQUIALIONSuvveeiieieeee st e e s s r e e e e e e e e s s e eeaeaee s 234
Programmable SDRAM REQISIEISccoviiiiiiiieeiieee e e s sereteeee e e e e e e 235
SeqUENTIAI BUISES ...t e e e e e e e s rr e e e e eee s 237
SDRAM Commands and Pin Statescooviiiiiiiiiiiiiee e 238
ComMMANd QUEBUEBSeeeeeeeeeeeeeeitt it e s e e e e e e e e e e e e e eeeeeeeeeeeeeeeessasrerearararnaan e es 245
Data at Quadword Address N and N+1.........oevvvviiriiiiiiiiiiirin e 246
AlIGNMENT RESUILS ..ot e e e e e e e e nnnreeanees 246
Memory Map for SDRAM AdAress SPaCE........uuueveeieeeeeiiiiiiiiiieereeeeeesessnnseeneens 247
Memory Map for SRAM AdAress SPaCEcccvvveeeieeeeeeieiiiiinieeer e e e e e s es e eneeeeens 267
SRAM Command QUEUE SIZES......uuuuuuiieieiiieieieieeeeeeeeeeeeeeeeeee e e 268
Cacheable and Bufferable Address SPacescoovvevvviiviieee e 269
BUISE SIZES ..ttt sttt 271
SRAM Command ServiCe PriOItYcccuvviieiiieie s e e rree e e 272

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
Introduction

Introduction 1

1.1

1.2

About this Document

This document serves as the hardware reference manual for the Intel® 1XP1200 Network Processor
Family. Thisincludes the IXP1200, IXP1240 and I XP1250. This book is intended for use by
Developers and is organized as follows:

Section 2, Technical Introduction contains a hardware overview.

Section 3, StrongARM* Core describes the operation of the embedded StrongARM* core.
Section 4, Microengines describes the operation of the Microengines.

Section 5, PCI Unit describes the operation of the PCI Unit.

Section 6, FBI Unit describes the operation of the IX Bus Interface Unit.

Section 7, SDRAM Unit describes the operation of the SDRAM Unit.

Section 8, SRAM Unit describes the operation of the SRAM Unit.

Related Documentation

Further information on the I XP1200 is available in the following documents:

I XP1200 Network Processor Datasheet - Contains summary information on the 1XP1200 including
afunctional description, signal descriptions, electrical specifications, and mechanical
specifications.

I XP1240 Network Processor Datasheet - Contains summary information on the 1XP1240 including
afunctional description, signal descriptions, electrical specifications, and mechanical
specifications.

I XP1250 Network Processor Datasheet - Contains summary information on the 1XP1250 including
afunctional description, signal descriptions, electrical specifications, and mechanical
specifications.

I XP1200 Network Processor Family Microcode Programmer’s Reference Manual - Contains
detailed programming information for designers.

I XP1200 Network Processor Development Tools User’s Guide - Describes the | XP1200
Workbench and the devel opment tools you can access through the use of the Workbench.

I XP1200 Network Processor Family Microcode Software Reference Manual - Contains detailed
software technical information for designers.

Hardware Reference Manual 15

Intel® IXP1200 Network Processor Family m
Introduction In
®

ARM* Architecture Reference Manual. Available from ARM. Contact: ARM Limited, 985
University Ave., Suite 5, Los Gatos, CA 95030. Phone: 408-399-5199. FAX: 408-399-8854.
Email: info@arm.com. WWW: http://www.arm.com.

1.3 Conventions

The following conventions are used in this manual :

1.3.1 Data Terminology

Table 1-1. Data Terminology

Term Words Bytes Bits
Byte Y 1 8
Word 1 2 16
Longword 2 4 32
Quadword 4 8 64

1.3.2 Definitions

MPKT

The dataread from a MAC device receive FIFO as the result of a single receive request to the
receive state machine. Read in as 64 bytes.

Packet

The data framed between the assertion of an SOP signal and assertion of its associated EOP signal.

16 Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
Technical Introduction

Technical Introduction 2

2.1

This chapter is arelatively detailed introduction to the I XP1200 microarchitecture, and it's key
features. It serves as a base from which the user can better understand the more detailed chapters
that follow.

Overview

TheXP1200 is an integrated Network Processor, comprised of asingle StrongARM processor, six
Microengines, standard memory interfaces, and high-speed bus interfaces. It istargeted at
networking applications requiring a high degree of flexibility, programmability, scalability,
performance, and low power consumption. The unique architecture of the IXP1200 affords the user
ahighly concurrent packet processing model, while keeping the programming model simple. This
is accomplished by providing many features in hardware that simplify the programming model.

The IXP1200 allows the designer to implement in software, what was previously implemented in
custom ASICs. Thisflexible, reprogrammable approach has many advantages, including faster
development time, easier bug-fixes, the ability to add features to products after deployment in the
field, and the ability to conform to standards that are not yet solidified.

The Microengines are custom processors implemented specifically for networking applications.
They are especially well suited to high-speed data manipulation and movement. The Microengines
being fully programmable processors, are able to examine packet contents at all levels of the
networking stack. This makes them suitable not only for layer 2 and 3 switching/forwarding, but
also for applications that require deeper inspection and mani pulation of packet contents.

The IXP1200 has a number of noteworthy features that are described in more detail in Section 2.3,
“Key Architectural Features:

* Multi-Processing - allows multiple network packets to be processed in parallel.

¢ Distributed Data Storage architecture - positions data close to where it's needed for faster
access, - in the Microengines.

¢ Hardware Multi-Threading - allows each Microengine to process multiple packets with
minimal context switching overhead.

* Active Memory Optimizations - executes a series of memory requests in the most efficient
manner, thereby increasing effective memory bandwidth.

¢ Multi-level Concurrency - allows multiple packets to be processed simultaneously by
overlapping the data accesses required to process one packet, with the compute cycles required
to process another packet.

* Block Data Movement - efficient movement of large amounts of data.

* Scalability - allows the architecture to scale with increasing processing demands.

Hardware Reference Manual 17

Intel® IXP1200 Network Processor Family m
Technical Introduction Inte|®
2.2 IXP1200 Functional Units

Figure 2-1. IXP1200 Block Diagram

Host CPU PCI MAC Device
(optional) (optional)
A A
Y /32 Y N
< / PCIBus__ 66 MHz ,>
/ A
v Intel® IXP1200 Processor

Y

PCI Bus Unit
SDRAM 116 MHz StrongARM* Core
UPt0 256 MB | €2 SDRAM (/\/ 232 MHz
Unit .
Multiple,

SRAM 116 MHz independent, 232 MHz

Upto 8 MB | g£ > high speed
732 SRAM - Microengine 1
Unitt [\ pusses
FlashRoM |, (oopia) £ |

up to 8 MB
IX Bus /\/

InterfaceUnit

Memory Microengine 6
Mapped I/0O > A
Devices
Y /64
ie.MaC A N
Control 1 < / IXBus__104 MHz ,>

' A/ A A
1 Y Y Y
: 10/100/1000 MB ATM, T1/E1 Other
""""" > Ethernet MACS etc. IXP1200 Processor

* Other names and brands may be claimed as the property of others.
A8488-01

Figure 2-1isasimplified block diagram of the I XP1200 which shows the six main functional units.
These functional units are described briefly below, and are described in more detail in the
following sections. The internal busses are shown as a“cloud” here for the sake of simplicity. The
many internal busses that connect the various functional units are described in more detail in
Section 2.7, “Internal Architecture.

* StrongARM* core - A full 32-bit RISC processor core with integrated caches that can be used
for management functions, running routing protocols, exception handling, and other tasks.

* Six Microengines - These compact, efficient RISC engines can be used for any function
requiring high-speed packet inspection, data manipulation, and data transfer. These are fully
programmable 32-bit engines with a 5-stage execution pipeline and alarge (256) register set.
Hardware multithreading, and context-sensitive register windows enable very fast context
switching.

* SDRAM Unit - A shared, intelligent memory interface that can be accessed by the
StrongARM* core, the Microengines, and devices on the PCI bus. A glue-less interface to

18 Hardware Reference Manual

2.3

Intel® IXP1200 Network Processor Family
Technical Introduction

standard, low-cost SDRAMSs. Capable of moving blocks of data between the SDRAM and the
Microengines or the IX Bus Unit or devices on the PCI bus.

* SRAM Unit - A shared, intelligent memory interface that is accessible by the StrongARM and
the Microengines. A glue-lessinterface to standard pipelined and flowthrough SRAMs.
Capable of moving blocks of data between the SRAM and the Microengines

¢ PCI Bus Interface Unit - A standard interface that may be used to interface to other PCI
devices, or another host processor.

¢ |X Bus Unit - Anintelligent data movement engine controlled by the Microengines. Capable
of transferring blocks of data between the I XP1200 and networking devices such asMACsand
SARs. Whilethe I X Bus Unit can perform many sophisticated datatransfer operationsinternal
to the IXP1200, the (external) IX Bus Interface itself is simple, and it is straightforward to
design peripheralsfor it. The IX Busis described in more detail in Section 2.7.6.

Other functions contained within the IXP1200 include:
* A hardware hashing unit (48 or 64 bit)

* An on-chip 4KByte Scratchpad RAM for storing globally accessible data, and passing
messages between processors and between threads.

* On-chip Transmit and Receive FIFOs for buffering data on the I X Bus.

¢ Connecting the different functional units within the I XP1200 are a series of high speed busses
that transfer data between the units. These are parallel data paths that operate independently of
each other and increase the data throughput within the network processor.

* ThelXP1200 also containsa UART for debug purposes; a number of countersthat can be used
for time-stamping, etc; and a number of features for inter-processor and inter-thread
communication.

The IX Bus Interface is the high speed data flow interface to the IXP1200. Whereas the PCI
interfaceis fast, and runs at up to 66 MHz, it islimited by the PCI bus protocol, and by the bus
width. This does not preclude the PCI bus from being used as the main data path into and out of the
IXP1200, but it should be remembered that there is no direct connection (internally) between the
PCI Unit and the Microengines.

The I XP1200 has three types of memory resources avail able to the programmer: SRAM, SDRAM,
and Scratchpad RAM. These memories vary in latency, size, and bandwidth. The advantage of
having these three types of memories is that each of the memories operatein parallel, and the
programmer may make use of each of these in areas suited to their characteristics.

For example, SDRAM memory istypically used for packet data storage and very large tables,
whereas SRAM memory is used for table lookups where low latency is very important. Scratchpad
RAM being internal to the IXP1200 is smaller, but with very low latency and is most often used for
interprocess communication, and shared semaphores or counters.

Key Architectural Features

¢ Multi-Processing - The six Microengines, plus the StrongARM make up the compute
resources of the IXP1200. They share acommon set of resources: SDRAM, SRAM, PCI, IX
Bus, Scratchpad RAM, and a number of other functions (described | ater).

¢ Distributed Data Storage Architecture - Each of the Microengines hasits own local register
file of 256 (32-hit) registers. 128 of these registers are Transfer Registers. The Microengines

Hardware Reference Manual 19

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

20

have aload-store architecture. A Microengine cannot access data external to it. Instead, it must
bring the datainto its Transfer Registers, operate on it, and then write the data from the
Transfer Registers out to its destination (i.e. SDRAM). Once the dataisin its Transfer
Registers, a Microengine has single-cycle access to it, thus greatly speeding up its processing
capabilities. When datais not in its Transfer Registers, a Microengine can issue a Reference
Command to fetch the required data, then "go to sleep” while waiting for the data to come
back. This is where hardware multi-threading comes into play.

Hardware Multi-Threading - Each of the Microengines actually has four Program Counters,
and is designed to be able to support up to four Threads (also called Contexts). When one of
the Threads is waiting for some data to be fetched, it can "go to sleep” and allow another
Thread within the same Microengine to run. This allows four program threads to run on the
same Microengine, thus utilizing the Microengine compute resourcesin a much more efficient
fashion.

This leads to better silicon utilization, and lower power than an approach in which more
Microengines are implemented, but without multi-threading. In a non-multi-threading design,
Microengines end up spending alot of time just waiting for the datato come back. Multi-
threading in the IXP1200 is implemented in hardware, but controlled by software. Performing
multi-threading in hardware makes zero overhead context switching possible, as described in
Section 2.7.2, “Microengines.

Active Memory Optimization - Both the SDRAM and SRAM Units have anumber of queues
and optimization logic built in. This allows the six Microengines (actually the 24 Microengine
threads) aswell asthe StrongARM to request read or write transfers from the memory units,
and allows the memory units to intelligently determine the optimal order in which to carry out
these requests. Though these Active Memory Optimizations are implemented in hardware,
they are controlled by software on an instruction by instruction basis.

Concurrency - Dueto the several independent data and control bussesinternal to the
I XP1200, data can be moved simultaneously:

— between the SDRAM Unit and the Microengines or IX Bus Unit
(in both directions: read and write, - simultaneously)

— between the SRAM Unit and the Microengines
(in both directions: read and write, - simultaneously)

— between the SDRAM Unit and the PCI Unit
— between the IX Bus Unit and the Microengines

All these can occur simultaneously, and independently of each other. These are under software
control, but implemented in hardware, so the programmer need not worry about the details.

There are additional forms of concurrency in the IXP1200, which are described in more detail
in Section 2.4.6.

Block Transfers - Dueto the large register set on each of the Microengines, asingle
instruction can cause up to 64 bytes of data to flow from one functional unit to ancther, or up
to 128 bytes of data to flow across the IX Bus. This makes better use of the Microengine
compute resources, as well as reducing code size.

Scalability - The IXP1200 architecture implements scalability in anumber of different
dimensions. Firstly, the architecture is such, that future members of the IXP1200 family can
add additional Microengines, while maintai ning the same programming model. Secondly,
future | XP network processors can increase the instruction store within the Microengines.
Thirdly, multiple I XP1200s can be connected in asingle design, allowing increased processing
power or data bandwidth.

Hardware Reference Manual

2.4

24.1

Intel® IXP1200 Network Processor Family
Technical Introduction

Connecting the six functional units are a number of very high-speed internal busses. These busses
operate at the full core frequency (currently 232 MHz). The busses are detailed in the descriptions
of theindividual functional unitsin Section 2.7, “Internal Architecture, however, it should be noted
here that there are separate Read and Write busses between some of the functional units allowing
simultaneous transfers across these busses. Also, some of the functional units have separate,
unshared busses connecting them (i.e. PCI Unit to SDRAM Unit). In addition to these internal
busses which significantly improve the performance of the I XP1200, several of the functional units
have their own DMA engines (called Push-Pull Engines). These Push-Pull Engines are transparent
to the programmer, but serve as hardware DMA Controllers to move blocks of data between the
functional units. The combination of multiple independent busses, the Microengines, and the Push-
Pull Engines serve to move large amounts of data within the 1XP1200 concurrently. Thus, internal
data-path bottlenecks are removed. More detail on the functioning of the internal busses, aswell as
the Push-Pull Engines followsin alater section.

Some Architectural Concepts

The IXP1200 architecture introduces some new concepts, and also makes use of some existing
concepts but uses them in novel ways. This section gives a broad overview of these concepts and
how they work together to form the I XP1200 architecture. Understanding these conceptsis key to
understanding the I XP1200 architecture.

References

Standard microprocessors (such as the integrated StrongARM processor) access memory directly
by issuing the memory address, and then waiting for the data to be returned. If the datais not
returned immediately, wait states are generated and compute cycles are wasted.

In comparison, the Microengines utilize aform of addressing called References. To access data
external to a Microengine, a Microengine executes a Reference Command, but does not have to
wait for the datato come back. Instead it can do some other useful work by letting another program
thread within the Microengine run.

While the Microengines have a set of local registersjust like any other microprocessor, they do not
have direct accessto SDRAM, SRAM, and other resources that are not within the Microengine. A
Microengine accesses its local registersin one clock cycle, however, to access resources that are

not local to it, the Microengine issues Reference Commands (to bring data into the local registers).

Reference Commands are used to:
* reguest aread or write from/to SDRAM
* reguest aread or write from/to SRAM
* reguest aread or write from/to on-chip Scratchpad RAM
* reguest a hashing operation to be performed on data in the transfer registers
* reguest datato be transferred over the I X Bus interface (to/from a device on the IX Bus)
* reguest datato be moved between SDRAM and the IX Bus Unit
* reguest datato be transferred between Microengine transfer registers and the I X Bus Unit

In general, anything that takes time to complete, isimplemented through a Reference Command,
and the Microengine need not wait for the transfer to complete.

Hardware Reference Manual 21

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

2.4.2

Figure 2-2.

Figure 2-3.

22

Signals and Synchronization

Since a Microengine can issue a Reference Command but does not need to wait for the requested
action to be completed, some means must be provided so that the Microengine may know when the
requested task has been completed. To accomplish this, the different functional units (i.e. SRAM
Unit, SDRAM Unit, etc.) have the ability to send signals back to the requesting Microengine
indicating when the requested task has been completed.

A Microengine can issue a Reference Command, and simply wait for the signal to be returned as
shown in Figure 2-2.

Thread waiting for signal

Thread 0 Thread 0 loops, Thread 0
executing code waits for signal continues to execute
(Ll I 1
[)
Executes Reference _/ Transfer in progress \— Signal Received
> Time

A8909-01

Or aMicroengine can continue to execute instructions while the transfer isin progress and do some
other useful work, and then later check to seeif the signal has been received (shown in Figure 2-3).

Thread synchronizing with signal

Thread 0 Thread 0

Thread 0 does other loops, waits Thread 0
executes code work for signal continues to execute
AL AL
(Ll Ll I 1
(J
Executes Reference _/ Transfer in progress \— Signal Received

> Time

A8910-01

Alternatively, the Microengine Thread can issue a Reference Command, and then swap out as
described in the next section, and illustrated in Figure 2-4 “Context Swapping".

Signals are the primary method provided within the architecture to allow Microengine Threads to
gain notification that events external to the Microengine have occurred. Signals are used not only
to signify the completion of Reference Commands, but also for inter-processor and inter-thread
communication. For example, threads may signal each other to indicate an event, or the
StrongARM* core may signal any of the Microengine threads.

Hardware Reference Manual

2.4.3

Intel® IXP1200 Network Processor Family
Technical Introduction

Signals are not preemptive. They serve only to notify athread of an event, or to enable athread that
iswaiting for asignal.

Context Swapping and Threads

The Microengines utilize a feature called Hardware Multithreading. Each Microengine has four
Program Counters, and supports four Threads. Each thread hasits own Thread 1D, and the
IXP1200 hardware (i.e. the various functional units) are ‘thread-aware’. When a Microengine
Thread issues a Reference Command, the receiving functional unit (i.e. SDRAM Unit) recognizes
which thread issued that command, and can send a completion signal specifically back to that
thread. In this way, multiple threads within a Microengine can issue Reference Commands, and the
completion signals are sent back to the specific threads that issued the commandsin the first place.
Thisisall done by the hardware, so the programmer need not worry about keeping track of
Reference Commands, and the 1XP1200 programming model remains simple, and easy to use.

As mentioned above, a Microengine (actually, a Microengine thread) can issue a Reference
Command, and then swap out, allowing another thread (within the same Microengine) to run. In
this way, while one Microengine thread is waiting for data, or some operation to complete, another
thread is allowed to run and complete some useful work (Figure 2-4). Since the functional unitsare
thread aware, when a particular Reference Command is complete, the specific thread that issued
the command is signalled, enabling it to ‘wake up’ and continue to run, since the datait was
waiting for is now available

It should be noted that a thread does not simply “wake up” whenever it receivesasignal. The
Microengine architecture is not interrupt driven, and so signals do not preempt athread that is
already executing. Context switching occurs only when an executing thread explicitly gives up
control. The ctx_arb Microengine instruction allows the context arbiter to determine which thread
runs next. In addition, the ctx_arb option on Reference Commands issues the Reference Command
and then allows context arbitration to take place. Context arbitration does not occur at any other
time.

A thread that is swapped out and waiting for asignal is temporarily disabled (for arbitration) until
the signal isreceived. The Microengine Context Arbiter is described in more detail in Microengine
Section.

Hardware Reference Manual 23

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Figure 2-4.

2.4.4

24

Context Swapping

Thread 0 executing Thread 0 executing
A A
f | f |
Thread) G- - - - - - ------------- -
Thread 0 issues an J SDRAM access T— Thread 0 resumes
SDRAM Reference complete, and signal
Command and swaps out sent to Thread 0

Thread 1 executing
A

Thread 1 - S - - - - - -~ - -

Thread 1 executes a ctx_arb
instruction and gives up control

Thread 2 Thread 2 disabled

Thread 3 Thread 3 disabled

A8489-01

Some Examples

Asan example, say Thread A (Microengine #1, Thread 2) is processing a packet header by doing a
lookup in SRAM. Instead of waiting for the datato come back from SRAM, Thread A can continue
to execute instructions, and begin to store the packet payload datato SDRAM. Later, when
necessary, it can check to seeif asigna has been received from the SRAM Unit so that it knows
that the SRAM operation has been completed, and can then continue to process the header.

Alternatively, as an example that shows context swapping, say Thread A isdoing alookup in
SRAM, and due to the nature of the algorithm, cannot continue processing till the datais available.
In this case, Thread A would issue the SRAM Reference Command and swap out (all in one
instruction). At this point, Thread B (Microengine #1, Thread 3) would execute its program,
probably working on adifferent packet than Thread A. Later, when the SRAM Reference
Command issued by Thread A compl etes, the SRAM Unit would send Thread A asignal, enabling
it to ‘wake up’ and continue to execute its code where it |eft off. It should be noted that Thread A
cannot begin executing code again until Thread B relinquishes control (swaps out explicitly).

Again, thisis all accomplished in the hardware so that the programmer does not have to keep track
of all the signals and Reference Commands that have been issued. The programmer treats each
thread as alogically separate entity, simplifying the I XP1200 programming model. The result,
however, is that the six Microengines, each with four logically separate threads, can be effectively
executing 24 different programs. It is even possible (though not likely from a practical,
implementation point of view) that each of the 24 threads can be working on a separate packet.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Technical Introduction

2.4.5 Local Data Storage and Block Transfers

Figure 2-5. Microengine Transfer Registers and internal data paths

x6
SRAM Unit
Microengine
IX Bus Unit
—| 128 128
) Read Bus >— SRAM 1™ —
PCI Unit / [L L I~ Transfer | [~ General]
K Write Bus | Registers_| | Purpose |
I — — | Registers |
‘ Read Bus >_ SDRAM - [~ N
SDRAM Unit / _ L' [Transfer 7| [~ 1
K Write Bus I [Registers | [~ B
A8490-01

As shown in Figure 2-5 each of the Microengines contains 128 Transfer Registers. 64 of these are
for transferring data between the Microengine and SDRAM (called SDRAM Transfer Registers),
while the other 64 are for transferring data between the Microengine and the other functional units
(called SRAM Transfer Registers). Though the SRAM Transfer Registers are named so, they
transfer data between the Microengine and al the functional units (except SDRAM).

Since the Microengines have this large local data transfer register area, one Reference Command
can cause a block of datato be loaded into one portion of the transfer register area, while another
Reference Command (say from a different thread in the same Microengine) can cause a block of
data to be loaded into a different portion of the transfer register area, - without overwriting each
other. As shown in Figure 2-5, these data transfers can happen simultaneously because there are
four separate and independent data busses that connect the Microengines to the different functional
units. These bus structures are described in more detail below. Another feature of this architecture
isthe ability to move large blocks of datawith asingleinstruction. For example, asingle Reference
Command instruction from a Microengine can cause a block of datato (up to 64 bytes) to be read
from, or written to the SRAM or SDRAM.

Thislarge datatransfer register areais shared by all four of the Microengine threads. Just as the
IXP1200 functional units are thread-aware, so too are the transfer registers. In this way, when
different threads within the same Microengine issue Reference Commands, the data requested by
one thread does not overwrite the data requested by another thread. Each thread (context) hasit’s
own window of registers (one fourth of the total registers). This helpsto keep the IXP1200
programming model simple and easy to use.

Hardware Reference Manual 25

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

2.4.6

2.5

26

Concurrency

Concurrency within the I XP1200 architecture takes a number of different forms:

Of course, there is the concurrency of seven processors within the 1XP1200. But beyond that, the
architecture is such that thereisalot of concurrency at the individual Microengine level aswell.
While one thread within a Microengine is executing code, data transfers on behalf of any (or all)
four threads can be occurring. In addition, since internal to the I XP1200 there are separate busses
to the SDRAM and the SRAM, datatransfers to both devices can be occurring in parallel.
Furthermore, there are separate Read and Write busses for the SRAM and SDRAM as can be seen
in Figure 2-5. This allows the Microengine Transfer Registers to transfer data to the SRAM and
SDRAM in both directions (read and write) simultaneously.

Similarly, it isaso possible for the other functional units to be executing tasks on behalf of the
Microengines simultaneously. This can be happening while a particular thread is‘sleeping’. A
good exampl e of this would be when a Microengine thread executes a Hashing Reference
Command and then swaps out. When the swap occurs, another thread within the same Microengine
can execute code, probably processing a separate packet. Meanwhile, at the same time the Hashing
Unit will be executing the hash on behalf of the sleeping thread.

Typical Packet Data Flow

What followsis asimplified description of how a packet would be processed in a‘typical’
application. The IXP1200 architecture is discussed in much more detail in further sections, but the
description immediately below serves as a general introduction to acquaint the designer with the
general flow of datathrough the IXP1200. An Ethernet application is used for illustration.

Hardware Reference Manual

intel.

Figure 2-6.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

Typical Packet Data Flow in the IXP1200 (Simplified)

A

v Intel® IXP1200 Processor
| PciBus unit |
2 StrongARM*
SDRAM _ - SDRAM Core
upto2s6mB | [Unit Multiple
independent,
high speed Microengine
SRAM - - SRAM internal
upto8MB | - Unit N busses
232 MHz
IX Bus Unit T ”
|~ ransfer
Tx FIFO | [Rx FIFO | Registers
A
Y
Ethernet MAC

* Other names and brands may be claimed as the property of others.

A8491-01

Generally, packet data moves through the I XP1200 in the following steps:

1.
2.

The Ethernet MAC receives data

A MicroEngineinstructs the I X Bus Unit (viaa Reference Command) to get the data from the
MAC and storeit in the Receive FIFO (RFIFO). The I X Bus unit takes care of the actual
transfer, independent of the Microengine.

3. TheIX Bus Unit signals a Microengine thread that the data has been transferred.
4. The Microengine instructs the SDRAM Unit to transfer the data from the Receive FIFO to

SDRAM (this actually takes place in the background). The SDRAM unit takes care of the
actual transfer, independent of the Microengine.

The Microengine transfers the first few bytes (header) into its Transfer Registers (viaa
Reference Command to the IX Bus Unit).

It processes the header (or however much of the packet needsto be inspected), and determines
what to do. It can make use of tables stored in SRAM (or SDRAM) to do lookups.

7. It modifies the packet header, if necessary, and writes out the new header to SDRAM.
8. Itinstructsthe SDRAM Unit to write the packet data out to the Transmit FIFO. The SDRAM

unit takes care of the actual transfer, independent of the Microengine. When the transfer is
complete, the SDRAM Unit notifies the Microengine thread.

The Microengine instructs the IX Bus Unit to transfer the data to the appropriate MAC.

27

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

28

The IXP1200 is a store-and-forward packet processing architecture. When a device on the IX Bus
(say, an Ethernet MAC) has datait needsto transfer to the IXP1200, it asserts apin. One or more of
the Microengines monitor these pins on a continuous basis. When it is noticed that a device on the
IX Bus has data, a Microengine issues a Reference Command requesting the I X Bus Unit to
transfer data from that device into the Receive FIFOs within the I X Bus Unit (Figure 2-6).

The IX Bus Transmit and Receive FIFOs serve as temporary buffer areas where | X Bus datais
stored. When the data transfer is complete and the received data from the MAC now residesin the
Receive FIFO, the I X Bus unit sends a signal to a Microengine thread. The thread may then
transfer a number of bytes from the Receive FIFO (presumably the packet header) into its local
Transfer Registers. It can also send a separate request to the I X Bus Unit to send the entire “ chunk”
of received datato SDRAM. While the IX Bus Unit is transferring the datato SDRAM, the
Microengine can be processing the packet header. It can do table lookupsin SRAM, perform
hashing (using the hardware hashing unit) on the header fields, etc.

The IX Bus deals with datain chunks of 64 bytes called MPKTS (“m-packets’). For larger packets
(larger than 64 bytes), as additional portions of the packet are transferred from the MAC into the
Receive FIFO, the Microengine issues additional Reference Commands to have the data moved
from the Receive FIFO directly to SDRAM, thereby buffering the packet in SDRAM. The
Microengine needs to issue only one or two instructions to cause awhole block (1 or 2 MPKTs) of
data to move directly between the IX Bus Unit and SDRAM. The Microengineisin complete
control of each of these operations.

When the Microengine has finished processing the packet header, it writes the new packet header
into SDRAM. Then, it monitors the devices on the Transmit (destination) side, and when the
destination device is able to receive data from the 1XP1200, the Microengine issues a Reference
Command to the SDRAM Unit requesting that a chunk of data be moved from SDRAM to the
Transmit FIFO. Now that the data to be transmitted isin the Transmit FIFO, a separate Reference
command from the Microengine requests the I X Bus Unit to transmit the data to the appropriate
device on the IX Bus.

In Figure 2-6 it may be noticed that datais not shown flowing into and out of SRAM. It is possible
to use SRAM as adata buffer area, however the architectureis such that the SDRAM has greater
bandwidth. Also there is adirect data path between the SDRAM and the IX Bus Unit. Thereisno
direct path between the IX Bus and the SRAM Unit. The SRAM isintended more for packet
descriptor tables and other lookup tables where low latency accessis required.

While in the above description, it would seem as if the same Microengine (or Microengine thread)
does all of thesetasks, it is not necessarily so. Different Microengines or different threads could be
sharing these tasks, depending on how the system is architected. Also, in the above description it
may seem asif the Microengine (or Microengine thread) has to wait for each of the operationsto
complete, it is not necessarily so. When a Reference Command is issued, the Microengine thread
does not need to wait for completion. It can either continue to do other useful work, or swap out
and | et another thread run. This tends to make for much higher utilization of the compute resources
within the Microengine.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

External Interfaces

The SDRAM interface is a glueless interface supporting up to 256 Mbytes of standard SDRAM
with a 64-bit data path. The intent is for the SDRAM to hold any large data tables, such as routing
tables. The SRAM interface supports either pipelined, or flow-through SRAMs with a 32-hit data
path, and up to 8 Mbytes of memory. The intent is for the SRAM to hold any buffer management
(i.e. table pointers, etc.) datathat require low latency accesses. The SRAM and SDRAM interfaces
run concurrently, and independently of each other, thereby allowing the designer to spread the
burden of memory accesses between both types of devices, so neither one becomes a bottleneck.

Both SDRAM and SRAM interfaces run at half the core clock frequency, so while the part
internally runs at 232 MHz, the SRAM and SDRAM run at 116 MHz. The IXP1200 was
architected to use standard SRAM and SDRAM to reduce system cost, while at the same time
optimizing these interfaces to get maximum utilization out of these memories. These optimizations
are described in further detail in Section 2.7.3, “SRAM Unit, and Section 2.7.4, “SDRAM Unit. At
116 MHz, the SDRAM interface has a maximum bandwidth of 928 MBytes/sec, while the SRAM
interface has a maximum bandwidth of 464 MBytes/sec. Whereas the SDRAM interface offers a
higher bandwidth, the SRAM interface offers a significantly lower latency. A properly architected
design will take advantage of the features of both types of memory.

The PCI interface is compliant to the PCI 2.1 Specification. Thisis a 32-bit PCI interface that can
run at 33 MHz with the standard number of PCI loads, or at up to 66 MHz in a point-to-point
configuration. Additional loading of the PCI bus is possible by de-rating of the PCI clock speed.
The PCI interface isintended to be used for communication between the I XP1200 and any PCI
peripheral (such asalocal Ethernet MAC), or a separate host processor. If used with a host
processor, it isintended for the I XP1200 to perform all data movement/processing tasks, while the
host processor is responsible for management tasks. The PCI interface allows maximum data rates
of 264 MBytes/sec at 66 MHz. Whereas the | XP1200 PCI bus does not have as high abandwidth as
the IX Bus, it can still be used as the major data path in less demanding applications.

ThelX Busisan Intel proprietary bus, and is the main data path to and from the I XP1200. While
the busis proprietary, no licensing is required, and Intel encourages its customers and third party
silicon vendors to design devices that interface to this bus. An IX Bus Design Guide, IX Bus
Functional Model, and IBIS models are available. The IX Busisvery similar to abus employed by
Seeq* and Lucent* network devices (MACs) aswell. Currently, Intel produces two devices that
hookup to the IX Bus without any additional gluelogic. Theseisan octal Fast Ethernet (10/2100
Mbps) MAC device, and adual Gigabit Ethernet MAC. Future I X Bus devices are currently in
design. More detailed information on the I X Bus can be found in this Manual, and in the IX Bus
Design Guide.

The X DataBusis a64-bit data bus that runs at up to 104 MHz. At 104 MHz, the X Bushasa
maximum bandwidth of 832 MBytes/sec (6.6 Ghits/sec). The IX Bus can be configuredtorunina
number of different modes and speeds. Theseinclude a 64-bit bidirectional mode in which data can
betransferred in only one direction at atime, and a 32-bit unidirectional mode in which data can be
simultaneously transferred in both directions, but with half the data bus width.

Hardware Reference Manual 29

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

2.7

30

Internal Architecture

When standard microprocessors (such as the StrongARM, MIPS, Pentium, etc.) execute amemory
or 1/0 request, they have to wait for the data to be returned before they can continue to execute
instructions. By comparison, the | XP1200 Microengines do not require the data to be returned
before they can continue to execute instructions. The Microenginesissue what are called Reference
Commands. These Reference Commands are targeted at a specific Functional Unit, and request the
Unit to carry out some action (such as fetching data from memory) on behalf of the Microengine.
In fact, each Microengine has four Threads, or Contexts, each of them distinct. It is not simply a
Microengine that issues a Reference Command, but a specific Thread. Since there are six
Microengines, up to 24 Threads can be running. While the targeted Functional Unit carries out the
action on behalf of the Microengine Thread, the Microengine can continue to execute instructions.
The functional unit sends asignal back to the Microengine Thread to indicate that the task is
completed. The Microengine Thread may wait for this signal to be returned (retaining control of
the Microengine execution unit), or it may swap out, and allow one of the other three Thread to run
instead. Thisis controlled at the Microengine instruction level, and is described in more detail
below. On an instruction by instruction basis, the programmer can decide on whether the Reference
Command will cause aswap, or not.

As mentioned above, the Microengines each have 256 32-bit registers. The reason for such alarge
register set, isthat it allows the four Threads to run without interfering with each other. Thisis
because the Microengines implement Context Relative Addressing of the registers. When using
context relative addressing, the register set is split into 4 equal parts, with each of the Threads able
to address only its portion of the register set. In this way, when a Thread swaps out and another
Thread runs, there is no need to save state. This allows for Zero Overhead Context Svaps, where it
is possible for there to be no bubbles in the execution pipeline of the Microengine (the
Microengines implement a 5-stage execution pipeline, as described in Section 2.7.2). Thus,
frequent swapping of Threads in the Microenginesincurs little or no performance penalty. In fact,
the architecture of the I XP1200 encourages context swaps as frequently as necessary. In this way,
maximum utilization is made of the Microengines while aparticular Thread is waiting for
something to complete. While other multiprocessor network processor architectures may
implement more Microengines, the I XP1200 makes better use of silicon by getting optimal
utilization of the Microengines. In the IXP1200 24 separate Threads can be executing completely
separate code while sharing common resources.

A Reference Command can cause up to 64 bytes of datato flow between the Microengine transfer
registers and a functional unit. For example, if athread had identified which Virtual Circuit (VC) a
packet belongs to, and it needs to examine the QoS parameters for that particular VC, it can fetch
them from SDRAM. These parameters are often not just aword or two in length, but may be, say
40 bytesin length. A single Microengine Reference Command can get the SDRAM Unit to transfer
all 40 bytesinto itstransfer registers and signal the thread when it is done. While the Microengine
is executing instructions at the core clock frequency (say 232 MHz), the SDRAM clock runs at half
the core clock frequency (116 MHz), and takes a number of cyclesto complete the request. The
thread can swap out and allow another thread to process a different packet, while thistransfer isin
process.

Hardware Reference Manual

intel.
2.7.1

Figure 2-7.

Intel® IXP1200 Network Processor Family
Technical Introduction

StrongARM* Core

StrongARM Block Diagram

1 1
1 1
1 16K ; 1
' | Instruction !
' Cache | _ pc X
: SA-1 :
. RISC .
1 Core 1
1 1
1 8K 1
: Data Cache |« Addr 1
1
1 Minicache 1
1
. * A I
1 1
1 1
1 ‘\ 1
' \ '
1 1
1 I Write Buffer | I Read Buffer 1
1 1
1 A 1
e S ——— [l N ——— -
Data Bus Y

A8516-01

The StrongARM is afull 32-bit RISC microprocessor core running at 232 MHz. It is a custom
implementation of the ARM architecture, but with a number of notable features. The ARM
architecture has been around since the early nineties, and standard tools for the architecture are
available from ARM Limited, the Free Software Foundation (GNU tools), etc. The StrongARM is
a 5-stage pipelined processor with 16K bytes of instruction cache (organized as 512 lines of 32
bytes), and 8K bytes of data cache (organized as 256 lines of 32 bytes). In addition, the core
contains a 512 byte minicache which isintended for datathat is read once, operated on, and then
discarded. The intent isfor the minicache to reduce flushing of the main data cache. The
StrongARM also has avery high MIPS/Watt ratio, making it ideally suited for high performance,
low power embedded applications. The ARM architecture is Endian-agnostic in that it can runin
either Big-Endian or Little-Endian mode.

Future members of the I XP family of Network Processors may use either the StrongARM* core or
the X Scale core (the next generation of the StrongARM).

A cachelinefill reads afull 32 bytes, and uses a round robin replacement algorithm. The Data
Cache is awrite-back cache, and allocates on read, but not on write.

The StrongARM may be used in different ways, depending on the application. If the system
already contains ahigh-level (host) processor, the StrongARM can leave system maintenance to
the host processor and act as the exception processor and higher-layer processor for the
Microengines. Inthis case, the StrongARM could run a mini-kernel, and execute routing protocals,
while the Microengines would do the fast-path packet processing. The host processor and the

I XP1200 communicate over the PCI interface.

In designs where there is no host processor, the StrongARM would be the main processor. It would
run a Real Time Operating System, perform maintenance functions, as well as the other functions
mentioned above.

Hardware Reference Manual 31

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Table 2-1.

32

The StrongARM Core has access to the resources shown in Table 2-1.

Summary of StrongARM* Core Internal Connections

Unit Resource

Full access to the PCI Bus, including all PCI bus transactions.
Full access to PCI Unit registers.

PCI Unit
Separate, shared 32-bit bus between the StrongARM core (ATU) data bus and the PCI
Unit.

SDRAM Unit Full access to SDRAM.

SRAM Unit Full access to SRAM, including Flash and other devices hooked up to the SRAM Bus.

Access to Control and Status registers within the IX Bus Unit.
IX Bus Unit Access to Scratchpad RAM within the IX Bus Unit.
No access to the Receive or Transmit FIFOs or the IX data bus.

Access to Microengines’ Program Control Store to program the Microengines.
Microengines Access to Control and Status Registers, including PC (Program Counter).

No access to Microengine Transfer Registers.

The StrongARM has access to the SDRAM, the SRAM, the PCI interface. It does not have access
tothe IX Bus, asthisisthe main high-speed data path for the IXP1200, and is better handled by the
Microengines. The StrongARM boots from Flash memory over the SRAM interface. It can then
load the Microengines with their own programs (the Microengines have their own internal
instruction store). The StrongARM communicates with the Microengines via shared registersand a
shared on-chip Scratchpad RAM. The StrongARM has the ability to enable or disable any of the
Microengines or any of the Microengine threads. The StrongARM can change a Microengine's
instruction store at any time by disabling the Microengine, writing to the instruction store, and then
re-enabling the Microengine. Though thisis aform of downloading the Microengine instruction
store "on-the-fly", it is should not be considered "real-time", as downloading the instruction store
takes hundreds of clock cycles. The StrongARM can also examine and modify some of the
Microengine registers, including the four thread program counters.

The StrongARM may fetch itsinstructions either from Flash, SDRAM, or SRAM. Typically, the
StrongARM would boot from Flash, and then execute from SDRAM. Though the StrongARM and
the Microengines share these memory interfaces, the caches on the StrongARM mitigate its affect
on Microengine-SDRAM bandwidth.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Technical Introduction

2.7.2 Microengines

Figure 2-8. Microengine internal structure

Commands to other Functional Units

<« >
____To SRAM Data and other writeable destinations ~
< >
___From SRAM and other readable sources ~
< >
__To SDRAM -
< >
___From SDRAM ~
< >
____________ A I AN N |
! |
| Context |
Even Arbiter Command

Signals | >1 And Event Reference [I
Processor FIFO |
| 32 SRAM 32 SDRAM | |
| Read Transfer| Regs Write | |
| i et et I Registers Transfer |
: | Other CSRs | |
| I | 32 SDRAM 32 SRAM '
I | Program Ctr 0 | Read Transfer Regs Write |
I Program Ctr 1 | Registers N2 |
| | Program Ctr 2 : | :
| | Program Ctr 3 I |

| | 64 A-Side 64 A-Side
| | Instr. Decode | Regs Regs I
| | General General |
: | Microengine | Purpose Purpose |
! (Controller _ __ | __ ___ o T !
|
! |
| Microprogram |
: Control Store l |
vy .
: p-Side MUX | [B-Side MUX I
|
: ¢ [
| /sniter S !
| |
|
| ALU I
! |

L Microengine Internal Structure

—_————eeee a1

A8515-01

Figure 2-8 isablock diagram of a single Microengine. This block is replicated six timesin the

I XP1200, so each Microengine contains its own instruction store, its own set of 256 registers and
other Control/Status Registers (CSRs). All the Microengines are identical, so that functions may be
interchanged between them. For example, any Microengine can act as a Scheduler, while a number
of other Microengines can do the actual packet processing. Thereisno fixed function for any of the
Microengines, - al are fully programmable.

The Microengines operate at the core clock frequency of the IXP1200, just like the StrongARM
(up to 232 MHz). All instructions execute in one clock cycle.

Each Microengine'sinstruction store is 1K x 32 bits (2K on later steppings of the IXP1200). Since
all Microengineinstructions are 32-bitsin length, a Microengine can contain 1K instructions (2K
on later steppings). The Microengines are implemented as 5-stage pipelined processors. In the first
stage, the instruction is fetched from the instruction store; in the second stage, the instruction is

Hardware Reference Manual 33

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

34

decoded; in the third stage the operands are fetched from the registers; in the fourth stage the
operands proceed through the ALU; and in the fifth stage, the result is written out to the destination
register.

The Microengine's 128 GP (General Purpose) Registers are divided into 2 banks, an A bank and a
B bank. Thisis so that two operands can be fetched simultaneously (in the same clock cycle). The
ALU ingtructions are of the form:

A_register <opcode> B_register => destination_register

The 128 Transfer Registers are divided into separate SRAM and SDRAM Transfer Registers, and
are further divided into Read and Write portions. That is, there are 32 SDRAM Read Transfer
Registers, 32 SDRAM Write Transfer Registers, 32 SRAM Read Transfer Registers, and 32 SRAM
Write Transfer Registers. Each of these four sets of transfer registers has a separate data path to its
respective functional units. Therefore, data can be transferred on all four busses simultaneously.
Due to this overlapping of datatransfers, as well as Context Switching capability, the IXP1200 is
capable of avery high degree of concurrency.

The Microengines can transfer data to and from the other functional units only through these
Transfer Registers. As mentioned above, a block of data can be moved to or from the Transfer
Registers with one instruction. The read transfer registers are only for data coming from a
functional unit, into the Microengine, while the write transfer registers are only for data being
written from a Microengine out to one of the functional units. A Microengine cannot read from a
write transfer register, and cannot write to aread transfer register.

Therefore, it should be noted that these Transfer Registers are not general purpose registers, rather
they act as portsto their respective functional units.

The SDRAM Transfer Registers are used solely for transfer of data to and from the SDRAM unit.
However, the SRAM transfer registers are used to transfer datato or from either the SRAM Unit or
the IX Bus Unit (i.e. to transfer data to the IX Bus Receive and Transmit FIFOs, the Hash Unit, or
the Scratchpad RAM), or the accessible registers within the PCI Unit (DMA Controller registers).

While a Microengine controls the data being transferred to and from its transfer registers, the
transfer is actually accomplished by the respective functiona unit.

A Microengine has four Program Counters, and therefore up to four threads (also called contexts).
Each thread islogically separate from the others, and this isimplemented at the hardware level.
The four threads can be executing the same code out of the Microengine instruction store, or they
can be executing different code. It all depends on where each thread's respective program counter is
pointing. For example, it is quite typical to have all four threads of one Microengine executing the
same packet processing code (such as | P Verify, Longest Prefix Match, etc.), except that each of the
four threads will be operating on a different packet, and will each will have its Program Counter
executing at a different point in the program code. By comparison, it is also quite common to have
two logically different functions running on the same Microengine. One thread can be controlling
the Transmit portion of the IX Bus, while another thread on the same Microengine can be doing the
Transmit Scheduling (queuing, etc.). It is completely up to the programmer how the threads are
used.

It can be assured that a Microengine thread does not overwrite another thread's registers, aslong as
the threads use context relative addressing. By using context relative addressing, each of the
threads has its own set of General Purpose and Transfer Registers. When a context switch takes
place no registers have to be saved, so thereislittle or no overhead involved in context switching.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

Since the Microengines are 5-stage pipelined processors, when a branch instruction is executed, it
is possible for instructions following the branch instruction to be aborted in the pipeline. Thisis
fairly typical of pipelined processors. These instructions that follow the branch instruction may
have already been decoded, and their operands already fetched. If the branch istaken, processing of
these instructions will have to be aborted. To reduce, and at times eliminate, these bubblesin the
execution pipeline, the I XP1200 implements deferred execution of instructions. To take advantage
of this feature, instructions (up to three) that would normally be placed before the branch
instruction, can now be placed after the branch instruction, and a bit-field within the branch
instruction indicates that the following instruction(s) should continue to proceed through the
execution pipeline. In this way, when the branch is taken and the Microengine has to change its
program counter, while it fetches and decodes a new series of instruction, the previous ones
(following the branch instruction) continue to be executed. At times, this can reduce the branch
penalty to zero. To take advantage of thiswithout increasing the level of complexity for the
programmer, the Microengine assembler performs this type of optimization automatically.

In addition, the Microengine instruction set, includes guess branch instructions to further improve
instruction pipeline performance. So, if the programmer knows that most times the branch will be
taken, the guess-branch-taken instruction can be used (as opposed to the guess-branch-not-taken
instruction). When using the guess-branch-taken instruction, when the execution unit decodes this
instruction (in stage 3 of the pipeline) it will automatically start fetching the next instruction from
the branch destination rather than the next linear instruction.

Asfar asinstruction pipelining is concerned, Context Switching is very similar to executing a
branch instruction. Both cause the normal linear fetching of instructions, and execution through the
pipelineto be disrupted. So, the Microengines make use of deferred instructions on Context
Switches as well. Once again, this reduces Context Switching overhead, making maximum use of
Microengine compute power.

Threads also have the ability to use what is called Absolute Addressing. Absolute addressing is
used when: (a) one or more of the threads requires more than its share of registers, and/or (b) the
threads in a Microengine need to communicate with each other and need to use a shared register.
By using a shared register, all four threads within a Microengine can communicate with each other
without having to go “outside” the Microengine, - very efficient. But by using absolute addressing,
one does not give up the benefits of context relative addressing. This is because absolute and
context relative addressing are controlled on an instruction by instruction basis. On a given
instruction the programmer may indicate whether to use context relative addressing, or absolute
addressing. Most often, context relative addressing will be used, thereby keeping things“ clean”
and logically distinct. It is usually on an exception basis that absolute addressing is used, - when
needed.

Context Switching is implemented in a combination of hardware and software. A separate unit
within the Microengine, the Context Arbiter, continually keeps track of which threads are ready to
run. When a context swap occurs, the Context Arbiter isready to allow the next ready thread to run,
- on the next cycle. No cycles are lost in arbitration. The Context Arbiter uses around robin
algorithm to decide which thread to run next, however, any thread that is waiting or disabled, is
skipped over. Though the actual context switching is donein hardware, it is controlled by software.
A thread will continueto run, until it explicitly causesitself to be swapped out. An executing thread
can cause a context swap to occur by either (a) executing a ctx_swap (context swap) instruction, or
by issuing a Reference Command and indicating that it should be swapped out until the Reference
Command has completed. A running thread that does not explicitly cause a context swap, will run
indefinitely. It isthe programmer's responsibility to write his/her code so that this does not happen.
The I XP1200 architecture is such, that frequent context swaps are recommended, so that anytime a
thread iswaiting for atransfer of data, it should swap out.

Hardware Reference Manual 35

36

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Table 2-2.

Thereis a64 bit barrel shifter in front of the ALU, allowing an arbitrary shift-and-accumulate to
occur within one pass through the execution unit. These hardware features as well as a strong set of
bit and byte manipulation instructions allow for a very powerful, and efficient instruction set,
particularly suited to networking applications.

The Microengines have access to the resources shown in Table 2-2.

Summary of Microengine Internal Connections

Unit Resource

The Microengines may interrupt the StrongARM core. The StrongARM core can read a
StrongARM Core | register to determine which Microengine generated the interrupt.

No other access to StrongARM Core.

No access to the PCI Bus. Access only to the Control and Status Registers for the two

PCI Unit DMA Controllers in the PCI Unit. By programming these registers, the Microengines
may initiate DMA transfers between a block of SDRAM memory and a PCI device.

SDRAM Unit Full access to SDRAM.

SRAM Unit Full access to SRAM, including Flash and other devices hooked up to the SRAM Bus.

IX Bus Unit Full access to the IX Bus Unit, including the Scratchpad RAM, Hardware Hashing Unit,

Receive and Transmit FIFOs, Ready Bus, and Control and Status Registers.

Each Microengine has access to its Program Control Store so it can execute
instructions. The Microengines do not have read or write access to the Control Store
(they cannot read or write their own Control Store, only the StrongARM core can do
that).

Inter-thread signalling between Microengine threads is provided.

Each Microengine is self-contained, so one Microengine cannot access the Control
Store, or Registers of another Microengine.

Microengines

The Microengines have full accessto SRAM and SDRAM viatheir transfer registers. The
Microengines may make use of the PCl interface, but only by way of the two DMA engines within
the PCI Unit. The PCI Unit's DMA Controllers transfer data based on DMA descriptors which are
in SDRAM. The StrongARM or the Microengines can construct these DMA descriptors, and then
instruct one of the DMA controllers to process the DMA Descriptor. The PCI Unit, and its DMA
Descriptors are described in more detail in the PCI Unit section below. The Microengines also have
full accessto al of the functionality within the IX Bus Unit. The IX Busis completely controlled
by the Microengines, while the StrongARM has only limited access to the I X Bus Unit. The IX-
Unit and its features are described in much more detail in the IX Bus Unit section below. The
Microengines can interrupt the StrongARM, and leave “messages’ for it in a shared area
(Scratchpad RAM, SRAM, or SDRAM), but that is the extent to which the Microengines have
access or control over the StrongARM processor. Inter-thread signaling and Microengine-
StrongARM communication is discussed further in the Inter-process/ Thread Synchronization
section.

To aid in synchronization, resource-sharing, and inter-process communication, the Microengines
implement a number of features. The Microengines have atomic instructions (where the read,
modify, and write operations are indivisible, and done without interruption) which can act upon
datain SRAM, or in Scratchpad RAM. The Scratchpad RAM also has an autoincrement (atomic)
instruction.

The Microengine instruction set is further detailed in the I XP1200 Programmer’s Reference
Manual.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

In o Technical Introduction

2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit

The Microengines make use of apair of shared busses to transfer data between the Microengines’
SRAM Transfer Registers and either the SRAM Unit or the I X Bus Unit (see Figure 2-5
“Microengine Transfer Registers and internal data paths'). (Note that the SDRAM Unit hasit's
own data paths connecting the SDRAM Unit and the SDRAM Transfer Registers). The Read bus
and the Write bus are each 32 bits wide, operate independently of each other, and run at the core
clock speed (currently 232 MHz). Data can be transferred to/from the SRAM on odd cycles, while
data can be transferred to/from the I X Bus Unit on even cycles.

Table 2-3. Calculation of Internal and External Bandwidths

Calculation based on 232 MHz core clock frequency, 104 MHz IX Bus frequency

Read/Write | SRAM external bandwidth 32 bits x 116 MHz 3.7 Ghps

SRAM internal bandwidth to Microengine

Read Read Transfer Registers

(32 bits x 232 MHz) /2 | 3.7 Gbps

SRAM internal bandwidth to Microengine

Write Write Transfer Registers (32 bits x 232 MHz) /2 | 3.7 Gbps

Read/Write | IX Bus external (pin-side) bandwidth 64 bits x 104 MHz 6.6 Gbps
IX Bus internal bandwidth to Microengine .

Read Read Transfer Registers (32 bits x 232 MHz) /2 | 3.7 Gbps

Write IX Bus internal bandwidth to Microengine (32 bits x 232 MHz) /2 | 3.7 Gbps

Write Transfer Registers

Ascan be see in Table 2-3, since the SRAM internal bandwidth in both the read and write
directionsis egual to the external bandwidth, there is no internal bottleneck to SRAM.

2.7.3 SRAM Unit

The SRAM isintended to store Lookup Tables, Free Buffer Lists, and Data Buffer Queue Lists. In
short, any data that needs to be accessed quickly. While the lookup can be donein SRAM, the
results of the lookup can point to larger data structures that are better stored in SDRAM. The
SRAM interfaceis 32 bits wide, and supports either Pipelined SRAMSs, or Flow-Through SRAMs.
The SRAM data bus width is half that of the SDRAM because it is not intended for bulk data
storage, but for fast lookups. The SRAM interface is also intended to be used as a Flash Memory
interface (for booting the StrongARM), and a General Purpose I/O Interface (Figure 2-9). Each of
these three types of interfaces (SRAM, Flash, General Purpose) can be programmed to have
different timing, so that they are not encumbered by the slowest devices sitting on the SRAM
interface. The General Purpose Interface can be used to interface to external CAM lookup engines,
or to Ethernet MAC access ports (for MAC programming, and accessing MAC manageability
registers, - reading RMON and SNMP registers). Thistype of connection is shown in Figure 2-9.

Hardware Reference Manual 37

Intel® IXP1200 Network Processor Family
Technical Introduction

Figure 2-9.

Figure 2-10.

38

SRAM Unit external interfaces

Intel® IXP1200

Network Processor

10/100/1000 MB

116 MHz
SRAM . 32y
(upto8MB) |~ 7 SRAM
Unit
FlashROM -
(up to 8MB) - IX Bus
Interface (IXB)
Unit
Memory A
Mapped I/0 [<€<—>
Devices
A Y 64,
< IX Bus /
| leMAC 7
| Control A
I Y
|
|

Ethernet MACs

A8517-01

SRAM Unit Block Diagram

SRAM

Boot
ROM

A
Y

MAC
Console
Port

A
Y

A

A
Y

Microengine
Queues

Reads

Order/Write

Readlock Fail

N
N
R

Priority

Queue Service

Aribiter

| 8 Entry CAM |

A

SRAM Data

SA Core
References

Microengine
References

3 Signals Back

To Microengine

A8518-01

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

Figure 2-10 isasimplified block diagram of the SRAM Unit. The main function of the SRAM Unit
isto take all the SRAM memory references coming from the different Microengine threads as well
asthe StrongARM, and execute them in as efficient a manner as possible. When athread issues a
Reference Command to the SRAM Unit, it can append an optional token to the end of the
instruction. For example,

sram [write,$xferl,tempa,tempb,4], optimize_mem

This essentialy says: “Write the content of the SRAM transfer registers $xferl through $xfer4 to
the memory locations at the address specified by tempa + tempb. Optimize memory by placing this
reference in either the Read or order queue.” The optimize_mem optional token at the end of the
instruction instructs the SRAM Unit which queue to put the command reference into. Note that 16
bytes of data are transferred with thisinstruction (4 transfer registers x 4 bytes each).

The SRAM Queue Arbiter decides on a cycle by cycle basiswhich SRAM accesses to execute. For
example, if the presently executing SRAM cycleisaREAD cycle, then the SRAM Unit tries to
complete as many READs as possible before going through a bus turnaround cycle and proceeding
with any WRITE accesses. By doing this, bus turnaround cycles are avoided and the IXP1200 can
get more utilization out of the SRAMSs. In practice, this technique manages to squeeze out an
additional 18% - 30% of usable SRAM bandwidth.

Since athread's SRAM references can be “arbitrarily” re-ordered by the SRAM Unit, there must be
away for the programmer to force certain SRAM referencesto occur in the order in which they are
executed. In general, thisisnot an issue, but under certain circumstancesit is necessary for certain
accesses to occur in order. For this purpose, an Order/Write queue is provided. If the programmer
deemsit necessary for certain SRAM referencesto occur in order, he/she simply appends the order
token, to those instructions (in place of the optimize_mem token used in the earlier example).

A Priority queueis also provided. Referencesin the Priority queue take precedence over any of the
references in any of the other queues. To make use of the Priority queue, the priority token is
appended to the end of the instruction.

The SRAM Unit also includes an 8-entry CAM (Content Addressable Memory) that is used for
resource sharing. When using conventional semaphores to restrict access to shared resources, alot
of compute resources are wasted in the continuous polling required to check the semaphore. While
the IXP1200 can al so use semaphores, the very useful feature of an 8-entry Read Lock CAM has
also been implemented. To understand this feature, let us take the simple example of a shared
counter (which counts the number of packets processed) that is accessible by all 24 threads. Say
one of the threads wants to update the counter. It can execute an SRAM Read Lock instruction
indicating a specific SRAM memory location, say location 0x1000. If the Read Lock succeeds,
then the thread continues to run, and the instructions following the Read Lock will continue to be
executed. Say another thread (which may be within the same Microengine, or within another
Microengine) also wants to update the same counter. It will try to take out a Read L ock on the same
memory location (0x1000) by executing an SRAM Read L ock instruction with that address. In this
case, the CAM recognizes that specific address (0x1000) is within the CAM, and is already |ocked,
and so causes the Read L ock to fail. This Read Lock request is now placed in the Read Lock Fail
gueue, and the thread requesting the Read L ock is now stalled. The next time a Read UNIock
Reference Command is executed, the rest of the entriesin the Read Lock Fail queue are processed.
And when the lock on the address 0x1000 is rel eased, the second thread can continue to run. This
feature saves alot of Microengine cycles since one of the threads is not continuously polling a
semaphore, instead it just continues to wait until the read lock is released and the code continues to
run. It also saves SRAM cycles, as continuous polling would eat up SRAM bandwidth as well.

Hardware Reference Manual 39

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Table 2-4.

40

It should be noted that the concept of a Read Lock is only logical, in that there is no hardware
protection of the SRAM location that islocked (0x1000 in the example above). Instead, aslong as
each of the threads sharing the resource triesto do a Read L ock before accessing the resource, there
is no contention.

Since the StrongARM processor’s pipeline stalls when it is waiting for an external accessto
complete, it is given priority over the Microengines in accessing the SRAM. While this “steals’
SRAM cycles from the Microengines, this is completely under the control of the system designer.
Itisthe responsibility of the system designer to ensure that the StrongARM code and the function it
istasked with, do not steal too many SRAM cycles from the Microengines.

The SRAM Unit is connected to the units shown in Table 2-4.

Summary of SRAM Unit Internal Connections

Unit Access

StrongARM Core | Full access.

PCI Unit No connection between the SRAM Unit and the PCI Unit.
SDRAM Unit No connection between the SRAM Unit and the SDRAM Unit.
IX Bus Unit No connection between the SRAM Unit and the IX Bus Unit.
Microengines Full access.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Technical Introduction

2.7.4 SDRAM Unit

Figure 2-11. SDRAM Unit Block Diagram

1
' SA Core
1

1
1
1 . -
! | Queue Service Aribiter I— SA Core SDRAM
1 Request |- > Memory
! A
X Logic ' References
1
. I
1 PCI Unit 1 PCl
! Request [<€ >

SDRAM ! - Logic ! Memory
1 1 References

Up to ! !
256 MB C:' , :
14-bit Address < 6 Entry ODD Queue ! Microengine

: [€— 16 Entry EVEN Queue |<€— Command
' €—| 8 Entry ORDER Queue |-€— Reference
1
|] 24 Entry PRIORITY Queue \ FIFOs
1 - " 1
1 Microengine Queues 1
1 1
1 1

]
< 64 Data Bits at 116 MHz

1

IN Byte '
—l>| Aligner '
1 SDRAM Unit Internal Structure 1

\/;

A8519-01

Figure 2-11 isasimplified block diagram of the SDRAM Unit. Like the SRAM Unit, the main
function of the SDRAM Unit is to take the various Reference Commands from the Microengines
and the StrongARM, and fetch the data on the “ pin-side” of the SDRAM in an optimal fashion. In
this case, however, it is not READ/WRITE bus turnaround cycles that are avoided, but RAS-
Precharge overhead that is reduced. The SDRAM Unit tries to alternate access to ODD banks of
SDRAM with accesses to EVEN banks of SDRAM, thereby overlapping the RAS-Precharge time
of one bank with an access to the other bank. Once again, Order and Priority queues are provided
so that certain accesses can occur in order, and certain access can take priority, respectively. Again,
StrongARM accesses take precedence over Microengine accesses for the same reason as with the
SRAM Unit.

The PCI Unit also has access to the SDRAM. Any device residing on the PCI bus can access
SDRAM memory. Aswell, thetwo DMA Controllersin the PCI Unit have the ability to move data
between the SDRAM and a PCI device.

The SDRAM Unit aso has a Byte Aligner which isin the data path between the SDRAM and the
IX Bus Unit. Thisfeature is especially useful in networking applications where a packet header
needs to be replaced with new packet header of a different size. This can cause all subsequent
words within a packet to be mis-aligned with respect to the SDRAM memory width (a quadword).
Without a byte aligner, a Microengine would have to read a word from memory, extract the
necessary portion, read a second word from memory, append the new portion, and create a new

Hardware Reference Manual 41

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Table 2-5.

2741

2.7.4.2

42

quadword-aligned result. This would unnecessarily consume alot of Microengine resources. The
Byte Aligner is smart enough to accumulate results from previous reads, so that it can continue to
byte align subsequent words from SDRAM.

It should also be noted that the SDRAM Unit has adirect path to the I X Bus Transmit and Receive
FIFOs, so the Microengines don't get in the way. So, a single instruction from a Microengine can
cause up to 64 bytes of (hardware byte aligned) datato flow between SDRAM and the | X Bus Unit.
Meanwhile, the Microengine thread can be performing other useful work.

The SDRAM Unit is connected to the units shown in Table 2-5.

Summary of SDRAM Unit Internal Connections

Unit Resource

StrongARM Core Full access.

There is a separate, and unshared 32-bit bus connecting the SDRAM Unit and
) the PCI Bus Unit. This allows devices on the PCI Bus better access to data
PCI Unit buffers within the SDRAM Unit.

The two DMA Controllers in the PCI Unit have access to SDRAM data.

SRAM Unit No connection between the SDRAM Unit and the SRAM Unit.

There is a 32-bit bus connecting the SDRAM Unit and the IX-Bus Unit's Receive

IX'Bus Unit and Transmit FIFOs.

Microengines Full access.

Internal SDRAM Bandwidth and Internal Data Busses

There are two direct data paths between the SDRAM Unit and the X Bus Unit. Oneisan SDRAM
read data path to transfer datafrom the I X Bus Unit’'s Receive FIFOsinto SDRAM, and the other is
an SDRAM write data path to transfer data from SDRAM to the IX Bus Unit’s Transmit FIFOs.
These two busses operate independently of each other. Whereas both of theseinternal busses are 32
bitswide, they operate at twice the clock frequency of the SDRAM external (pin-side) databus. So,
while the external SDRAM data bus operates at (64 bits x 116 MHZz) 7.4 Gbps, each of the two
internal (read & write) data busses also operate at (32 bits x 232 MHZz) 7.4 Gbps. Therefore, the
internal SDRAM bus bandwidth equals or exceeds the external bus bandwidth, ergo no internal
bottleneck in the data path.

Chained References

To take advantage of SDRAM architecture and sequential accesses to the same SDRAM page
(SDRAM row address stays the same), the I XP1200 implements a feature called Chained
References. In this mode the SDRAM Unit executes the Chained SDRAM Command References
contiguously (and at a high priority so no interruptions can occur) so that sequential chained
references can take advantage of SDRAM page hits. To make use of this, the SDRAM reference
command must append the optional chained_reference token to the end of the instruction.

It should be noted that abnormally long chained references can interfere with SDRAM refresh, and

that care should be taken so that these chained references do not unduly interfere with other
Microengine thread SDRAM command references.

Hardware Reference Manual

intel.

2.7.5

PCI Unit

Intel® IXP1200 Network Processor Family
Technical Introduction

Figure 2-12. PCI Unit Block Diagram

Hardware Reference Manual

<

32-Bit PCI Bus @ 33/66 MHz

—> Address/Command to SDRAM Unit

* Other brands and names are the property of their respective owners.

A Arbiter Signals
PCI Unit \ Y
. PCI Bus
PCI Data Path and Bus Interface Logic Arbiter
A A
Y
PCI Read Outbound Inbound >I Interrupt Logic |
Data FIFO FIFO
:ll Doorbell Timer |
A \
;I Other CSRs |
\ DMA DMA
] Channel | | Channel
4 4
[DMA
A * A A R:ct})ytest
\ \ rbiter
SDRAM Interface Logic AMBA Bus Translation
Interface Logic
addr ctrl rd wr A
A A A
Y Y
SDRAM Data Intel® StrongARM* Core Microengine
[63:0] AMBA Bus Commands
— Sideband Control from SDRAM Unit

A7975-01

Figure 2-12 isasimplified block diagram of the PCI Unit. The PCI Unit is a standard 32 bit PCI
2.1 compliant interface with some additional features. The PCI bus can be run at 33 MHz with the
standard number of loads, while at 66 MHz, a point to point configuration is supported. For speeds
between 33 and 66 MHz, additional 1oads can be supported, but with a de-rating of the bus speed.

The PCI Unit is connected to the units shown in Table 2-6.

43

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

Table 2-6.

44

Summary of PCI Unit internal connections

Unit Resource

Full access. The StrongARM core can access any devices on the PCI Bus. The

StrongARM Core StrongARM core can program any of the PCI Unit’'s Control and Status Registers.

Unshared, direct 32-bit bus connecting SDRAM Unit and the PCI Unit. Devices on
the PCI Bus have access to SDRAM.

DMA Controllers within the PCI Unit can transfer data between SDRAM and
devices on the PCI Bus.

SDRAM Unit

No connection between the SRAM Unit and the PCI Unit.
SRAM Unit Devices on the PCI Bus cannot access SRAM.
DMA Controllers within the PCI Unit cannot access SRAM.

No connection between the IX Bus Unit and the PCI Unit.

IX Bus Unit Data that needs to be transferred between the IX Bus (Transmit and Receive
FIFOs) and the PCI Bus must be transferred by the Microengines (by way of their
Transfer Registers).

The Microengines can only access the Control and Status Registers for the DMA

. . Controllers within the IX Bus Unit.
Microengines .) .
No other access. The Microengines cannot access devices on the PCI Bus (and

vice versa).

The PCI Unit is connected to the SDRAM Unit, and the StrongARM processor. Thereis a separate,
unshared data bus connecting the SDRAM Unit to the PCI Unit. Devices on the PCI bus have full
access to SDRAM. The StrongARM processor also has full accessto the PCI interface and can be
a bus master. The PCI Unit also contains a PCI Bus Arbiter. The Arbiter supports up to 3 bus
masters, one of which is the I XP1200 whose arbiter is enabled. If an external PCI Bus Arbiter is
reguired, the internal Arbiter can be disabled (the state of the pci_cfn[1] pin activates or disables
the PCI bus arbiter at bootup time). The PCI Unit also supports Doorbells and Messaging.

Two DMA Controllers are integrated into the PCI Unit. Each can be used by either the
StrongARM, or by any of the Microengines. The DMA Controllers are programmed by means of
DMA Descriptors that residein SDRAM. DMA Descriptors contain the start address in memory,
the number of words that need to be transferred, the destination address on the PCI side, and
whether the Descriptor is chained. Chained Descriptors are a series of Descriptors, where each
Descriptor points to the next Chained Descriptor, till the last Descriptor is reached. In this way,
non-contiguous blocks of datafrom SDRAM can be moved to PCI asif they were one contiguous
block. Thisis useful for scatter/gather of data.

The PCI Unit contains a number of FIFOs which help to burst data across the PCI bus, making
transfer more efficient.

The Microengines have access to only the DMA Controllers within the PCI Unit. Thereisno
connection between the PCl Unit and SRAM, and also no connection between the PCI Unit and the
IX Bus Unit. It is not expected that data will need to be transferred between SRAM and the PCI
interface. When transferring data between the PCI Unit and the | X Bus, the Microengines have to
intervene. Typically, the datawould be transferred from the IX Bus Unit's FIFOs directly to
SDRAM (note that one instruction from a Microengine can transfer up to 64 bytes between the I X
Bus Unit and SDRAM; note also, that there is direct connection between the I X Bus Unit and the
SDRAM Unit). Then, the Microengine thread would utilize one of the PCI DMA controllersto
transfer data over the PCI interface.

Hardware Reference Manual

intel.

2.7.6

Figure 2-13.

Intel® IXP1200 Network Processor Family
Technical Introduction

IX Bus Unit

The IX Bus Unit consists of a number of parts: the 64 bit, high-speed data path and related control
signals; the Receive and Transmit FIFOs; a separate Ready Bus which is described in more detail
later in this section; and lastly it contains some additional functions such as the Scratchpad RAM, a
cycle-count register, and the hardware Hashing Unit.

Figure 2-13 isa simplified block diagram showing how data from the IX Bus interface flows
through the IXP1200. The thick, block arrows show how data from the I X Bus Interface (the pins),
must first go into the Receive FIFO. Once dataisin the Receive FIFQ, it can then be transferred to
either the Microengines (Transfer Registers), or SDRAM. Datato be transmitted to devices on the
IX Bus can only come from the Transmit FIFO. So datais first transferred from SDRAM (or the
Microengines) into the Transmit FIFO, and then transferred from the Transmit FIFO to the devices
on the IX Bus (the pin side interface).

Themain task of the IX Bus Unit, isto receive regquests from the different Microengine threads,
and to execute them. The IX Bus Unit transfers data between the pin-side of the IX Bus interface,
and FIFOs within the I X Bus Unit itself. It also transfers data between the | X Bus FIFOs and other
functional units within the IXP1200. Thus, the IX Bus Unit is an intelligent “buffering unit”, that
buffers data on the IX Businterface, before it travels to various other units within the I XP1200.
These transfers are purely under the control of the Microengines.

IX Bus data flow

Intel® IXP1200 Network Processor
SDRAM Unit T

Transmit
FIFO

Receive
FIFO
/\

4 N

Ethernet MAC Other IX-Bus Device

IX-Bus Unit

A8520-01

The IX Bus Unit contains a Receive FIFO and a Transmit FIFO which buffer the data that flows
over the IX Bus. The Receive FIFO in fact really consists of 16 FIFO Elements each 64 bytes deep
(though in one of the modes it can be as deep as 72 bytes). These 16 FIFO Elements are shared by
all of the Microengine threads. Software has to ensure that only one thread has “ownership” of a
FIFO element at atime. When a Microengine thread instructs the I X Bus Unit to fetch data from
one of the devices on the I X Bus, it also indicates where to put the data (which FIFO element(s)).
Once the data has been fetched from the device on the IX Bus, the X Bus Unit signals the
reguesting thread. The thread can then move the data from the Receive FIFO element to wherever
it chooses (either SDRAM, or into Microengine Transfer Registers)

Hardware Reference Manual 45

Intel® IXP1200 Network Processor Family

Technical Introduction

Figure 2-14. Simplified IX Bus Unit Block Diagram

TFIFO -
(11(? c?dzr;v?/g:fjs | | Transmit State
each) Machine
IX Bus Arbiter I— IXBus | | IXBus -
I Interface | i
Logic
FBICSRs [Receive State
Machine
RFIFO
16 elements Ready Bus | Ready Bus
(10 quadwords Sequencer < >
each) <
Scratchpad
RAM
Hash Unit IX Bus Interface
A8911-01

2.76.1

Ready Bus

The Ready Busis a separate bus from the | X Data Bus. The Ready Bus has it's own 8-bit data bus
and associated control signals. The Ready Bus serves three functions:

* Itisusedto periodically capture the “ready flags’ (MAC FIFO status indicators) from each of

the devices on the I X Bus. For example, the Ready Bus would periodically capture the ready
flags for each of the MAC devices on the I X Bus. Thisis especially important for multi-port
MAC devices (such as the | XF440) where there are multiple receive and transmit FIFOs, each
with it's own ready flag. These flags serve to indicate when the FIFOs reach a pre-
programmed threshold level. For example, when one of the MAC's ports Receive FIFO has hit
acritical threshold level, the data must be emptied from it soon, or the datawill overflow. The
Ready Flags are captured by the Ready Bus Sequencer, and made available for inspection by
the Microengines. Once a Microengine notices that one of the ports requires attention, it can
make sure that the port is serviced.

The Ready Bus also serves to transfer data between | XP1200s in applications where several
I XP1200s share the I X Bus. The 8-bit data busis used transfer data between IXP1200s (in a
daisy chained fashion).

The Ready Bus also servesto assert flow control signalsto the MACs (or other network data
ports hooked up to the I X Bus).

The Ready Bus Sequencer isimplemented as a programmable state machine. The Microengines or
the StrongARM core may program the Controller by writing up to twelve instructions into it.
Typically, the last instruction would cause ajump back to the first instruction, causing the program

Hardware Reference Manual

2.7.6.2

2.7.6.3

2.76.4

Intel® IXP1200 Network Processor Family
Technical Introduction

to continually loop. In this way, the Ready Bus Sequencer, continually samplesthe MACs' Ready
Flags and makes them available to the Microengines. The Microengines examine the Ready Flags
to determine which ports require servicing.

There are two ways that the Microengines can access these ready flags. One way is by accessing
the registers within the I X Bus Unit that contain the ready flags. The second way is by using the
Autopush mechanism, where the Ready Bus Sequencer can be programmed to “push” the ready
flagsinto a specified Microengine Transfer Register. In the second approach, the Microengine need
not issue Reference Commands to access these registers which are external to the Microengine, but
only need to check its own (local) Transfer Registers.

IX Data Bus Modes

The IX Data Bus can be configured to operate in several different modes depending on the devices
that are connected to it. The 64 bit data bus can be made to operatein either a 64 bit Bidirectional
Mode, or a 32 bit Unidirectional Mode. In the 64 bit bidirectional mode, the data path is wider,
however data can travel in only one direction at atime and read/write bus turnaround cycles must
take place (dead cycles). In the 32 bit unidirectional mode, the 64 bit data busis split into two 32
bit busses, one for incoming data, and the other for outgoing data. The 32 bit unidirectional busses
operate independently of each other because the receive busis controlled by the Receive State
Machine, while the transmit busis controlled by the Transmit State Machine. From a programming
point of view, the Microengines issue transmit and receive requests to the I X Bus Unit in the same
way, regardless of which of the two modes is programmed.

In the 64 bit Bidirectional Mode, it is possible to have several 1 XP1200 processors sharing the 1X
Bus. Thisis caled Shared | X Bus Mode. In this mode, multiple 1XP1200s are connected to the 1X
Bus, and atoken is passed between them (in adaisy chained manner) to determine ownership of the
bus.

In addition, the IX Bus control pins may be configured to operatein two different MAC addressing
modes: 1-2 MAC Mode, and 3+ MAC Mode.

Scratchpad RAM

The Scratchpad RAM (1K x 32 bits), which is accessible by the StrongARM core as well asthe
Microengines, is not a standalone unit but is located within the I X Bus Unit. The Scratchpad RAM
supports three different types of operations:. read/write, bit operations, and auto-increment
operations. While the StrongARM can only perform read/write operations, all three types of
operations are available to the Microengines. The bit operations modify the specified bits, and
consist of the following operations: set hits, clear bits, test and set, and test and clear. These
operations make the Scratchpad RAM area very useful for inter process communication,
semaphores, and mailboxes.

The Scratchpad also forms the third memory resource available to the StrongARM and the
Microengines. By distributing memory accesses across these three (SRAM, SDRAM, Scratchpad)
memories an application can take advantage of these accesses occurring in parallel.

Hashing Unit

The Hardware Hashing Unit is also located within the I X Bus Unit. It is capable of doing either 48
bit or 64 bit hashes. The hashing function takes the input 48 (or 64) bits, and produces the hashed
48 (or 64) bit result. The Hashing Unit is only accessible to the Microengines. Once a Microengine
thread requests a hash, the IX Bus Unit pulls the data out of the specified Transfer Registers,

Hardware Reference Manual 47

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

2.7.6.5

Table 2-7.

48

performs the hash, and returns the result to the Transfer Registers. With asingleinstruction, a
Microengine can request either one, two, or three hashes to be performed. These are queued up by
the IX Bus Unit, and then performed sequentially.

The Hashing Unit performs the hashing function in 8 bit blocks, passing the 48 or 64 hits of the
datainto the unit 8 bits at atime. Whereas the hashing algorithm is fixed, the polynomials are
programmable.

IXB3208 Bus Scaling Fabric

The IXB3208 isan | X Bus scaling fabric component that offers glueless connection of multiple
IXP1200s. Up to eight I XP1200s can be connected using four IXB3208s. Different configurations
are possible and more detail may be found in the 1XB3208 Product Brief and 1XB3208 Datasheet.
The IB3208 implements a full crossbar switching fabric.

The IX Bus Unit is connected to the Units shown in Table 2-7.

Summary of IX Bus Unit Internal Connections

Unit Resource

Limited Access.

The StrongARM core can access the Scratchpad RAM within the IX Bus Unit, as
well as a number of Control and Status Registers within the 1X Bus Unit. See the
Appendix for a table of IX Bus registers that appear in the StrongARM memory
StrongARM Core map.

The StrongARM Core cannot access the Receive and Transmit FIFOs within the
IX Bus Unit.

The StrongARM Core can program the Ready Bus Controller within the IX Bus
Unit.

Two direct, unshared, independent busses connect the SDRAM Unit with the IX
SDRAM Unit Bus Unit. The SDRAM read bus is connected to the Receive FIFO, while the
write bus is connected to the Transmit FIFO.

No connection between the SRAM Unit and the IX Bus Unit's FIFOs. Data that
needs to be transferred between the IX Bus (Transmit and Receive FIFOs) and
SRAM must be transferred by the Microengines (by way of their Transfer
Registers).

SRAM Unit

No connection between the IX Bus Unit and the PCI Unit.

PCI Unit Data that needs to be transferred between the IX Bus (Transmit and Receive
FIFOs) and the PCI Bus must be transferred by the Microengines (by way of their
Transfer Registers).

Full Access, including access to the Scratchpad RAM, the Hashing Unit,
Microengines programming the Ready Bus Controller, the Receive and Transmit FIFOs, and all
Control and Status Registers.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

2.8 Software Development Tools

The I XP1200 software development tools consist of the following elements:

An Assembler for the Microengine instruction set.

The StrongARM tools (C Compiler and Assembler) can be obtained from ARM Limited*, or a
number of other software tool vendors.

A Linker and Loader is provided to link and load the Microengine code with the StrongARM
code.

The Transactor is a software model of the IXP1200. It eases the debugging of 1XP1200 code
by providing a data accurate model of the IXP1200 on acycle by cycle basis. The Developer’s
Workbench graphically displays a history of each of the twenty four threads (Figure 2-15) so
the user may easily discern how the software in running and may more easily debug the
application.

The Developer’s Workbench is a graphical user interface that ties these tools together to work
seemlesdly, and ease the devel opment and debugging of 1XP1200 code. The Developer’s
Workbench also has a number of other very useful features, including execution profiling,
statistics gathering, a C-like scripting facility, data-watch windows, breakpoints, queue
statistics, etc.

The Transactor also has a software simulation interface called the Foreign Model. By using the
Foreign Model, designers can link models of external devices (say MACs, SARs, or any
custom devices) into the Transactor model. In this way, a more complete environment for
debugging the entire application is provided.

Hardware Reference Manual 49

Intel® IXP1200 Network Processor Family m
Technical Introduction In
®

50

Figure 2-15. Developer’s Workbench - Thread History Display

I(unnamed)j F Threads ”_ Huzues | Customize... Igl gl :I 8932 il Legend...

7855 780 YBED FAY0 F8YD FBB0 7885 ¥BOO FA95 700 Y905 10 FIE F920 FI25
| 1 | 1 1 1 1 1 1 | 1 1
Thread

1 1 1
Thread‘l[H}:__- —_— p—

Thread2 [
Thread3

Threadd
Threads [1
Threadk [1

ready 1

ThreadS [2] =, o T

} — - —

1]
1]
1

oo

Thread
Thread
read

Thread
Thread
Thread
read

Thread
Thread
Thread
read

Thread
Thread
Thread
read

——lsd

[T O [T R A R T ol
]
]
]
]
]

FaFIPdRg ——d—d—d L1 L}
LARI—=00 L0000 Pl — T,

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
StrongARM* Core

StrongARM* Core 3

3.1

3.2

3.2.1

Overview

The Intel® 1XP1200 Network Processor Family devices contain an Intel StrongARM* processor
based on the Intel® SA-1 core. The 1XP1200 documentation refers to this processor asthe
“StrongARM* core”. The Intel SA-1 coreimplementsthe ARM* V4 architecture as defined in the
ARM Architecture Reference Manual. This chapter supplements the ARM Architecture Reference
Manual by describing the differences between the StrongARM* core and the fundamental ARM*
architecture, the implementation options supported by the I XP1200 (such as MMU, caches, etc.),
and how the StrongARM* core is integrated as a component of the overall IXP1200 system.

This chapter is organized as follows:

* Section 3.2, “ARM* Architecture” describes how the StrongARM* core varies from the
ARM* V4 architecture. This section supplements the ARM Architecture Reference Manual.

* Section 3.3, “Memory Map” describes how the other components of the network processor
map into the StrongARM* core 4 Gbyte address space.

* Section 3.4, “FIQ and IRQ Interrupts” describes the interrupt hierarchy used in the IXP1200.

* Section 3.5, “Internal Peripheral Units’ describes the UART, general purpose /O pins, real-
time clock, and four 24-hit system timers that can be accessed by the StrongARM* core.

* Section 3.6, “Boot Sequence” describes what the StrongARM* core must do to boot the
IXP1200.

ARM* Architecture

This section describes the ARM* implementati on options supported by the StrongARM* core. The
StrongARM* core implements the ARM* V4 architecture as defined in the ARM Architecture
Reference Manual. It is highly recommended that the reader be familiar with the ARM Architecture
Reference Manual prior to reading this section. In this section, asin StrongARM* and ARM
documentation, aword refersto 32 bits and ahalfword refersto 16 bits. For all other sections, refer
to Table 1-1 for data terminology.

Coprocessors

The StrongARM* core supports Coprocessor 15 (see the | XP1200 Network Processor
Programmer’s Reference Manual for a description of the Coprocessor 15 registers). All other
coprocessor instructions cause an undefined instruction exception. No support for external
coprocessors is provided.

Coprocessor 15 contains registerslocal to the StrongARM* core that control and configure the
cache, write buffer, MMU, read buffer, breakpoints, some clocking functions, and other
configuration options. These registers are accessed using MRC and MCR instructionsto
coprocessor 15 with the processor in any privileged mode. Only some of registers 0-15 are valid;
the result of an accessto an invalid register is unpredictable.

Hardware Reference Manual 51

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.2.2

3.221

3.2.2.2

3.2.2.3

52

Memory Management Unit (MMU)

The MMU has two primary functions:
¢ |t translates virtual addresses into physical addresses.
* |t controls memory access permissions.

The StrongARM* core implements the standard ARM* memory management functions using two
32-entry (4 bytes per entry) fully associative trandation buffers (TBs). Oneis used for instruction
accesses and the other for data accesses. Each TB entry can map asegment, alarge page, or asmall
page. On aTB miss, the translation table hardware isinvoked to retrieve the trandation and access
permission information. Once retrieved, if the entry maps to avalid page or section, then the
information is placed into the TB. The replacement algorithm in the TB is round-robin. For an
invalid page or section, an abort is generated and the entry is not placed in the TB. The data TBs
support both the flush-all and flush-single-entry operations, while the instruction TBs support only
the flush-all operation. The Memory Management Unit is configured via the Coprocessor 15
registers.

MMU Faults and CPU Aborts

The MMU generates the following faults:

Alignment: Generated by aword load or storeif the two low-order address bits are
nonzero or by ahalf word load or store if the low-order address bit isa
one.

Trandlation: Generated by access to pages marked invalid by the memory-

management page tables.

Domain/Permission: Generated by accessesto memory that are protected by the current mode,
domain, and page protection.

Data Aborts

The StrongARM* core takes a data abort exception upon MM U-generated exceptions or accesses
to reserved memory space.

A linefetch during a cache read can be safely aborted on any word in the transfer. If an abort occurs
during the linefetch, the cache is purged so it does not contain invalid data. If the abort happens
before the word that was requested by the access is returned, the load is aborted. If the abort
happens after the word that was requested by the accessis returned, the load compl etes and the fill
is aborted (but no exception is generated).

Interaction of the MMU, Icache, Dcache, and Write Buffer

The MMU, Icache, Dcache, and write buffer can be enabled or disabled independently. The Icache
can be enabled with the MM U either enabled or disabled. However, the Dcache and write buffer
can only be enabled when the MMU is enabled. Because the write buffer is used to hold dirty
copyback cached lines from the Dcache, it must be enabled along with the Dcache. Therefore, only
four of the eight combinations of the MM U, Dcache, and write buffer enables are valid. There are
no hardware interlocks on these restrictions, so invalid combinations cause undefined results.

Hardware Reference Manual

Table 3-1.

3.224

Note:

Intel® IXP1200 Network Processor Family

StrongARM* Core
Valid MMU, Dcache, and Write Buffer Combinations
MMU Dcache Write Buffer
Off Off Off
On Off Off
On Off On
On On On

MMU Enable/Disable

The following procedures must be observed when enabling and disabling the MMU.

To enable the MMU:

1. Program the Coprocessor 15 TRANSLATION_TABLE BASE and
DOMAIN_ACCESS CONTROL registers.

2. Program level 1 and level 2 page tables as required.
3. Enablethe MMU by setting bit O of the Coprocessor 15 CONTROL_CP15 register.

Care must betaken if the translated address differs from the untranslated address. This is because
the three instructions following the enabling of the MMU are fetched using “flat trandation”, and
enabling the MMU may be considered a branch with delayed execution. A similar situation occurs
when the MMU is disabled. Consider the following example:

Example 3-1. MMU Enable/Disable Example

MOV R1, #0x1

MCR 15,0, R1, 0,0 ; Enable MW
Fet ch non-transl at ed

Fet ch non-transl at ed

Fetch non-transl at ed

Fetch Transl at ed

After enabling the MMU, if the virtual address for the code page being addressed maps to a
different physical address, several instructions are fetched before address translation takes effect.

To disable the MM U:
1. Disablethe write buffer by clearing bit 3 in the Coprocessor 15 CONTROL_CP15 register.
2. Disablethe Dcache by clearing bit 2 in the Coprocessor 15 CONTROL _CP15 register.
3. Disablethe Icache by clearing bit 12 in the Coprocessor 15 CONTROL_CP15 register.
4. Disablethe MMU by clearing bit 0 in the Coprocessor 15 CONTROL _CP15 register.

Hardware Reference Manual 53

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

Note:

3.2.3

3.23.1

3.2.3.2

3.2.3.3

54

If the MMU is disabled and subsequently reenabled, the contents of the TB is preserved. If the
contents are now invalid, the TB should be flushed by writing the Coprocessor 15
TLB_OPERATIONS register before reenabling the MMU.

Instruction Cache (Icache)

The StrongARM* core supports a 16 Kbyte instruction cache (Icache) to reduce effective memory
accesstime. Its operation istransparent to program execution. The Icache has 512 lines of 32 bytes
(8 words), arranged as a 32-way set associative cache, and uses the virtual addresses generated by
the processor core. The Icacheis always reloaded aline at atime (8 words). It may be enabled or
disabled via the Coprocessor 15 CONTROL _CP15 register, and is automatically disabled on the
assertion of the RESET pin or through a software reset sequence.

The | cache supports the flush all function. Replacement is round-robin within a set. The Icache can
be enabled while memory management is disabled. When memory management is enabled, the C
bit (cacheable) in each trandlation descriptor entry can disable caching for an area of virtual
memory. If memory management is disabled, all addresses are marked as cacheable (C=1).

Icache Operation

Theinstruction cache is searched regardless of the state of the C bit; only reads that missthe cache
are affected. If, on an Icache miss, the C hit equals 1 or the Memory Management Unit (MMU) is
disabled, alinefetch of 8 wordsis performed and it is placed in a cache bank with a round-robin
replacement algorithm. If, on amiss, the MMU is enabled and the C bit equals O for the given
virtual address, an external memory access for a single word is performed and the cache is not
written. The Icache should be enabled as soon as possible after reset for best performance.

Icache Validity

The Icache operates with virtual addresses, so care must be taken to ensure that its contentsremain
consistent with the virtual-to-physical mappings performed by the memory management unit. If the
memory mappings are changed, the Icache validity must be ensured. The Icache is not coherent
with stores to memory, so programs that write cacheable instruction locations must ensure the
Icache validity. Instruction fetches do not check the write buffer, so data must not only be pushed
out of the cache but the write buffer must also be drained. The entire |cache can be invalidated by
writing to coprocessor 15 CACHE_CONTROL_OPERATIONS (Register 7). The cacheis flushed
immediately when the register is written, but the following instruction fetches may come from the
cache before the register is written.

Icache Enable/Disable and Reset

The Icache is automatically disabled and flushed when the StrongARM* core is reset. Once
enabled, cacheabl e read accesses cause linesto be placed in the cache. If the Icache is subsequently
disabled, no new lines are placed in the cache, but the cache is still searched and if the dataiis
found, it is used by the processor. If the datain the cache must not be used, then the cache must be
flushed.

To enable the Icache, set bit 12 in the control register. The MMU and |cache may be enabled

simultaneously with a single control register write. To disable the Icache, clear bit 12 in the
Coprocessor 15 CONTROL _CP15 register.

Hardware Reference Manual

INial.

3.2.4

3.24.1

3.2.4.2

3.24.3

3.24.4

Intel® IXP1200 Network Processor Family
StrongARM* Core

Data Caches (Dcaches)

The StrongARM* core supports two logically separate data caches: the main data cache and the
mini data cache (or minicache) that reduce effective memory accesstime. Its operation is
transparent to program execution.

Main Data Cache

The main data cache, an 8 Kbyte write-back Dcache, has 256 lines of 32 bytes (8words) in a 32-
waly set-associative organization. It isintended for use during most data accesses. This cache
allocates on loads to an address space marked in the MMUs translation descriptor as Bufferable (B
bit =1) and cacheable (C bit =1). Replacementsin the main data cache are selected according to a
set of round-robin pointers. At reset, the pointer in each block of the Dcache points to way zero of
each 32-way block. Aslines are allocated, the pointers are incremented to the next way of the set.
After way 31 isallocated, the next linefill replaces (and copies back to memory, if dirty) the datain
way zero. The cache supports the flush-all, flush-entry, and copyback-entry functions. The
copyback-all function is not supported in hardware. This function can be provided by software.

Mini Cache

The minicache is a 512-byte write-back cache. It has 16 lines of 32 bytes (8 words) in atwo-way
set-associative organization and provides an alternate caching structure for dealing with large data
structures that could thrash the main data cache. This cache allocates on |oads to an address space
marked in the MMUSs trand ation descriptor as not Bufferable (B bit =0) and cacheable (C bit =1).
Replacements in the minicache use the same round-robin pointer mechanism asin the main data
cache. However, since this cache is only two-way set-associative, the replacement algorithm
reduces to a simple least-recently-used (L RU) mechanism.

Dcaches Enable/Disable and Reset

The Dcaches are automatically disabled and flushed when the StrongARM* coreisreset. To enable
the Dcaches, the MMU must first be enabled by setting bit 0 in the CONTROL _CP15 register
(Register 1), and then the Dcaches should be enabled by setting bit 2 in the CONTROL_CP15
register. The Dcaches can be disabled by clearing bit 2 in the CONTROL_CP15 register. The
Dcaches are also controlled by the cacheable or C bit and the bufferable or B bit stored in the
MMU trandation descriptor table. For this reason, to use the Dcaches, the MMU must be enabled.
The two functions may be enabled simultaneoudy with a single write to the control register. Once
enabled, cacheable read accesses cause lines to be placed in the Dcaches. If subsequently disabled,
no new lines are placed in the Dcaches, but they are still searched and if the dataisfound, it is used
by the processor. Write operations continue to update the Dcaches, thus maintaining consistency
with the external memory. If the data in the Dcaches must not be used, then the Dcaches must be
flushed.

Dcache Operation

The Dcaches are accessed in parallel and the design ensures that a particular line entry existsin
only one of the two at any time. Both Dcaches use the virtual address generated by the processor
and allocate only on loads (write misses never allocate in the cache). Each line entry contains the
physical address of the line and two dirty bits. The dirty bits indicate the status of the first and the
second halves of the line. When a store hits in the Dcaches, the dirty bit associated with it is set.

Hardware Reference Manual 55

Intel® IXP1200 Network Processor Family
StrongARM* Core

Table 3-2.

56

intel.

When alineis evicted from the Dcaches, the dirty bits are used to decide if all, half, or none of the
lineiswritten back to memory using the physical address stored with the line. The Dcaches are
alwaysreloaded aline at atime (8 words).

The C bit (cacheable) in each trandlation descriptor entry determines whether, on load misses, the
data being read should be placed in one of the two data caches. The cacheable bit does not affect
cache hits. That is, if a data access hits in the cache, the data is assumed to be valid and the load or
storeis performed. Typically, main memory is marked as cacheable to improve system
performance and /O space as noncachabl e to stop the data from being stored in the cache. For
example, if the processor is polling ahardware flag in 1/O space, it isimportant that the processor is
forced to read data from the external peripheral, and not a copy of initial data held in the cache.
When the cacheable bit is set (1), alinefetch of 8 wordsis performed and placed in a cache bank
with a round-robin replacement algorithm. When the cacheable bit is cleared (0), an external
memory access is performed and the cache is not written.

The B bit (bufferable) does not affect writesthat hit the Dcaches. If astore hitsin the Dcaches, the
store is assumed to be bufferable. Write-backs of dirty lines are treated as bufferable writes. See
Section 3.2.5 for more information on the B bit. Table 3-2 summarizes the effects of the B and C
bits on the Dcaches.

Effects of the Cacheable and Bufferable Bits on the Data Caches

Load Store

Cache Hit

Cache Miss

Cache Hit

Cache Miss

Deliver cache data.

Load from memory.
— No allocate.

Store to either cache.

— Mark line dirty.

Store to memory.
— No allocate.

Deliver cache data.

Allocate to minicache.

Store to either cache.

— Mark line dirty.

Store to memory.
— No allocate.

Deliver cache data.

Load from memory.
— No allocate.

Store to either cache.

— Mark line dirty.

Store to memory.
— No allocate.

Deliver cache data.

Allocate to main data
cache.

Store to either cache.

— Mark line dirty.

Store to memory.
— No allocate.

The Dcaches should be flushed prior to changing the B and C bit in the translation descriptor table
mapping. The Dcaches operate with virtual addresses, so care must be taken to ensure that their
contents remain consistent with the virtual-to-physical mappings performed by the memory
management unit. If the memory mappings are changed, the validity of the Dcaches must be
ensured.

Hardware Reference Manual

n

3.245

3.2.5

®

Intel® IXP1200 Network Processor Family
StrongARM* Core

Software Dcache Flush

The StrongARM* core supports the flush and clean operations on single entries of the Dcaches by
writes to the cache operations registers. Flush whole cache is also supported. Since thisis awrite-
back cache, to prevent the loss of data, aflush of the whole cache must be preceded by a sequence
of loadsto cause the cache to write back any dirty entries. The StrongARM* core memory
controller provides an internally decoded memory space to perform coherent Dcache flushing. This
space resides in the upper 512 megabytes of the memory map (starting at virtual address E000
0000h) and, when accessed, is detected by the memory controller, which then returns zeros without
incurring an external memory latency. The following code causes the main data cacheto flush all
dirty entries:

; o+

;Call:

; RO points to the start of a 8192 byte regi on of readable data used

; only for this cache flushing routine.

; bl writeBackDC

; Return:

; RO, RL, R2

; Data cache is clean

;-writ eBackDC

mov r0, OhEO00000

add r1, rO, #8192

11

Idr r2, <r0>, #32

teqrl, r0

bne I'1

ncr pl5, 0, r0, c7, c6, O

nov pc, rl4

A similar routine may be written to flush the minicache. To perform this flush, the MMU B and C
bit settings must be as described in Section 3.2.4.4. The invalidate all operation also invalidates the
minicache. Since the Dcaches work with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more than one
virtual address, the cache cannot maintain consistency, since each virtual address has a separate
entry in the cache, and only one entry is updated on a processor write operation. To avoid any
cache inconsistencies, doubly mapped virtual addresses should be marked as noncachable.

Write Buffer

The write buffer improves system performance by buffering up to 8 blocks of data of 1 to 16 bytes
at independent addresses. It can be enabled or disabled viathe W bit (bit 3) in the Coprocessor 15
CONTROL_CP15 register (Register 1). The buffer is disabled and all entries are marked empty
following reset. Operation of the write buffer is further controlled by the cacheable or C bit and the
bufferable or B bit, which are stored in the MMU translation descriptor table. For this reason, to
use the write buffer, the MMU must be enabled. The two functions can be enabled simultaneously
with asingle write to the control register. For awrite to use the write buffer, both the W bit in the
CONTROL_CP15 register and the B bit in the corresponding transl ation table entry must be set. It
is not possible to abort buffered writes externally. With the exception of store multiples, stores do
not merge with other data at the same line addressin the write buffer. A drain write buffer operation
is supported.

Hardware Reference Manual 57

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.25.1

3.25.2

3.2.6

58

Note:

Write Buffer Operation

When the StrongARM* core performs a store, the Dcaches are first checked. If one of the Dcaches
hits on the store and the protection for the location and mode of the store allows the write, then the
write completes in the Dcaches and the write buffer is not used. If the location missesin the
Dcaches, then the tranglation entry for that address is inspected and the state of the B and C bits
determines which of the three following actions are performed (if the write buffer is disabled via
the CONTROL_CP15 register, writes are treated as if the B bit is a zero):

¢ |f the write buffer is enabled and the processor performs awrite to a bufferable and cacheable
location (B=1,C=1), and the dataisin one of the caches, then the data is written to that cache,
and the cache lineis marked dirty. If awriteto a bufferable areamissesin both data caches, the
datais placed in the write buffer and the CPU continues execution. The write buffer performs
the external write sometime later. If awrite is performed and the write buffer is full, then the
processor is stalled until there is sufficient space in the buffer. No write buffer merging is
allowed in the StrongARM* core except during store multiples.

¢ |f the write buffer is enabled and the processor performs awrite to a bufferable but
noncachable location and missesin the Dcaches (B=1,C=0), the data is placed in the write
buffer and the CPU continues execution. As with the cacheable case, merging is allowed only
on store multiples. The write buffer performs the external write sometime | ater.

¢ |f the write buffer is disabled or the CPU performs awrite to an unbufferable area (B=0), the
processor is stalled until the write buffer empties and the write completes externally. This
requires several external clock cycles.

Enabling and Disabling the Write Buffer

To enable the write buffer, first ensure that the MMU is enabled by setting bit 0 in the
CONTROL_CP15 register, then enable the write buffer by setting bit 3 in the CONTROL_CP15
register. The MMU and write buffer can be enabled simultaneously with a single write to the
control register.

To disable the write buffer, clear bit 3in the CONTROL _CP15 register. Any writes already in the
write buffer complete normally, but a drain write buffer needs to be done to force all writes out to
memory.

The write buffer is used for copybacks from the Dcache even when it is disabled.

Read Buffer

The I XP1200 contains a software-programmabl e read buffer that can increase the performance of
critical loop code by prefetching data. The read buffer enables the preallocation of read-only data
into one of four 32-byte buffers without stalling the pipe. For subsegquent loads that hit in the read
buffer, data is sourced from the buffer instead of the Dcaches at arate of 1 word per core clock.
Also, because the programmer specifies which entry of the read buffer is used, critical data can be
“locked” in to eliminate bus latency.

Theread buffer is controlled using coprocessor 15, READ_BUFFER_OPERATIONS (Register 9),
and provides the capability to allocate 1 word, a half line (4 words), or afull line (8 words) into one
of four entries of the read buffer. Half line loads are automatically aligned onto half block

boundaries (the lower four address bits are ignored). Full-line loads are automatically aligned onto

Hardware Reference Manual

3.26.1

Intel® IXP1200 Network Processor Family
StrongARM* Core

line boundaries (the lower five address bits are ignored). For partial cache line read buffer loads,
only the words actually fetched are marked valid and can be sourced from the buffer. A small
gueue is used to ensure that subsequent read buffer load instructions go out in order.

Software can flush either asingle entry or the entire buffer (four entries).

Read Buffer Operation

Read buffer operations are performed by writing instructions to the Coprocessor 15

READ_ BUFFER_OPERATIONS register (Register 9). When aread buffer allocate instruction is
executed, the virtual addressis looked up in the Trandation Buffer (TB) to check for atranslation
hit and possible access violations. If the access missesin the TB, the pipeis stalled until the pageis
fetched through the normal hardware tablewalk mechanism. If an access violation occurs, the read
buffer load is NOPed. For example, aread buffer allocate instruction can generate a data abort.
Once the read buffer allocate has received a TB hit and no access violations, a bus accessis
reguested that fills the appropriate buffer without stalling the core pipeline. Subsegquent load
instructions to this virtual address result in aread buffer hit and datais sourced from the
appropriate entry to the core. Any two data words with the same virtual address may not be
contained in the read buffer at the sametime. If aread buffer allocate references adataword that is
already contained in another read buffer entry, then the old read buffer entry isinvalidated and the
new allocation is performed. It is possible for a portion of a cache block at a given virtual address
to be contained in one read buffer entry while another portion of the same block is contained in
another read buffer entry. However, agiven word can not be in more than one entry at atime.

If aload instruction missesin the read buffer, anormal cache fill is performed (provided the cache
is enabled and the page is marked cacheable). It then presents the possibility of having a partial line
resident in the read buffer aswell as having the line present in one of the Dcaches. This presents
coherency issues that must be managed by software. If this situation does occur and the addressed
dataisin both the Dcache and the read buffer, then the datais sourced from the read buffer. If a
read buffer entry contains a partial cache block (1 or 4 words), those words are sourced from the
read buffer while the remaining words are sourced from the data cache or memory.

Read buffer allocate instructions are not affected by the cache enable bit (bit 2 in the control
register) or by the C bit inthe MMU. Any read buffer allocate to avalid read buffer entry causes
that read buffer entry to beinvalidated, followed by a new alocation for the desired data. This
occurs regardless of the address of the data currently in the buffer. For example, back-to-back read
buffer allocate instructions to the same entry at the same address invalidates the entry caused by the
first instruction prior to performing the second fill.

A read buffer allocate or aload instruction that isissued to aread buffer entry currently being filled
stallsuntil thefill completes. If adataabort is signaled on aread buffer allocate, the fill completes.
After that, if aload to that entry is attempted, a data abort exception isissued. The coprocessor 15
register provides the ability to invalidate individual entriesin the read buffer or to invalidate the
entire buffer in one operation. Read buffer coherency must be managed in software. Writesto
addresses present in the read buffer are not written into the buffer. Specific read buffer entries must
beinvalidated before writing to the addresses or changing the page tabl es of the entries. Coherency
is not checked between the read buffer and the write buffer. The write buffer should be drained
prior to performing a read buffer load.

Hardware Reference Manual 59

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.2.7 ARM?* Instruction Set and Timing

The StrongARM* core implements the instruction set defined in the ARM Architecture Reference
Manual. Table 3-3 lists the instruction timing for the StrongARM* core. The result delay isthe
number of cycles that the next sequential instruction would stall if it used the result asinput. The
issue cycles are the number of cycles that this instruction takes to issue. For most instructions, the
result delay is zero and the issue cyclesis one. For load and stores, the timing is for cache hits.

Table 3-3. StongARM Core instruction Timing

Instruction Group Result Delay Issue Cycles

Data processing 0 1

Mul or Mul/Add giving 32-bit result 1.3 1

Mul or Mul/Add giving 64-bit result 1.3 2

Load single — write-back of base 0 1

Load single — load data zero extended 1 1

Load single — load data sign extended 2 1

Store single — write-back of base 0 1

Load multiple (delay for last register) 1 MAX (2, number of registers loaded)
Store multiple — write-back of base 0 MAX (2, number of registers loaded)
Branch or branch and link 0 1

MCR 2 1

MRC 1 1

MSR to control 0 3

MRS 0 1

Swap 2 2

3.2.8 Exceptions

Exceptions arise when the normal flow of program execution needs to be broken; for example, so
that the processor can be diverted to handle an interrupt from a peripheral. The processor state just
prior to handling the exception must be preserved so that the original program resumes when the
exception routine has completed. Many exceptions may arise at the same time. The StrongARM*
core handles exceptions by making use of banked registers to save state. The contents of PC and
CPSR are copied into the appropriate R14 and SPSR, and the PC and mode bits in the CPSR bits
areforced to avalue that depends on the exception. Interrupt disable flags are set where required to
prevent otherwise unmanageabl e nestings of exceptions. In the case of areentrant interrupt handler,
R14 and the SPSR should be saved onto a stack in main memory before re-enabling the interrupt.
When transferring the SPSR register to and from a stack, it isimportant to transfer the whole 32-bit
value, and not just the flag or control fields. When multiple exceptions arise simultaneously, afixed
priority determines the order in which they are handled. The priorities are listed in the following
section. Most exceptions are fully defined in the ARM Architectural Reference. This section
specifies the exceptions where the StrongARM* core implementation differs from the ARM
Architectural Reference.

60 Hardware Reference Manual

intel.

3.28.1

3.2.8.2

Table 3-4.

3.2.8.3

Intel® IXP1200 Network Processor Family
StrongARM* Core

Exception Priorities

When multiple exceptions arise at the same time, afixed priority system determines the order in
which they are handled:

1. Reset (highest priority).
Data abort.

FIQ.

IRQ.

Prefetch abort.

Undefined instruction, software interrupt (lowest priority).

S e A

Not all exceptions can occur at once. Undefined instructions and software interrupts are mutually
exclusive because they correspond to particular (nonoverlapping) decodings of the current
instruction. If adataabort occurs at the sametimeasaFlQ, and FIQs are enabled (that is, the F flag
in the CPSR is clear), the IXP1200 enters the data abort handler and then immediately proceeds to
the FIQ vector. A normal return from FIQ causes the data abort handler to resume execution.
Placing data abort at a higher priority than FIQ is necessary to ensure that the transfer error does
not escape detection; the time for this exception entry should be added to worst-case FIQ latency
caculations.

Exception Vector Table

When an exception occurs, execution isforced from a fixed memory address corresponding to the
type of exception. These memory addresses are listed in Table 3-4. At boot time, these vectors are
mapped to the physical addressin the BootROM space. The MMU can remap the virtual addressto
these vectors into the physical address of faster SDRAM space. The X hit in the Coprocessor 15
CONTROL_CP15 register alows the base virtual address of the interrupt vectors (0000 0000h) to
be re-mapped to a base address of FFFF 0000h.

Exception Vectors

Exception Type Vector
Reset 0000 0000h
Undefined Instructions 0000 0004h
Software Interrupt 0000 0008h
Prefetch Abort (instruction Prefetch memory abort) 0000 000Ch
Data Abort (data access memory abort) 0000 0010h
IRQ (interrupt) 0000 0018h
FIQ (fast interrupt) 0000 001Ch

Hard Reset

Any of the following conditions cause a StrongARM* core reset:
* The RESET_IN# pin is asserted asynchronously.
* The PCl_RST# pinis asserted and the PClI_CFN[O0] pin is not asserted.
* Thewatchdog timer = 0 and the WE (watchdog enable) bit of the SA_ CONTROL register = 1.

Hardware Reference Manual 61

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.2.8.4

62

* The SA1200 RESET register is written from the StrongARM* core. Subfunctions may be
reset individually viathis register.

* A software reset from the PCI bus occurs.

During reset, the StrongARM* core stops executing instructions, assertsthe RESET_OUT# pin,
and performs idle cycles on the bus. When reset deasserts, the StrongARM* core does the
following:

1. OverwritesR14 svc and SPSR_svc by copying the current values of the PC and CPSR into
them. The values of the saved PC and CPSR are not defined.

2. Forces M[4:0]=10011 (32-hit supervisor mode) and setsthe | and F bitsin the CPSR.
3. Forcesthe PC to fetch the next instruction from address 0x0000 0000.

At the end of the reset sequence, the MMU, Icache, Dcache, and write buffer are disabled.
Alignment faults are also disabled, and little endian modeis enabled. During power up,

RESET _IN# must be asserted for 150 milliseconds after VDD and VDDx are stable to allow the
internal 3.686 MHz oscillator to stabilize. After the negation of reset, the PLL beginsitsinternally
timed locking sequence. The assertion of reset is destructive; the state of the real-time clock and the
contents of SDRAM are lost.

Abort

An abort can be signaled by the MMU through a data breakpoint or through areference to reserved
memory. An abort indicates that the current memory access cannot be completed or that a
prespecified breakpoint address and (optionally) adata pattern has been reached. The StrongARM*
core checks for an abort during memory access cycles. When aborted, the StrongARM* core
respondsin one of two ways:

1. If the abort occurred during an instruction prefetch (a prefetch abort), the prefetched
instruction is marked as invalid but the abort exception does not occur immediately. If the
instruction is not executed, for example, as aresult of a branch being taken whileit isin the
pipeline, no abort occurs. An abort takes place if the instruction reaches the head of the
pipeline and is about to be executed.

2. If the abort occurred during a data access (a data abort), the action depends on the instruction
type.
a. Single datatransfer instructions (LDR, STR) abort with no registers modified.

b. The swap instruction (SWP) is aborted as though it had not executed, though externally
the read access may take place.

c. Block datatransfer instructions (LDM, STM) abort on the first access that cannot
complete. If write-back is set, the baseis NOT updated. If the instruction would normally
have overwritten the base with data (for example, an LDM instruction with the base in the
transfer list), the original valuein the base register is restored.

When either a prefetch or data abort occurs, the StrongARM* core does the following:

1. Savesthe address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for dataaborts) in
R14_aht; saves CPSR in SPSR_abt.

2. Forces M[4:0]=10111 (abort mode) and setsthe | bit in the CPSR.

3. Forcesthe PC to fetch the next instruction from either address 0xOC (prefetch abort) or address
0x10 (data abort).

Hardware Reference Manual

3.2.85

3.2.9

3.29.1

3.2.9.2

Intel® IXP1200 Network Processor Family
StrongARM* Core

To return after fixing the reason for the abort, use SUBS PC,R14 _abt,#4 (for a prefetch abort) or
SUBS PC, R14_abt,#8 (for adata abort). This restores both the PC and the CPSR, and retry the
aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be implemented when
suitable memory management software is available. The processor is allowed to generate arbitrary
addresses, and when the data at an addressis unavailable, the MM U signals an abort. The processor
traps into system software, which must work out the cause of the abort, make the requested data
available, and retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor isits state in any way affected by the abort.

Undefined Instruction

If the StrongARM* core attempts to access a coprocessor other than coprocessor 15, it takes the
undefined instruction trap. The coprocessor load (LDC), store (STC), and data (CDP) instructions
also take the undefined instruction trap. Permissions are set so that access to coprocessor 15 is
privileged except where protection is programmable with respect to the read buffer operations.

StrongARM* Core Debug Support

The StrongARM* core supports breakpoints that provide the user with the ability to stop execution
after seeing specific datain either the instruction or data streams. Execution then proceedsto an
exception routine during which the user may examine the internal state of the machine. This
section describes theinstruction and data breakpoint facilities. The breakpoints are enabled through
additions to coprocessor 15.

Instruction Breakpoint

Theinstruction breakpoint allows the user to stop the processor execution after the execution of an
instruction at a selected address. This address is programmed into the instruction breakpoint
address and control register (IBCR) viathe BREAKPOINT_DEBUG (Register 14). Access to this
register is privileged. The IBCR register is 32 bits wide and contains the address value for the
breakpoint, and a bit to enable the breakpoint.

When the breakpoint is enabled, the StrongARM* core executes until the instruction at this address
is fetched and the fetch address equal s the program counter (ignoring bits 0 and 1 of the address).
At this point, the processor takes a prefetch abort exception. The interrupt routine must examine
R14 (the saved program counter) to determine if the exception was caused by the breakpoint.

Data Breakpoint

The data breakpoint allows the user to stop the processor execution after aload or store operation
to aparticular address. Data Breakpoints are configured through four registers (DBAR, DBVR,
DBMR, and DBCR) that are accessed viathe BREAKPOINT_DEBUG (Register 14). Accessto
BREAKPOINT_DEBUG register is privileged. The data breakpoint address is programmed into
the data breakpoint address register (DBAR) and is afull 32-bit value (to permit breakpoints on
byte accesses).

For stores, the breakpoint condition may also be programmed to include a particular data pattern as
well as the reference address. The data value is programmed by way of the data breakpoint value
register (DBVR) and the data breakpoint mask register (DBMR). The DBV R is a 32-bit register
containing the value against which the store data is compared. The data value can be further

Hardware Reference Manual 63

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.3

64

qualified through the data breakpoint mask register (DBMR). The DBMR is a 32-hit register
containing mask information indicating which bitsin the store data should be compared against the
DBMR. A linaparticular bit position in the DBMR indicates the bit in the DBVR that should be
compared against the store data to qualify the breakpoint. To cause a breakpoint on a store data
value, the address breakpoint must also be enabled, otherwise no breakpoint occurs.

Breakpoints on loads are permitted only through an address match. Breakpoints on load address,
store address, and store data are enabled and disabled through the data breakpoint control register
(DBCR). A single bit is defined for each action. When a breakpoint is taken, the processor takes a
data abort exception and sets bit 9 in the fault status register (FSR).

Memory Map

The 4 Gbyte StrongARM* address space is decoded into seven internal device select signals. Five
of the device selects are used by the IXP1200. Figure 3-1 shows the StrongARM* core memory

map.
¢ Device 0 (0000 0000h through 3FFF FFFFh) is dedicated to static memory devices
(BootROM, SRAM, Aynchronous I/0O, and SRAM CSRs). The StrongARM* core always

boots at address 0000 0000h. The width of the physical devices on the SRAM Unit is always
32 hits.

* Device 1 (4000 0000h to 7FFF FFFFh) is dedicated to the PCI unit. The PCI configuration
register and the PCI CSRs portions of this memory space are also mapped into the PCI address
space.

¢ Device 3 (9000 0000h to 9FFF FFFFh) is dedicated to the StrongARM* system registers.
These registers control the system clock, first level interrupt registers, UART, general -purpose
I/0 pins, and real -time clock.

* Device5 (B000 0000h to BFFF FFFFh) is dedicated to the AMBA trandation unit (ATU). The
ATU provides an interface between the StrongARM* core and the FBI, scratchpad memory,
microengine SRAM read transfer register and microengine local CSRs.

¢ Device 6 (C000 0000h to FFFF FFFFh) is dedicated to the SDRAM unit. The width of the
physical devices on the SDRAM unit is always 64 bits. This space also includes the SDRAM
CSRs.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core

Figure 3-1. StrongARM* Core Memory Map
FFFF FFFFh
SDRAM
Address Range |DPescription
FFO0 0000 - FFOO 0014|SDRAM Control Registers
D000 0000 - DFFF FFFF|SDRAM Prefetch Memory (256 Mbytes)
C000 0000 - CFFF FFFF|SDRAM non-Prefetch Memory (256 Mbytes)
A000 0000 - AOOO 4000|Cache Flush Area (16 Kbytes)
Scratch Pad Memory
Device 6 Address Range: B004 4000 - B004 4FFF
SDRAM UNIT EBI CSRs
Base Address: B004 0000
Microengine SRAM Transfer Register
Base Address |Microengine
B000 6800 Microengine 5
B0O00O 6000 Microengine 4
B0O00 5800 Microengine 3
B0O0OO 5000 Microengine 2
€000 0000R K BO0O 4800 Microengine 1
Device 5 BOOO 4000 Microengine 0
AMBA Translation Unit
(ATU) Microengine CSRs
B0O0O 0000h Base Address |[Microengine
BO0O 2800 Microengine 5
Device 4 BO0O 2000 Microengine 4
Reserved BOOO 1800 Microengine 3
BO0OO 1000 Microengine 2
A000 0000h B0O0O 0800 Microengine 1
Device 3 BO0O 0000 Microengine 0
StrongARM Core System
9000 0000h
® * i
Device 2 Intel® StrongARM* System Registers
Base Address: 9000 0000
Reserved
8000 0000h
PCI Unit
PCI Memory Cycle Access
5401 0000 - 5FFF FFFF|Reserved
5400 0000 - 5400 FFFF|PCI I/0 Cycle Access
Device 1 53C0 0000 - 53FF FFFF|Reserved
PCI UNIT 5300 0000 - 53BF FFFF|PCI Type 0 Configuration Cycle Access
5200 0000 - 52FF FFFF|PCI Type 1 Configuration Cycle Access
4200 0400 - 51FF FFFF|Reserved
4200 0000 - 4200 O3FF|Local PCI Configuration Space and PCI Unit CSRs
4000 0000 - 41FF FFFF|Reserved
R Push
SRAM Unit Descriptor|Operations* Pop
4000 0000h Address Range** Description List (base addr) |Operations
3840 0000 - 385F FFFF SlowPort
3800 0080 - 3800 OOFF Command FIFO Test 0 20000000 | 2400 0000
1 2080 0000 | 2480 0000
3800 0000 - 3800 0028 SRAM CSRs 2 2100 0000 | 2500 0000
2400 0000 (See table ->) Pop Command
3 2180 0000 | 2580 0000
2000 0000 (See table ->) Push Command 2 2200 0000 | 2600 0000
1980 0000 - 19FF FFFF Bit Test & Set s 2280 0000 | 2680 0000
_ 1900 0000 - 197F FFFF Bit Test & Clear
2000 0000h Device 0 1880 0000 - 18FF FFFF Bit Write Set M 2300 0000 | 2700 0000
SRAM UNIT 1800 0000 - 187F FFFF Bit Write Clear 7 238°'°°°° 278_0 0000
1600 0000 - 167F FFFF caM unlock * To push descriptor, write to
1400 0000 - 147F FFFF Write Unlock base addr + pointer. (Data
1200 0000 - 127F FFFF Read Lock written has no effect.)
1000 0000 - 107F FFFF Read/Write **All unspecified SRAM addresses
_ are reserved.
0000 0000h 0000 0000 - 007F FFFF BoOtROM
Notes:

e Devices 0 through 5 address data in longwords.

e Device 6 addresses data in quadwords.

* SRAM Transfer Registers: Thirty-two (32) Microengine specific SRAM Transfer registers are addressed by
adding four times their absolute register address (see Table 2-4 of the Programmer's Reference Guide) to the
base address of the Microengine being referenced. The core reads the Microengine SRAM Write Transfer
Register and writes to the Microengine SRAM Read Transfer Register.

* Other names and brands may be claimed as property of others.
A9461-01

Hardware Reference Manual

65

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.4

66

FIQ and IRQ Interrupts

The StrongARM* core supports two interrupt pins: FIQ and IRQ. FIQ has the higher priority. The
StrongARM* core must enable the IRQ and FIQ interrupts by clearing the | and F bits of the
Current Operating Status Register (CPSR). To ensure that a pending interrupt istaken, an interrupt-
enabling writeto CPSR (using the M SR instruction) must be separated from an interrupt-disabling
write to the CPSR by at least two instructions.

The IXP1200 allows a number of sources to generate either an IRQ or FIQ. These sources are
managed through a series of registers organized in the hierarchy shown in Figure 3-2.

Hardware Reference Manual

INial.

Figure 3-2.

FIQ and IRQ Interrupts

Intel® IXP1200 Network Processor Family

StrongARM* Core

Read this to determine

Microengine & Cint

wite this to which microengine thread Write the 1
i rite these to
cilr?‘aer”ilgl[caused the ueng interrupt clear interrupts INTERRUPT
IREG Register T * 1
cint|cint|ue|ue| . { b | db] db fthd thd|thd thd thdthd thd|thd|thd| thd thd|thd|thd thd thd thd |thd| thdthd| thd| thd thd thd| thd| ¢
irq | fiq |irq|fig[“int2jintalinto| 23 |22 |21 |20 19|18 |17|16 | 15| 14|13 |12|11]10| 9 | 8 | 7| 6 |5 | 4| 3 |2 0

1
[TTTTTTIITTTT]

Read

Write

FIQ Enable

FIRST LEVEL INTERRUPTS

Read these to determine which
event caused the interrupt

v

,_\ uengine FIQ
——

Cint FI!

FIQ Enable

—'_\ uengine IRQ
IRQ Enable
2 L)

IRQ Enable

[~ _Cint IRQ
L

Write this to clear — |
RTC interrupt.

Write this to clear — |
UART interrupts.

Read &

Read &

RTC_DIV
UART_CSR

RTC & UART INTERRUPT

Write

[soram[rrc]uarT[sram]Pccint [ueng |

FIQ Register

FIQ + IRQ Enable D

Write

Read only

To
FIQ

RTC Interrupt signal
TX & RX FIQ + IRQ Enable,
TX & RX Interrupt signals }

Read & Write

SRAM_CSR

SRAM INTERRUPT

Read this to determine
which SRAM Unit event
caused the SRAM interrupt.

Readlock Achieved Enable
Readlock Achieved
R

eadlock Retn

[soramM[rTc]uarTlsrAM]Pc cint Jueng |

>

Write these to clear interrupts. FIQ Enable IRQ Register
IRQ Enable Read only To
) IRQ
Read & Write

Read this to determine

which SDRAM Unit event
caused the SDRAM interrupt
Write these to clear interrupts

IRQ Enable

Write to cause and clear

soft interrupts Write only

Write only

IRQEnableClear Register|
IRQEnableSet Register

Write only
FIQEnableClear Register

IRQSoft Register
FIQSoft Register

PCI INTERRUPT

Read only

IRQRawStatus Register

Read onl

FIQRawStatus Register

Read these to determine
which PCI Unit event
caused the PCl interrupt

Read only

Read only -
- IRQStatus Register
IRQEnable Register
Read only
Read only

FIQStatus Register

FIQEnableSet Register

FIQEnable Register

Interrupts in the IRQ and FIQ - Status,

, EnableSet, EnableClear, Status, Raw Status Registers

| Where PCI Unit interrupts are disable/cleared

| L——— IRQSOft/FIQSoft register

err| PC! rec [PCl rec|datal PCI | i20 Pwr | rec |start|DMA2|DMAL|PCI| PCI | PCI [PClI timer|timer|timer |timer(soft
PeIM| mas abt targ abt| perrdis tmr|in post| Mgmt [SERR|BIST| NO | NO |[irq |DMA2|DMA1jdoor| 4 3 2 1 |int
L] L] L

TIMERx_CLR register

DBELL_SA_MASK or
DBELL_PCI_MASK registers

CHAN_x_CONTROL register

Specific to external device
CHAN_x_CONTROL register

PCI_CACHE_LAT_HDR_BIST register
SA_CONTROL register

PWR_MGMT register

When all inbound posted entries are retired

SA_CONTROL register

SA_CMD_STAT register

A7084-03

Hardware Reference Manual

67

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

3.5

3.5.1

Table 3-5.

68

Internal Peripheral Units

This section describes the following peripherals that can be accessed only by the StrongARM*
core.

* UART

* Four 24-bit timers

* Four general-purpose 1/0 pins
* Real-time clock

UART

The StrongARM* core supports a UART that provides a serial communication channel between
the StrongARM* core and another device. The UART supports standard baud rates and data
formats commonly used by computer RS-232-C ports. The UART supports transmit and receive
pins. It does not support controls pins such as RTS, CST, DTR, DSR.

The UART is controlled using three registers:
* UART_CR: UART configuration register.
* UART_SR: UART status register.
* UART DR: UART dataregister.

The UART can be configured to support the data formats shown in Table 3-5 viathe UART_CR
(UART control register).

UART Supported Data Formats

Settings Options
Data Size 5, 6, 7, 8 bits.
Stop Bit lor2.
Parity None, Even, Odd.
Standard Baud Rates 300 bps to 230.4 kbps (system clock = 3.6864 MHz).
StrongARM* Interrupts Transmit and Receive.
Transmit Break (send all zeroes) Yes.

The UART can also be enabled to generate an IRQ interrupt when the transmit FIFO is compl etely
empty or when the receive FIFO contains at least one byte of valid data. Software can determine
which event generated the interrupt by reading the UART_SR register. After the interrupt is
serviced, software must clear the interrupt by writing to the UART_CR register.

Asan dternative to using interrupts, software can poll the UART_SR to determine when it should
read the receive FIFO or when it can write data to the Transmit FIFO. Three status bits are
provided for transmit status, Transmit FIFO Full, Transmit FIFO empty and Transmit FIFO Ready.
Transmit Ready indicates that there is room for at least one byte in the transmit FIFO. Thisis
logically equivalent to the opposite of Transmit FIFO Full. Two status bits are provided for receive
status, Receive FIFO Full, and Receive FIFO Ready. Receive Ready indicates that there is at |east
one byte in the Receive FIFO.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o StrongARM* Core

The UART transmit and receive FIFOs are mapped to the UART_DR (UART data Register). Both
the Transmit and Receive FIFOs provide eight entries. A writeto the UART_DR register placesthe
datainto the Transmit FIFO which then places data serially onto the TXD pin. Reading the
UART_DR register delivers the receive data along with three error status bits affiliated with the
data. The three error status bits indicate whether a Receiver Overrun, Error Framing Error, and/or
Parity Error occurred during the read.

3511 Receive Procedure

1. Configure the UART to the desired data settings by writing the UART _CR register.

2. Enablethereceiveinterrupt inthe UART_CR. An IRQ interrupt occurs when the receive FIFO
contains at |east one byte of data.

3. When aUART interrupt occurs, read the UART_SR to determine if the source of the interrupt
was the transmitter (Transmit FIFO empty) or receiver (Receive FIFO Full).

4. If theinterrupt source was the receiver, inspect the UART_SR data to determine whether there
are any errors associated with the received data. Pay particular attention to the Receiver
Overrun Error, as thisindicates a break in the data sequence within the receive FIFO. The
framing error and parity error apply only to the next byte to be read from the receive FIFO.

5. Read thedatain the UART_DR.

6. Determineif the data contains a parity or framing error by looking at bits 8 and 9 of the data. If
an overrun error occurred, bit 10 indicates the last valid data that was received before the
overrun occurred.

351.2 Transmit Procedure

1. Configure the UART to the desired settings and enable the UART.
2. Write up to 8 bytesto the UART_DR.

3. Enable the transmit interrupt and select either an FIQ or IRQ interrupt in the UART_CR. An
interrupt occurs when the transmit FIFO is empty.

4. When an interrupt occurs, read the datain the UART_SR to determine whether the source of
the interrupt was the transmitter (Transmit FIFO empty) or receiver (Receive FIFO Full).

5. If the transmitter generated the interrupt, write eight more bytesinto the UART.

352 Timers

The IXP1200 supports four 24-bit timersthat can be accessed only by the StrongARM* core. Each
timer can be preloaded and either free run, or decremented to zero and then rel oaded. Each timer is
clocked in one of three ways:

* CoreClock
* Core Clock divided by 16
* Core Clock divided by 256

Hardware Reference Manual 69

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

Figure 3-3.

3.5.3

70

When atimer reaches zero, it generates an interrupt. The interrupt can be enabled or disabled inthe
IRQ_ENABLE/FIQ ENABLE registers. These timers are physically located in the PCI unit, so
they generate a PCI Interrupt to the StrongARM* core. The interrupt remains asserted until cleared
by awrite of any data to the associated TMER_CLR register. Figure 3-3 isablock diagram of the
timer functions.

Timer Block Diagram

Timer Interrupt
, > FIQRAWSTATUS,
24-bit N— IRORAWSTATUS

Down
Counter > Watchdog Reset
(timer 4 only)

Core Divide Divide
Clock by 16 by 16

[TiMERx_VAL | [TiMERX_LOAD| [TIMERX_CTL |

\ [/

Intel® StrongARM* Core
X indicates timer 1,2 ,3, or 4

* Other brands and names are the property of their respective owners

A7971-01

Timer 4 can be used as awatchdog timer. If the watchdog enable (WE) bit in the SA_ CONTROL
register is set, areset sequence is initiated when timer 4 countsto zero.

System software can use the watchdog as follows. Set timer 4 for periodic interrupts and disable
the interrupt on IRQ/FIQ. A periodic process (based on one of the other timers) would write to
TIMER_4 LOAD. If that process ever failsto writeto TIMER_4 L OAD within the countdown
time, then the IXP1200 is reset. Once the watchdog enable bit is set, it can only be cleared by achip
reset.

Real-Time Clock (RTC)

The I XP1200 contains areal-time clock (RTC) that provides a general -purpose real-time reference
for use by the StrongARM* core. Typically the RTC is programmed to increment the counter on
each rising edge of an internally generated 1 Hz clock to provide atime base with a one-second
resolution. The 1 Hz clock is generated by dividing the system clock (Typically 3.6864 MHz) by a
fixed value of 128 and then by a programmable divisor that is set in the RTC_DIV register.

In addition to the counter, the RTC incorporates a 32-bit alarm count register. On each rising edge
of the 1 Hz clock, the counter is compared to the alarm count register. If the values match and if the
RTC interrupt is enabled, an interrupt is issued.

The RTC must beinitialized by software upon power up. Thereafter, the counter remainsvalid until
power isremoved from the I XP1200. The value2 of the RTC registers is unaffected by areset
except for bits 16 to 18 in the RTC_DIV register. These bits are set to zero to clear any pending
interrupts and to disable the RTC interrupt to the StrongARM* core. The StrongARM* coreis
responsible for enabling the interrupts after a reset.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o StrongARM* Core

Thedivider logic is programmabl e to allow the user to “trim” the counter to adjust for inherent
inaccuracies in the system clock frequency. At power-up, the registers that determine the trim
amount contain zeros, effectively disabling the trim logic.

Table 3-6 lists the registers used by RTC.

Table 3-6. RTC Registers

RTC Register Description

RTC_CNTR RTC Count value: Holds the current one second counter value.

RTC_DIV RTC Divisor: Holds the programmable divisor used to produce 1Hz clock.
RTC_TINT Trim Interval Count: This count decrements once every second. When the count

equals zero, the next RTC count value used equals RTC_DIV minus RTC_TVAL.

RTC_TVAL Trim Value: Specifies the number of clocks to trim.

Alarm Count: When this register equals RTC_CNTR an FIQ interrupt can be

RTC_ALM generated.

3.5.3.1 RTC Setup Procedures

The following procedure describes the setup of the RTC.
1. Writethefollowing tothe RTC DIV register:
a. Anappropriate divisor. If the system clock frequency is 3.6864 Mhz, this valueis 7080h).
b. Clear the write enable bit in this register to indicate that thiswriteisto the divisor field.
2. Write the start value for the RTC_CNTR register into the RTC_ALM register.

3. If you choose to implement trimming, write the proper trim interval to the RTC_TINT register.
Thetrim procedure isin Section 3.5.3.3.

4. Write the following to the RTC_TVAL register:

a. If you choose to implement trimming, the proper value should be provided. If you do not
choose to implement trimming, this should be written with zero.

b. If the prescaler (divide by 128) isto be used (asisthe usual case), set the prescaler hit.
Otherwise, clear it.

c. Set theload bit to writethe valuesinthe RTC_DIV, RTC_ALM, RTC_TINT, and
RTC_TVAL registersto the RTC working registers. Thevalueinthe RTC_ALM isloaded
into the RTC_CNTR working register.

5. Clear the load bit in the RTC_TVAL register while maintaining the proper trim value in the
register.

3.5.3.2 Using the RTC Alarm

The RTC aarm can issue either an IRQ or FIQ interrupt to the StrongARM* core whenever the
valuein the RTC_CNTR equalsthe valuein the RTC_ALM register. The following procedure
outlines the setup of the RTC Alarm:

1. Writethe desired alarm value to the RTC_ALM registers.

2. Enablethe RTC interrupt by writing to the RTC_DIV register. The write enable bit in the
RTC_DIV register must be set when writing to the interrupt fields of this register.

Hardware Reference Manual 71

Intel® IXP1200 Network Processor Family
StrongARM* Core

3.5.3.3

intel.

3. When an interrupt occurs, the interrupt service routine must clear the interrupt by writing to
theinterrupt clear bit inthe RTC_DIV register. To clear theinterrupt, the write enable bit in the
RTC_DIV register must be set.

Determining the Trim Values

Theinherent inaccuracies of oscillators, aggravated by varying capacitance of the board
connections, cause inaccuraciesin the 1Hz time base. The RTC supports an automatic periodic trim
adjustment in the 1 Hz clock period that improves the accuracy of the RTC. Over time these small
inaccuracies of 1 Hz time base add up. When trimming is enabled, every RTC_TINT seconds the
second count value (which is usually equal to RTC _DIV) is set to equal RTC_DIV minus
RTC_TVAL.

The oscillator frequency is measured to be freq(meas) = 3,688,243 Hz. We arbitrarily pick a TINT
value of 15 seconds.

Example 3-2. Automatic Periodic Trim Adjustment

3.54

Table 3-7.

72

(3,688,243 - (28814 x 128)) x 15
765 (2FD)

RTC_DI V = (freq(neas)/ 128)
= 28814 (708Eh)
RTC_TI NT = Fh (15 seconds)
RTC_TVAL = (freq(nmeas) - (RDIV x 128)) x RTINT

General Purpose I/O (GPIO)

The I XP1200 supports four general-purpose I/O pins that are controlled by the StrongARM* core.
Each pin can be configured as either an input or an output viathe GPIO_EN register. Regardless of
whether the pin is configured as an input or output, the GPIO_DATA register contains the data that
is present on the GPIO pins. The StrongARM* core writesto those register bits that are configured
as outputs and reads the register bits that are configured as inputs.

At reset, the state of GPIO[3] is used to configure the BootROM Bus width. If GPIO[3J] is pulled
low, the BootROM Bus width is configured to 32 bits. If GPIO[3] is pulled high, the BootROM
Bus width is 16 bits. The FBI unit uses some or al of the GPIO pins (as determined by the
GPIO_EN register) to control the IX Busin certain modes. Table 3-7 shows how the GPIO pinsare
used in the different IX Bus modes.

GPIO Pins and IX Bus Modes

Mode

GPIO[0]

GPIO[3:1]

Bidirectional mode
(2 MAC mode)

Owned by the FBI unit and used as
flow control for MAC 1.

Owned by StrongARM* core as
GPIOs.

Bidirectional mode (3-7 MAC
mode)

Owned by the StrongARM* core as
a GPIO.

Owned by StrongARM* core as
GPIOs.

Unidirectional mode
(2 MAC mode)

Owned by the FBI unit and used as
flow control for MAC 1.

Owned by FBI unit and used as
transmit FPS[2:0]

Unidirectional mode (3-4 MAC
mode)

Owned by the FBI unit and used as
an active low enable for an
external decoder for the
PORTCTL[3:2] signals.

Owned by FBI unit and used as
transmit FPS[2:0]

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core

Boot Sequence

Boot Sequence tasks must be performed by the I XP1200 after reset for proper processor
functioning. The boot sequence tasks configure I XP1200 resources to a determined state by writing
predetermined values to certain registers. Some register settings are determined by the components
selected, such as SDRAM, SRAM, and BootROM. Other register settings are determined by the
desired processor performance and system configuration.

The resources that must be configured after reset are the Phase-Locked Loop (PLL), the SRAM
controller, the SDRAM controller, and the Memory Management Unit (MMU). There are other
resourcesthat if used during the boot sequence must be configured at thistime. They arethe UART
and the PCI Interface.

For amore detailed description of the registers and their settings, please refer to the appropriate
sections in the IXP1200 Network Processor Hardware Reference Manual and the 1XP1200
Network Processor Programmer’s Reference.

The configuration tasks must be performed in the following sequence.

1. Configure PLL. Configure PLL to the desired core clock frequency. Changing this value
will affect other configuration settings that are specified in units of the core clock
frequency. The register that configuresthe PLL is:

PLL_CFG

2. Configure Clock Switching. Configure test, clock, and idle control operations.
StrongARM Coprocessor 15- TEST_CLOCK_AND_IDLE_CONTROL
3. Configure SRAM. Configure the SRAM controller. It isimportant that these registers be

programmed in the order given below. The registers that configure the SRAM controller
are

SRAM_CSR
SRAM_SLOW_CONFIG
SRAM_BOOT_CONFIG
SRAM_SLOWPORT_CONFIG
4. Release from Reset. After reset, the SDRAM controller is not automatically brought out

of reset. For this unit to function it must be brought out of reset. Thisis done by
configuring the following register:

IXP1200_RESET

5. Configure SDRAM. Configure the SDRAM controller. Thisis done through a sequence
of register writes. Some of these register settings are defined in terms of the core clock
frequency. In this sequence, it isimportant that the SDRAM_CSR bewritten last. In doing
so, the new parameters will updated in the SDRAM controller. It is recommended that
these registers not be reprogrammed after the initial boot sequence. The registers that
configure the SDRAM controller are:

SDRAM_MEMCTL_0
SDRAM_MEMCTL_1
SDRAM_INIT
SDRAM_CSR

Hardware Reference Manual 73

Intel® IXP1200 Network Processor Family m
StrongARM* Core In ®

6. Configureand Enable MM U. Configure the Memory Mapped Unit, Cache, and Buffer.
Thisisdone by configuring the following register:

StrongARM Coprocessor 15 - CONTROL_CP15
7. Configure PCI. If loading an image over the PCI during the Boot Sequence is required,

the following registers must be configured in the order specified for PCI operations to
function:

PCI_ADDR_EXT
DRAM_BASE_ADDR_MASK
If the IXP1200 is the PCI Central Function device, configure the following four registers:
PCI_MEM_BAR
PCI_IO_BAR
PCI_DRAM_BAR
PCI_CMD_STAT
SA_CONTROL
8. Configure Serial Port. If loading an image over the seria port during the Boot Sequence
is required, the following register must be configured.
UART_CR

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Microengines

Microengines 4

4.1 Overview

Each I XP1200 Network Processor contains six programmabl e 32-bit RISC processors. These RISC
processors are referred to as Microengines and are the distinguishing feature that separates the

I XP1200 Network Processor Family from other microprocessors. The Microengines support a 32-
bit RISC instruction set tailored to networking and communications applications. The
Microengines operate at the I XP1200 core frequency and all instructions execute in asingle cycle.

The six Microengines each provide the following features:
¢ Hardware multithread support for four contexts
* Programmable 1K instruction Control Store (program memory)
* 128 32-bit general purpose registers
* 128 32-bit Transfer Registers (for transferring data into and out of the Microengines)
* Powerful ALU and Shifter capable of performing an ALU and shift operation in asingle cycle

Hardware Reference Manual 75

Intel® IXP1200 Network Processor Family m

Microengines

4.2

Figure 4-1.

4.2.1

76

Microengine Block Diagram

This section provides an overview of the Microengine block diagram shown in Figure 4-1.

Microengine Block Diagram

To All Units cmd_bus
(SRAM, SDRAM, FBI, PCI)

sram_fbi pull[31:0]
To SRAM Unit, FBI Unit sram fbi push[31:0]

(CSR, TFIFO, RFIFO)

sdram_pull[31:0]
To SDRAM Umt_'sdram push[31:0]
Command FIFO
voluntarn
seg#l_event
529#25+m Microengine
Rolevent
start_rec_event —- Lot?atIhCerSRs Controller 32 SRAM 32 SDRAM
autopush_event Read Transfer| Write Transfer
inter thd event | - Context Registers Registers
fbi_event Signal L1 Event
sdram_event Events Arbiter 32 SDRAM 32 SRAM
sram_event (per context) /J Read Transfer Write Transfer
P Indirect=—, Registers Registers
rogram Reference
Counters d! L
5 pu (per context)
us Je—From 64 ASide || 64B-Side
Requestfo__ each GPRs GPRs
Inputs i i decode —
p |+— Microengine Tind bit
. Command 1 set logic L-‘ I
SRAM_UNIL, | Geye >
SRAM_unit | Sull Bus — To immed data
PClunit Grant [~ Each
- status o s = i ;
EBlunit | inputs puts |, Microengine
Control Store| Address 1
1024 x 32-Bit | ~Fonter l I ‘
Instructions .
\ A I Registers per Context
16 GPR A-side
16 GPR B-side
8 SRAM Read Transfer
8 SRAM Write Transfer
8 SDRAM Read Transfer|
Microengine 8 SDRAM Write Transfer|
(one of six) "
condition codes

A7521-02

Multithread Support

Hardware multithread support allows four separate programs to share execution time on a
Microengine. When a program is not executing, each program context is preserved in hardware
through separate program counters, signal event states, and relatively addressed register set
(General Purpose Registers (GPRs) and Transfer Registers) for each program. When aprogramis
put to sleep, a context switch occurs and another program begins executing. The overhead
associated with switching contexts is a maximum of one cycle, however a deferred instruction can
be used to eliminate this overhead.

Context Arbiter logic determines which Microengine thread will be allowed to run when a thread

puts itself to sleep. The Context Event Arbiter makes the decision based on signal events from the
other functional units.

Hardware Reference Manual

INial.

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

Intel® IXP1200 Network Processor Family
Microengines

Control Store

Each Microengine contains a programmable Control Store that holds the microcode program. The
four program threads associated with the Microengine share the Control Store. The Control Stores
support 1024 32-bit instructions and must be programmed by the StrongARM* core upon system
initialization.

128 General-Purpose Registers (GPRS)

Each Microengine supports 128 32-bit GPRs. The GPRs can be addressed using relative addressing
or absolute addressing. Relative addressing divides the GPRs among the Microengine threads so
that each thread has exclusive access to a subset of GPRs (32 maximum). Absolute addressing
allows aregister to be shared among all the threads within a Microengine.

128 Transfer Registers

Datais moved into and out of the Microengines viathe Transfer Registers. Each Microengine
supports 128 32-bit Transfer Registers. Thisregister set is divided into 32 SRAM Read, 32 SRAM
Write, 32 SDRAM Read, and 32 SDRAM Write Transfer Registers. Each register subset connects
to the other functional units viafour separate 32-bit data buses. The SDRAM registers are used to
move data between the SDRAM Unit and the Microengine. The SRAM Transfer Registers are used
to move data between the SRAM Unit or FBI Unit and the Microengine.

The Transfer Registers can be addressed using relative addressing or absolute addressing. Relative
addressing divides the Transfer Registers amongst the Microengine threads so that each thread has
exclusive access to a subset of Transfer Registers (8 SRAM read, 8 SDRAM read, 8 SRAM write,
8 SDRAM write). Absolute addressing allows a register to be shared among all the threads within a
Microengine.

ALU and Shifter

The Microengines contain a powerful 32-bit ALU and Shifter capable of performing an ALU and
shift operation in asingle cycle. The two inputs of the ALU (A and B) can operate on data supplied
by the SRAM/FBI read Transfer Registers, SDRAM read Transfer Registers, GPRs, and immediate
data within the instruction. The ALU can perform addition, subtraction, and logical operations as
well as generate sign, zero, and carry out condition codes based on these operations.

Command Bus Arbiter

The six Microengines issue references to the other functional units within the IXP1200 (SRAM,
SDRAM, FBI, and PCIl) viaa Command Bus. All six Microengines share the Command Bus.
When a Microengine thread executes a reference instruction, acommand is placed into atwo-entry
Command FIFO within the Microengine. The Command Bus Arbiter arbitrates between the
Command FIFO within each Microengine to determine which one will be allowed access to the
shared Command Bus.

Hardware Reference Manual 77

Intel® IXP1200 Network Processor Family m

Microengines In ®

4.2.7 Local CSRs

Each Microengine contains a set of control and status registers. The StrongARM* core accessesthe
register to program the Control Store and provide control and status information when debugging.
A Microengine can access its own set of local CSRs (except USTORE_ADDRESS,
USTORE_DATA, or ALU_OUTPUT) using thelocal_csr_rd and local_csr_wr Microengine
instructions. These registers are described in Table 4-18.

4.3 Microengine Instruction Set

Table 4-1 lists the RISC instructions supported by the Microengines. Each instruction executesin a
single cycle. The instructions are described in more detail in the 1XP1200 Network Processor
Programmers Reference Manual .

Table 4-1. Summary of Microengine Instructions (Sheet 1 of 2)

Instruction Description

Arithmetic, Rotate, and Shift Instructions

Perform an ALU operation.

ALU
ALU_SHF Perform an ALU and shift opera.tlon.
DBL_SHIFT Concatenate two longwords, shift the result, and save

a longword.

Branch and Jump Instructions

BR, BR=0, BR!=0, BR>0, BR>=0, BR<0, BR<=0,

BR=cout, BRI=cout Branch on condition code.

BR_BSET, BR_BCLR Branch on bit set or bit clear.

BR=BYTE, BR!=BYTE Branch on byte equal or not equal.
BR=CTX, BRI=CTX Branch on current context.
BR_INP_STATE Branch on event state (e.g., SRAM done).
BR_!SIGNAL Branch if signal deasserted.

JUMP Jump to label.

RTN Return from a branch or a jump.

Reference Instructions

CSR CSR reference.

FAST_WR Write immediate data to the thd_ done CSRs.
LOCAL_CSR_RD, LOCAL_CSR_WR Read and write CSRs .

R_FIFO_RD Read the receive FIFO.

PCI_DMA Issue a request to the PCI Unit.

SCRATCH Scratchpad reference.

SDRAM SDRAM reference.

SRAM SRAM reference.

T_FIFO_WR

Write to the transmit FIFO.

78 Hardware Reference Manual

intel.

Table 4-1.

4.4

Intel® IXP1200 Network Processor Family
Microengines

Summary of Microengine Instructions (Sheet 2 of 2)

Instruction

Description

Local Register Instructions

FIND_BSET, FIND_BSET_WITH_MASK

IMMED

IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3
IMMED_WO, IMMED_W1

LD_FIELD, LD_FIELD_W_CLR

LOAD_ADDR

LOAD_BSET_RESULT1, LOAD_BSET_RESULT2

Determine position number of first bit set in an
arbitrary 16-bit field of a register.

Load immediate word and sign extend or zero fill with
shift.

Load immediate byte to a field.
Load immediate word to a field.
Load byte(s) into specified field(s).
Load instruction address.

Load the result of a find_bset or find_bset_with_mask
instruction.

Miscellaneous Instructions

CTX_ARB

NOP

HASH1_48, HASH2_48, HASH3_48
HASH1_64, HASH2_64, HASH3_64

Perform context swap and wake on event.
Perform no operation.
Perform 1, 2, or 3 48-bit hash operations.

Perform 1, 2, or 3 64-bit hash operations.

Execution Pipeline

Each Microengine instruction is pipelined through afive-stage execution unit. Table 4-2 shows
descriptions of the work performed in each pipeline stage.

Table 4-2. Execution Pipeline
Pipeline Stage Description
PO Lookup of instruction
P1 Initial instruction decode and formation of the source register address
P2 Read of operands from source registers
P3 Perform ALU, shift, or compare operations and generate the condition
codes
P4 Write result to destination register.

Once the execution pipelineis filled with instructions, an instruction is executed every cycle.
Instructions such as branch, jump/return, and context swapping result in a branch decision that may
introduce aborted instruction to the pipeline that reduce the efficiency of the Microengines.

A datapath is provided so that if an instruction in P2 specifies an operand that is modified by an
instruction in P3, the value of the operand that is used is the value modified by the instruction in P3

rather than the stale data that was fetched in P2.

Hardware Reference Manual

79

Intel® IXP1200 Network Processor Family

Microengines

4.5

Table 4-3.

80

Branch Decisions

intel.

Any instruction that makes a branch decision may cause one or more instructions in the execution
pipeline to be aborted. This section described the branch decision and the effect it has on the
execution pipeline. The IXP1200 supports three mechanisms to reduce or eliminate the aborted
cyclesintroduced as aresult of the branch decision: deferred branches, setting condition codes
earlier, and branch guessing. These topics are discussed after this section.

An instruction that makes a branch decision does so based on the result of an operation that occurs
in either the P1, P2, or P3 instruction pipeline stage. The specific pipeline stage where the decision
is made depends on the instruction. For this discussion, these instructions are classified into three

classes. Table 4-3 lists the instructions by class.

Instructions Categorized by Class

Class 3 Class 2 Class 1
br_bclr and br_bset br=0 br sdram
br=byte and br=Ibyte br!=0 br=ctx sram
jump br>0 br!=ctx hashl_48
rtn br>=0 ctx_arb hash2_48
br_!signal br<0 csr hash3_48
br_inp_state br<=0 r_fifo_rd hashl_64

br=cout t_fifo_wr hash2_64
brl=cout scratch hash3_64

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

In o Microengines

451 Class 3 Instructions

Class 3 instructions always make the branch decision in the P3 execution pipeline stage. Figure 4-2
illustrates a class 3 instruction causing three instructions to be aborted in the Execution Pipeline.
Class 3 instructions are listed in Table 4-4.

Table 4-4. Class 3 Instructions

Instruction

Why Branch Decision Is Made In P3

br_bclr and br_bset

ALU operation must be performed to determine if the bit is
clear or set.

br=byte and br=!byte

ALU operation must be performed to determine if the bytes
match.

jump

ALU operation must be performed to determine jump address

rtn

ALU operation must be performed to determine return address

br_!signal

Whenever a signal event is tested, the signal event bit is
automatically cleared if it is set. The branch decision is not
made until P3 to ensure that the signal event bit is not cleared
until we are sure that an another instruction that proceeds it in
the execution pipeline will not abort the instruction. If an
instruction makes it to P3, the instruction will not be aborted.

br_inp_state

Branch decision is made to ensure that the br_inp_state
instruction is not aborted by an instruction that precedes it. If
an instruction makes it to P3, the instruction will not be
aborted.

Figure 4-2. Class 3 Branch Decision
E;?cu_tlon Contents of
peline Acti E tion St
Stage ction xecution Stage
PO Look up instruction | Aborted |
P1 Initial instruction decode
Aborted
Form Source reg addr I I
P2 Read Operands Aborted
P I | Branch decision is
P Perf AL ; : made and the three
3 erform ALU operation |Instruction that set and test cc j€&—— instructions that follow
P4 Write Result to dest reg | Other Instruction | the class 3 instruction
may be aborted
Microengine
Execution Pipeline
A7509-02

Hardware Reference Manual

81

Intel® IXP1200 Network Processor Family m
Microengines In ®

45.2 Class 2 Instructions

Class 2 instructions make the branch decision based on condition codes that are generated by
another instruction. These instructions listed in Table 4-5.

Table 4-5. Class 2 Instructions

Class 2 instructions

br=0 br>0 br<0 br=cout
br!=0 br>=0 br<=0 br!=cout

Since condition codes are not generated until the P3 stage, the branch decision can not be made
until the instruction that sets the condition codes isin P3 and the branch instruction isin either the
P1 or P2 stages. Consider the following cases:

Case 1: If the branch instruction isin the P2 stage when the instruction that generates the condition
codesisin the P3 stage, the branch decision causes two instructions to be aborted.

Case 2: If the branch instruction isin the P1 stage when the instruction that generates the condition
codesisin the P3 stage, the branch decision causes one instruction to be aborted.

The branch decision can not be made in PO since the initial instruction decode performed in P1
must occur first.

Figure 4-3. Class 2 Branch Decision

Execution
P'SFgggge Action CASE 1 CASE 2
PO Look up instruction | Aborted | | Aborted |
P1 Initial instruction deCOdel Aborted | | Branch on cc instruction
Form Source reg addr
P2 Read Operands | Branch on cc instruction | | Other Instruction (cc not set)
P3 Perform ALU operation [Instruction thatsetcc | | Instruction thatsetcc |
P4 Write Resultto destreg [Other Instruction | | Other Instruction |
Branch decision can be
made in either stage
A7508-01

82 Hardware Reference Manual

INial.

4.5.3

Table 4-6.

Figure 4-4.

Intel® IXP1200 Network Processor Family
Microengines

Class 1 Instructions

Class 1 instructions make the branch decision in the P1 stage, after the initial decoding of the
instruction. Once the instruction is known, (and in the case of br=ctx, and br!=ctx the context is
checked) all the information is available to make the branch decision.

Class 1 instructions can be classified into two groups: branch instructions and context switch
instructions. The context switch instructions change the execution contexts aswell as branch to the
next instruction that is to be executed in the context to which it is switching. Table 4-6 lists the
class 1 instructions by category.

Class 1 Instructions

Branch Instruction Context Switch Instructions

br ctx_arb hash1_48

br=ctx csr hash2_48

brl=ctx r_fifo_rd hash3_48
t_fifo_wr hashl_64
scratch hash2_64
sdram hash3_64
sram

Class 1 Branch Decision

Execution
Pipeline Contents of
Stage Action Execution Stage
PO Look up instruction | Aborted |
Pl Initial instruction decode [j iy that causes branch |<«—— Branch decision
Form Source reg addr is made and the
P2 Read Operands | Other Instruction | instruction that
i follows the class 1
P3 Perform ALU operation | Other Instruction | instruction may be
) - aborted
P4 Write Result to dest reg | Other Instruction |
Microengine

Execution Pipeline

A7510-02

Hardware Reference Manual 83

Intel® IXP1200 Network Processor Family

Microengines

4.5.4

Figure 4-5.

84

Postponed Branch Decision

in

The branch decision logic within each Microengine makes one branch decision per cycle. There
may be cases where two branch decisions can be made in the same cycle. For example, consider
the case where a class 3 instructionisin P3 at the sametime as a class 1 instruction isin PO
(Figure 4-5). The branch decision logic makes a decision on the instruction in P3 and defers the
decision for the instruction in P1 until the next cycle (when that instruction propagates to P2).

Postponed Branch Decision

Execution
Pipeline
Stage

Action

Contents of
Execution Stage

PO
P1

P2

P3
P4

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg

Other Instruction

Class 1 Instruction

| Branch decision is post-
/ poned until the next cycle
| and (if it's not aborted)

made when this

Other Instruction

| instruction is in P2.

Class 3 Instruction

Other Instruction

I
|(__ Branch decision is made

and the three instructions

Microengine
Execution Pipeline

that follow the class 3
instruction may be aborted.

A7511-02

Hardware Reference Manual

n

4.5.5

®

Intel® IXP1200 Network Processor Family
Microengines

Deferred Branch

Before beginning the discussion of deferred instructions, it should be noted that the I XP1200
Assembler supports an optimization option that automatically performs deferred branch
optimization. It does so by recognizing when instructions can and can't be deferred and rearranges
the instruction accordingly. This section is provided for those programmers who understand the
result of the assembly optimization and choose to manually insert deferred tokens.

The purpose of a deferred branch is to reduce or eliminate aborted instructions in the execution
pipeline. In a deferred branch, an instruction that follows a branch decision is allowed to execute
before the branch takes effect (i.e., the effect of the branch is“deferred” intime). If useful work can
be found to fill the wasted cycles after the branch instruction, the branch latency can be hidden.

Deferred branches are supported using the “defer” optional token within an instruction. The

I XP1200 Assembler can perform the deferred instruction option manually or automatically. The
example below demonstrates how a deferred operation eliminates aborted instructions to improve
compute efficiency. The first table shows a program that does not use the deferred branch. The
second table shows the improved compute efficiency of the same program when deferred branches
are used.

Status: E = executed A = aborted N = not executed due to branch

Status Microcode example with NO deferred instructions

immed[$xfer0, 0xff, <<8]
immed[$xfer0, Oxff, <<8]

alu_shflgprl, gpr2, +, $xferl, <<1]

br=0[label1#]

alu_shf [gpr3, 0, B, gpr2, <<16] ; Aborted due to branch
Id_field_w_clr [gprl, 0001, $xfer2, >>8] ; Aborted due to branch
labell#:

>| > m|m|m|m

E alu_shf [gpr3, 0, B, gpr4, <<16]

Status Microcode example with deferred instructions

E alu_shf_[gprl, gpr2, +, $xferl, <<1]

br=0_[label1#], defer[2] ; BRANCH LATENCY FILL OPTIMIZATION:
; the microword below was "pushed" down 2 positions

immed[$xfer0, Oxff, <<8] ; BRANCH LATENCY FILL OPTIMIZATION:
; the microword below was "pushed" down 2 positions
immed[$xfer0, Oxff, <<8]
alu_shf_li[gpr3, 0, b, gpr4, <<16]
Id_field_w_clr_b[gprl, 0001, $xfer2, >>8]

- labell#:

E

E alu_shf_li[gpr3, 0, b, gpr2, <<16]

Hardware Reference Manual 85

Intel® IXP1200 Network Processor Family m
Microengines In ®

4.5.6 Setting Condition Codes Early

Class 2 instructions can be arranged so that the condition codes upon which the branch decision is
made are set two or more instructions before the branch (refer to the class 2, case 2 examplein
Section 4.5.2). This allows one aborted instruction to be eliminated because the branch decision
can be made one cycle earlier.

45.7 Guess Branch

The guess_branch optional token allows instructionsto be prefetched from the “ branch-taken” path
before it makes the actual branch decision. If it is omitted, the operation assumes a branch-not-
taken guess. This qualifier isvalid on br_bset, br_bclr, br_inp_state, br_!signal and on
conditional branches affected by ALU condition codes that have been set during the previous
instruction. It isnot valid on: br=ctx, br!=ctx, br=byte, br!=byte, jump, or rtn. Note, however,
that br =byte unconditionally guesses the branch taken path, and br !=byte unconditionally guesses
the branch not taken path.

Supports guess_branch Does Not Support guess_branch
br_bset br=cout br<0 br br!=byte
br_bclr br>0 br=0 br=ctx jump
br_inp_state br!=cout br<=0 br!=ctx rtn
br_!signal br>=0 br!=0 br=byte

86 Hardware Reference Manual

intel.

4.6

Figure 4-6.

4.6.1

4.6.2

Intel® IXP1200 Network Processor Family
Microengines

Execution States

A Microengine can be placed in one of four execution states. Figure 4-6 defines the Microengine
states and shows the possible transition between states. These states are described in the following
sections.

Execution States

Y

Reset

Y

Stopped

A
Running
A

Paused

A7504-01

Reset State

All the Microengines are automatically placed into the Reset state when a system reset is
performed. The StrongARM* core or a PCI device may place individual Microenginesinto the
Reset state viathe IXP1200_RESET register in the PCI Unit. When aMicroengineis placed into
reset, the following events occur:

* The Microengine does not execute instructions.
* The Command FIFO is cleared.

¢ Some bitswithin the local CSRs are set to their reset state while others are indeterminate. The
reset values are defined in the I XP1200 Network Processor Programmer’s Reference Manual.

* The Control Store, GPRs, and Transfer Registers are in an indeterminate state

Stopped State

When aMicroengine is released from the Reset state, it is placed into the Stopped state. The
Microengine retains the state caused by areset, however the StrongARM* core may program the
local CSRs and Control Store aswell as read and write to the GPRs and Transfer Registers. Since
the reset condition disables all four contexts (by writing zeroes to the CTX_ENABLES registers),
the Microengines will not execute instructions when it isin the stopped state.

Hardware Reference Manual 87

Intel® IXP1200 Network Processor Family m
Microengines In ®

4.6.3

4.6.4

88

Running State

A Microengineis placed in the Running state when it is not in reset and one or more contexts are
enabled viathe CTX_ENABLES registers. The StrongARM* core can place the Microenginesinto
the Running state either from the Stopped or the Paused states.

Before the StrongARM* core transitions a Microengine from the Stopped to the Running state, it
should first initialize the local CSRs and program the Control Store. The following list describes
the basic tasks required to transition a Microengine from the Reset to the Running state.

1. Program the Control Store (refer to Section 4.7).

2. Set the active context number inthe ACTIVE_CTX_STS register to the desired context that
should start running first (typically context 0).

3. Set the next context number inthe CTX_ARB_CNTL register to the desired context that
should start running after the first context (typically context 1).

4. Setthe CTX_ENABLES register so that the desired contexts are enabled to run.

When the StrongARM* core transitions a Microengine from the Paused to the Running state, it is
expected the Microengineslocal CSRs, Control Store, GPRs and Transfer Registerswill all beina
known state and that the transition only requires that the contexts be enabled via the
CTX_ENABLES register.

Paused State

A Microengineis placed in the Paused state by disabling the context enables when a Microengine
isrunning (viathe CTX_ENABLES register). A Microengine continues to run until it executes an
instruction that causes a change of context. Since all the contexts have been disabled, the
Microengine gracefully stops and retains the state of itslocal CSRs, Control Store, GPRs, and
Transfer Registers. After the StrongARM* core disables al the contexts, it can poll the AB hitin
the ACTIVE_CTX_STSregister to determine when the Microengine changes contexts and enters
the Paused state.

The StrongARM* core can place a Microengine into the Paused state or a Microengine can place
itself into the Paused state. However, a Microengine can not place another Microengine into the
Paused state. A Microengine places itself into the Paused state by writing to the CTX_ENABLES
register using the local_csr_wr instruction. The StrongARM* core can remove a Microengine
from the Paused state by writing to the CTX_ENABLES register.

When aMicroengineis placed into the Paused state, the previous, current, and next context are
reported in the local CSRs. The active context (reported in the ACTIVE_ARB_CNTL register)
contains the context that was paused. The previous context (reported in the ACTIVE_CTX_STS
register) contains the context that was running before the active context. The next context (reported
inthe ACTIVE_CTX_STSregister) contains the context that is enabled to run after the active
context.

Hardware Reference Manual

4.7.1

Intel® IXP1200 Network Processor Family
Microengines

Programming the Microengines

The StrongARM* core should be programmed to |oad each Control Store upon system
initialization. Intel provides a Program Loader that can be used to program the Control Stores. The
Program Loader isalibrary of C functions that |oads program images from an object file (created
by the IXP1200 assembler) into a Microengine Control Store, updates images with application
shared symbol pointers, and initializes Microengine registers. The Program Loader is described in
the IXP1200 Network Processor Software Reference Manual.

The steps taken by the StrongARM* core to read and write to the Control Store are listed below for
programmers that choose to perform these tasks without using the Program Loader libraries.

1. Place the Microenginesinto the Reset or Paused state.

2. Writethe USTORE_ADDRESS register with a Control Store address, making sure the Control
Store Enable (CSE) bit in the register is set.

3. Writing an instruction to the USTORE_DATA local CSR loads the instruction into the Control
Store.

4. Reading the USTORE_DATA local CSR returns the current instruction at the Control Store
address.

5. Repeat steps 2 and 3 for each Control Store address to program the entire Control Store.

Starting Point of Program Execution

Each Microengine thread begins executing at the address specified in the CTX_PC field of the
CTX_n_STSloca CSR. The StrongARM* core must set this field before a Microengineis
removed from reset since its value is indeterminate.

When a programmer designs a Microengine program so that two or more threads execute different
programs located in the Control Store, the br=ctx or br!=ctx instructions can be used to begin
program execution. For example, the following three instructions located at the beginning of a
Control Store will cause each thread to begin executing at different locations within the Control
Store.

br=ctx [0, thread_O_start#];instruction format: br=ctx[ctx,|abel#]
br=ctx [1, thread_1_start#];where ctx is the context label and is 0, 1, 2, or 3
br!=ctx[3, thread_2_start#];and label# is the location to where the branch will occur

An alternative approach is to have the StrongARM* core program the CTX_PC field of the
CTX_n_STSlocal CSR to the specific Control Store address where the thread should begin
executing.

Hardware Reference Manual 89

90

Intel® IXP1200 Network Processor Family m
Microengines In ®

4.8 Microengine Registers
The sections that follow describe the Microengine general-purpose registers and Transfer
Registers.

4.8.1 General-Purpose Registers

Each Microengine supports 128 32-hit general-purpose registers (GPRS). The GPRs are divided
into an A-bank and a B-bank. Each bank supports one read port with a data path to either the A or
B input of the ALU/Shifter and awrite port from the output of the ALU/Shifter. The dual ports
allow the Microenginesto perform simultaneous read and write operations allowing instructions to
executein asingle cycle.

The assembler supports symbolic register naming which is afeature provided in higher level
programming languages. It allows the programmer to write programs using descriptive symbolic
names, and the assembler manages how they are mapped to physical registers. The assembler
supports context-rel ative and absol ute address modes.

Context relative addressing logically subdivides the GPRs into four equal regions of 32 registers,
so that each thread has exclusive access to one of the regions. Context-relative addressing is a
powerful feature that enables four different threads to maintain separate data areas. It also
eliminates overhead normally associated with preserving the register set when switching between
contexts. Absolute addressing enables any GPR register to be shared among the four threadsin a
Microengine.

Figure 4-7. GPR Addressing

Absolute Relative
Address Address
63

16 context3 | 0-15 Assembler Notation:

16 context2 [0-15 Absolute addressing
notation: @register_name

64 A Bank 16 context 1 0-15

16 context0 | 0-15 Relative addressing
128 General Purpose 0 notation: register_name

Registers 63 16 context 3 | 0.-15

i

64 B Bank 16 context2 | 0-15

16 context1 | 0-15

16 context0 | 0-15

A7503-01

Hardware Reference Manual

INial.

4.8.2

Figure 4-8.

Table 4-7.

Intel® IXP1200 Network Processor Family
Microengines

Transfer Registers

Each Microengine supports 128 32-bit Transfer Registers that are used to move data to and from
the Microengines. Each Transfer Register supports one read port and one write port. The dual ports
allow the Microengines to perform a simultaneous read and write, allowing instructions to execute
inasingle cycle.

As shown in Figure 4-8, these registers are divided into 64 SRAM and 64 SDRAM Transfer
Registersthat are connected to the SRAM and SDRAM buses. Of the 64 SRAM/SDRAM Transfer
Registers, 32 are connected to the pull buses and are used to move data from the Microengine
Transfer Registersto memory and 32 are connected to the push buses and are used to move datato
the Microengine Transfer Registers.

Transfer Register Addressing

Absolute Relative
Address Address
31 8 context 3 0-7
32 8 context 2 | 0-7 bl .
SRAM Read B context 1| 07 Assembler Notation:
0 8 context0 | 0-7 Absolute addressing notation:
@$sram_xfer_name
st 8 context3 | 0-7 @%$$sdram_xfer_name
128 Transfer Registers 32 8 context2 | 0-7
SRAM Write 8 context1 | 0-7 Relative addressing notation:
$sram_xfer_name
n 0-7 — =
0 8 context 0 $$sdram_xfer_name
31 [(8context3 | 0-7
32 8 context2 | 0-7
SDRAM Read 8 context 1 0-7
0 8 context0 | 0-7
31 | 8 context 3 | 0-7
32 8 context 2 | O-7
SDRAM Write 8 context 1 0-7
0 8 context0 | 0-7

A7519-02

Table 4-7 lists the Microengine and FBI Ready Bus instructions that use Transfer Registers. Note
that all instructions other than the sdram instruction use SRAM Transfer Registers.

Transfer Register Usage (Solicited Access) (Sheet 1 of 2)

M|cr0eng|ne Request Destination Operation
Instruction
csr FBI Unit Read and write an FBI CSR
hash1l_48,
hash2_48, FBI Unit Perform 1, 2, or 3 48-bit hash operations
hash3_48
hashl 64,
hash2_64, FBI Unit Perform 1, 2, or 3 64-bit hash operations
hash3_64

Hardware Reference Manual

91

Intel® IXP1200 Network Processor Family

Microengines

Table 4-7.

Table 4-8.

4821

92

in

tel.

Transfer Register Usage (Solicited Access) (Sheet 2 of 2)

Mlcroenglne Request Destination Operation
Instruction
Read and write Scratchpad
scratch FBI Unit Increment data in the Scratchpad
Set or clear specific bits in the Scratchpad
pci_dma PCI Unit Write a PCI descriptor address to a PClI DMA channel
Read and write SRAM
Set or clear specific bits in SRAM
Lock memory and read the data
Write data and unlock memory
sram SRAM Unit Unlock memory
Push a pointer onto a link list (up to eight list supported)
Pop a pointer off a linked list
Read and write BootROM memories
Read and write the Slow Port memory space
sdram SDRAM Unit Read and write SDRAM
r_fifo_rd FBI Read data from the RFIFO into an SRAM Transfer Register
t_fifo_wr FBI Write data to the TFIFO from an SRAM Transfer Register
Transfer Register Usage (Unsolicited Access)
:?eady B_us Request Destination Operation
nstruction
The Ready Bus may be enabled to write 1,2,0r 3 FBI
RxAutopush FBI (Ready Bus) registers to the SRAM Transfer Registers
The Ready Bus may be enabled to write 2 or 3 FBI
TxAutopush FBI (Ready Bus) registers to the SRAM Transfer Registers

Instructions that support burst counts greater than one al so require more than one Transfer Register
per read or write operation. The Transfer Register specified in the instruction specifies the register
that is the beginning of a contiguous set of registers that receive or supply the data on aread or
write operation, respectively. Single transfers to and from the SRAM Transfer Registers always
occur in 32-bit increments. Single transfers to and from the SDRAM Transfer Registers aways
occur in 64-bit increments and require two SDRAM Transfer Registers per read or write operation.

Managing Solicited Accesses

Theindividual Microengine threads are responsible for managing when the Transfer Register may
be reused and guaranteeing that the data in the registersis correct. For example, if awrite Transfer
Register is being used by athread to provide datato SDRAM, the thread must not overwrite this
register until it isprovided with an SDRAM signal event indicating that the data has been promoted
to SDRAM and the register may now be reused.

A thread can have only one instance of a specific signal event pending at any time. For example, if
athread requests an SRAM signal, it must wait until that signal event occurs before requesting
another SRAM signal event.

As a performance optimization, every reference to a particular functional unit does not require a

signal event. Instead, asignal event can be overloaded with multiple references as long as the
references are issued to the same command queue in the functional unit. Issuing the references to

Hardware Reference Manual

4.8.2.2

Figure 4-9.

Intel® IXP1200 Network Processor Family
Microengines

the same queue ensures that the commands will be completed in the order in which they were
issued. If asignal event is requested on the last reference, it isimplicitly guaranteed that all
references have been completed.

If the thread uses multiple command queues in agiven functional unit (e.g., SRAM order queue
and read queue), the order in which the references are completed can not be guaranteed and
therefore asignal event for a particular functional unit cannot be overloaded. In this case, athread
must issue the references in the execution order, request asignal event for each reference, and it
must not issue the next reference until the previous reference has completed.

Managing Unsolicited Autopush Accesses

The Ready Bus Autopush instruction will cause the FBI Push Engine to perform an unsolicited
write to a Microengine SRAM read Transfer Register. It is possible for a Microengine thread to
read the Transfer Register while the FBI push engine is writing to the same register. If this occurs,
the integrity of the data can not be guaranteed. The Autopush Protection Mechanism can be used to
ensure that a Microengine read of a Transfer Register and an Autopush write operation will not
occur at the same register address at the same time.

The Autopush Protection Mechanism provides an input state to al the Microengines to indicate
when an autopush operation isin progress. A Microengine thread should test the push_protect
input state using the br_inp_state instruction before reading the Transfer Registersthat are
affected by the Autopush operation. If the push_protect state is not asserted, the Microengine
should read the Transfer Registers contiguously beginning at the very next cycle (instruction) after
the br_inp_state instruction to ensure that the push operation does not collide with the
Microengine. If the push_protect stateis asserted, the Microengine should wait until it is deasserted
before accessing the Transfer Registers.

Thetiming of the push_protect signal is shown in Figure 4-9. The push protect window is provided
to ensure that an Autopush operation does not begin while a Microengine is reading the Transfer
Registers. The push protect window is programmable viathe RCV_RDY _CTL register and should
be set to avalue equal to twice the maximum number of registers that are being pushed per
Autopush operation. For example, if RCV_RDY _CTL[7:6] isset so that one register is used during
an Autopush and XMIT_RDY _CTL[7:6] is set so that three registers are used, then the push
protect window should be set to avalue of six (3 x 2). The number of registers that can be
Autopushed during a TxAutopush or RxAutopush operation can vary from 1 to 3 and is determined
by setting RCV_RDY_CTL[7:6] and XMIT_RDY_CTL[7:6].

Push Protect Timing

push_protect |
state _I

SRAM FBI Bus is used by SRAM Unit

| Push Protect Window | Xfer0 / Xferl | Xfer2 \ |

T T T T T T T T
t= RCV_RDY_CTL[12:10] x 2 Push Data to Transfer Registers
(Core clock cycles) (2 Core clock cycles per register)

A7525-02

If the Ready Bus sequencer program contains two Autopush instructions back-to-back (e.g.,
TxAutopush followed by RxAutopush), then asingle push_protect signal is asserted with only one
push protect window. Otherwise, a push protect signal containing a push protect window is
asserted for each Autopush operation.

Hardware Reference Manual 93

Intel® IXP1200 Network Processor Family m
Microengines In ®

4.9 ALU and Shifter

Each Microengine contains a powerful 32-bit ALU and shifter capable of performing an ALU and
shift operation in asingle cycle. The two inputs of the ALU (A and B) can be data supplied by the
SRAM read Transfer Registers, SDRAM read Transfer Registers, GPRs, or immediate data within
the instruction. The ALU can perform addition, subtraction, and logical operations as well as
generate sign, zero, and carry out condition codes based on these operations.

Table 4-9. ALU Operations

o ALU Description

peration

B B operand (A operand is ignored).

~B Inverted B operand (A operand is ignored).

+ A operand + B operand.

+carry A operand + B operand + previous carry-in (carry-in equals previous carry-out).

+4 A operand + B operand truncate to the least significant 4 bits (upper 7 nibbles zeroed).

+8 A operand + B operand truncate to the least significant 8 bits (upper 3 bytes zeroed).

+16 A operand + B operand truncate to the least significant 16 bits (upper 2 bytes zeroed).
A operand - B operand.

B-A B operand - A operand.

AND A operand AND B operand (Bit-wise AND).

~AND Inverted A operand AND B operand (Bit-wise AND).

AND~ Inverted B operand AND A operand (Bit-wise AND).

OR A operand OR B operand (Bit-wise OR).

XOR A operand XOR B operand (Bit-wise exclusive OR).
If the Sign condition code is set, A operand + B operand.
If the Sign condition code is not set, result is B operand.

+IFsign When using_ +IFsign in_an ALL_J or ALU_SH_F instuction, note that th c_ondition code is set by
the second instruction immediately preceding the current one. This is in contrast to a branch
instruction, where the condition code is set by the instruction immediately preceding the current
one.

The B input supports a 64-bit barrel shifter. The shifter shifts a 32-bit input to the right and
produces a 32-hit output to the ALU. The right shift operation is performed by placing the shift
operand into the lower 32 bits and zerosinto the upper 32 bits of the 64-hit shifter and then shifting
right by the specified amount. The result is taken from the lower 32 hits.

Right rotate operations are ailmost identical to right shift operations except that the shift operand is
placed into both the upper and lower 32 bits. Left shift operations are emulated by placing the zeros
into the lower 32 bits and the shift operand into the upper 32 bits, shifting right by 32 minus the
specified the left shift amount, and taking the lower 32 bits as the result. For example, to shift left
by 12, the indirect value would be 20 (32-12 = 20). See Figure 4-10.

94 Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
Microengines

Figure 4-10. Microengine Shift and Rotate Procedure

49.1

(Shift/rotate right by rotate value)
(Shift left by 32 - shift value)

Shift direction

63 3231 0

Right Shift = Zeros Right Shift = Shift Value
Right Rotate = Rotate Value Right Rotate = Rotate Value m
Left Shift = Shift Value Left Shift = Zeros

Result

A7972-01

The alu_shf and dbl_shf instructions allow the user to specify an indirect shift value using the
optional tokens <<indirect or >>indirect. When the >>indirect token is used, the shift valueis
specified by the lower 5 bits of the A operand from the previous instruction executed. This 5-bit
value specifiesthe right shift value when the >>indirect token is used. When the <<indirect token
is used, the actual shift valueis equal to 32 minus the 5-bit A operand value.

Condition Codes

The ALU supports the following condition codes:

Zexo: Set when an ALU operation is performed and the result is zero.
Sign: Set when an ALU operation is performed and bit 31 is set to one.
Carryout: Set when an ALU operation is performed and the carryout bit is set to one.

Only the ALU can generate condition codes (the Shifter does not generate a carryout condition
code during a shift operation). The following instructions set the condition codes. All of these
instructions set the zero and sign condition codes, but only the ALU and ALU_SHF instruction set
the carryout.

ALU BR_BCLR DBL_SHF LOAD_BSET_RESULT1
ALU_SHF BR_BSET LD_FIELD LOAD_BSET_RESULT2
BR=BYTE LD_FIELD_W_CLR
BRI=BYTE

One set of condition codes is provided for each Microengine. In other words, condition codes are
not maintained per context. If a context sets the condition codes, the next context inherits these
condition codes and changes them when it executes an instruction that changes the condition codes.

Hardware Reference Manual 95

Intel® IXP1200 Network Processor Family m

Microengines

4.9.2

96

INtal.

Multiply Support

The Microengines do not support a multiply instruction. However, the ALU instruction supports
the +ifsign operator which can be used to accelerate multiply operations. The ideais to shift the
multiplier bit into the sign bit position to set the sign bit condition code. One cycle after this
operation, the +ifsign ALU operation can be applied which will perform an A+B operation if the
sign bit was set, otherwise the B operand is moved into the destination register. A one cycle delay
ispresent dueto internal piping considerations. However, thisdelay can be hidden in most cases by
performing 2 interleaved operations at atime as illustrated in the sample code below. The sample
code performs a multiply of a 23-bit number (multiplicand) with an 8-bit number (multiplier).

begi n#:

Initialize input registers.

mul tiply 8394587 x237= 1989517119
; 0x80175B x OXED = 0x76959f 3f

i med_wO[multiplicand, 0x175B]

i med_wl[rmultiplicand, 0x80]
i med[nul tiplier, 237]

; Move the LSB into the sign bit. The Shift and accunul ate are interleaved in pairs
; to hide cycle delays associated with the +ifsign operation.
start#:

alu_shf [multiplicand, --, b, multiplicand, <<7]

i med [accum 0]

alu_shf[--, --, b, multiplier, <<31]

alu_shf[--, --, b, multiplier, <<30]

alu [accum nultiplicand, +ifsign, accuni

alu [accum nmultiplicand, +ifsign, accum >>1]

alu_shf[--, --, b, multiplier, <<29]
alu_shf[--, --, b, multiplier, <<28]

alu [accum nmultiplicand, +ifsign, accum >>1]
alu [accum nmultiplicand, +ifsign, accum >>1]

alu_shf[--, --, b, multiplier, <<27]
alu_shf[--, --, b, multiplier, <<26]

alu [accum nmultiplicand, +ifsign, accum >>1]
alu [accum multiplicand, +ifsign, accum >>1]

alu_shf[--, --, b, nultiplier, <<25]
alu_shf[--, --, b, multiplier, <<24]

alu [accum nmultiplicand, +ifsign, accum >>1]
alu [accum nmultiplicand, +ifsign, accum >>1]

done#:

Hardware Reference Manual

n

4.10

®

Intel® IXP1200 Network Processor Family
Microengines

Changing Contexts

Hardware multithread support allows four separate programs (or threads) to share execution time
on aMicroengine. When a program is not executing, each program context is preserved in
hardware through separate program counters, signal event states, and arelatively addressed register
set (General-Purpose Registers (GPRs) and Transfer Registers) for each program. When a program
is put to sleep, a context switch occurs and another program begins executing. The overhead
associated with switching contexts is a maximum of one cycle, however a deferred instruction can
be used to eliminate this overhead. Refer to Section 4.5.5 for more information on deferred
instructions.

Aswith most high performance microprocessor architectures, a Microengine can execute
numerous instructionsin the time required for areference to a device external to the Microengine
(such as memory or the FBI Unit) to be completed.

The architecture of the IXP1200 Microengines does not require that a Microengine thread wait for
references to complete. Instead, the Microengine threads can to put themselves to sleep (switch
contexts) or continue executing other instructions after issuing areference. Thisincreases the
processing throughput of the Microengine by allowing it to perform useful work independent of the
reference.

To achieve the best performance from the Microengines, context changes should occur at
appropriate points within a program execution. For example, if a program thread cannot execute
any further instructions without the data supplied by areference, it should allow another context to
run by switching contexts. To ensure context changes occur when it makes the most sense, the
programmer is given control of context switching through the program instructions. The multi-
threaded architecture of the Microengines can be described as hardware supported, non-preemptive
multithreading.

There are two forms of context change instructions. The first is an explicit context arbitrate
instruction (cxt_arb):

ctx_arb[signal _event], optional _token;optional _token = defer[1]

This instruction indicates the context should be changed and should be awakened when the
specified signal event occurs. All the signal events described in Section 4.10.1 are supported in
addition to two other parameters: voluntary and kill.

The voluntary parameter indicates that a thread is voluntarily allowing the other three threads to
execute if they are ready (not waiting for asignal event to wake them). If the other threads are not
ready to execute, the thread continues to execute the next instruction in its program flow. The
penalty for executing a voluntary context change when no other thread is ready to execute isthe
cycle required to execute the ctx_ar b[voluntary] instruction.

Thekill parameter indicates that a context change should occur and the thread should not be woken
and allowed to execute. Thisessentially clearsa context enable bitinthe CTX_ENABLES register.
The StrongARM* core is required to remove a Microengine thread from the kill state by enabling
the context in the CTX_ENABLES register.

The programmer may also use the ctx_swap optional token in the Microengine instructions that
reference the other functional units within the IXP1200. The example below shows how the
ctx_swap optional token is used within an instruction.

sdranfwite, $$xfer_reg, addrl, addr2, ref_count], ctx_swap

Hardware Reference Manual 97

Intel® IXP1200 Network Processor Family
Microengines

intel.

Theinstructions that support the ctx_swap instruction are listed in Table 4-10. The use of the
ctx_swap optional token does not affect the time required to execute the instruction. The
Microengines execute all instructionsin asingle cycle.

Table 4-10. ctx_swap Instructions

hash1_48 hashl_64 sram pci_dma

hash2_48 hash2_64 sdram rfifo_rd

hash3_48 hash3_64 scratch tfifo_wr
csr

4.10.1 Signal Events

Signal events are used to notify athread when an event occurs elsewhere in the IXP1200. A thread
can test these signals using the br=!signal instruction or it can switch contexts and request that it
be allowed to execute when asignal event occurs. Signal events can be classified into two types:
explicitly requested and involuntarily provided.

Explicitly requested events are requested by the programmer via program instructions. The two
methods of regquesting a signal event are summarized in Table 4-11.

Table 4-11. Signal Event Request Methods

Method

Description

ctx_swap optional token

Switch context and allow it to execute when the signal event
associated with this instruction occurs and it is this thread’s turn to run.

Example: Read SRAM, switch contexts, and begin executing it when
the reference has completed.

sram [read, $xferl, temp, Ox15, 4] ctx_swap

sig_done optional token and
ctx_arb instruction

The sig_done optional token indicates that the thread should be
signaled when the reference has completed, but does not switch
contexts.

Additional instructions that follow the reference instruction execute
immediately following the reference instruction.

When the ctx_arb instruction is executed, it indicates that a context
switch should occur and it identifies the signal event that will wake the
thread.

Example: Read SRAM, execute more instructions, then switch
contexts and begin executing when the SRAM signal event occurs.

sram [read, $xfer2, temp, Ox4, 4], sig_done
(more instructions executed here)
ctx_arb[sram]

98

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Microengines

These explicitly requested events are listed in Table 4-12.

Table 4-12. Explicitly Requested Signal Events

Signal Event Condition when signal are issued
fbi When a thread requests the signal in a FBI reference (Scratchpad,
hash, CSR, RFIFO or TFIFO) and the reference completes.
pci When a thread requests the signal in a PCI DMA reference.
sram When a thread requests the signal in an SDRAM reference.
sdram When a thread requests the signal in an SRAM reference.

Events that are involuntarily provided without explicitly requesting the signal event arelisted in
Table 4-13.

Table 4-13. Nonexplicit Signal Events

Signal Event Condition when signal are issued

When Fast Port mode is enabled and a thread increments the

seq_numl h
a enqueue sequence number 1, all threads are signaled.

When Fast Port mode is enabled and a thread increments the

seq_num2 h
a enqueue sequence number 2, all threads are signaled.

When StrongARM* core or another thread writes a thread ID to
inter_thread the INTER_THD_SIG register, the thread with the specified ID
will be signaled.

When a Receive Request is completed by the Receive State

start_receive Machine, the thread specified in a Receive Request is signaled.

When Autopush is enabled and the Ready Bus completes an

auto_push Autopush operation, the Receive Scheduler thread is signaled.

The seq_numl and seq_num2 signal events are involuntarily provided to all twenty-four
Microengine threads, even though most applications do not require that all threads get the signal
event. Threads that do not require these signals may ignore them and are not required to clear the
signal events.

Theinter_thread, start_receive, and auto_push signal events are provided to specific threads. The
threads that are programmed to receive these signal events must periodically test these signal
events to determine if the event occurred. The signals can be tested using the br!=signal or
ctx_arb instructions.

The signal events are maintained on a per context basis. Each Microengine contains four
CTX_n_SIG_EVENTS (where n=0-3) local CSRsthat indicate which signal events have occurred.
These signals can be cleared in three ways:

1. Writingtothe CTX_n _SIG_EVENTSCSR. Both the StrongARM* core and the Microengines
can write to thislocal CSR. This method is typically used during initialization or debugging.

2. Executing abr_!signal instruction. The br_!signal instruction allows the programmer to
specify the specific signal to test. If the signal event is present, the branch is taken and the
signal is automatically cleared.

3. Waking on asignal event. When athread is woken by asignal event, the signal is
automatically cleared.

Hardware Reference Manual 99

Microengines

Intel® IXP1200 Network Processor Family intel
®

4.10.2

100

A thread may request multiple signal events (e.g., SRAM, SDRAM, and FBI). However, only one
instantiation of a specific signal event can be pending at one time. For example, a programmer can
not have two SRAM signal events pending at atime. Also, a program can only be awakened by a
single event. For example, a program can not be awakened by an FBI or an SRAM signal event.

Context Event Arbiter (Waking a Thread)

A Microengine thread can be in one of the following three execution states:
* Executing
* Sleeping (not executing, waiting for asignal event to occur)

* Ready (not executing, has received the signal event that it was waiting to occur, and iswaiting
for the context arbiter to grant it permission to execute)

The non-preemptive multithreading architecture allows a program thread to execute until it
executes an instruction that performs a context switch. When a program thread performs a context
switch, the Context Arbiter decides which thread will be allowed to execute next. The Context
Event Arbiter makes this decision based on the following:

* A round-robin arbitration scheme provides each thread an equal chance at executing
* Whether the thread is enabled to run (viathe CTX_ENABLES register)
* Whether the thread is in the Ready state

The Context Arbiter uses the signal event and wakeup event status provided for each thread and
maintained in the CTX_n WAKEUP_EVENTS (wheren=0, 1, 2, or 3) and

CTX_n SIG_EVENTS loca CSRs. The Context Event Arbiter uses a round-robin algorithm to
determine which should be woken next. If a context wakeup event is enabled and the event has
occurred, the context will be enabled to run. Note that only one event at atime can be enabled in
the CTX_n_WAKEUP_EVENTSCSR. Thisisenforced in theinstruction set by allowing only one
wakeup event to be specified in any instruction that will cause a context switch.

Hardware Reference Manual

intel.

Figure 4-11.

4.11

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines

Context Arbitration Policy

Current

context went to

sleep
?

yes

Point to
next context

l

Is context

enabled

(KILL)
?

Wakeup

event signal

occurred
?

Wake context

Y

A7516-02

Interfacing to Other Functional Units

This section describes how datais transferred between the Microengines and the other functional
units within the IXP1200. The Microengine threads reference the other functional units (FBI, PCI,
SDRAM, and SRAM Units) by issuing a command and then continuing to execute instructions
while the functional unit processes the command independently. This allows the Microenginesto
perform useful work while references are pending, increasing the overall performance of the
Microengines.

The Microengine threads can reference the other functional unitsin two ways: using immediate
data or using Transfer Registers. Thefast_wr (fast write) instruction writesimmediate data to
specific registerswithin the FBI Unit. All other accesses use Transfer Registers. Table 4-14 liststhe
instructions that use Transfer Registers.

101

Intel® IXP1200 Network Processor Family m
Microengines In ®

Table 4-14. Instructions Using Transfer Registers

Instructions Using Transfer Registers
csr hash1_48
scratch hash2_48
pci_dma hash3_48
sram hashl_64
sdram hash2_64
r_fifo_rd hash3_64
t_fifo_wr

4.11.1 References Using Transfer Registers

Figure 4-12 shows a simplified Microengine along with another functional unit. The simplification
isthat only one set of push/pull busesis shown and only one shared functional unit isillustrated.
Thisfigure will be used to describe how a Microengine issues areference using Transfer Registers.

The following steps are taken when a Microengine issues a reference:
* Set up the Transfer Registers,
* |ssue command,
* Queue command at the functional unit,
* Move data between Microengine and functional unit, and

* Signal completion

These steps are described in the sections that follow.

102 Hardware Reference Manual

intel.

Figure 4-12.

411.1.1

4.11.1.2

Intel® IXP1200 Network Processor Family
Microengines

Microengine References Using Transfer Registers

data_bus[63:0] _ pull[31:0]

A I push[31:0] A
Completion Signal Event | Y
“~ | Microengine| |Read Transfer Write Transfer
Controller Registers Registers
L A
64 A-Side 64 B-Side
\ GPRs GPRs
f A
StrongARM®*
SRAM or PCI command
SDRAM
or FBl Control | |y y 122
Controller < Store 'Y '* %‘ AA]
Functional
Unit ; i
Microengine cmd_bus
Command
Queues
Command
grant FIFO
Command >
Bus Arbiter | ¢ reduest Microengine
(one of six)

Grant and requests are
provided to each Microengine

* StrongARM is a registered trademark of ARM Limited.

A7505-02

Setting Up the Transfer Registers

Before performing a write operation, the write data should be placed into one or more contiguous
write Transfer Registers. For read operations, the read datais written into one or more contiguous
read Transfer Registers by the functional unit that is referenced.

The reference instruction specifies the register name at the beginning of a set of contiguous
registers and the burst size of the transfer. Since the microcode assembler automatically assigns
registers based on symbolic hames, the assembler supports the .xfer_order assembler directive.
This directive informs the assembler that alist of register names must be allocated contiguously. It
also allows the programmer to define the names of the Transfer Registers in which the dataisread
from or written to.

Issuing a Command

When reference instructions are executed, a Microengine issues a command to the appropriate
functional unit. The command describes the operation that is requested and indicates which
Microengine and thread issued the command. When a command isissued, it is placed into atwo-
entry Command FIFO located in the Microengine. All six Microengines contain their own
Command FIFOs, and each FIFO is shared among the four program threads within the

Hardware Reference Manual 103

Microengines

Intel® IXP1200 Network Processor Family intel
®

104

Note:

Note:

Microengine. The six Command FIFOs from the six Microengines are tied to a shared time-
multiplexed Command Bus that operates at the Core clock frequency. When a command is placed
into the Command FIFO, a bus request is submitted to the Command Bus Arbiter.

The Command Bus Arbiter arbitrates between the six Microengines to determine which Command
FIFO will be serviced next. The Command Bus Arbiter uses the following information to
determine which Command FIFO is to be serviced.

* A priority scheme between the types of commands.
* A rotating priority scheme between the Microengines.

* A back-pressure signal from the functional units.
The arbitration scheme is shown in Figure 4-13.

If the Command Bus arbiter serviced a Command FIFO that contains a chained SDRAM
command, the Command Bus Arbiter will only allow SDRAM commands from the Command
FIFO where the chained SDRAM was issued to be granted access to the Command Bus until the
chain is completed.

Note, however, that commands to other units are granted access to the Command Bus.

The priority after chained SDRAM commandsis as follows:
* SRAM
* Non-chained SDRAM
* FBI/PCI

Back-to-back accessesto the FBI or PCI are not allowed. They are not considered separate units by
the arbitration. If acommand isissued to the FBI on one cycle, the next cycle cannot issue a
command to either the FBI or the PCI. Similarly, if acommand isissue to the PCI on one cycle, the
next cycle cannot issue a command to either the FBI or the PCI.

Note that consecutive grants are not allowed for SDRAM (chained or otherwise), FBI, or, PCI.
Consecutive grants are alowed to SRAM, but not allowed to SDRAM or FBI/PCI. FBI and PCI
appear as asingle unit to the arbiter.

For grants within a priority, one Microengine is selected as the lowest priority Microengine. The
highest priority Microengine is the next higher indexed Microengine (this wraps around, so if
Microengine 5 is the lowest priority, then highest priority is assigned to Microengine 0). The
Microengines have lower priority as the index increases from highest priority Microengine (again
wrapping from 5 to 0). Microengine commands to afunctional unit will not be serviced, until there
are no more commands for higher priority functional unit or to the same functional unit from any
other higher priority Microengine.

If achained SDRAM, SRAM or normal SDRAM operation is not pending (any one of the three)
and an FBI/PCI command could be issued but for pending commands to higher priority unitson a
cycle, the following cyclewill not be used to issue acommand to the FBI/PCI. FBI/PCI commands
are eligible to be issued on the cycle subsequent to the following cycle, subject to other pending
commands and the priorities of target units and Microengines. When the grant to the FBI/PCI is
suppressed as described above, the following cycle will not be suppressed by those same
conditions. If adifferent command gets a grant that following cycle, then the FBI/PCI command
may be suppressed on the next cycle.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines

Theindex of the lowest priority Microengine increments to the next higher value when it has no
outstanding commands in its Command FIFO. Thus, the Microengine with lowest priority will
remain as the lowest priority until all its pending requests are serviced, at which point it will
become the second lowest priority. A Microengine could wait indefinitely before it can issue a
command to afunctiona unit, if the higher priority Microengines are constantly issuing commands
to that functional unit.

If any of the command queues within a functional unit fillsto athreshold level typically equal to
six less than the number of commands that queue can hold, the functional unit will apply a back-
pressure mechanism to ensure that the queue does not overflow. This threshold level ensures that
thereis room in the queues for any commands currently being sent to the functional unit from the
six Microengines. If the Command Bus Arbiter receives a back-pressure signal, it will not service
any Microengine whose Command FIFO contains a command that is targeted for the functional
unit that applied the back-pressure mechanism.

The Command FIFOs are drained at the Core frequency, and, therefore, are typically drained at a
rate faster than the commands are placed into them. However, if a program executes multiple
consecutive references, the Command FIFO may fill. If the Command FIFO on aMicroenginefills
and another reference isissued, that Microengine stops executing instructions (referred to as
stalling) until the command can be placed into the Command FIFO.

Also, the rate at which commands are issued to the functional unitsis greater than the rate at which
the functional units are capable of processing acommand. For example, the SRAM Unit reads data
from the SRAM devices at %2 the Core frequency, however, commands are submitted to the SRAM
Unit every Core clock cycle. This ensures that functional units maybe supplied with commands,
which in turn ensures that the unit has useful work to perform.

Hardware Reference Manual 105

Intel® IXP1200 Network Processor Family m
Microengines In ®

Figure 4-13. Command Bus Arbitration Policy

HIGHEST PRIORITY

—t Chained SDRAM Service SDRAM commands

In progress only from the Microengine
that issued the Chained
SDRAM command.

FBI/PCI

OO

o

LOWEST PRIORITY

A7973-01

4.11.1.3 Command Serviced in Queue

After the command is placed onto the Command Bus, it is deposited into a command queue within
the targeted functional unit. These command queues accept commands from, and hence are shared
between, al of the Microengines. These command queues are shared among the other
Microengines. The functional unit removes the commands from the command queues and performs
the operation in the order that appears in the queue. Severa different command queues are
provided at each functional unit, and, these queues are described in more detail in the FBI,
SDRAM, SRAM, and PCI sections.

4.11.1.4 Moving Data to and from Transfer Registers

When the functional unit processes the command, it reads or writes the data to or from the
Microengine Transfer Registers. The datais provided on one of two 64-bit buses: the SRAM Bus
or the SDRAM Bus. These 64-bit buses are divided into a 32-bit push and a 32-bit pull bus. The
bus utilization is described in Table 4-15. Note that the peak bandwidth of each busisequal to the
peak bandwidth of the external buses.

106 Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family

Microengines

Table 4-15. Bus Utilization
. Transfers Occur
Operation Intgrnal 32-Bit on Core Clock Internal Peak Bandwidth External_Peak
ata Bus Bandwidth
Cycle
SDRAM read SDRAM Pull bus | odd and even
Core freq x 32-bits % Core freq x 64-bits
SDRAM write | SDRAM Push bus | odd and even
SRAM read SRAM Pull bus odd
% Core freq x 32-bits % Core freq x 32-bits
SRAM write SRAM Push bus | odd
FBI read SRAM Pull bus even
1 Core freq x 32-bits FCLK x 64-bits
FBI write SRAM Push bus | even
4.11.1.5 Signaling Completion
Reference instructions provide two optional tokens that indicate that a Microengine thread should
be signaled when the transfer completes. The first optional token is sig_done. This token indicates
that the thread should be signaled when the operation is completed. The br_!signal instruction tests
the signal events and the ctx_arb instruction indicates that the thread should be put to sleep and
woken when a signal event occurs.
The second optional token is ctx_swap. It allows a reference instruction to specify that the thread
should be signaled when the operation is completed and the thread should be put to sleep (swapped
out) and woken when the signal event occurs. The ctx_swap optional token is equivalent to using
the sig_done optional token with the reference instruction and a separate ctx_ar b instruction.
4.11.2 PCI DMA

The Microengines can initiate DMA transfers across the PCl using either one or both DMA
channels. The StrongARM* core allocates the DMA channels under software control. The
StrongARM* core can dynamically change the allocation of the channels by modifying the
DMA_INTER_MODE register. It is expected that, using interprocessor communications, the
StrongARM* core and the Microengines signal each other when a channel allocation change is
required. After that point, neither should issue any more DMA requests and the StrongARM* core
waits until all pending requests have completed. The StrongARM* core can detect when the DMA
channels areidle by enabling the DMA “Not Busy” interrupt in the IRQ_ENABLE register.

The PCI Unit supports a four-entry DMA request FIFO for requests made by the Microengines.
This providesfor five outstanding Microengine DMA requests, onein the allocated DMA Channel,
and four in the DMA FIFO. Since thereis no hardware back-pressure mechanism to indicate when
the DMA FIFO isfull, Microengine software must maintain status as to the number of pending
Microengine DMA requests to ensure it does not exceed atotal of five.

If the Microengines own both DMA channels, the DMA requests can be issued to either the next
available DMA channel or directly to DMA channel 2. When aDMA request istargeted at DMA
channel 2, it ensures that the DMA requests will be completed in the order in which they were
issued.

The procedure for issuing PCI DMA transfersis described in Section 5.2.2.3, “Microengine
Initiated DMA Channel Operation”.

Hardware Reference Manual 107

Intel® IXP1200 Network Processor Family m

Microengines In ®

4.11.3 FAST _WR Instruction

The Microengines support afast_wr instruction to improve performance when writing to a subset
of FBI registers. Thefast_wr instruction supplies 10-bit immediate datain the reference command.
This eliminates the need for the FBI Unit to read the data from a Microengine SRAM Transfer
Register when it processes the command.

The meaning of the 10-bit immediate data is shown in Table 4-16. Some registers do not require
the entire 10-bits. The programmer should ensure that data larger than what is required for the
register is not written since it will extend past the Microengine assigned bit position field.

Table 4-16. Fast_wr 10-Bit Immediate Data

Register 10-Bit Immediate Data

Inter_thd_sig Thread number of the thread that is to be signaled (0 to 23).

A 2-bit message that is shifted into a position relative to the thread that is writing
Thread_done the message. The shift operation is performed by the FBI Unit. The meaning of the
message is determined through software.

Thread_done_incrl Same as thread_done except that either the enqueue_seql or enqueue_seq?2 is
Thread_done_incr2 incremented.

The Transmit FIFO element number (0 to 15) that is marked to indicate that the

xmit_validate data is valid in this element.

incr_eng_numl Write a one to increment the Enqueue Sequence Number by one (the Sequence
incr_eng_num2 Number is always incremented by one).
self_destruct Specifies the bit position (0-31) that will be set.

The 10-bit immediate data supplied with the instruction is shifted by the FBI Unit in
two segments. Bits 6 through 0 are shifted left by an amount equal to the thread ID

Ireg writing the data. Bits 9 through 7 are always shifted into the BP2 through BPO
positions regardless of the Microengine writing the data.
4.11.4 Indirect References

Indirect references allow the programmer to redefine a reference (a command that is placed onto
the Command Bus) at run time. Thisis referred to as an indirect reference. As shown in

Figure 4-14, if an instruction specifies an indirect reference, the reference is redefined by the
output generated by the previous ALU instruction.

Figure 4-14. Indirect References

Command FIFO

Indirect Reference é

Override bit for A
Override bit for B
|_ — Override bit for C
| |Field A] |Field B] |Field C|
Output from ALU

| Field A | Field B | Field C |

From Current Instruction

A7522-01

108 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines

The output of the ALU islatched after each instruction is executed. If an instruction specifies the
indirect reference using the indirect_ref optional token, the command placed on the Command Bus
is redefined using data provided at the output of the previous ALU instruction. The format of the
datais defined in the I XP1200 Network Processor Programmer’s Reference Manual and depends
on the instruction being modified.

Theindirect reference data may modify more than one parameter within in an instruction. An
override bit is provided on aper data field basis to indicate which parameter should be modified.
When the indirect_ref optional token is specified, it enables the data multiplexer that redefines the
command and the override bits enable the specific bit fields.

Example 4-1 shows how two instructions are used to create an indirect reference.

Example 4-1. Indirect Reference

Table 4-17.

alu shf[--, --, b, 0x13, <<16]
t_fifo_w[$xfer0, tfifo_addr, 0, 1], indirect_ref

Thefirst instruction, alu_shf, determines how the second instruction is defined. In this example, bit
field 20 isthe override bit and bit fields 16 to 19 indicates the burst count size which is changed to
aburst count of four quadwords (the value specified in bits 19:16 plus one). Theindirect_ref
optional token in the second instruction specifies that the ALU output from the first instruction
should be used to redefine the reference.

Table 4-17 shows the instructions that support an indirect reference and the parameters that may be
modified using an indirect reference.

Indirect Reference Instructions (Sheet 1 of 2)

Instruction | Command Indirect Reference Options

* Specify the Microengine and thread ID the FBI Unit uses to specify the
thread that is signaled when the reference is complete, and how the data is

fast wr interpreted when the specified FBI register is THREAD_DONE,

N THREAD_DONE_INCR1, THREAD_DONE_INCR2, and IREG.

« Specify the immediate data.

« Specify the Microengine and thread ID the FBI Unit uses to specify the
thread that is signaled when the reference is complete.

read/write « Specify the number of longwords that should be written to scratchpad
memory (16 max.).

« Specify the Microengine SRAM Transfer Register (0-31).

scratch - - - - -
« Specify the Microengine and thread ID the FBI Unit uses to specify the

thread that is signaled when the reference is complete.
bit_wr « Specify whether the pre-modified data should be returned.
* Specify whether the operation is set or clear.

* Specify the Microengine SRAM Transfer Register (0-31).

Hardware Reference Manual 109

Intel® IXP1200 Network Processor Family m

Microengines

in

Table 4-17. Indirect Reference Instructions (Sheet 2 of 2)

Instruction

Command

Indirect Reference Options

sdram

read/write

Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

Specify the Transfer Register (0-31) in the Microengine.

Specify the number of quadwords that should be written to SDRAM (16
max.).

Specify a byte mask for read-modify-write operations.

tfifo_wr

Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete.

Specify the number of quadwords read from SDRAM and written to the
TFIFO (16 max.).

Specify the byte alignment.
Specify the TFIFO quadword address.

rfifo_wr

Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete.

Specify the number of quadwords that should be read from the RFIFO and
written to SDRAM (16 max.).

Specify the RFIFO quadword address.

sram

read/write

Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

Specify the number of longwords moved between the SRAM and the
Microengine (16 max.).

Specify the SRAM Transfer Register (0-31) in the Microengine.

push/pop

Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

Specify the push/pop register.
Specify the SRAM Transfer Register (0-31) in the Microengine.

bit_wr

Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

Specify whether the pre-modified data should be returned
Specify whether the operation is set or clear
Specify the SRAM Transfer Register (0-31) in the Microengine.

r_fifo_rd

Specify the Microengine and thread ID the FBI Unit uses to determine the
thread that is signaled when the reference is complete and the Microengine
where the Transfer Registers reside.

Specify the number of quadwords that should be read from the RFIFO (16
max.).

Specify the SRAM Transfer Register (0-31) in the Microengine.

t_fifo_wr

Specify the Microengine and thread ID the FBI Unit uses to determine the
thread that is signaled when the reference is complete and the Microengine
where the Transfer Registers reside.

Specify the number of quadwords that should be written to the TFIFO (16
max.).

Specify the SRAM Transfer Register (0-31) in the Microengine.

110

Hardware Reference Manual

intel.

4.12

Table 4-18.

Intel® IXP1200 Network Processor Family
Microengines

Local CSRs

Thelocal CSRsdescribed in Section 4.2.7 are memory mapped into the StrongARM* core 4-
Gigabyte address space. These registers are used by the StrongARM* core to program the Control
Stores and provide control and status information when debugging. These registers are described in
Table 4-18.

Local CSRs
Local CSR Description
USTORE_ADDRESS Microstore Address: Used to load the Control Store?.
USTORE_DATA Microstore Data: Used to load the Control Store?.
ALU_OUTPUT ALU Output: Used for debugging by the StrongARM* core for

reading the GPRs and Read Transfer Registers.

Active Context Status: Active context number, whether it is

ACTIVE_CTX_STS running, and the current PC.

Enable SRAM Journaling: Used for debugging to create journals

ENABLE_SRAM_JOURNALING in SRAM.

Context Arbiter Control: Context number of the last context to run

CTX_ARB_CTL and the number of the next context ready to run.

Context Enables: Used during debugging to enable a context to

CTX_ENABLES B 2
- run when arbiter grants permission.

Condition Code Enables: The previous and current condition

CC_ENABLE
= codes.

Context Status: Status indicating that the context is ready to run,

CTX_n_STS (n=0to 3) and the program counter where it will start.

Context Signal Events: Status of event signals that have occurred

CTX_n_SIG_EVENTS (n =0to 3) (one register per context).

Context Wakeup Events: Determines which wakeup event is

CTX_n_WAKEUP_EVENTS (n =010 3) enabled to wake the context (one register per context).

1. Specifies the Control Store address being addressed by the StrongARM* core.
2. Specifies the data at the Control Store Address specified in the USTORE_ADDRESS register.

Thelocal CSRs are mapped into the StrongARM* core 4-Gbyte address space. A Microengine
thread can access the set of local CSRswithin its Microengine, but it can not accessthe local CSRs
of another Microengine. The Microengines threads have accessto al the local CSRs except
USTORE_ADDRESS, USTORE_DATA, and ALU_OUTPUT. Thelocal_csr_rd and
local_csr_wr Microengine instructions are used to access the registers.

Reading alocal CSRsrequirestwo instructions, local_csr_rd followed by any instruction that uses
immediate data as a source operand. Thelocal_csr_rd instruction reads the contents of the CSR
and provides the data asimmediate datato the very next instruction. The next instruction placesthe
immediate data into a GPR or write Transfer Register. If the next instruction does not contain an
immediate data source operand field, then the opportunity to read the CSR data from the previous
instruction is lost. Example 4-2 shows how alocal CSR iswritten and then immediately read.

Hardware Reference Manual 111

Intel® IXP1200 Network Processor Family m
Microengines In ®

Example 4-2. Reading and Writing a Local CSR

Figure 4-15.

4.13

112

al u_shf[reg,tenp, b, Ox1, <<8] ;wite a lto bit 8

| ocal _csr_wr[ctx_enabl es, reg] ;set the bit in the CSR

nop ;required because of pipeline
| ocal _csr_rd[ctx_enabl es] ;setup the data as i mediate
al u_shf[csr_data, --, b, 0x1, >>8] ;move data in to LSB of GPR

Asshown in the example, alocal_csr_rd must not immediately follow alocal_csr_wr. Thisisdue
to issues concerning the Microengine instruction execution pipeline. Since the CSR dataiswritten
in P4, and the CSR isread in P2, a 1-cycle latency must be enforced to ensure the correct datais
read.

Reading and Writing Local CSRs

Execution

Pipeline Contents of
Stage Action Execution Stage
PO Look up instruction | Other Instruction |
P1 Initial instruction decode -
Form Source reg addr I Other Instruction I
P2 Read Operands [local_csr_rd | <«— Data is read from local CSR.
P3 Perform ALU operation [Other Instruction |
P4 Write Result to dest reg | local_csr_wr | <«— Data is available for reading

A7518-01

Find Bit Set Instructions

The Microengines support six instructions that are used to determine the first bit set within a GPR
or Read Transfer Register. The format of the instructions is as follows:

find_bset [test_operand], optional_token

find_bset [test_operand, shf_cntl], optional _token

find_bset_wi th_nmnask [nask_operand, test_operand], optional _token
find_bset_with_mask [mask_operand, test_operand, shf_cntl], optional _token

| oad_bset _resultl [dest_reg], optional_token
| oad_bset _result2 [dest_reg], optional_token

Thefirst four instructions return the bit position number of the first set bit in a 16-bit field of a
Microengine register. The search begins at the LSB. A shift control token is provided in the
instruction so that any arbitrary 16-bit field in the register can be evaluated and a mask value can
also be specified so that certain bits are not evaluated.

Theresult of the operation is deposited into one of two result registers that reside in the
Microengine Controller and can not be directly read by the Microengines like the GPRs or Transfer
Registers. Instead, the Microengines must explicitly move the contents on the Result registers into
one of the Microengine GPRs or Transfer Registers using the load_bset_result1 and

load bset result2 instructions.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Microengines

The Result registers contains three bit fields described in Table 4-19.
Table 4-19. Result Register Bits

Bit Name Description
31:9 RES Reserved. Read as 0
8 LK Indicates that the register is locked and contains a valid result.

Indicates the find_bset instruction that found a set bit.

n=The n + 1find_bset instruction locked the register. Each time a
7:4 INST# find_bset instruction is executed, a 4-bit counter is incremented.
When an instruction finds a bit set, the counter value is placed in
this field.

Indicates the bit position within the 16-bit field in which the first set

30 BIT POS bit was found (0 = Isb; 15 = msb).

When afind_bset instruction is executed, the test data and optionally the mask datais moved from
aGPR or Transfer Register through the ALU/Shifter and into the Find Bit Set logic. The
Microengine Controller may al so supply the mask data asimmediate data (in this case, the data til|
passes through the ALU).

After the datais delivered to the Find Bit Set logic, the logic increments a counter to track how
many find_bset instructions have been executed. When afind_bset instruction finds a bit set, it
writes the bit number and the value of the instruction counter, sets the lock bit, and locks the
register so that subsequent find_best instructions do not overwrite the result register. If the first
result register islocked, the second result register will be loaded and locked when the next
find_bset instruction is executed and detects a bit set in its test value. If both result registers are
locked, the result is not reported. When an instruction specifies the clr_result optional token, both
result registers unlocked and cleared and the instruction counter is also reset. Thisalows a
programmer to use multiplefind_bset or find_bset_with_mask instructions to find the first set bit
within up to 16 consecutive 16-bit fields (i.e., up to 8 registers of data). For example, Thefollowing
program will find the first bit set in a 32-bit register and the following case examples describe the
result.

Example 4-3. Find First Bit Set Program Example

find_bset [test_operand], clr_result; clear the result registers and test the lower 16 bits
find_bset [test_operand, >>16]; test the upper 16 bits

nop ; required for latency (explained |ater)
nop ; required for |atency
nop ; required for latency

load_bset _resultl [dest_reg]; read the first result

Case 1: If one or more bits were set in the lower 16 bits of the register, the resultl register would
contain data that:

* Set thelock bit indicating that a bit was set in the data provided

* Set theinstruction number to O, indicating that the first bit set instruction discovered afirst bit
set (for this example, assume a bit was set in the lower 16 bits)

* Set the bit position number to the value of the bit position number that was set (0 to 15).

Case 2: If one or more hits were also set in the upper 16 bits of the register, the resultl register
would be asin case 1 and the result2 register would contain data that:

* Set thelock bit indicating that a bit was set in the data provided

* Set theinstruction number to 1, indicating that the second bit set instruction discovered a bit
set (for this example, a bit was also discovered in the upper 16 hits)

Hardware Reference Manual 113

Microengines

Intel® IXP1200 Network Processor Family int9I
®

* Set the bit position number to the value of the bit position number that was set (0 to 15).
Case 3: If abitisnot set in either the upper or lower 16 bits, both result registers are cleared.

Case 4: If abit isnot set in the lower 16 bits but one or more bits are set in the upper 16 hits, the
resultl register contains valid data (as with instruction number set to 1 in case 1) and the result2
register contains zero.

The programmer must explicitly move the data from the Result register to a GPR or Transfer
Register using theload _bset_resultl and load_bset_result2 instructions. These instructions cause
the Microengine Controller to write the Result register data as immediate data that passes through
the ALU and into a GPR or Transfer Register.

The programmer must ensure that there are three instructions between the time that afind_bset and
aload_bset_result instruction are executed. Thisis due to the combined execution pipelines of the
Microengine and the Find Bit Set logic. As shown in Figure 4-16, with athree instruction latency,
by the time the find_bset instruction gets to the Result register, theload_bset_resultl instruction
will have propagated to the read operands stage and the bit set data will be available to read. The
find bit set operations should be completed before a context change to ensure that another thread
does not clear the result register before the result could be read.

Figure 4-16. Load Bit Set and Find Bit Set Execution

114

Execution Contents of
Pipeline Stage Action Execution Stage
PO Look up instruction
P1 Initial instruction decode
Form Source reg addr

P3 Perform ALU operation Other Instruction

| |
| |
P2 Read Operands | load_bset_resultl |
| |
| |

P4 Write Result to dest reg Microengine

Execution Pipeline
Find Bit Set Logic

Other Instruction

5 Perform find bit set | NOP
operation
6 Result available | find_bset |

A7507-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

In o Microengines

4.14 Input States

Each Microengineis provided with two status signals (referred to as “input states’) from the FBI
Unit. A brief description of the input states is provided below. A more detailed description of the
FBI Unit is contained in Chapter 6.

state_name Description

This state is set to 1 if there is room for another receive request in the
rec_req_avail two-entry REC_REQ FIFO. Refer to Section 6.6.4.1, “Issuing a
Receive Request” for a description of how this state is used.

This state is set to 1 if a Ready Bus Autopush instruction is being
executed and the FBI Push engine is currently writing to an SRAM
push_protect Read Transfer Register. Refer to Section 6.6.3.7, “Autopush
Operation” and Section 4.8.2.2, “Managing Unsolicited Autopush
Accesses” for a description of how this state is used.

Theinput states represent the current state of the associated logic in the FBI Unit. The
Microengines have access to the input states through the br_inp_state instruction. Thisinstruction
allows a Microengine thread to test the state, and branch if the stateis set.

4.15 Inter-Processor Communications

This section describes the three methods of inter-processor communication provided by the
IXP1200.

* Thread-to-StrongARM* Core Communications: Allows any program thread executing on
any Microengine to communicate with the StrongARM* core. This is supported through
interrupts and signal events.

¢ Thread-to-Thread Communication: Allows any program thread executing on any
Microengine to communicate with another thread executing on any other Microenginein the
same | XP1200. Thisis supported through signal events.

* Multiple IXP1200 Communications (Thread-to-Thread): Allows any program thread
executing on any Microengine to communicate with another thread executing on any other
Microenginein the different 1XP1200s. Thisis supported through the Ready Bus Get and Send
instructions. Refer to Section 6.6.3.10, “Ready Bus Communications’ for information on
Ready Bus communications.

Hardware Reference Manual 115

Intel® IXP1200 Network Processor Family
Microengines

4.15.1

Note:

intel.

Communication between the Microengine threads and the StrongARM* core is supported in
hardware using a signaling mechanism. The individual Microengine threads may interrupt the
StrongARM* core by generating either an FIQ or IRQ interrupt. Theinterrupt typeis selected in
the IREG register. The StrongARM* core can signal the individual Microengine threads by
generating aninter_thd_sig signal event. Refer to Figure 4-17.

Generating StrongARM* Core Interrupts

The Microengine threads generate an interrupt to the StrongARM* core by setting an interrupt bit
in the IREG register. The IREG register provides one interrupt bit for each Microengine thread (24
total). All of the Microengine threads set the interrupt bit using thefast_wr instruction and to write
avalueof 1. The IREG register (which residesin the FBI Unit) will shift the 1 to the appropriate bit
position based on the Microengine thread that issued the fast_wr instruction.

The Microengines should not write values other than 1 to the IREG register since theimmediate
data may set other bits within the IREG register.

When the StrongARM* core gets an interrupt, it reads either the FIQ or IRQ registers to determine
if theinterrupt was generated by a Microengine and then reads the IREG register to determine
which thread generated the interrupt. From the StrongARM* core perspective, the individua bits
in the IREG register are cleared by writing 1s. This allows the StrongARM* core to clear interrupt
bits that are set by writing back the original value that was read.

Figure 4-17. StrongARM?* Interrupts

116

StrongARM®* Core

4. Interrupt is generated and the
\ StrongARM Core reads to determine
if interrupt was generated by a Microengine
5. StrongARM Core

Reads to determine
which thread generated
the interrupt

6. StrongARM Core writes
original read data to clear .
interrupts (and the ueng ';IP or IRQ Register
bit in the FIQ or IRQ register) [TT]

3. The ueng bit in the A
FIQ or IRQ register is set

IREG Y |

ueng interrupt bit
3130 23 0

L 1
Microengine FIQ Enable 4 I |_ . R
Microengine IRQ enable One interrupt bit per Context

é@- 2. The immediate data is shifted

to correct position automatically
by the FBI Unit

1. A Microengine Thread executes a
fast_wr instruction with immediate
data equal to "1" (fast_wr [1, ireg])

Microengine
Thread

* StrongARM is a registered trademark of ARM Limited.

A7512-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

In o Microengines

4.15.2 Generating Inter-thread Signal Events

The StrongARM* core or any Microengine thread can generate an inter _thd_sig signal event to
any Microengine thread by writing a thread number (0 to 23) to the INTER_THD_SIG register
(Figure 4-18). The thread number in this register is broadcast to all Microengines. Each
Microengine decodes and the thread address and setstheinter_thd bit in the
CTX_n_SIG_EVENTS local register if the target is a context in the particular Microengine. A
Microengine thread can branch (using the br_!signal instruction) or it can wake up on this signal
event. Writesto the INTER_THD_SIG are not queued, therefore two back-to-back writesto the
same thread ID may result in only one signal.

Figure 4-18. Inter-thread Signal Events

INTER_THD_SIG |
31 4 0

[Thread Number (0 to 23) 2. All Microengines get
the thread ID. Each

decodes it and sets an
inter_thd_sig signal
event if the thread ID
matches one of their
thread IDs.

A

1. Microengine and StrongARM®* Core
write the thread ID to the INTER_THD_SIG

register.

The Microengines use the fast_wr Thread 23

instruction (fast_wr [23, inter_thd_sig]) -
|_Thread Mi

croengine
Number Thread 0

|| StrongARM
Core

* StrongARM is a registered trademark of ARM Limited.

A7514-02

Hardware Reference Manual 117

Microengines

Intel® IXP1200 Network Processor Family int9I
®

4.15.3

Communication Example

A software semantic employing mailboxes can be used in conjunction with the signal mechanisms
described previously to provide communication between Microengine threads and between the
Microengine threads and the StrongARM* core. In the example shown in Figure 4-19, the
StrongARM* core writes a message to one of twenty-four Microengine thread “In Mailboxes’ and
signals the Microengine thread using inter-thread signaling. The Microengine periodically
branches on the inter-thread signal and if it detectsthe signal, it readsits In Mailbox and processes
the message. After it completesitstask, it can write aresponse to its“ Out Mailbox” and signal the
StrongARM* core with an interrupt. The StrongARM* core interrupt service routine determines
which thread generated the interrupt and reads that thread’s Out Mailbox.

Figure 4-19. StrongARM* Core and Microengine Communication

118

Send StrongARM®* Receive
Message Core Message FIQ/IRQ

A A

Microengine
Thread

L5
INTER THD SIG| — IN

Mailboxes

o

23

Microengine _
Thread [_REG |
ouT A
Mailboxes

0

SRAM or Scratchpad
Memory

Y Y

Receive Microengine Send
Message Thread Message

* StrongARM is a registered trademark of ARM Limited.
A7513-02

Hardware Reference Manual

n

4.16

®

Intel® IXP1200 Network Processor Family
Microengines

Chained SDRAM References

The Microengine can chain multiple SDRAM references together to ensure each reference will be
processed by the SDRAM Unit immediately after the other. The Command Bus Arbiter gives a
chained reference a higher service priority over al other requests from the other Microengines to
ensure that the commands are delivered successively to the SDRAM Unit. The SDRAM Unit also
gives chained references a higher service priority over other Microengines, StrongARM* core, and
PCI Unit SDRAM references. Chained referenced are initiated using the chain_ref optional token
with the sdram instruction. Chained references are supported between SDRAM Transfer Registers
and the SDRAM Unit, RFIFO and the SDRAM Unit, and the TFIFO and the SDRAM Unit.

Example 4-4. ;Filling Two TFIFO Elements Using Chained References

4.17

4.17.1

alu[temp, opl, B, 15, <<16];setup indirect ref - ref_cnt = 16
alu[--, tenp, +, elemO, <<4];setup indirect ref - qword addr
sdranft_fifo_w,--,0,sdram addr, 1], indirect_ref, chain_ref

alu[tenmp, opl, B, 15, <<16];setup indirect ref - ref_cnt = 16

alu[--, tenp, +, eleml1, <<4];setup indirect ref - qword addr
sdranft_fifo_w, --, 16, addr, 4], indirect_ref ;(no "chain_ref" indicates end of
; chain)

Debugging Support

Each Microengine provides hardware support for debugging software running on the 1XP1200
Network Processor. Intel provides software that takes advantage of these debugging capabilities.
This software includes the I XP Devel oper Workbench and debug libraries that execute on the
StrongARM* core. The Debug libraries are written in the C language, allowing it to be ported to
different operating systems.

The sections that follow describe the hardware support provided by the I XP1200 and how software
can take advantage of this support to provide the following basic debugging capabilities:

¢ Determining if a Microengineis executing.

* Stopping, starting, and hopping the Microengines.
* Setting breakpoints.

* Reading the local register set.

¢ Creating ajournal.

Determining If a Microengine is Executing

The ACTIVE_CTX_STS (Active Context Status) local CSR indicates whether or not a context is
currently executing on the Microengine. If so, it provides the context number and the PC of the
instruction it is currently executing. The StrongARM* core can poll thisregister to determineif the
context is running or whether itisidle.

If the Microengine context isidle, the StrongARM* core can read the CTX_n SIG_EVENTS and
CTX_n WAKEUP_EVENTS registersfor each context to determine the signal event for which the
current context iswaiting and which signal events have occurred.

Hardware Reference Manual 119

Intel® IXP1200 Network Processor Family m
Microengines In ®

If none of the Microengine contexts have received asigna event, the StrongARM* core can
determine the next instruction that should be executed by reading the current PC for each of the
contexts from the CTX_n_STSlocal CSR.

4.17.2 Stopping, Starting, and Hopping the Microengines

The StrongARM* core can place the Microengines into the Running and Paused states, described
in Section 4.6. This alows the Microengine to execute for a period of time and then be placed in a
paused state. Once a Microengineisin a paused state, information about the present state of the
system (GPRs, Transfer Registers, memory, and CSRs) can be read by the StrongARM* core and
transmitted to an 1/O debug port (e.g., the seria port, Ethernet interface, etc.).

The user can manually place the Microengines into a paused state or a Microengine can place itself
into the paused state automatically each time an instruction that causes a context switch is
executed.

Since aMicroengine can placeitself into the paused state automatically, it is possible for the user to
“hop” the execution of the Microengines from one context change point to the next. Thisallowsthe
user to monitor the progress of a Microengine program as it executes in hardware. The term “hop”
is used instead of the common term “step” because the execution progress is monitored after a
context switch point rather than each time an instruction is executed.

4.17.3 Breakpoints

Breakpoints are supported by replacing instructions in the program with branch instructionsto a
breakpoint routine. The StrongARM* core can dynamically insert and remove breakpointsinto the
Control Store during runtime when a Microengineisin the Paused or Stopped state.

Once a Microengine thread enters a breakpoint routine, a Microengine can place itself into the non-
destructive Paused state and interrupt the StrongARM* core. The StrongARM* core can then
perform a breakpoint function such as stopping all other Microengines and then reading the
Microengine'sregister set. The StrongARM* coreis used to restart the Microengine from the point
at which the breakpoint occurs.

Note that breakpoints in the different Microengines occur asynchronously, so a breakpoint may
pause one Microengine while the others may continue to execute until the StrongARM* core
manually places them into a paused state. Or, they may pause themselves by executing their own
breakpoint routine.

Breakpoints are inserted into a program by replacing the instruction where the breakpoint should
occur with a branch instruction to a breakpoint routine.

The following procedure describes how the StrongARM* core can insert breakpoints into program
while aMicroengineisin the paused or stopped state.

1. The StrongARM* core saves the address and the instruction where the breakpoint will occur.

2. The StrongARM* core replaces the instruction where the breakpoint will occur with a branch
instruction to a breakpoint routine placed in unused code space.

3. If the user chooses to break only if a certain context hits the breakpoint, the first instruction of
the breakpoint routine should be a br!=ctx[n] to step 7. This causes the Microengineto
execute the replaced instruction and return to the main program. If the user chooses not to
break only if a certain context hits the breakpoint, this step can be eliminated.

120 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
In o Microengines

4. TheMicroenginedisablesall its other contexts by writing 0x0 to the CTX_ENABLES register
using thelocal_csr_wr instruction.

5. The Microengine executes afast_wr instruction to the IREG register, using the data 0x80 to
generate a breakpoint interrupt.

Note: The StrongARM* interrupt service routine should be programmed to service the interrupt as
desired. For example, the StrongARM* core may stop all the other Microengines and read the
Microengine register set and journal area.

6. The Microengine thread then goes to sleep by executing the ctx_arb[voluntary] instruction.
This allows the Microengine to gracefully stop executing and since all other contexts are
disabled, no other thread will begin executing. Due to pipelining considerations, four
instructions should be executed after thelocal _csr_wr and before the ctx_arb instruction.

7. The StrongARM* core enables the Microengine to begin executing by writing to the
CTX_ENABLES register to enable the appropriate threads. The Context Arbiter detects the
enabled contexts and allows the program thread specified in the NCTX field of the
CTX_ARB_CNTL local register to execute. When aMicroengine thread iswoken, it will start
executing at the instruction following step 7. Thisis where the original instruction removed
from the program in step 1 should be placed.

8. A branch back to the address of the original instruction + 1 enables the Microengine to
continue on the normal execution path.

Example 4-5 shows a pseudo code example of a breakpoint routine.

Example 4-5. Breakpoint Routine Example

6. When Microengine is restarted, it begins here. This instruction

1023 | BR (to break _point +1) <& returns execution to normal program flow.

CTX_ARB l— 5. Perform a context switch (ctx_arb[voluntary])
INT_CORE l€— 4. Set a breakpoint interrupt to the Intel® StrongARM Core
— fast_wr[0x80,ire
NoP (a [al) o
LS. Required to ensure DISABLE_CTX is written before a CTX_ARB
NOP is executed.
NOP

2. Disable context. It takes 5 cycles (equal to the number of execution
(J- pipeline stages) for this instruction to complete. When it does, no
_ thread in this Microengine is awakened after this thread executes
break_routine | BRI=CTX, or BR=CTX (—I- an instruction that causes a context switch.
1

DISABLE_CTX

. Optional: Can be used to distinguish that a breakpoint should

occur for a specific thread.
e "

break_point| BR (to break_routine)

Control Store

* Other brands and names are the property of their respective owners.
A7974-01

A breakpoint only applies to the Microengine in which the breakpoint is inserted.

Hardware Reference Manual 121

Intel® IXP1200 Network Processor Family m
Microengines In ®

4.17.4 Reading Microengine GPR and Read Transfer Registers

When aMicroengineis placed into the Stopped or Paused state, and the ECS bit in the
USTORE_ADDRESS local CSR is set, the Microengine loops on the instruction specified in the
UADDR field in the USTORE_ADDRESS local CSR. The ALU_OUTPUT CSR can be read by
the StrongARM* core to view the ALU output from the instruction currently executing at this
address. Thisallowsthe StrongARM* core to read the GPRs and Read Transfer Registers using the
following procedure:

1. The StrongARM* core places the Microengine into either the Stopped or Paused state by
disabling al its other contexts. Thisis accomplished by writing 0x0 to the CTX_ENABLE
register.

2. The StrongARM* core loads an alu instruction at some unused address in the Control Store.
The format of the alu instruction is as follows:
alu[--,0, B, read_register_address]
where:
"-" = no destination register
read register_name = address of the register to read, valid registers are GPRs, SRAM Read
registers and SDRAM Read registers.

3. The StrongARM* core readsthe ALU_OUTPUT register.

4. The StrongARM* core Repeats steps 2 and 3, changing the alu instruction to output different
GPRs or Read Transfer Registers

4.17.5 Creating a Journal

Journaling allows a Microengine to write debugging data (or other data) to alocation in SRAM.
The SRAM Unit assists the Microenginesin creating a journal by maintaining the pointersto the
journal areain SRAM. There are three pointers that specify the start (base), end, and current
position of the journal area. These areinitialized viathe SRAM_AUTO_BASE,
SRAM_AUTO_END, and SRAM_AUTO_PTR SRAM registers.

Once these SRAM registers are initialized, awriteto the SRAM_AUTO_PTR register causes the
following datato be written to SRAM at the address in the pointer register:

[31:29] Microengine ID/StrongARM* core ID
[28:27] Thread ID
[26:0] User defined data

The SRAM Unit supplies the Microengine ID and thread ID if the source is a Microengine.
Otherwise, the StrongARM* core should write the entire 32 bits using aMicroengine ID of 7 and a
thread ID of 0O (bits[31:27] = 11100). After each write, the current pointer isincremented. When
the current pointer equals the end pointer, the next value of the current pointer will wrap around so
that the current value equals the start pointer. Journaling is enabled on a per Microengine basis via
the ENABLE_SRAM_JOURNALING Microengine CSR. The user can view the journal data by
programming the StrongARM* core to read the journal areain SRAM and dump the datato an
IXP1200 1/0 port (UART, PCI, etc).

122 Hardware Reference Manual

INial.

Intel® IXP1200 Network Processor Family
Microengines

The Journal registers should be initialized in the order shown in Table 4-20 to ensure proper

operation.

Table 4-20. Journal Register Initialization Order

Initiation Order

SRAM CSR

Reason

SRAM_AUTO_BASE

Writing this register sets the base address in the
SRAM_AUTO_BASE register.

SRAM_AUTO_END

Writing this register resets the SRAM_AUTO_PTR
register to the contents of the SRAM_AUTO_BASE
register.

Hardware Reference Manual

123

m Intel® IXP1200 Network Processor Family
N o PCI Unit

PCI Unit 5

51 Overview

This chapter contains information on the 1XP1200 Network Processor Family PCI unit. It is
organized as follows:

* Section 5.2, “Hardware Description describes the functional blocks of the PCI unit.

* Section 5.3, “PCI Transactions describes which PCI transactions are supported and how they
are implemented by the PCI unit.

As shown in Figure 5-1, the main functional blocks of the PCI unit are as follows:
¢ Data Path and Bus Interface Logic
* FIFOs
* SDRAM Interface Logic
* AMBA Bus Trandation Interface Logic
* PCI bus arbiter
* DMA channels
* [,0* message unit
* Timers

Hardware Reference Manual 125

Intel® IXP1200 Network Processor Family m

PCI Unit |n

Figure 5-1. PCI Unit Block Diagram

< 32-Bit PCI Bus @ 33/66 MHz >
A /

Arbiter Signals

>

PCI Unit))
) PCI Bus
PCI Data Path and Bus Interface Logic Arbiter

A

Y

PCI Read Outbound Inbound :I Interrupt Logic |
Data FIFO FIFO
:II Doorbell Timer |

A A
;I Other CSRs |
/_ DMA DMA

Channel | | Channel
A A

[x—~ DMA

A A A A R:%l_JteSt
rbiter
Y Y
SDRAM Interface Logic AMBA Bus Translation
Interface Logic
addr ctrl rd wr A
A A A
Y Y
SDRAM Data Intel® StrongARM* Core Microengine
[63:0] AMBA Bus Commands
— Sideband Control from SDRAM Unit
—> Address/Command to SDRAM Unit
* Other brands and names are the property of their respective owners.
A7975-01

126 Hardware Reference Manual

5.2

5.2.1

Figure 5-2.

Intel® IXP1200 Network Processor Family
PCI Unit

Hardware Description

PCI Bus Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the
I XP1200. To enable the arbiter, the PCI_CFN[1] pin must be hardwired to 1. Figure 5-2 illustrates
how the arbiter is configured viathe PCI_CFN[1] pin.

PCI Bus Arbiter

Pin PCI_CFN[1] =0 PCI_CFN[1] =1
GNT#[0] | PCI Bus Grant Input to IXP1200 PCI Bus Grant Output to Master 1
GNT#[1] | Not Used, Tied High PCI Bus Grant Output to Master 2
REQ#[0] | PCI Bus Request Output from IXP1200 | PCI Bus Request Input from Master 1
REQ#[1] | Not Used, Float PCI Bus Request Input from Master 2
PCI Arbiter N GNT#[1]
m GNT#[0]

REQ#[0:2] GNT#[0:2]

N\

YV Y

0
I | PCI_CFN[1] = 0 Arbiter Disabled
PCI Master GNT = 1 Arbiter Enabled

State Machine
REQ

REQ#[0]

REQ#[1]

JAN Zgz

PCI Unit

A7976-01

The arbiter uses a simple round-robin priority algorithm. The arbiter asserts the grant signal
corresponding to the next request in the round-robin during the currently executing transaction on
the PCI bus (thisisalso called hidden arbitration). If the arbiter detectsthat an initiator hasfailed to
assert frame | after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter
deasserts the grant. That master does not receive any more grants until it deassertsits request for at
least one PCI clock cycle.

To prevent bus contention, if the PCI busisidle, the arbiter never asserts one grant signal in the
same PCI cycle in which it deasserts another. It deasserts one grant, and then asserts the next grant
after at least one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Hardware Reference Manual 127

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.2.2

Figure 5-3.

5221

128

DMA Channels

There aretwo DMA channels, each of which can move blocks of datafrom SDRAM to the PCI or
from the PCI to SDRAM. The DMA channels read parameters from alist of descriptorsin
memory, perform the data movement, and stop when the list is exhausted. The descriptors are
loaded from predefined SDRAM entries or may be set directly by a configuration write.

Figure 5-3 shows DMA descriptorsin local SDRAM. Each descriptor occupies four Dwordsand is
aligned on a quadword boundary. The DMA channels read the descriptors from local SDRAM into
the four DM A working registers once the control register has been set to initiate the transaction.
This control register is set automatically for microengine transactions but must be set explicitly for
StrongARM* core transactions. This starts the DMA transfer. The register names for the two
channelsarelisted in Figure 5-3. After adescriptor is processed, the next descriptor isloaded in the
working registers. This process repeats until the chain of descriptorsisterminated (i.e., the End Of
Chain bit is set).

DMA Descriptor Reads

Local SDRAM
Final Next
Descriptor Table Descriptor Table
4
3
4
Prior Current
Descriptor Table Descriptor Table Control Register
1 /_> 2 Channel 1 Name Channel 2 Name
Control Register | CHAN_1_CONTROL | CHAN_2_CONTROL
7 7
7 e
/7 7
/ /
/ I Working Registers
|I DMA Channel Register Channel 1 Name Channel 2 Name
\ Byte Count Register CHAN_1_BYTE_COUNT CHAN_2_BYTE_COUNT
\ PCI Address Register CHAN_1_PCI_BAR CHAN_2_PCI_BAR
\ SDRAM Address Register CHAN_1_DRAM_ADDR CHAN_2_DRAM_ADDR
N o Descriptor Pointer Register CHAN_1_DESC_PTR CHAN_2_DESC_PTR
A7977-01

Thereis no restriction on byte alignment of the source address or the destination address. DMA
reads are always unmasked reads (all byte enables asserted) either from SDRAM or the PCI. For
PCI-to-SDRAM transfers, the PCI command is Memory Read, Memory Read Line, or Memory
Read Multiple according to the PCI read type field bits [6:5] in the CHAN_1_CONTROL or
CHAN_2 CONTROL register. After each read, the byte count is decremented by the number of
bytes read, and the source address is incremented by one Dword.

When moving ablock of data, the IXP1200 internal hardware adjusts the byte enables so that the

write datais aligned properly on Dword boundaries and that only the correct bytes are written if the
initial and final data writes require masking.

Allocation of the DMA Channels

Both the StrongARM* core and the six microengines can access the two DMA channels. The
channels can function in one of the following modes, as determined by the DMA_INF_MODE
register:

Hardware Reference Manual

intel.

5.2.2.2

Intel® IXP1200 Network Processor Family
PCI Unit

* The StrongARM* core owns both DMA channels.
¢ The microengines own both DMA channels.

® The StrongARM* core owns DMA channel 1 and the microengines own DMA channel 2
(default).

The DMA mode (as specified by the DMA_INF_MODE register) can be changed by the
StrongARM* core under software control. The StrongARM* core software should signal the
microengines to suspend DMA transactions and wait until both DMA channels are free before
changing the mode. The StrongARM* core software should determine when both DMA channels
are free either by polling IRQ_RAW_STATUS/FIQ RAW_STATUS register bits[17:16] or by
reading the equivalent IRQ_STATUS/FIQ_STATUS register after having set the appropriate mask
bitsin the IRQ_ENABLE/FIQ_ENABLE register.

StrongARM* Core Initiated DMA Channel Operation

The StrongARM* core can either set up the descriptorsin SDRAM or it can write the first
descriptor table directly to the DMA channel registers.

When descriptors and the descriptor list are in SDRAM, the procedure is as follows:

1. The StrongARM* core writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (CHAN_1 DESC_PTR or CHAN_2 DESC PTR).

2. The StrongARM* core writes the DMA Channel Control register (CHAN_1 CONTROL or
CHAN_2 CONTROL) with miscellaneous control information and also sets the channel
enable bit (bit 0). The channel initial descriptor bit (bit 4) inthe CHAN_1 CONTROL or
CHAN_2 CONTROL register must also be cleared to indicate that the first descriptor isin
SDRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the
CHAN_1 BYTE_COUNT, CHAN_1_PCI_BAR, CHAN_1_DRAM_ADDR, and
CHAN_1 DESC_PTR registers or the CHAN_2 BYTE_CNT, CHAN_2_ PCI_BAR,
CHAN_2 DRAM_ADDR, and CHAN_2_DESC_PTR registers.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done (bit 2) inthe CHAN_1 CONTROL or CHAN_2 CONTROL register.

5. If theend of chain bit (bit 31) inthe CHAN_1 BYTE_COUNT or CHAN_2 BYTE_COUNT
register is clear, the channel reads the next descriptor and transfers the data (steps 3 and 4
above). If bit 31 is set, the channel sets the channel chain done bit (bit 7) in the
CHAN_1 CONTROL or CHAN_2 CONTROL register and then stops.

6. If enabled viathe IRQ_ENABLE or FIQ_ENABLE registers, the DMA channel interrupts the
StrongARM* core when the descriptor list is exhausted.

When single descriptors are written directly into the DMA channel registers, the procedureis as
follows:

1. The StrongARM* core writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the CHAN_1 BYTE_COUNT or CHAN_2 BYTE_COUNT
register must be set, and the valuein the CHAN_1 DESC_PTR or CHAN_2 DESC PTR
register is not used.

2. The StrongARM* core writes the base address of the DMA transfer into the
CHAN_1 PCI_BAR or CHAN_2 PCI_BAR register.

Hardware Reference Manual 129

PCI Unit

Intel® IXP1200 Network Processor Family intel
®

5.2.2.3

130

. When thefirst descriptor isinthe CHAN_1 BYTE_COUNT or CHAN_2 BYTE_COUNT

register, the CHAN_1 DRAM_ADDR or CHAN_2 DRAM_ADDR register must be written
with the address of the data to be moved.

. The StrongARM* core writesthe CHAN_1 CONTROL or CHAN_2 CONTROL register

with miscellaneous control information, along with setting the channel enable bit (bit 0). The
channel initial descriptor in register bit (bit 4) inthe CHAN_1 CONTROL or

CHAN_2 CONTROL register must also be set to indicate that the first descriptor isaready in
the channel descriptor registers.

. The DMA channel transfers the data until the byte count is exhausted, and then sets the

channel transfer done bit (bit 2) inthe CHAN_1_CONTROL or CHAN_2 CONTROL
register.

. Since the end of chain bit (bit 31) inthe CHAN_1 BYTE_COUNT or

CHAN_2 BYTE_COUNT register is set, the channel sets the channel chain done bit (bit 7) in
the CHAN_1 CONTROL or CHAN_2 CONTROL register and then stops.

. If enabled viathe IRQ_ENABLE or FIQ_ENABLE registers, the DMA channel interruptsthe

StrongARM* core when the descriptor list is exhausted.

Microengine Initiated DMA Channel Operation

Microengineinitiated DMA channel operations occur as follows:

1. A microengine thread sets up the descriptorsin SDRAM. Microengines can not write directly

to the DMA descriptor register in the PCI unit.

. Themicroengine thread initiatesa DMA operation by writing the pointer to the first descriptor

in SDRAM to the DMA channel using the PCI_DMA instruction.

. The DMA channel reads the descriptor block into the Channel Control, Channel PCI Address,

Channel SDRAM Address, and Channel Descriptor Pointer registers.

. The DMA channel transfers the data until the byte count is exhausted, and then sets the

channel transfer done bit in the DMA Channel Control Register.

. If the end of chain bit in the DMA Channel Byte Count register is clear, the channel reads the

next descriptor and transfers the data. If it is set, the channel sets the chain done bit in the
DMA Channel Control Register and then stops.

. If enabled (viathe PCI_DMA instruction), the DMA channel can signal the microengine

thread when the descriptor list is exhausted.

Thereis an eight entry DMA request FIFO that holds pending microengine DMA descriptor
reguests. This providesfor nine outstanding microengine DMA requests, oneinthe allocated DMA
Channel, and eight in the DMA FIFO. Thereis no hardware back-pressure mechanism to indicate
when the DMA FIFO isfull so microengine software must maintain status as to the number of
outstanding microengine DMA requests that are pending, to ensure it does not exceed the total of
nine.

If the microengine owns both DMA channels, DMA requests can be issued to either the next
available DMA channel or directly at DMA channel 2. If the PCI_DMA instruction has the
order_queueflag set, use DMA channel 2. Otherwise, use the next available DMA channel.
Targeting a DMA request at channel 2 ensures that DMA requests complete in the order they were
issued.

Hardware Reference Manual

intel.

Figure 5-4.

5.2.2.4

5.2.25

Intel® IXP1200 Network Processor Family
PCI Unit

Figure 5-4 illustrates a microengine initiated DMA channel operation.
DMA Channel Operations Initiated by Microengine

DMA Interface Mode Register

DMA_INF_MODE

PCI Bus 32

VA Working
Registers
+ g
1 Control Register
Working k
DMA :
(_ Registers
2 Control Register

Request
Arbiter

Intel® StrongARM*
DMA Requests

DMA Requests

AA

A

A A A A A A
—
Descriptors - - - - - -
I:I Microengine Microengine Microengine
1 3 5
Local SDRAM - - - - - -
Microengine Microengine Microengine
0 2 4

* Other brands and names are the property of their respective owners.

A7978-01

SDRAM-to-PCI Transfer

For a SDRAM-to-PCI transfer, the DMA channel reads data from SDRAM and places it into the
outbound FIFO for transfer to the PCI Bus when the following conditions are met:

* Thereisenough free spacein the FIFO.

* The PCl interburst delay for the DMA channel has elapsed (see bits[9:8] of
CHAN_1 CONTROL or CHAN_2 CONTROL register).

* The SDRAM controller has completed any previous requests and grants access to the PCI unit.

The number of Dwords read from SDRAM is specified by the read length field bits (bits [18:16])
of the CHAN_1 CONTROL or CHAN_2 CONTROL register. At the beginning or end of a
transfer, fewer Dwords may be read depending on alignment and byte count.

PCIl-to-SDRAM Transfer

For aPCl-to-SDRAM transfer, the DMA channel issues a sequence of PCI read request commands
through the Outbound FIFO. Asthe datais read, the DMA continues to issue new requests until the
specified number of Dwords has been read. If the target disconnects before that number of Dwords
has been read, the PCI unit waits for the PCI interburst delay before starting another read. The PCI
transaction also terminates if there is insufficient space in the Inbound FIFO to receive the
regquested data or if the master latency timer expires. In al cases, all Dwords that were read into the
Inbound FIFO are written into SDRAM.

Hardware Reference Manual 131

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.2.3

Figure 5-5.

132

1,O* Message Unit

This section describes the operation of the PCI unit’s 1,O message unit. The |,0 message unit
provides a standardized message-passing mechanism between a device on the PCI and the
StrongARM* core. It provides a means for the host processor on the PCI to read and write lists
over the PCI at offsets of 40h and 44h from the first base address.

1,0 Overview Diagram

Local SDRAM
Inbound Inbound Outbound Outbound
Free Post Free Post
List List List List
Inbound Message Frames Outbound Message Frames
| IXP1200 |
A |
| Y Y |
| Intel® 32 | Host
| StrongARM* PCl Unit | ! PCI Bus > Processor
| Core |

A7979-01

The message unit supports four logical FIFOs located in local SDRAM:
* Inbound freelist FIFO
* Inbound post list FIFO
* Qutbound freelist FIFO
® Qutbound post list FIFO

The FIFOs are used to hold message frame addresses (MFAS). The MFAs are offsets (pointers) to
the message frames. The PCI unit does not interpret the MFA values other than to recognize the
special indicator for aninvalid MFA (which is FFFF FFFFh), nor does it access the message
frames.

The 1,0 Inbound FIFOs are used to manage messages that are 1/0 requests from the host processor
to the StrongARM* core. The 1,0 Outbound FIFOs are used to manage messages that are replies
from the StrongARM* core to the host processor. The FIFOs are stored in SDRAM. The size of all
four FIFOs are of equal size as determined by bits [12:10] in the SA_ CONTROL register.

Table 5-1 lists the four pointers maintained in the PCI unit and the four pointersthat are maintained
by the StrongARM* core as variables in software.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o PCI Unit

Table 5-1. FIFO Pointers

Maintained by the PCI Unit Maintained by theSSDtrRo:'aARM* Core within
Inbound free list head (120_INB_FLIST_HPTR) Inbound free list tail (120_INB_FLIST_TPTR)
Inbound post list tail (I20_INB_PLIST_TPTR) Inbound post list head (1I20_INB_PLIST_HPTR)
Outbound free list tail (I20_OUTB_FLIST_TPTR) Outbound free list head (120_OUTB_FLIST_HPTR)
Outbound post list head (120_OUTB_PLIST_HPTR) Outbound post list tail (120_OUTB_PLIST_TPTR)

5231 [,O Inbound FIFO Operation

The 1,0 Inbound FIFO operation is as follows:
* [nitialization
a. The StrongARM* core allocates memory space for both the inbound free list and inbound

post list FIFOs, and initializes the inbound pointers (both PCI unit registers and software
variables) with the address of the first MFA.

b. The StrongARM* core initializes the inbound freelist FIFO by writing valid MFA values
to al entries. For each write to the inbound free list FIFO, the StrongARM* core must
also do awrite to the inbound freelist count (120 _INB_FLIST_CNT) register to
increment the number of entries.

* Host posts an inbound message

a. When it needs to send a request message, the host processor removes an MFA from the
head of the inbound freelist (viaaread over the PCI bus to the PCI unit register offset
40h).

b. The host processor writes the request message to the MFA in I XP1200 SDRAM (viaa
target write over the PCI Bus).

¢. Thehost processor places the MFA onto the tail of the inbound post list (via awrite over
the PCI bus to offset 40h). The PCI unit internally increments by 1 the inbound post list
count register, which interrupts the StrongARM* core (if not masked by IRQ_ENABLE
or FIQ_ENABLE). Thisinterrupt occurs after the write has completed to ensure that the
message isin SDRAM before the interrupt.

* StrongARM* core accepts inbound message

a. The StrongARM* core removes the MFA from the head of the inbound post list. For each
read of the inbound post list, the StrongARM* core must also do a write to the inbound
post list count register to decrement the number of entries.

b. The StrongARM* core reads the request message from the MFA and performs the
application-specific action based on the message.

c. The StrongARM* core writes the MFA to thetail of the inbound free list so that the
message frame can be reused at afuture time. It also writes to the inbound free list count
register to increment the number of entries.

d. Itispossible for the host to post more than one message before the StrongARM* core
accepts any posted messages. The interrupt to the StrongARM* core remains asserted as
long asthereis at |east one message posted.

Hardware Reference Manual 133

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.2.3.2 [,O Outbound FIFO Operation

The 1,0 Outbound FIFO operation is as follows:
* Initialization
a Thel,O outbound FIFOs areinitialized by the StrongARM* core by writing the
appropriate datainto SDRAM.

b. The StrongARM* core allocates memory space for both the outbound free list and
outbound post list FIFOs, and initializes the outbound pointers (both PCI unit registers
and software variables) with the address of the first MFA.

¢. Thehost processor initializes the outbound free list FIFO by writing valid MFAsto all
entries.

* StrongARM* core posts an outbound message

a. When it needs to send areply message, the StrongARM* core removes an MFA from the
head of the outbound freelist.

b. The StrongARM* core writes the reply message to the MFA in local SDRAM.

¢. The StrongARM* core places the MFA onto the tail of the outbound post list. The
StrongARM* core must also do awrite to the outbound post list count register to
increment the number of entries. The PCI unit asserts pci_irg_| when the value in the
outbound post list count register is not zero (if not masked by outbound interrupt mask
register).

¢ Host accepts outbound message

a. The host processor removes the MFA from the head of the outbound post list (viaaread
over the PCI bus to offset 44h). The PCI unit internally decrements the value in the
outbound post list count register.

b. The host processor reads the reply message from the MFA (viareads over the PCI bus)
and performs the application-specific action based on the message.

¢. Thehost processor writesthe MFA to thetail of the outbound freelist (viaawrite over the
PCI busto offset 44h) so that the message frame may be reused at a future time.

134 Hardware Reference Manual

intel.

Figure 5-6.

5.2.4

Intel® IXP1200 Network Processor Family
PCI Unit

* Circulation of MFAS

Figure 5-6 showsthe circulation of MFAs from free liststo post lists and back. Initially all inbound
MFAs are on the inbound free list and al outbound MFAS are on the outbound free list.

Circulation of MFAs

Inbound ._ Inbound
———————— > R
Free @ Post

List <« (" Intel® StrongARM* List
Core

Host Request to Intel StrongARM Core Intel StrongARM Core to Local Host
1. Read MFA from inbound free list (40h). 1. Read MFA from inbound post list (local read).
2. Write message to message frame in local 2. Read message from local memory.
memory (through SDRAM base address). 3. Place MFA back on inbound free list (local write).
3. Write MFA to inbound post list (40h). Interrupt 4. Perform specific message action.

is posted to Intel StrongARM Core.

Outbound [—> Intel SérgrrégARM Outbound
Free Post
List List
<o o Do

Local Response to Host Processor Host Processor Process Response Message
1. Read MFA from outbound free list (local read). 1. Read MFA from outbound post list (44h).
2. Write message to message frame in local 2. Read message from local memory (through PCI
memory (local write). SDRAM base address).
3. Write MFA to outbound post list (local write). 3. Place MFA back on outbound free list (44h).
Interrupt is posted to host. 4. Perform specific message action.
Notes:
Local Memory = €———
Over PCIBUS = - - oo oo 2 >
A7980-01

Mailbox and Doorbell Registers

Mailbox and Doorbell registers provide hardware support for communication between the
StrongARM* core and a host processor on the PCI bus.

Four mailbox registers (MAILBOX_0, MAILBOX_1, MAILBOX 2, and MAILBOX_3) are
provided so that messages can be passed between the StrongARM* core and a device on the PCI
bus. All four registers are 32 bits and can be read and written with byte resolution from both the
StrongARM* core and PCI. How the registers are used is application dependent and the messages
are not used internally by the PCI Unit in any way. The mailbox registers are often used with the
Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the
purpose of the interrupt. The PCI Unit supports a Doorbell register that is used by a PCI device to
generate a StrongARM* core FIQ or IRQ interrupt and by the StrongARM* core to generate a PCl
interrupt. A source generating the Doorbell interrupt can write a software-defined bitmap to the

Hardware Reference Manual 135

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

register to indicate a specific purpose. This bitmap is trandated into a single interrupt signal to the
destination (either a PCI interrupt or a StrongARM interrupt). When an interrupt is received, the
Doorbell registers can be read and the bit mask can be interpreted. If alarger bit mask is required
than that provided by the Doorbell register, the Mailbox registers can be used to pass up to four
longwords of data.

The doorbell interrupts are controlled through the four registers shown in Table 5-2.

Table 5-2. Doorbell Interrupt Registers

Register Name Description

DOORBELL Used to generate the Doorbell interrupts.

DOORBELL_SETUP | Used to initialize the Doorbell register and for diagnostics.

Used to determine which bits in the Doorbell register generate a PCI

DBELL_PCI_MASK | .
- - interrupt.

Used to determine which bits in the Doorbell register generate a StrongARM

DBELL_SA_MASK)
- = interrupt.

The StrongARM* core and PCI devices write to the DOORBELL register to generate up to 32
doorbell interrupts. The DBELL_PCI_MASK register and DBELL_SA_MASK register are used
to allocate any of the 32 bitsin the DOORBELL register as either generating a StrongARM* core
interrupt or generating a PCI interrupt. The DBELL_SA_MASK and DBELL_PCI_MASK bits
should be assigned so that the individual Doorbell bits in the DOORBELL register are enabled to
interrupt either the PCI device or the StrongARM* core (not both). Normally, the allocation of
doorbellsis performed during the design of the application by deciding how many unique causes
for interrupts are required.

Each bit in the DOORBELL register isimplemented as an SR flip-flop. The StrongARM* core
writes a 1 to set the flip-flop and the PCI device writes a 1 to clear the flip-flop. Writing a0 has no
effect on the register. The PCI and StrongARM interrupt signals are gated by the DOORBEL L
Register (output of the SR flip-flop) and the state of the DBELL_SA MASK and
DBELL_PCI_MASK registers.

To summarize, depending on the state of the DBELL_SA MASK and DBELL_PCI_ MASK
registers:

To assert an interrupt (i.e., to “push a doorbell”):

¢ A writeof 1 to the corresponding bit of the DOORBELL Register generates an interrupt. This
isthe case for either PCI device or StrongARM* core, since the write of 1 changesthe
doorbell bit to the proper asserted state (i.e., O for a StrongARM interrupt and 1 for a PCI
interrupt).

To dismiss an interrupt:

¢ A write of 1 to the corresponding bit of the DOORBELL register bit clears an interrupt. This
isthe case for either PCI device or StrongARM* core, since the write of 1 changes the
doorbell bit to the proper deasserted state (i.e., 1 for a StrongARM interrupt and O for a PCI
interrupt).

136 Hardware Reference Manual

Table 5-3.

Figure 5-7.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family

PCI Unit

Table 5-3 illustrates the register settings and the corresponding interrupt functions.

Doorbell Interrupt Functions

DBELL_SA_ | DBELL_PCI_ Action DOORBELL Result
MASK Bit MASK Bit Bit

0 0 Don't care. Don't care. Doorbell Bit is not used.
StrongARM?* core writes 1 to .
DOORBELL. 1 Interrupt to PCl is set.

0 1
PCI device writes 1 to .
DOORBELL. 0 Interrupt to PCl is cleared.
PCI device writes 1 to 0 Interrupt to StrongARM* core
DOORBELL. is set.

1 0
StrongARM?* core writes 1 to 1 Interrupt to StrongARM* core
DOORBELL. is cleared.

1 1 Don't care. 1 lllegal.

Figure 5-7 and Figure 5-8 illustrate how a Doorbell interrupt is asserted and cleared by both the
StrongARM* core and a PCl device.

How the StrongARM* Core Generates Doorbell Interrupts to a PCl Device

Determines which bits in the DOORBELL register
generate a PCl interrupt.

(e. g., mask = OxFFFF0000)

DBELL_PCI_MASK
Register

DBELL_SA MASK
Register

PCI_INT#

FIQ or IRQ <—Ch

2. Read to determine

1. Write 1 to setbitand —>»] s Q R}—> the Mailbox interrupt
generate a PCl interrupt DOORBELL Register (e.g., reads 0x8000 0300)
D

3."AND" the read values with
DBELL_PCI_MASK and write
back read value to clear interrupt
(e. g., write 0x8000 0300 & OxFFFF 0000 =
0x8000 0000)

A7981-01

137

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

Figure 5-8.

138

How the PCI Device Generates Doorbell Interrupts to the StrongARM* Core

Intel® StrongARM* Core determines which bits in the
DOORBELL register generate a StrongARM Core
interrupt. (e. g., mask = 0x0000 FFFF)

DBELL_SA MASK DBELL_PCI_MASK
Register Register

FIQ or IRQ <—Ch PCI_INT#

1. PCl device writes 1 to clear bit
and generate a FIQ/IRQ.

<—]s Q R |- PCI_device
Intel StrongARM Core DOORBEIBL Register

2. StrongARM Core reads to determine the Mailbox interrupt.
(e. g., reads 0x030 F2F1)

3. StrongARM Core inverts the read value and ANDs with DBELL_PCI_MASK. Then
writes back the result to clear interrupt.
(e. g., write 0x030 F2F1 & 0x0000 FFFF = 0x0000 OCOE)
* Other brands and names are the property of their respective owners.

A7982-01

The DOORBELL_SETUP register allows the StrongARM* core and a PCI device to perform two
functions that are not possible using the DOORBELL register. This register is used during setup
and diagnostics and is not used during normal doorbell operations. First, it allows the StrongARM*
core and PCI deviceto clear an interrupt that it has generated to the other device. For example,
during initialization, the StrongARM* core should clear the PCI Doorbell interrupts by writing to
the DOORBELL_SETUP register. Second, it allows the StrongARM* core and PCI device to
generate a doorbell interrupt to itself. This can be used for diagnostic testing. Each bit in the
DOORBELL_SETUP register is mapped to the D input of the SR flip-flop of the DOORBEL L
register so any write operation to the DOORBELL setup register is reflected in the DOORBEL L
register.

During system initialization, the doorbell registers must be initialized. Thisisaccomplished by
doing the following (see Figure 5-9):

1. WriteaO to all bits of the DOORBELL register for doorbells that interrupt the PCI and a1 to
all bits of DOORBELL register for doorbells that interrupt the StrongARM* core. Thisis
accomplished by writing to the DOORBELL_SETUP register (which is an alias of the
DOORBELL register).

2. Writealto all bitsof the DBELL_ PCI_MASK register for doorbells that interrupt from the
StrongARM* core to the PCI device.

3. Writealto all bitsof the DBELL_SA_ MASK register for doorbells that interrupt from a PCI
deviceto the StrongARM* core.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
N PCI Unit
®
Figure 5-9. How the StrongARM* Core Initializes Doorbell Interrupts
3. Write the Doorbell Intel StongARM Core 2. Write the Doorbell PCI mask register
mask register with a 1 in all bit positions with a 1 in all bit positions used for
used for PCI-to-StrongARM Core interrupts. Intel® StrongARM* Core-to-PCl interrupts.
DBELL_SA_MASK DBELL_PCI_MASK
Register Register
FIQ or IRQ 4—@ PCI_INT#
Each bit of the DOORBELL
register is an SR Flip-Flop.
Intel StrongARM Core > R |- PCI device
DOORBELL Register -
D
3| DOORBELL_SETUP |
Register
1. Write the DOORBELL_SETUP register such that all bit positions used
for Intel StrongARM Core-to-PCl interrupts are written with 0, and all bit
positions used for PCI-to-StrongARM Core interrupts are written with 1.
Unused bits are "don't cares" and can be written to either value.
* Other brands and names are the property of their respective owners.
A7983-01

Hardware Reference Manual

139

Intel® IXP1200 Network Processor Family m

PCI Unit |n .

5.25 PClI Interrupt Pin

An external PCI interrupt can be generated in two ways:

1. A Message Frame Address (MFA) is added to the outbound post list (i.e., the outbound post
list is empty, or

2. The StrongARM* core initiates a Doorbell interrupt.

Figure 5-10 shows how PCI interrupts are managed viathe PCI and the StrongARM* core.
Figure 5-10. PCI Interrupts

Enable PCl interrupt from all doorbell
bits and/or Outbound Post List

| PCI_OUT_INT_MASK
Outbound Post List interrupt

Tells whether PCI interrupt
Read Intel ’ StongARM: Core Outbound Post i termupt
interrupts to determine PCl \write to enable specific Doorbell bits P

interrupt source | DBELL PCl WASK 1 |PCI_OUT_INT_STATUS|
FIQ_RAW_STATUS - ' ’_‘—) Set Doorbell bits to generate

an interrupt to the StrongARM Core

PCI_INT#

IRQ_RAW_STATUS

] DOORBELL
Doorbell Write to enable specific Doorbell bits
) DBELL_SA_MASK |
PCI_INT# pin
Registers Accessible via the Intel StrongARM Core Registers Accessible via the

Intel® StrongARM* Core or PCI
* Other brands and names are the property of their respective owners.

A7984-01

140 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o PCI Unit

5.3 PCI Transactions

All PCI transactions occur between the StrongARM* core, microengines (viathe DMA channels),
PCI unit, and SDRAM unit. A description of the three FIFOs used in performing the transactions

and their respective data follows:

* Qutbound FIFO
— StrongARM* core write addresses and data for PCI
— StrongARM* core read addresses for PCI
— DMA write addresses and data for PCI
— DMA read addresses for PCI

* Inbound FIFO
— PCI write addresses and data for SDRAM
— PCI read addresses for SDRAM
— DMA read data from PCI to SDRAM
— StrongARM* core read data from PCI

* PCI Read FIFO
— PCI read datafrom SDRAM

5.3.1 Generating the Address

This section describes how the internal and PCI addresses are generated.

Hardware Reference Manual 141

Intel® IXP1200 Network Processor Family

PCI Unit

5.3.1.1

Target Transactions - Internal Address Generation

in

When the IXP1200 is atarget, the internal CSR or SDRAM address is generated when the PCI
address matches the appropriate base address register (Figure 5-11). Mask registers are provided to
set the window size into the SDRAM address space.

Figure 5-11. Target Transactions - Internal Address Generation

b31
b30

o

bn
bn-1
bn-2

(o]
(o]
[o]

b0

PCI Address
(n=18to 28)

)(b28

Y

b31
b30
b29

b27

bi18
b17

o
o
o

bo

PCI_IO_BAR
PCI_MEM_BAR
PCI_DRAM_BAR

Indicates whether this is addressing a
V CSR (memory or 1/0) or SDRAM (memory) access

Address (17:0 to 27:0)

The mask registers determine the window size.
A 0in a mask position means the base address
] register bits are read/write.
b31 A 1in a mask position means the base address
ggg % register bits are read only as 0.
b2gs | — CSR Window Mask Encoding
027 | | n Addr Size (binary)
o 18 17:0 256MB 1111 1111 11
) e S 19 18:0 128MB 0111 1111 11
o 20 19:0 64MB 0011 1111 11
b18 21 20:0 32MB 0001 1111 11
bl7 = 22 21:0 16MB 0000 1111 11
23 22:0 8MB 0000 0111 11
1) 24 23:0 4MB 0000 0011 11
) 25 24:0 2MB 0000 0001 11
o _‘B 26 25:0 1MB 0000 0000 11
27 26:0 512KB 0000 0000 01
b0 | 28 27:0 1288 0000 0000 00%*
CSR BASE ADDR MASK *Only applies to memory CSR accesses
DRAM_BASE_ADDR_MASK
(A mask is not used for CSR 1/0)
A7985-01

53.1.2

Master Transactions - PCl Address Generation

When the IXP1200 is a master, the PCl address is generated based on the PCI address extension
register (PCI_ADDR_EXT). Refer to Figure 5-12.

Figure 5-12. Master Transactions - Internal Address Generation

31 16 15 13 12 0
PIOADD | PMSA| RES
31 16 115 21 0 3129 128 21 0
Intel®
PIOADD StrongARM* Address | 00 PMSA Intel StrongARM Address [28:2] 00

PCI Address for PCI 1/O Access

* Other brands and names are the property of their respective owners.

PCI Address for PCI Memory Access

A7986-01

142

Hardware Reference Manual

intel.

5.3.1.3

Table 5-4.

Figure 5-13.

5.3.2

5.3.3

533.1

Intel® IXP1200 Network Processor Family
PCI Unit

Master Configuration Transactions - PCl Address Generation

When the IXP1200 is a master and the StrongARM* core performs a configuration cycle access,
the PCI addressis generated based on the StrongARM address as shown in Table 5-4 and
Figure 5-13.

Master Configuration Transactions

Cycle Conditions
Type 1 Configuration Cycle None.
Type 0 Configuration Cycle StrongARM* core address bits [23:22] are NOT equal to 11.

Master Configuration Transactions

31 24 23 21 0

0000 0000| Intel® StrongARM* Address [23:2] |00

* Other brands and names are the property of their respective owners.

A7987-01

Enabling PCI Bus Transactions

The IXP1200 PCI unit isinitialized to an inactive, disabled state. No CSR or other accesses are
accepted by the PCI unit until the StrongARM* core has set the Initialize complete bit (bit 0) in the
SA_CONTROL register. This bit should be set after the StrongARM* core has initialized the
various PCI base address and mask registers..

PCI Target Transactions

This section describes the target response of the PCI unit to various PCI cycles.

Unsupported PCI Cycles As Target

The following PCI transactions are not supported by the IXP1200 as a target:
* |/O writeto SDRAM
* |/Oread to SDRAM
¢ Type 1 configuration write
¢ Type 1 configuration read
* Special cycle
* |ACK cycle
* Dual-address cycle

The following commands are aliased:
* Memory Write and Invalidate is aliased to a memory write.

Hardware Reference Manual 143

PCI Unit

Intel® IXP1200 Network Processor Family intel
®

5.3.3.2

5.3.3.3

144

* Memory Read Line and Memory Read Multiple to the CSR address space (not SDRAM space)
are aliased to amemory read.

Memory Write to SDRAM (Target Write)

PCI memory writeto SDRAM occursif the PCl address matches the SDRAM base address register
(PCI_DRAM_BAR) or the CSR base address register (PCI_MEM_BAR), and the PCI command is
either amemory write or amemory write and invalidate.

The PCI memory write datais collected in the Inbound FIFO and written to SDRAM when the
SDRAM isavailable. The PCI unit requests the SDRAM at the end of each eight Dword boundary
of the PCI burst (or at the end of the burst). If PCI address bits[1:0] are not 00 (that is, nonlinear
increment mode), and the master attempts to continue the burst past the first Dword, the PCI unit
signals atarget disconnect.

If fewer than 16 free longwords are available in the Inbound FIFO at the start of the write, the PCI
unit signals retry to the PCI master. If the Inbound FIFO fills during the write, the PCI unit signals
target disconnect to the PCl master.

Memory Read, Read Line, Read Multiple to SDRAM (Target Read)

A PCI memory read from SDRAM occurs if the PCl address matches the SDRAM base address
register (PCI_DRAM_BAR) or the CSR base address register (PCl_MEM_BAR), and the
command is either a Memory Read, Memory Read Line, or Memory Read Multiple.

Theread is completed asa PCl delayed read. That is, on the first occurrence of the read, the PCI
unit signals aretry to the PCl master. If there are no prior reads pending, the PCI unit latches the
address and command and placesit into the Inbound FIFO. When the address reaches the head of
the FIFO, the PCI unit reads the SDRAM. If the delayed read latch isfull and anew read to a
different addressis attempted, that read gets a retry response and no change is made in the delayed
read latch. In other words, the new read does not displace the in-progress read.

When the read data is returned from SDRAM into the PCI Read FIFO, the PCI unit begins
decrementing its discard timer. If the PCI bus master has not repeated the read by the time the
discard timer reaches zero, the PCI unit discardsthe read data, invalidates the delayed read address,
and sets Discard Timer Expired (bit 8) in the StrongARM* core Control Register
(SA_CONTROL). If enabled, the PCI unit interrupts the StrongARM* core. The discard timer
counts 21° (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the
command isaMemory Read, a Memory Read Line, or aMemory Read Multiple (that is, al
memory read command types are aliased for amatch). If thereis a match, the responseis as
follows:

¢ |f the read data has not yet been read from SDRAM, the response isretry.

* If the read data has been read from SDRAM, assert trdy_| and deliver the data. If the master
attempts to continue the burst past the amount of dataread from SDRAM, the PCI unit signals
atarget disconnect.

A Memory Read Multiple command initiates a streaming prefetch from SDRAM so that it can
supply read data at the maximum PCI bus data rate. Streaming prefetch works as follows:

* The PCI unit reads 32 Dwords when the read isinitially queued.

Hardware Reference Manual

intel.

5.3.34

5.3.35

5.3.3.6

Intel® IXP1200 Network Processor Family
PCI Unit

* When the PCl master repeats the read, the PCI unit startsto deliver data. When the PCI master
consumes the 17th Dword, the PCI unit reads the next 16 Dwords from SDRAM.

* Aslong asthe PCI master continuesto consume the 16th Dword of subsegquent blocks, the PCI
unit reads the next 16 Dwords.

The PCI unit never deassertstrdy_| while supplying SDRAM read data. It deassertstrdy_| only
after al prefetched data has been transferred.

Streaming prefetch does not start if a PCl writeto SDRAM is queued into the Inbound FIFO
between the delayed read being started and the read data being delivered. Thisalowsthe write data
to be written to SDRAM. In this case, only the first 32 Dwords are read. Streaming prefetch stops
when either of the following events occur:

¢ The PCI master ends the cycle (by deasserting frame). Inthis case, the PCI unit immediately
discards any remaining prefetched data.

* Other bus activity between the StrongARM* core or microengines and SDRAM prevents data
from being availablein time. Thisisthetarget disconnect case, and the PCI unit never negates
trdy_| for the burst.

Type 0 Configuration Write

A PCI configuration write to a configuration register occurs when the following conditions are
satisfied:

* idsel isasserted,

¢ The PCl command is a configuration write, and

* The PCI address bits[1:0] are 00.

The PCI write datais written to a configuration register selected by PCI address bits[7:2]. The PCI
byte enables determine which bytes are written. If a nonexistent configuration register is selected
within the configuration register address range, the datais discarded and no error actionistaken. If
the PCl master attempts to do a burst longer than one Dword, the PCI unit signals atarget
disconnect.

Type 0 Configuration Read

A PCI configuration read to a configuration register occurs when the following conditions are
setisfied:

* idsel isasserted,

* The PCl command is a configuration read, and

¢ The PCI address bits [1:0] are 00.
The data from the configuration register selected by PCI address bits[7:2] isreturned on ad[31:0].
If a nonexistent configuration register is selected within the configuration register address range,

the data returned are zeros and no error action istaken. If the PCl master attempts to do a burst
longer than one Dword, the PCI unit signals a target disconnect.

Write to CSR

A PCI writeto a CSR occursif either of the following conditions are satisfied:

Hardware Reference Manual 145

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

¢ The PCl address matches the CSR memory base address register (PCI_MEM_BAR), and the
PCI command is either a Memory Write or Memory Write and Invalidate.

* The PCI address matches the CSR 1/0 base address register (PCl_IO_BAR), and the PCI
commandisan I/O write.

The dataiswritten to the CSR with offset equal to PCI address bits[7:2]. The |,0 Outbound FIFO
and |,0 Inbound FIFO are handled differently (see Section 5.3.3.8). The PCI byte enables
determine which bytes are written. If a nonexistent CSR is selected within the CSR address range,
the datais discarded and no error action is taken. If the PCI master attempts to do a burst longer
than one Dword, the PCI unit signals atarget disconnect.

5.3.3.7 Read to CSR

A PCI read to a CSR occurs if either of the following conditions are satisfied:

* The PCl address matches the CSR memory base address register (PCI_MEM_BAR), and the
PCI command is either Memory Read, Memory Read Line, or Memory Read Multiple.

¢ The PCI address matches the CSR 1/0 base address register (PCl_IO_BAR), and the PCI
command isan 1/O read.

The data from the CSR with an offset equal to PCI address [7:2] isreturned on ad[31:0]. The [,0
Outbound FIFO and 1,0 Inbound FIFO (memory write offsets 40h and 44h) are handled differently
(see Section 5.3.3.9). If anonexistent CSR is selected within the CSR address range, the data
returned is zeros. If the PCl master attempts to do a burst longer than one Dword, the PCI unit
signals atarget disconnect.

5.3.3.8 Write to 1,0 Address

A PCI write to 1,0 address space occurs when the following conditions are satisfied:
* The PCl address matches the CSR memory base address register (PCI_MEM_BAR),
* The PCl command is either Memory Write or Memory Write and Invalidate, and
* Theregister offset is either 40h or 44h.

A write address of 40h causes datato be written to SDRAM using the indirect address defined in
120_INB_PLIST_TPTR and aso increments this register. Similarly, awrite address of 44h results
in adata write to the address defined in 120 _ OUTB_FLIST_TPTR and also incrementsthis
register. If the PCl master attempts to do a burst longer than one Dword, the PCI unit signals a
target disconnect.

Write datais discarded if the PCl address matches the CSR 1/0 base address register
PCI_IO_BAR), the PCI command isan I/O write, and the register offset is either 40h or 44h.

5.3.3.9 Read to 1,0 Address

A PCI read to 1,0 address space occurs when al three statements are true:
* The PCl address matches the CSR memory base address register (PCI_MEM_BAR),
* The PCl command is either Memory Read, Memory Read Line, or Memory Read Multiple

* Thel,0 Outbound FIFO (1I20_OUTB_FIFO) or 1,0 Inbound FIFO (120_INB_FIFO) register
is addressed (offset 40h or 44h).

146 Hardware Reference Manual

5.3.4

5.34.1

5.3.4.2

Intel® IXP1200 Network Processor Family
PCI Unit

Thisread is completed as adelayed read. On the first occurrence of the read, the PCI unit signals a
retry to the PCl master. If the delayed read latch is not full, the PCI unit latches the address and
command, and placesit into the Inbound FIFO.

When the read address reaches the head of the FIFO, the PCI unit reads the SDRAM at the address
inthe 1,0 inbound freelist head pointer (1I20_INB_FLIST_HPTR) register (offset 40h), or the |,0
outbound post list head pointer (1I20_OUTB_PLIST_HPTR) register (offset 44h). If the list being
read is empty, the value FFFF FFFFh is substituted for the data read from the SDRAM.

When the master repeats the read command, the PCI unit compares the address and checks that the
command isaMemory Read, a Memory Read Line, or aMemory Read Multiple (that is, al
memory read command types are aliased for amatch). If thereis a match, the responseis as
follows:

* If the read data has not yet been read from SDRAM, the response is retry.
* If the read data has been read from SDRAM, assert trdy_| and deliver the data.

If the PCl master attempts to do a burst longer than one data phase, the PCI unit signals atarget
disconnect.

If the delayed read latch is full and a new read from a different address is attempted, that read gets
aretry and no change is made in the delayed read latch. In other words, the new read does not
displace the in-progress read.

If the PCI address matches the CSR 1/0 base address register (PCI_IO_BAR), the PCI command is
an 1/0 read, and the register offset is either 40h or 44h. The PCI unit returns O for the read data.

PCI Master Transactions

The following sections describe the PCl master transactions performed by the PCI unit. All PCI
master transactions performed by the PCI unit are caused by either StrongARM* core loads and
stores that fall into the various PCI address ranges or by DMA channels. PCI write cycles are
caused by StrongARM* core writes (stores) and SDRAM-to-PCl DMAs. PCI read cycles are
caused by StrongARM* core reads (loads) and PCI-to-SDRAM DMAs. The command register
(PCI_COMMAND) bus master bit must be set for the PCI unit to perform any of the transactions
in this section.

Unsupported PCI Cycles As Master

PCI dual address cycles (DACs) are not supported by the PCI unit as a master.

Memory Write, Memory Write and Invalidate

This section describes Memory Write and Memory Write and Invalidate commands from the DMA
channels. The PCI unit attempts to use a Memory Write and Invalidate command when the
following conditions are met. If any condition is not met, the PCI unit uses the Memory Write
command.

* Memory write and invalidate enable bit in the command register (PCI_COMMAND) isa 1.

* Cachelinesizeisset to avalue of 4, 8, or 16 inthe CACHE_LNSIZE register. Supported
during DMA transfers only. For master transactions initiated by the StrongARM* core,
StrongARM* core software should limit the burst size to one Dword.

Hardware Reference Manual 147

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

* Theaddressof thefirst Dword in the burst is aligned to a cache line as defined in the cache line
size (CACHE_LNSIZE) register.

* The number of Dwords in the burst is an integer multiple of the cache line size.

* There are no unoccupied bytesin the burst.

The following general rules apply to the memory write command transactions regardless of
whether the command was initiated by the StrongARM* core or the DMA channels:

* If the PCI unit receives either atarget retry response or atarget disconnect response before all
of the write data has been delivered, it resumes the transaction at the first opportunity, using
the address of the first undelivered Dword.

¢ |f the PCI unit receivesamaster abort, it discardsall of the write data from that transaction and
sets the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts
the StrongARM* core.

¢ |f the PCI unit receives atarget abort, it discards all of the remaining write data from that
transaction, if any, and sets the status register (PCl_STATUS) received target abort bit, which,
if enabled, interrupts the StrongARM* core.

* The PCI unit can deassert frame | prior to delivering all data due to the master latency timer.
If this occurs, it resumes the memory write at the first opportunity, using the address of thefirst
undelivered Dword.

StrongARM* core CommandsPCl Memory Write or Memory Write and Invalidate commands
occur when the StrongARM* core writesto the PCI memory space.
The PCI address is derived from the StrongARM address and the
PCI address extension register (PCI_ADDR_EXT). The PCI byte
enables for each data phase are generated as appropriate based on
the StrongARM* core store instruction.

DMA Channels CommandsPCl Memory Write and Memory Write and Invalidate commands are
initiated from aDMA channel programmed to perform a SDRAM-
to-PClI transfer. The PCl addressis based on the DMA channel PCI
address register (CHAN_1 PClI_BAR, CHAN_2 PCI_BAR). The
PCI byte enables are all asserted with the possible exception of
during the first or last Dword of a DMA transfer. The length of the
burst isnormally 8 or 16 Dwords, with the possible exception of the
first or last burst of aDMA transfer.

5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple

This section describes Memory Read, Memory Read Line, and Memory Read Multiple commands
from either the StrongARM* core or DMA channel.

Thefollowing general rules apply to the command transactions regardl ess of whether the command
was initiated by the StrongARM* core or the DMA channels:

¢ |f the PCI unit receives atarget retry response, it repeats the same PCl command at the first
opportunity.

¢ |f the PCI unit receives amaster abort, it substitutes FFFF FFFFh for the read data and setsthe
status register (PCl_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core

* If the PCI unit receives atarget abort, it sets the status register (PCI_STATUS) received target
abort bit, which, if enabled, interrupts the StrongARM.

148 Hardware Reference Manual

5.34.4

5.3.45

Intel® IXP1200 Network Processor Family
PCI Unit

From StrongARM* core PCI memory reads are done when the StrongARM* core performs reads
from the PCI memory space. The PCI addressis derived from the
StrongARM address and the PCI address extension register
(PCI_ADDR_EXT). For Memory Read, the PCI byte enables are
generated as appropriate based on the StrongARM* core load
instruction. For Memory Read Lineand Memory Read Multiple, the PCI
byte enables assert for all data phases.

For Memory Read, one Dword is read.

From DMA The PCl command used is specified by the DMA channel PCI read type
field in the DMA channel control register (CHAN_1 CONTROL,
CHAN_2 CONTROL). The PCI addressis based on the DMA channel
PCI addressregister (CHAN_1_PCI_BAR, CHAN_2_PCI_BAR). The
PCI byte enables assert for al data phases. The maximum number of
Dwords that can be read is specified in the DMA channel control
register.

/O Write

An 1/0O write occurs when the StrongARM* core addressisin the PCI 1/O space. The PCI address
is derived from the StrongARM address and the PCI address extension register
(PCI_ADDR_EXT). The PCI byte enables for each data phase are generated as appropriate based
on the StrongARM* core store instruction. One Dword is written.

The following general rules apply to 1/0O write transactions:

¢ If the PCI unit receives atarget retry response, it repeats the I/O write command at the first
opportunity.

* If the PCI unit receives a master abort, it discards the write data and sets the status register
(PCI_STATUS) received master abort bit, which, if enabled, interrupts the StrongARM* core.

¢ |f the PCI unit receives atarget abort, it discards the write data and sets the status register
(PCI_STATUS) received target abort bit, which, if enabled, interrupts the StrongARM* core.

/O Read

An 1/O read occurs when the StrongARM* core addressisin the PCI 1/O space. The PCI addressis
derived from the StrongARM address and the PCl address extension register (PCl_ADDR_EXT).
The PCI byte enables for each data phase are generated as appropriate based on the StrongARM*
core load instruction. One Dword is read.

The following general rules apply to the I/O read transactions:

¢ |f the PCI unit receives atarget retry response, it repeats the I/0 read command at the first
opportunity.

¢ |f the PCI unit receives amaster abort, it substitutes FFFF FFFFh for the read data and setsthe
status register (PCl_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

¢ |f the PCI unit receives atarget abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCl_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.

Hardware Reference Manual 149

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.3.4.6 Configuration Write

A configuration write occurs when the StrongARM* core address is in the PCI configuration
address range. The PCI address is derived from the StrongARM address and depends on whether
type O or type 1 configuration space is addressed.

It isthe responsibility of StrongARM* core software to generate an address that is meaningful for
the PCI configuration cycle. For example, typically ad[23:11] bits are used for the idsel of PCI
devices during atype O configuration cycle, so only one of those bitsisa 1. The PCI byte enables
are generated as appropriate based on the StrongARM* core store instruction. One Dword is
written.

Thefollowing general rules apply to configuration write transactions:

¢ |f the PCI unit receives atarget retry response, it repeats the configuration write command at
the first opportunity.

* If the PCI unit receives a master abort, it discards the write data and sets the status register
(PCI_STATUS) received master abort bit, which, if enabled, interrupts the StrongARM* core.

¢ |f the PCI unit receives atarget abort, it discards the write data and sets the status register
(PCI_STATUS) received target abort bit, which, if enabled, interrupts the StrongARM* core.

5.3.4.7 Configuration Read

A configuration read occurs when the StrongARM* core addressis in the PCI configuration space.
The PCI address is derived from the StrongARM address and depends on whether the type 0 or
type 1 configuration space is addressed. The PCI byte enables are generated as appropriate based
on the StrongARM* core load instruction. One Dword is read.

The following general rules apply to configuration read transactions:

¢ |f the PCI unit receives atarget retry response, it repeats the configuration read command at
the first opportunity.

¢ |f the PCI unit receives amaster abort, it substitutes FFFF FFFFh for the read data and setsthe
status register (PCl_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

¢ |f the PCI unit receives atarget abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PClI_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.

5.3.4.8 Special Cycle

A special cycle occurs when the StrongARM* core addressisin the PCl |ACK/Specia space. The
special cycleis caused by a StrongARM* core write. The PCI address is undefined. The PCI byte
enables are generated as appropriate based on the StrongARM* core store instruction. One Dword
iswritten. Special cycles are broadcast to all PCI agents, so devsel_| is not asserted and no errors
can be received.

150 Hardware Reference Manual

INial.

5.3.4.9

5.3.4.10

53.4.11

Intel® IXP1200 Network Processor Family
PCI Unit

IACK Read

An1ACK read occurs when the StrongARM* core addressis in the PCI | ACK/Specia space. An
IACK read is caused by a StrongARM* core read. The PCI address is undefined. The PCI byte
enables are generated as appropriate based on the StrongARM* core load instruction. One Dword
isread.

Thefollowing general rules apply to IACK read transactions:
¢ If the PCI unit receives atarget retry response, it repeats the IACK read at the first opportunity.

¢ |f the PCI unit receives a master abort, it substitutes FFFF FFFFh for the read data and setsthe
status register (PCl_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

¢ |f the PCI unit receives atarget abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCl_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.

PCIl Request Operation

The PCI unit assertsreq_|[0] to act as bus master on the PCI for StrongARM* core and DMA
originated transactions. It deassertsreq_I[0O] for two cycles when it receives aretry or disconnect
response from the target.

However, if gnt_I[0Q] is asserted, the PCI unit can start a PCI transaction regardless of the state of
reg_l[0].

When the PCI unit requests the PCI bus, it performs a PCl transaction when gnt_I[0] is received.
Oncereq_I[0] is asserted, the PCI unit never deassertsit prior to receiving gnt_I[0] (nor deasserts
it after receiving gnt_I[0] without doing a transaction).

Master Latency Timer

When the PCI unit begins a PCI transaction as master, asserting frame 1, it begins decrementing its
master latency timer. When the timer val ue reaches zero, the PCI unit checks the value of gnt_1[0].
If gnt_I[0] is deasserted, the PCI unit deasserts frame | (if it is still asserted) at the earliest
opportunity. Thisis normally the next data phase for all transactions except for the memory write
and invalidate command (MWI1). For MWI, it isthe data phase at the top of a cache line. When the
command is MWI and the latency timer expires while the last Dword of a cache lineis being
delivered, and frame | is still asserted, the master delivers the entire next cache line before
stopping the transaction.

Hardware Reference Manual 151

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.3.5

535.1

5.3.5.2

5.3.5.3

5.3.6

152

Errors As PCI Target

PCI target errors are listed as follows:
¢ Address parity error
* Write data parity error
* Read data parity error

Address Parity Error

An address parity error is detected when the par signal driven by the PCI master does not match
the expected parity for the address and command. This causes the following actions to occur:

* Thestatusregister (PCl_STATUS) detected parity error bit is set.

* If the (potentially corrupted) address or command matches any of the PCI unit base address
registers, then the PCI unit claims the cycle and proceeds as though the address was correct.

¢ If the command register (PCI_COMMAND) parity error response bit isa 1, command register
SERR enablebitisal, and pci_cfn[0] isaO0, then serr_| is asserted for one cycle and the
status register (PCl_STATUS) signaled system error bit is set.

Write Data Parity Error

A write data parity error is detected when the par signal received by the PCI unit does not match
the expected parity for data and byte enables. This causes the following to occur:

* Thestatusregister (PCl_STATUS) detected parity error bit is set.
* |If the command register parity error response bit isa 1, then:
— perr_| is asserted.

— If the data destination is SDRAM, and SDRAM parity is enabled, incorrect parity is
written to the SDRAM. The write is completed to the intended destination (that is, CSR,
SDRAM, or ROM) despite the detection of a parity error.

Read Data Parity Error

A read data parity error is detected when the PCl master asserts perr_| in response to read data
driven by the PCI unit. No action is taken by the PCI unit.

Errors As PCIl Master

PCI master errors are listed as follows:
* Master abort
* Write data parity error
® Target abort on write

Read data parity error
Target abort on read

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o PCI Unit

5.3.6.1 Master Abort
A master abort occurs when devsel_| is not asserted within five cycles after the PCI unit asserts
frame_|. This causes the following actions to occur:

* Status register (PCl_STATUS) received master abort bit is set (except if the transaction isa
special cycle).

¢ |f the transaction was awrite from StrongARM* core or DMA, all write data for the
transaction is discarded.

¢ |f the transaction was a StrongARM* core read, FFFF FFFFh is inserted for read data.

* If thetransaction wasa DMA read or write, the channel error bit in the channel control register
(CHAN_1 CONTROL, CHAN_2 CONTROL) is set, stopping the channel.

5.3.6.2 Write Data Parity Error
A write data parity error occurs when the PCI target assertsperr_| in response to write data driven
by the PCI unit. This causes the following actions to occur:
¢ If the command register (PCI_COMMAND) parity error response bit isa 1, then:
— The status register (PCI_STATUS) detected parity error data bit is set.

— If the transaction was a DMA, the channel error bit in the channel control register
(CHAN_1 CONTROL, CHAN 2 CONTROL) is set, stopping the channel.

5.3.6.3 Target Abort on Write

When the PCI target signals a target abort, the following actions occur:
* Status register (PCl_STATUS) received target abort bit is set.
* Any remaining write datais discarded.

* If the transaction was aDMA, the channel error bit in the channel control register
(CHAN_1 CONTROL, CHAN_2 CONTROL) is set, stopping the channel.

5.3.6.4 Read Data Parity Error
A read data parity error is detected when the par signal that is received by the PCI unit does not
match the expected parity for data and byte enables. This causes the following actions to occur:

* Thestatusregister (PCl_STATUS) detected parity error bit is set. If the command register
(PCI_COMMAND) parity error response bit is set, then the status register (PClI_STATUS)
data parity error detected bit is set and the PCI unit assertsperr_|.

¢ Dwords with bad parity are marked as such in the Inbound FIFO.

— For DMA operations, if SDRAM parity is enabled, incorrect parity iswritten to SDRAM.
The channel error bit in the channel control register (CHAN_1 CONTROL,
CHAN_2 CONTROL) is set, stopping the channel.

Hardware Reference Manual 153

Intel® IXP1200 Network Processor Family m
PCI Unit N
®

5.3.6.5 Target Abort on Read

When the PCI target signals a target abort, the following actions occur:

* If theread is a demand read for the StrongARM* core, it substitutes FFFF FFFFh for the read
data.

* If the transaction was aDMA, the channel error bit in the channel control register
(CHAN_1 CONTROL, CHAN 2 CONTROL) is set, stopping the channel.

154 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

FBI Unit 6

This section describes the FBI Unit.
Section 6.1, “FBI Architecture” on page 6-156: Describes the architecture of the FBI Unit.

Section 6.2, “Push/Pull Engine Interface” on page 6-158: Describes how data is moved between
the FBI Unit and the other functional units.

Section 6.3, “ Scratchpad Memory” on page 6-162: Describes the internal Scratchpad memory.
Section 6.4, “Hash Unit” on page 6-165: Describes the Hash Unit.
Section 6.5, “FBI CSRs” on page 6-168: Describes the FBI CSRs.

Section 6.6, “1X Bus Interface” on page 6-174: Describes the 1X Bus and Ready Bus interfaces.

Hardware Reference Manual 155

Intel® IXP1200 Network Processor Family m

FBI Unit

6.1

Figure 6-1.

Table 6-1.

156

INtal.

FBI Architecture

The FBI Unit provides on-chip Scratchpad memory, hash index generation hardware, an interface
to the IX Bus, and functions accessible through the FBI CSRs. The StrongARM* core and the
Microengines access these resources through the FBI Push/Pull Engine interface. Figure 6-1isa
block diagram of the FBI Unit. A description of FBI resources appearsin Table 6-1.

FBI Unit Block Diagram

SDRAM Data Bus
(From SDRAM — >
Push/Pull Engines) ~~ TFIFO
16 elements
SRAM Data Bus (10 qé’:gr:’;’ords
(To/From g—o -
Microengine SRAM - -
Transfer registers)
< ;: FBI CSRs I(—)
IX Bus
IX Bus
StrongARM Read <€ >
or Write (AMBA ——3» FBI Scratchpad
Command from ATU) Push/Pull Memory
Engine 1024 x 32-bit
- . Interface Ready Ready Bus
Microengine Command Bus e
(Command Bus) Operands
> Hash
- Unit
Hash Result IX Bus
4 Interface
_— RFIFO
< 16 elements
(10 quadwords
each)
FBI Resouces
A7068-02
FBI Resources
FBI Resource Purpose Accessed By
Hash Unit Used to generate hash indexes for 48-bit or 64-bit data. | Microengines
4 Kbytes of internal memory (1 K x 4 byte). Operations
Scratchpad supported:
Memory Read and Write operations. StrongARM* core/Microengines
Bit test/set, Bit test/clear, and Increment operations. Microengines

Registers are used for:
« FBI Unit configuration.
« Accessing IX Bus Interface (IX Bus and Ready

* 1
FBI CSRs Bus). St_rongARM core~/
. . Microengines
¢ Inter-thread signaling.
* 64-bit counter.
¢ Clear-on-read register (SELF_DESTRUCT).
IX Bus Transmitting and receiving data on the 1X Bus. The IX Microengines

Bus is accessed through the FBI CSRs.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Table 6-1. FBI Resources (Continued)

FBI Resource Purpose Accessed By

8-bit data bus that is used:
« To read MAC FIFO Ready Flags.
Ready Bus « To assert flow control to a MAC device. Microengines
* As a communication channel to another IXP1200.
The Ready Bus is accessed through the FBI CSRs.

RFIFO Data buffers that hold data received from the IX Bus. Microengines (read)
TEIEO gﬁ;a buffers that hold data to be transmitted to the X Microengines (write)

1. The StrongARM* core does not have access to the fast_wr function supported by some FBI registers, the
CYCLE_CNT register, or the Hash Unit.

Hardware Reference Manual 157

Intel® IXP1200 Network Processor Family

FBI Unit

6.2

Push/Pull Engine Interface

in

The StrongARM* core and the Microengines issue commands to the Push/Pull Engine Interface

when accessing an FBI resource. The Push/Pull Engine Interface places the commandsinto queues,
arbitrates which commands to service, and moves data between the FBI resources, the
StrongARM* core, and Microengines.

Figure 6-2.

Push/Pull Engine Interface Block Diagram

Internal Bus (To/From
Microengine SRAM
Transfer registers)

fast_wr path

Pull Data

TFIFO

TFIFO
CSR/Scratchpad
Hash

Pull Engine Task Arbiter

Pull Cmd
FBI Pull Engine

CSRs

BEAR

Scratch-

Y

pad

Y

Hash

AMBA
Command
(from ATU)
Task Requests —>]
-~ 8-Entry | 5
Pull
| 8-Entry
| > Hash [L—
Micro-
engine i~ 8-Entry _)\
Command Push
Bus 3

Task Requests —>»]

CSR/Scratchpad
Hash Ret

Push Engine Task Arbiter
Push Data

A A*

Unit

RFIFO

FBI Push Engine

FBI Resouces

A7059-01

158

Hardware Reference Manual

INial.

6.2.1

Table 6-2.

6.2.2

Table 6-3.

Intel® IXP1200 Network Processor Family
FBI Unit

Push and Pull Engines

The Push/Pull Engine Interface contains a Push Engine and a Pull Engine for moving data to and
from an FBI Resource and the StrongARM* core and Microengines. The Push and Pull Engines
operate independently and in parallel with each other. This provides improved performance for
moving data through the FBI Unit.

The terms Push and Pull are used relative to the FBI Unit. The Push Engine pushes data out of the
FBI Unit to aMicroengine SRAM Transfer Register or the StrongARM* core, and the Pull Engine
pulls data out of a Microengine SRAM Transfer Register or the StrongARM* core and places it
into an FBI resource.

In addition to servicing requests from the StrongARM* core and Microengines, the FBI Push and
Pull Engines also service requests from the Ready Bus for performing an autopush operation to a
Microengine SRAM Transfer Register. The FBI Push and Pull each contain atask arbiter that
determines which task it performs next. Table 6-2 defines the priorities for the task arbiters.

FBI Push and Pull Task Priorities

Priority Pull Engine Push Engine
1 StrongARM (AMBA) StrongARM (AMBA)
2 Hash (in progress) Scratchpad (test&set/clear return)
3 Hash (new operation) Rx Autopush
4 Pull Queue Tx Autopush
5 Hash (return data)
6 Push Queue

Microengine Initiated FBI References

When athread issues arequest to an FBI resource, acommand is driven onto theinternal command
bus and placed into command queues within the FBI Unit. Table 6-3 shows which queues are used
for each instruction type.

Instructions Assigned to FBI Command Queues

Hash Queue Pull Queue Push Queue
hashl_48 csr (write) csr (read)
hash2_48 t_fifo_wr r_fifo_rd
hash3_48 scratch (write) scratch (read)
hashl_64 scratch (increment)
hash2_64 scratch (test & set/clear)
hash3_64

The fast_wr instruction does not use the FBI Push or Pull Engines. It useslogic that servicesthe
instruction as soon as the write request is issued to the FBI CSR.

The sdram instruction, when used with thet_fifo rd or r_fifo_ wr command, relies on the SDRAM
Unit Push/Pull Engine to move data between SDRAM and the RFIFO and TFIFO.

Hardware Reference Manual 159

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.2.3 StrongARM* Core Initiated FBI References

The AMBA Trandation Unit (ATU) tranglates StrongARM* core AMBA bus transactions to FBI
read and write operations. StrongARM* core reads and writes bypass the Microengine queues and
are temporarily latched until either the Push or Pull Engineis free to service the request. The Push
and Pull task arbiters give StrongARM* core requests the highest priority to minimize
StrongARM* coreread stalls.

6.2.4 FBI Signal Events (to Microengines)

The FBI Unit provides asignal event to each Microengine thread to indicate when areferenceto an
FBI resource is completed. A Microengine thread must explicitly request the sig_done or ctx_swap
optional tokensin the following instructions: t_fifo_wr, r_fifo_rd, csr, hash, and scratch.

6.2.5 Command Ordering

Since the FBI Unit contains multiple command queues, two references destined for different FBI
gueues may not complete in the order in which they were issued.

A single thread may overload the FBI signal (SIG_DONE) with multiple referencesif the
references are to the same FBI queue. For example, if a Microengine thread executes the following
instructions, the execution order is maintained since both commands are placed into the read
command queue. In this case, when the FBI signal is asserted, this indicates both references have
completed.

r_fifo_rd[$xferl, 0, rfifo_addr, 2]

scratch[read, $xfer0, 0, addr, 1], sig_done ; O sig_swap

If multiple references are not issued to the same FBI queue, a separate FBI signal must be
reguested for each reference to maintain ordering. For example, if a Microengine thread executes
the instructions bel ow, the execution order may not be maintained since one command is placed
into the read queue and the other into the write queue. In this case, the first instruction requests the
FBI signal and waits until it isreceived. After the FBI signal isreturned, the next instruction may
reguest another FBI signal.

r_fifo_rd[$xferl, 0, rfifo_addr, 2], ctx_swap ;Doing FIFO read, noving data.
scratch[wite, $xfer0, 0, addr, 1], sig_done (or ctx_swap);Wite scratchpad RAM

6.2.6 FBI Command Bus Arbiter Signaling

The Microengine Command Bus Arbiter determines which commands (from the Microengines and
StrongARM* core) are placed onto the internal Command bus. The FBI Unit provides asignal to
the Command Bus Arbiter to indicate when the FBI Unit can not accept any more commands
because one or more of the three FBI command queues are full. This allows the StrongARM* core
and Microengines to issue references to the FBI without managing a back pressure mechanismin
software. Even if the FBI Unit is not accepting any more commands, the Command Bus Arbiter
can continue to issue commands to other Units.

160 Hardware Reference Manual

n

6.2.7

®

Intel® IXP1200 Network Processor Family
FBI Unit

Scratchpad Test and Set/Clear Instructions

If ascratch instruction specifiesatest_and set_bitsor atest_and clear_bits operation, a
Microengine submits acommand to the FBI Pull Engine queue to request that the bit mask
supplied in an SRAM Transfer Register can be read into the FBI Unit. Once the bit mask isread,
datais read from Scratchpad and arequest is made to the Push Engine to write the original data
back to the SRAM Transfer Register. The Scratchpad memory datais modified per the mask data
and written back to Scratchpad memory. If specified in the instruction, the Microengine thread is
signaled after the data is returned to the Microengine.

Example 6-1. Scratchpad Test and Set Bits

6.2.8

scratch[bit_w, $sramxfer_reg, opl, op2, test_and_set_bits]

Where:

$sram_xfer_reg The beginning of a contiguous set of registers that supply the scratchpad
data on write operation or contain the read data after a read operation.

opl and op2 These operands are added together to specify the scratchpad address

Scratchpad Increment Instruction

If a scratch instruction specifies an increment operation, the Microengine submits a command to
the FBI Pull Engine queue even though a pull operation is not performed. When the increment
command is serviced, datais read from Scratchpad memory, incremented by one, and written back
to Scratchpad memory.

Example 6-2. Scratchpad Increment

6.2.9

scratch[incr, --, opl, op2, 1], optional _token
Where:
-- Indicates an SRAM Transfer Register is not used for this command.

opl and op2 These operands are added together to specify the scratchpad address.
1 Specifies a burst size of one.
optional_token sig_done, ctx_swap, defer [1], indirect_ref.

Hash Instruction

The hash instructions require the service of the FBI Pull and Push Engines. The Microengines
submit a hash command to the FBI Pull Engine queue to request that the data used to generate the
hash index be read from the SRAM Transfer Registersinto the Hash Unit. Once the hash operation
is complete, arequest is made to the Push Engine to write the hash index data back to the SRAM
Transfer Register. If specified in the instruction, the Microengine thread is signaled after the hash
index datais returned to the Microengine.

One to three hash operations can be performed with a single Microengine hash instruction. As
described in Section 6.4.1, the Hash Unit has two input buffers which may or may not be full.
Therefore, when multiple hashes are initiated by a single hash instruction, the FBI Pull Engine
feeds the data read from the SRAM Transfer registers into the Hash Unit one at atime. This

Hardware Reference Manual 161

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.3

6.3.1

162

translates into a separate Pull Engine service request for each piece of data used to generate the
hash index. The Pull Engine Task Arbiter gives a higher priority to a hash operation in progress
than a new hash operation request.

Scratchpad Memory

The FBI unit contains 1024 x 32-bit of Scratchpad memory that is accessible by the StrongARM*
core and Microengines. The Scratchpad memory performs three basic operations: read and write
operations, bit operations and an increment operation. The Microengines support all operations
while the StrongARM* core only supports the read and write operations.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and SDRAM)
that is shared by the Microengines and the StrongARM* core. The Microengines and the
StrongARM* core can distribute memory accesses between these three memory resources to
provide a greater number of memory accesses occurring in parallel.

Read and Write Operations

Read and write operations to Scratchpad memory are supported by both the Microengines and the
StrongARM* core.

The Microengine scratchpad read and write instructions have the following formats:
scratch[read, $sramxfer_reg, opl, op2, cnt], optional_token
scratch[wite, $sramxfer_reg, opl, op2, cnt], optional_token

Where:

$sram_xfer_reg The beginning of a contiguous set of registers which supply the
scratchpad data on write operation or contain the read data after aread
operation.

opl and op2 These operands are added together to specify the scratchpad address

cnt A burst count of oneto eight.

optional_token sig_done, ctx_swap, defer [1], indirect_ref

A Microengine initiates a write operation by first writing one to eight 32-bit data elementsinto an
SRAM Transfer Register, and then executing the scratch[write...] instruction. The referenceis
placed into the FBI Pull command queue. When the command is serviced, the FBI Unit reads the
datafrom the SRAM Transfer Registers, performs awrite operation to Scratchpad memory, and, if
specified, signals the Microengine thread when the operation is compl ete.

A Microengine initiates a read operation by executing the scratch[read...] instruction. The
reference is placed into the FBI Push command queue. When the command is serviced, the FBI
Unit performs aread operation to Scratchpad memory, pushes the data into the specified SRAM
Transfer Registers, and, if specified, signals the Microengine thread when the operation is
complete.

The Scratchpad memory is mapped into the StrongARM memory space at addresses 0xB004 4000

to 0xB004 4FFF (4 Kbytes of addresses). The StrongARM* core reads and writes Scratchpad
memory on longword address boundaries (byte and halfword are not supported).

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Figure 6-3. Scratchpad Memory Mapping

0xB004 4FFC Ox3FF
L]
L4 .
L]

0xB004 4004 0x001

0xB004 4000 0x000

Intel® StrongARM®* Core Microengine
Address Address
* StrongARM is a registered trademark of ARM Limited. A7074-01

6.3.2 Bit Write Operations

A bit write operation is one in which the specified bits at a 32-bit Scratchpad |ocation are set or
cleared using a single Microengine instruction.

Note: The FBI Unit does not support bit operations for the StrongARM* core.

A Microengine initiates a bit write operation by first writing a 32-bit bit mask into an SRAM
Transfer Register, and then executing the scratch instruction using the bit_wr scratch command.
Theinstruction has the following format:

scratch[bit_w, $sramxfer_reg, opl, op2, bit_op], optional _token

Where:
$sram_xfer_reg The re_gister that contains the bit mask and original datafor test
operations
opl and op2 These operands are added together to specify the Scratchpad address
bit_op Specifies one of the following bit operations:
* sat bits
* clear_bits
* test and set hits
* test and clear bits
optional_token sig_done, ctx_swap, defer [1], indirect_ref

Thereferenceis placed into the FBI Pull command queue. When the command is serviced, the FBI
Unit reads the bit mask from the SRAM Transfer Register, performs a read-modify-write operation
on the Scratchpad data, and, if specified, signals the Microengine thread when the operation is
complete.

Hardware Reference Manual 163

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.3.3

164

If the instruction specifiesatest_and_set_bitsor atest_and_clear_bits operation, the FBI Unit
submits a command to the FBI Pull engine to deliver the original data back to the SRAM Transfer
Register prior to signaling the Microengine thread. A Microengine thread should always perform a
context swap on atest_and_set_bitsor atest_and_clear_bits operation if it isimmediately
followed by aread operation.

Auto Increment Operations

An auto increment operation is one in which the data at a specified 32-bit Scratchpad location is
incremented by one.

A Microengine initiates an auto increment operation by executing the scratch[incr,...] instruction:

scratch[incr, --, opl, op2, 1], optional _token

Where:

-- Indicates an SRAM Transfer Register is not used for this command.
opl and op2 These operands are added together to specify the scratchpad address.
1 Specifies a burst size of one.

optional_token sig_done, ctx_swap, defer [1], indirect_ref.

Thereferenceis placed into the FBI Pull command queue. When the command is serviced, the FBI
Unit reads the data from Scratchpad memory, performs a read-increment-write operation on the
Scratchpad data, and, if specified, signals the Microengine thread when the operation is complete.

Hardware Reference Manual

6.4

6.4.1

Figure 6-4.

Intel® IXP1200 Network Processor Family
FBI Unit

Hash Unit

The FBI Unit contains a Hash Unit that can take 48-bit or 64-bit data and produce a 48-bit or a 64-
bit hash index, respectively. The Hash Unit is accessible by the Microengines only.

Hashing Operation

Up to three hash indexes can be created using a single Microengine instruction. The Microengine
hash instructions have the following format:

hashl_48[$sram xfer_reg], optional _token

hash2_48[$sram xfer_reg], optional _token

hash3_48[$sram xfer_reg], optional _token

hashl_64[$sram xfer_reg], optional _token

hash2_64[$sram xfer_reg], optional _token

hash3_64[$sram xfer_reg], optional _token

Where:

$sram_xfer_reg The beginning of a contiguous set of registers that supply the data used
to create the hash index and contain the hash index upon completion of
the hash operation.

optional_token sig_done, ctx_swap, defer [1]

A Microengine initiates a hash operation by writing a contiguous set of SRAM Transfer Registers
with the data to be used to generate the hash index and then executing the hash instruction. Two
SRAM Transfer Registers are required to create each hash index. In the case of the 48-bit hash, the
Hash Unit ignores the upper two bytes of the first Transfer Register.

How SRAM Transfer Registers are Used

31 0

| hash 3 [31:0] | $xfern+5 | hash 3 [31:0] | $xfer n+5
| don'tcare | hash 3[47:32] | $xfer n+4 | hash 3 [63:32] | $xfer n+4
| hash 2 [31:0] | $xfer n+3 [hash 2 [31:0] | $xfer n+3
| dontcare | hash2[47:32] | $xfer n+2 | hash 2 [63:32] | $xfer n+2
| hash 1 [31:0] | $xfer n+1 | hash 1 [31:0] | $xfer n+1
| dontcare | hash1[47:32] | $xfern | hash 1 [63:32] | $xfern

48-Bit Hash Operations 64-Bit Hash Operations

A7071-02

Thereferenceis placed into the FBI Hash command queue. The FBI Pull Engine arbitrates between
the AMBA, Hash, and Pull command queues and services the Hash queue according to the priority
shown in Section 6.2.1. When the command is serviced, the FBI Pull Engine reads the data from
the SRAM Transfer Registers and deposits the data into a 64-bit two-stage buffer. The two-stage
buffer allows the datafor up to three hash operations to be read into the Hash Unit in asingle burst.
Thefirst datato be hashed enters the hash array while the next two wait in the two-stage buffer.

Hardware Reference Manual 165

Intel® IXP1200 Network Processor Family

FBI Unit

Figure 6-5.

166

intel.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indexes. Two separate multipliers are supported, one for 48-bit hash operations and one
for 64-bit hash operations. The multiplier is programmed through FBI registers
(HASH_MULTIPLIER 64 LO, HASH_MULTIPLIER_64 HI, HASH_MULTIPLIER 48 LO,
HASH_MULTIPLIER_48 HI).

The multiplicand is shifted into the hash array eight bits at atime. The hash array performs a ones-
complement multiply and polynomial divide, calculated using the multiplier and 8 bits of the
multiplicand. The result is placed into an output register and also feeds back into the array. This
processis repeated 6 times for a 48-bit hash (8 bits x 6 = 48) and 8 times for a 64-bit hash (8 bits x
8 = 64). After an entire multiplicand has been passed through the hash array, the resulting hash
index is placed into atwo-stage output buffer. After each hash index is completed, the Hash Unit
reguests service from the FBI Push Engine so that the hash index can be returned to the
Microengines SRAM Transfer Registers. If specified by the instruction, the FBI Push engine
signals the Microengine after all the hashes specified in the instruction have been completed.

The number of Core clock cycles required to perform a single hash operation equals: two cycles
through the input buffers, six or eight cycles through the hash array, and two cycles through the
output buffers. Because of the pipeline characteristics of the Hash Unit, performanceisimproved if
multiple hash operations are initiated with a single instruction rather than separate hash instructions
for each hash operation.

Hash Operation Flow

__ Data Used to Create Hash Index
from SRAM Write Transfer Registers

Y
2-Stage Input Buffer Mult?plﬁcand 3
Multiplicand 2
64
Y
| Multiplicand 1 |
gl < shift
HASH_MULTIPLIER 48|
Hash Array
64 j HASH MULTIPLIER 64
v 48-Bit or 64-Bit Hash Select

| Hashed Multiplicand 3 |

64

Y
Hashed Multiplicand 2
Hashed Multiplicand 1

2-Stage Output Buffer

Hash Unit

Y
Hash Indexes to

SRAM Read Transfer Registers A7078-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o FBI Unit

6.4.2 Hash Algorithm

The hashing a gorithm used by the I XP1200 allows flexibility and uniqueness since it can be
programmed to provide different results for a given input. The algorithm uses binary polynomial
multiplication and division under modulo-2 addition. The input to the algorithm is a 48-bit or 64-
bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47
polynomial in x. The input polynomial (designated as A(x)) has the form:

A(X) = ay7* X7+ ayg* X0+ ..+ &, * X2 + &y * X + & (48-bit hash operation)
A(X) = agz* X5 +agy * XB2+ ... + ay* x? + & * X + ag (64-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The
hash multiplier, M(x) is stored in FBI CSRs and represents the polynomial

M(X) = myz * x*7 + myg* x* + ...+ my* x2+ my * x + m (48-hit hash operation)
M(X) = mgg * X8 + mg, * x82 + ... + my * X% + my * x + mq (64-bit hash operation)

Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial or
an order-126 polynomial with coefficientsthat are also 1 or 0. This product is divided by a fixed
generator polynomial given by:

GX) =x®+x3+ x5 +x10+1 (48-bit hash operation)

GX) =X+ x¥ +xP +x17+1 (64-bit hash operation)

Thedivision resultsin aquotient Q(x), apolynomial of order-46 or order-62, and aremainder R(x),
apolynomial of order-47 or order-63. The operands are related by the equation:

AX)* M(x) 1 G(x) = R(x) + Q(X)

The generator polynomial has the property of irreducibility. Asaresult, for afixed multiplier M(x),
thereis a unique remainder R(x) for every input A(x). The quotient Q(x), can then be then
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given
bounded set of input values A(x) (say 8 K or 16 K table entries), with bit weights of an arbitrary
density function can be mapped one-to-one into a set of remainders R(x) such that the bit weights
of the resulting Hashed Arguments (a subset of al values of R(x) polynomials) are al about equal.
In other words, thereis a high likelihood that the low order set of bits from the Hash Arguments are
unique, so they can be used to build an index into the table. If the hash agorithm does not provide
auniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may
be modified to provide better results.

Hardware Reference Manual 167

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.5 FBI CSRs

The FBI CSR registers are accessible by the StrongARM* core and Microengines and are used to:
¢ Configure and control the IX Bus Interface.
* Configure the Hash Unit.
* Generate inter-thread signaling.
* Generate Microengine initiated StrongARM* core interrupts.

* Read a 64-bit cycle count register (Microengine only access).

6.5.1 CSR Reads and Writes

The Microengines can read or write any FBI CSR using the csr instruction. One FBI CSR is read
per csr instruction except when GET_CMD and CYCLE_CNT registersareread. The GET_CMD
is mapped to an 8-entry x 32-bit FIFO and up to four entries can be read in a single instruction.
Reading the CY CLE_CNT register returns a 64-bit count value into two SRAM Transfer Registers.

The StrongARM* core can read or write any of the FBI registers except the 64-bit CYCLE_CNT
register. The FBI registers are mapped into the StrongARM address space.

6.5.2 FAST _WR Support

The Microengine support afast_wr instruction that bypasses the Push and Pull queuesto improve
performance when writing to asubset of FBI registers. Thefast_wr instruction is not supported for
the StrongARM* core. The fast_wr instruction supplies 10-bit immediate data in the reference
command. This eliminates the need for the FBI Pull engine to read data from a Microengine
Transfer Register when it processes the command.

The meaning of the 10-bit immediate datais shown in Table 6-4. Some registers do not require the
entire 10 bits. The programmer should ensure that data larger than what is specified for the register
is not written, since it extends past the Microengine assigned bit field into another Microengine
assigned bit field.

Table 6-4. 10-Bit Immediate Data (Sheet 1 of 2)

Register 10-Bit immediate data

INTER_THD_SIG Thread number of the thread that is to be signaled.

A 2-bit message that is shifted into a position relative to the thread that is writing

THREAD_DONE the message. The message is determined through software.

THREAD_DONE_INCR1 | same as thread_done except that either the enqueue_seql or enqueue_seq? is
THREAD_DONE_INCR2 | also incremented.

The Transmit FIFO element number (0 to 15) that is to marked to indicate that the

XMIT_VALIDATE data is valid in this element.

168 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Table 6-4. 10-Bit Immediate Data (Sheet 2 of 2)

Register 10-Bit immediate data
INCR_ENQ_NUM1 Write a one to increment the Enqueue Sequence Number by one (The Sequence
INCR_ENQ_NUM2 Number is always incremented by one).
SELF_DESTRUCT Specifies the bit position (0-31) that is set.

The 10-bit immediate data supplied with the instruction is shifted in two segments
to the appropriate fields. Bits 6 through 0 are shifted left by an amount equal to the
thread number writing the data. Bits 9 through 7 are always shifted into the BP2
through BPO positions regardless of the Microengine writing the data.

IREG

6.5.3 FBI CSR Description Summary

The FBI CSRs are listed by function and briefly described in the following sections. Refer to the
I XP1200 Network Processor Programmer’s Reference Manual for more information on the FBI
CSRs.

6.5.3.1 IX Bus Receive Registers

Table 6-5. Receive Request Registers

Register Description

Receive Request Register. Written by a Microengine thread to issue a Receive

RCV_REQ Request to the Receive State Machine. (Implemented as a 2-entry FIFO).

Receive Control Register. Written by the Receive State Machine to provide control

RCV_CNTL information about the data in an RFIFO. (Implemented as a 4-entry FIFO).

The purpose of the Receive Request Registersis described in detail in Section 6.6.4.

Table 6-6. Sequence Numbers Registers

Register Description
SOP_SEQ1 SOP sequence number incremented by the Receive State Machine for Fast Ports 1
SOP_SEQ2 and 2.
ENQUEUE_SEQ1 Enqueue SOP sequence number incremented by the Microengine threads for Fast
ENQUEUE_SEQ2 Ports 1 and 2.

The purpose of the Sequence Numbers Registers is described in detail in Section 6.6.8.

Hardware Reference Manual 169

Intel® IXP1200 Network Processor Family

FBI Unit

6.5.3.2

Table 6-7.

6.5.3.3

Table 6-8.

170

IX Bus Transmit Registers

The purpose of these registersis described in detail in Section 6.6.5.

IX Bus Transmit Registers

Register

Description

XMIT_VALIDATE

Transmit Validate Register. Written by a Microengine thread (using the fast_wr
instruction) to indicate the data and control information in a TFIFO element is valid.

XMIT_PTR

Transmit Pointer Register. Read by a Microengine thread to determine which
TFIFO element is transmitted next by the Transmit State Machine.

IX Bus and Ready Bus Configuration Registers

The purpose of these registersis described in detail in Section 6.6.1 and Section 6.6.3.

IX Bus and Ready Bus Configuration Registers

Register

Description

RDYBUS_TEMPLATE_CTL

Ready Bus/IX Bus Configuration Register. Used to:
» Enable the Ready Bus Sequencer.
» Select 1-2 MAC or 3+ MAC mode.
» Select 32-bit unidirectional or 64-bit bidirectional IX Bus mode.
» Specify the Ready Bus as a master or slave.
» Select Shared IX Bus mode.
» Select IX Bus Status mode.
» Select IX Bus little or big endian mode.

RCV_RDY_CTL

Ready Bus/IX Bus Configuration Register. Used to:
» Select the Fast Port mode.
« Configure the Ready Bus for Rx autopush operation.

XMIT_RDY_CTL

Ready Bus/IX Bus Configuration Register. Used to:
» Keep a copy of the current TFIFO Valid flags.
» Configure the Ready Bus for Tx autopush operation.

RDYBUS_TEMPLATE_PROG3
RDYBUS_TEMPLATE_PROG2
RDYBUS_TEMPLATE_PROG1

Ready Bus Program Register. Contains the Ready Bus Sequencer
program.

RDYBUS_SYNCH_COUNT_DEFAULT

Ready Bus Synchronize Counter Register. Contains the count
value used to determine the minimum rate at which the Ready Bus
Sequencer repeats the program.

FP_READY_ WAIT

Fast Port Mode Configuration Register. Specifies how many IX Bus
clock cycles the Receive State Machine waits before returning to
the same Fast Port between the time it reads the last data transfer
on the IX Bus and the time the Receive State Machine samples the
receive ready pins (FAST_RX1 and FAST_RX2) to start the next
receive.

REC_FASTPORT_CTL

Fast Port Status Register. Provides the current status of the header
and body thread assignments for the two Fast Ports.

Hardware Reference Manual

intel.

6.5.3.4

Table 6-9.

6.5.3.5

Table 6-10.

6.5.3.6

Table 6-11.

Intel® IXP1200 Network Processor Family
FBI Unit

Ready Bus Control Registers

The purpose of these registersis described in detail in Section 6.6.3. Table 6-9 provides a summary.

Ready Bus Control Registers

Register

Description

FLOWCTL_MASK

MAC Flow Control Mask Register. Written by the Microengines to specify the MAC
and the 8-bit mask that determine which port asserts flow control.

RCV_RDY_CNT

Status register that provides the following:
* Receive Ready Count.
* Receive Request Count.
» Fast Receive Ready flags for ports 1 and 2.
* FLOWCTL_MASK register valid data status.
« Initial IX Bus owner/Ready Bus Master.

RCV_RDY_HI Receive Ready Flags. Status registers that indicate which MAC Ports Rx FIFOs
RCV_RDY_LO have data available.

XMIT_RDY_LO Transmit Ready Flags. Status registers that indicate which MAC Ports Tx FIFOs
XMIT_RDY_HI have room for data.

GET_CMD Get and Send registers. Typically used to send data to another IXP1200. These
SEND_CMD registers are each mapped to eight-entry FIFOs.

Hash Unit Configurations Registers

The purpose of these registersis described in detail in Section 6.4.1. Table 6-10 provides a

summary.

Hash Unit Configurations Registers

Register

Description

HASH_MULTIPLIER_64_HI
HASH_MULTIPLIER_64_LO

64-bit Hash Multiplier. These registers contain the programmable hash
multiplier for generating 64-bit hash indexes.

HASH_MULTIPLIER_48_HI
HASH_MULTIPLIER_48_LO

48-bit Hash Multiplier. These registers contain the programmable hash
multiplier for generating 48-bit hash indexes.

FBI Interrupt/Signal Registers

FBI Interrupt/Signal Registers

Register

Description

IREG

StrongARM?* core FBI Interrupt Register. Used to enable CINT and Microengine
thread interrupts to the StrongARM* core. Microengines threads write this register
to generate a StrongARM interrupt.

INTER_THD_SIG

Inter-thread Signaling Register. Any thread or the StrongARM* core can write a
Microengine thread number to this register to signal an inter-thread signal event.

Hardware Reference Manual

171

Intel® IXP1200 Network Processor Family m
FBI Unit In ®

6.5.3.7 Thread Status Registers

Table 6-12. Thread Status Registers

Register Description

Thread Processing Status (write). All 24 Microengine threads can write 2-bit
THREAD_DONE messages to this register using the fast_wr instruction to indicate current
processing status.

THREAD_DONE_REGO | Thread Processing Status (read). Each of the 24 Microengine threads can read
THREAD_DONE_REG1 | the 2-bit messages that were written using the fast_wr instruction.

THREAD_DONE_INCR1 Thread Processing Status (write). Thes_e registers are the same as
THREAD_DONE except that they also increment Fast Port enqueue sequence
THREAD_DONE_INCR2. | nympers (in ENQUEUE_SEQ1 and ENQUEUE_SEQZ2) when written.

6.5.3.8 Miscellaneous Registers

The purpose of these registersis described in detail in Section 6.5.4 and Section 6.5.5. Table 6-13
provides a summary.

Table 6-13. Miscellaneous Registers

Register Description

Cycle Count Register. A 64-bit counter that can be read by any Microengine thread

CYCLE_CNT (can not be read by the StrongARM* core).

Self Destruct Register. This register is written during a fast_wr instruction with data
in the range of 0 through 31 (decimal). Writing this register sets a bit that
corresponds to the data written. When the register is read, all bits are cleared to 0
after the original data is read.

SELF_DESTRUCT

6.5.4 Cycle Count Register

The IX Bus Interface contains a free running 64-bit counter that provides an ~3000-year modul o
count that isincremented once each Core clock cycle (Fgqe). This counter is read by accessing the
CYCLE_CNT register. Thisisthe only register read by the Microengine as a single 64-bit register
into two SRAM Transfer Registers using the csr instruction. The StrongARM* core can not read
this register.

The use of the Cycle Counter is defined by the programmer. The Microengine threads can read this
register to perform time-sensitive tasks such as regulating transmit bandwidth.

6.5.5 Self Destruct Register

The SELF_DESTRUCT register iswritten using afast_wr instruction. Writing this register setsa
bit that corresponds to the data written. For example, writing avalue of 3 setshit 3. Multiple writes
can be performed to set additional bits without changing the state of the other bitsin the register.
Theregister isread using the csr instruction. When the register isread, all bits are cleared to O after
the original datais read.

When aMicroengine executesafast_wr instruction, the data bypasses the FBI command queuesto

the Push and Pull engines. Since a CSR read of this register placesacsr read command into the
Push queue, the order may not be preserved if a CSR read is followed by afast_wr instruction.

172 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

The use of the SELF_DESTRUCT register is defined by the programmer. One possible useisas a
fast method of communication between threads.

6.5.6 Thread Status Registers (THREAD_DONE)

The THREAD_DONE registers are provided so that the Microengines can quickly report their
current processing status. Other Microengine threads or the StrongARM* core can read the register
to get the processing status of the Microengine threads. These registers contain twenty-four 2-bit
status fields, one for each Microengine thread.

The Microengines write a 2-bit message to the THREAD_DONE register using afast_wr
instruction.

Each Microengine thread can be programmed to write a 2-bit message that represents their current
processing status to one of these fields using the fast_wr instruction. The fast_wr immediate data
is shifted into the correct bit position within the register based on the thread ID of the Microengine
thread that issued the fast_ wr command.The data should be constrained to values 0, 1, 2, or 3,
otherwise the 10-bit immediate data overwrites the bit fields for other threads. The thread
processing status of the Microengine threads are read using the csr read instruction. Since the
number of bits required to support 24 2-bit messages exceeds 32 bits, two registers
(THREAD_DONE_REGO and THREAD_DONE_REG1) must be read to read the statusfor all the
Microengine threads.

The definition of the 2-bit statusfield is determined through software. An example of the 2-bit
encoding is shown in the following example:

Example 6-3. 2-bit Encoding Example

Message Description
00 Thread is still active
01 Thread task is complete but it has not seen an EOP
10 Thread task is complete and the EOP was seen
11 Not used

Hardware Reference Manual 173

FBI Unit

Intel® IXP1200 Network Processor Family int9I
®

6.6

Figure 6-6.

6.6.1

174

IX Bus Interface

The IX Bus Interface consists of two buses: The Ready Bus and the IX Bus.

The Ready Busis controlled by a programmable sequencer and is used for:
* Retrieving the MAC Receive and Transmit FIFO Ready flags from MAC devices.
* Asserting Flow Control to MAC devices.

* |nter-1XP1200 communications.

The IX Busis used to transfer data to and from slave devices (i.e., MACs). It is controlled by a
Transmit State Machine and a Receive State Machine. An I1X Bus Arbiter is provided for selecting
which state machine owns the IX Bus. These components are described in the following sections.

IX Bus Interface

TFIFO -
(fg;ﬁ?ﬁgzs | | Transmit State
each) Machine
IX Bus Arbiter IXBus | | !XBus
| Interface | -
Logic
FBI CSRs 1 Receive State
- .]
Machine
RFIFO Ready Bus
| | L Ready Bus
16 elements Sequencer <€
(10 quadwords a
each) <

IX Bus Interface

A7069-02

Configuring the IX Bus and Ready Bus

ThisIX Busis configured by software through a series of registers and through a hardware
configuration pin. The figures that follow provide a summary of the FBI registers that are used to
configure the IX Bus and the Ready Bus. These registers are described in more detail in

thel XP1200 Network Processor Programmer’s Reference Manual.

The TK_IN pin (which is used as atoken input pin) has a secondary function used at power-up to
configure the IX Bus. It determines whether an 1XP1200 powers up as a Ready Bus master or
slave and whether an 1XP1200 initially owns the I X Bus upon power-up. Thisisimportant since it
defines which 1XP1200 should drive the I X Bus and Ready Bus to a known state prior to
configuring the IX Bus through software. If TK_IN is pulled high during reset, an 1XP1200 will
initially own the IX Bus, is configured as the Ready Bus master, and drives both of these buses. If
TK_IN in pulled low during reset, an I XP1200 will not drive these buses. In asingle IXP1200
system, the TK_IN pin should be pulled high. System designs that use the Shared 1X Bus mode
should have only one I XP1200 pulling this pin high.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o FBI Unit

Figure 6-7. RCV_RDY_CTL Register

31:15 14:13 12:10 9 8 7:6 5 4:0
Fast | Auto | Auto Auto | Sig | Rx

RES Port | Push | Push |RES| Push | Rx |Schd
Mode | Prev | Enable Regs | Schd| ID

|R_r Specify the Thread ID of the
Receive Scheduler (where
RxAutopush will write the
registers autopushed).

L Rr Specify whether the Receive
Scheduler should be signaled
after an RxAutopush operations.

Rr__ Specify which registers should
be RxAutopushed

Specify if the registers should be
RxAutopushed to the
Receive Scheduler

RURr setsthe
RxAutopush/TxAutopush
Prevent Window

IX__ Ifthe RCV_REQ specifies Fast
Ports, this selects the Fast Port
Mode that is used.

Note:

Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

A7050-01
Figure 6-8. XMIT_RDY_CTL Register
31:15 15:10 9 8 7:6 5 4:0
Auto Auto | Sig | Tx .
Tx Valid Flags RES | Push |[DVB|Push | Tx |Schd| Specify the Thread ID of the
Enable Regs | Schd| ID Receive Scheduler (where

Rt TxAutopush will write the
registers autopushed).

Rt Specify whether the Transmit
Scheduler should be signaled
after an RxAutopush operations.
Specify which registers should
be TxAutopushed.

Selects the Dual Valid Bit Mode
for TFIFO writes.

Rt

Specify that the registers should
be TxAutopushed to the
Transmit Scheduler.

Status of the transmit valid flags.
(Read only)

Note:

Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

A7051-01

Hardware Reference Manual 175

Intel® IXP1200 Network Processor Family

FBI Unit

Figure 6-9. RDYBUS_TEMPLATE_CTL Register

31:12 11 10 9 8 7 6 5 4:0
32/64 |Rdybus|Shared
Enable| MAC) Status| FBI
REE Rdybus| Mode bit | Master {IX Bus Mode |Endian RIES
Mode | Slave | Mode

Note:

|—|X Specify whether the FBI

IXIRUYRr

Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

interprets the FBE# signals
in Big Endian or Little Endian.

Specify whether the Receive
State Machine should read
status after it detects an EOP

Specify whether the IX Bus
Arbiter is enabled to pass the

IX Bus token to another IXP1200
on the same IX Bus. The IX Bus
must be placed into 64-bit
bidirectional mode.

Specify if this IXP1200 is a
Ready Bus Master or Slave.

Specify whether the IX Bus is
in 32-bit unidirectional mode
or 64 bit bidirectional mode.

Specify whether the IX Bus and
Ready Bus are in 1-2 MAC
mode or 3-4/3-7 MAC mode.

Enable the Ready Bus
Sequencer.

A7052-01

Figure 6-10. RDYBUS_SYNCH_COUNT_DEFAULT Register

31:16

15:0

RES

Ready Bus Timer

R Ready Bus Sequencer

Program Cycle Rate

A7053-01

176

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Figure 6-11. RDYBUS_TEMPLATE_PROGXx Registers

31:24 23:16 15:8 7:0

| instr 11 | instr 10 | instr 9 | instr 8 |

| instr 7 | instr 6 | instr 5 | instr 4 |

| instr 3 | instr 2 | instrl | instr 0 |
| R Ready Bus
Sequencer
instructions

A7054-01
6.6.2 IX Bus and Ready Bus Modes

This section describes the different modes of operation supported by the IX Bus and Ready Bus.

6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes

64-bit bidirectional IX Bus mode or 32-bit unidirectional IX Bus modeis selected viathe
RDYBUS TEMPLATE CTL register. In 64-bit bidirectional 1X Bus mode, the IX Busisasingle
64-bit data bus used for transmitting as well as receiving data on the IX Bus. The IX Bus Arbiter
switches between granting ownership to the Transmit State Machine, the Receive State Machine,
or another 1 XP1200.

In 32-bit unidirectional 1X Bus mode, the IX Bus becomes two 32-bit data buses. Oneis used for
transmitting and the other is used for receiving data on the I X Bus. The IX Bus Arbiter is not used
in this mode since the Receive State Machine always owns the Receive IX Bus and the Transmit
State Machine always owns the Transmit I X Bus.

From a programming perspective, there is no difference in how microcode issues receive and
transmit requests to the State Machines.

6.6.2.2 1-2 MAC Mode and 3+ MAC Mode

These modes are selected viathe RDYBUS TEMPLATE_CTL register. The 1-2 MAC mode
eliminates the need for external decode logic for the PORTCTL# and RDY CTL# signals. All the
signals required for selecting the IX Bus and Ready Bus functions are provided directly by the
IXP1200 for up to two MAC devices.

3+ MAC mode requires external decode logic for the PORTCTL# and RDY CTL# signals. If this
mode is selected in 32-bit unidirectional mode, the port control signals support up to 4 MAC
devices. If thismode is selected in 64-bit bidirectional mode, the port control signal's support up to
7 MAC devices. From a programming perspective, thereis no difference in how microcode issues
receive and transmit requeststo the State M achines. Refer to Section 6.6.3 for more information on
these modes.

Hardware Reference Manual 177

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.6.2.3

Shared IX Bus Mode

The I XP1200 supports multiple IXP1200s on the I X Busin the 64-bit bidirectional mode. Bus
ownership is established by passing a token between the 1 XP1200s.

The Shared 1 X Bus mode affects how the IX Bus Arbiter makes arbitration decisions. When the
Shared | X Bus mode is not selected, the IX Bus arbitration scheme switches between granting 1 X
Bus ownership to the Receive and Transmit State Machinesin asingle IXP1200. If the IXP1200 is
placed into the Shared I X Bus mode, the IX Bus arbitration scheme switches between granting 1X
Bus ownership to the Receive State Machine, Transmit State Machine, and another I XP1200. 1 X
Bus ownership is passed between | XP1200s using a token scheme.

The token passing scheme uses four pins on the | XP1200: two token request pins (TK_REQ_OUT,
TK_REQ IN) and two token pins (TK_OUT, TK_IN). Refer to Figure 6-12. An I XP1200 requests
the token by asserting the TK_REQ_OUT pin whenever it has a Receive Request or Transmit
Request pending. The TK_REQ_OUT pin should betied to the TK_REQ _IN pin of another
IXP1200. The current I X Bus owner passes ownership of the IX Bus by asserting the TK_OUT pin
low. The TK_OUT pin should be tied to the TK_IN pin of another IXP1200. The falling edge at a
TK_IN pin indicates that bus ownership has been relinquished and the IXP1200 should take
ownership of the bus.

Figure 6-12. TK_OUT Output

178

The IXP1200 Network Processor owns the IX Bus.
The IXP1200 Network Processor relinquishes IX Bus ownership.
‘/‘/ The SA-1200 does not own the IX Bus.

Y

0 1
TK_OUT Output

A7195-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Cascading the connections of the token pins allows the token to be passed to multiple I XP1200s.
Figure 6-13 shows the pin connections for two I XP1200s in a shared | X Bus configuration.

Figure 6-13. Dual IXP1200 System Using Dynamic Token Passing

3.3V

RA

]—) TK_IN TK_OUT

Y

TKIN TK_OUT

RB

TK_REQ_OUT

TK_REQ_OUT

L 3] TK REQ_IN

3] TK_REQ_IN

IXP1200 Network IXP1200 Network
Processor A Processor B

Initial IX Bus Owner
and Ready Bus Master

Notes: Resistor Description
RA - Indicates IX Bus Owner and Ready Bus Master after a reset.
RB - Indicates NOT Fbus Bus Owner and Ready Bus Master after a reset.

A7198-01

The IXP1200s are placed into Shared IX Bus mode viathe RDYBUS TEMPLATE_CTL register.
The following settings are required:

* 64-bit bidirectional mode
® Shared IX Bus mode
* One|XP1200 designated as an initial Ready Bus master and the others as Ready Bus slaves.

The TK_IN pinisalso used asa configuration pin after asreset. (Thisisin addition to the tokenin
function). The TK_IN pin must be either pulled high or low to indicate which IXP1200 is
designated as a Ready Bus Master/initial 1X Bus owner. An I XP1200 designated as a Ready Bus
Master/initial I X Bus owner drives these buses after areset. Only one I XP1200 should be

designated as the Ready Bus Master/initial I X Bus owner since only one 1 XP1200 should drive the
IX Bus and Ready Bus at any one time.

If the TK_IN pinis pulled high, an IXP1200 becomes the initial IX Bus Owner, the Ready Bus
master, and it drives both buses. After areset, the FBI Unit readsthe TK_IN pinto determineif itis
the Ready Bus master. The Receive State Machine looks for a valid Receive Request, and the
Transmit State Machine looks to seeif thefirst TFIFO element contains valid data and then checks
to seeif another IXP1200 is requesting I X Bus ownership by reading the state of the TK_REQ _IN.
If none of these cases are true, the IX Busis driven to a known state (no bus operations are
performed) and the IX Bus arbiter waits for one of the cases to occur.

Hardware Reference Manual 179

Intel® IXP1200 Network Processor Family

FBI Unit

180

in

System designs using more than two | XP1200s can use the token request pinsin two
configurations. The first configuration (shown in Figure 6-14) uses a fixed token passing scheme

where all the TK_REQ _IN pins are pulled high to indicate that the token should always be passed
regardless of whether or not another | XP1200 needs access to the bus.

Figure 6-14. Shared IXP1200 System Using Fixed Token Passing

tel.

]—> TK_IN TK_OUT

TK_REQ_IN
TK_REQ_OUT
IXP1200

Network
Processor A

— NC

Initial IX Bus Owner

and Ready Bus Master

Notes: Resistor Description
RA - Indicates Initial IX Bus Owner and Ready Bus Master.

RB - Indicates NOT the Initial IX Bus Owner and Ready Bus Master.
RC - Indicates always pass token.

%RB VDD
RC%

TK_IN TK_OUT

TK_REQ_IN
TK_REQ_OUT
IXP1200

Network
Processor B

.

%RB
R

— NC

>

VDD

C

TK_IN TK_OUT J

TK_REQ_IN

TK_REQ_OUT [— NC

IXP1200
Network
Processor C

A7197-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

The second configuration (shown in Figure 6-15) uses a dynamic token passing scheme where all
the TK_REQ _OUT pinsarelogically “ORed” to indicate when any one of the | XP1200s need

ownership of the IX Bus. If any one of the IXP1200s need ownership of the IX Bus, the tokenis
passed in round-robin order to the next 1XP1200.

Figure 6-15. Shared IXP1200 System Using Dynamic Token Passing

3.3V
RA
<
> TK_IN TK_OUT >] TK_IN TK_OUT > JTK_IN TK_OUT J
RB RB
TK_REQ_OUT |—
TK_REQ_OUT [— TK_REQ_OUT] TK_REQIN
TK_REQ_IN i>— TK_REQ_IN —NER
IXP1200 IXP1200 IXP1200
Network Network Network
Processor A Processor B Processor A
Initial IX Bus Owner
and Ready Bus Master

Notes: Resistor Description
RA - Indicates Initial IX Bus Owner and Ready Bus Master.
RB - Indicates NOT the Initial IX Bus Owner and Ready Bus Master.

A7196-01

Hardware Reference Manual 181

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.6.2.4

Status Mode

Status mode is selected when bit 6 in the RDYBUS TEMPLATE_CTL register is 0. In Status
mode, the Receive State Machine expects status to be provided on the I X Bus during the next data
transfer on the same port following EOP. The Receive State Machine automatically reads the status
and places the datainto the status field of the RFIFO element. The only thing the I XP1200 does
with this status field is to copy the inverted state of bit 8 to the Receive Error bit (bit 18) in the
RCV_CNTL register.

For 64-bit bidirectional X Bus mode, one quadword is always read and placed into this RFIFO
status field. For 32-bit unidirectional 1X Bus mode, REC_REQ[26] specifies whether the status
length is one longword or one quadword. The one quadword option in 32-bit unidirectional mode
requires that the Receive State Machine access the I X Bus twice. The extended data option (see
Section 6.6.4.6) is not supported if the one quadword status option selected.

Based on the Receive Request, the Receive State M achine always attempts to read a maximum
number of quadwords based on the request parameters (see Section 6.6.4.3). Due to pipelining
issues, the Receive State Machine begins processing the next Receive Request before the current
request is complete. Therefore, if an EOP isdetected on thelast | X Busdatacycle for request 1, the
Receive State Machine allows request 2 to finish before going back for the status for request 1.

Figure 6-16. Receive State Machine Behavior when EOP Occurs on the Last IX Bus Data Cycle

182

0
(3 |[status 1] | Data from request 1| (1)

Data from request 2 @

@ Signal thread for request 1

[] []
. . @ Signal thread for request 2
[) [)
| | |15
Status Data Field
Field

RFIFO Register

A7048-01

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

6.6.3 Ready Bus

The Ready Bus is a separate bus from the I X Bus, and is used for the following purposes:
¢ Retrieving the MAC Receive and Transmit FIFO Ready flags from MAC devices.
¢ Asserting Flow Control to MAC devices.
* Inter-IXP1200 communications.

The Ready Busis controlled by a programmable sequencer and is comprised of an 8-bit data bus
(RDYBUS[7:0])and five control pins (RDY CTL#[4:0]). The control pins select which of the three
functionsis being performed on the bus. In 1-2 MAC mode, separate control signals are provided
by the IXP1200 for each function. In this mode, the GPIO[Q] pin is also used by the Ready Bus as
acontrol signal, and Inter-1XP1200 communications are not supported. 3+ MAC mode requires an
externa decode of the RDY CTL#{4:0] signals to provide the individual select signals for each
function. All of the Ready Bus functions are supported in 3+ MAC mode.

Figure 6-17 isablock diagram of the Ready Bus and the relevant FBI CSRs used to program and
control the Ready Bus. The purpose of each of these componentsis described in this section.

Figure 6-17. Ready Bus Block Diagram

Sequencer Programming MAC Receive MAC Transmit Inter-Processor
and Configuration Registers FIFO Status FIFO Status Communications MAC Flow Control

[RDYBUS_SYNCH_COUNT_DEFAULT]|
[RDYBUS_TEMPLATE_PROG3 |

[RrRDYBUS TEMPLATE_PROG2 | [Rcv_RDY_CTL | [XmMIT_RDY_CTL]|
SEND_CMD || GET_CMD
RDYBUS_TEMPLATE_PROG1 RCV_RDY_HI | [XMIT_RDY_HI || (g-entry FIF0) | |(8-entry FIFO)
RDBUS_TEMPLATE_CTL RCV_RDY_LO || XMIT_RDY_LO FLOWCTL_MASK
/
Y Y
Ready Bus
Sequencer

| IX Bus Interface |

Ready Bus Signals
A7076-02

Hardware Reference Manual 183

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.6.3.1

Ready Bus Sequencer

The Ready Busis controlled by a programmable sequencer. The sequencer is configured and
programmed using FBI registers. The sequencer is configured and enabled after reset and then runs
freely.

The Ready Bus Sequencer instructions are loaded into the three RDYBUS TEMPLATE _PROGXx
registers. These registers hold atotal of twelve 8-bit instructions. A sequence rate count can be
programmed into the RDYBUS _SYNC_COUNT_DEFAULT register to determine the maximum
rate at which the program repeats the instructions. The Ready Bus Sequencer is enabled viathe
RDYBUS TEMPLATE_CTL register. When it is enabled, the sequence rate counter is started.
Instruction execution begins with instr_0 and completes after instr_11. The sequencer then waits
until the Ready Bus sequence rate timer expires and repeats execution of instructions O through 11.
The sequence rate count has no effect if it isless than the time required to execute the instructions.

Figure 6-18. Ready Bus Instruction Sequence

184

RDYBUS_TEMPLATE_PROG3
-< | Instr_11 |Instr_10 | Instr_9 | Instr_8

RDYBUS_TEMPLATE_PROG2
| Instr_7 | Instr_6 | Instr_5 |Instr_4

Wait Until
Ready Bus
Cycle Rate Timer
Expires

RDYBUS_TEMPLATE_PROG1

| Instr_3 | Instr_2 | Instr_1 | Instr_0 I(i

24 16 8 0

Load
Default Ready Bus
Cycle Rate Time and
Start

Y

A7075-01

TheRDYBUS TEMPLATE_PROG registers can be programmed by both the Microengines (using
the csr instruction) and the StrongARM* core. In typical applications, the StrongARM* core
programs the sequencer once as part of the power-up initialization sequence.

The steps required to set up the Ready Bus Sequencer are as follows:

1. Load the Sequencer program into the three RDYBUS TEMPLATE_PROGKX registers.
Load the cyclerate into the RDYBUS _SYNCH_COUNT_DEFAULT register.
Configure the Transmit Autopush settings viathe XMIT_RDY _CTL register.
Configure the Receive Autopush settings viathe RCV_RDY _CTL register.

Configure the pin signaling, Inter-IXP1200 modes, and enable the Ready Bus Sequencer via
the RDY TEMPLATE_CTL register.

o~ DN

Hardware Reference Manual

n

6.6.3.2

6.6.3.3

Table 6-14.

®

Intel® IXP1200 Network Processor Family
FBI Unit

Ready Bus Master and Slave Modes

The Ready Bus supports a Master-Slave mode for systems that require multiple 1XP1200s to share
acommon Ready Bus. Only one I XP1200 is configured as a Ready Bus master; the others are
configured as Ready Bus slaves. A Ready Bus master executes a Ready Bus program while the
other 1 XP1200s snoop the Ready Bus to determine what action they should perform.

The TK_IN pinisused as a configuration pin to determine which I XP1200 powers up as a Ready
Bus master and which powers up as daves. This pin defines which 1XP1200 should drive the
Ready Busto a known state prior to configuring the Ready Bus through software. If TK_IN is
pulled high during reset, an I XP1200 becomes the Ready Bus master. All other 1XP1200s should
be designated as slaves by pulling TK_IN low. In asingle IXP1200 system, this pin should be
configured to set the IXP1200 as the Ready Bus master.

After power-up, software can determine if it is configured as the Ready Bus master by reading a
status bit within the RCV_RDY _CNT register. Software can then program the Ready Bus
accordingly. If the IXP1200 is the Ready Bus master, the Ready Bus should be configured asif it
wereasingle IXP1200. If the IXP1200 is a Ready Bus slave, the program and sequence count does
not need to be loaded into the FBI registers, but the RDYBUS TEMPLATE_CTL register must be
configured to select 3+ MAC mode and Slave mode as well as enabl e the Ready Bus Sequencer.

Ready Bus Instructions

The Ready Bus supports the following instructions:

* NOP e flwetl

e rxrdy * txrdy

¢ RxAutopush ¢ TxAutopush
o getl * get2

* send

Table 6-14 through Table 6-22 provide descriptions of these instructions, the 8-bit opcodesfor each
variation of the instruction, and the number of 1X Bus clock cycles required to perform each
instruction.

NOP Perform no operation on the Ready Bus. In Master-Slave mode, the slave also
performs no operation.

NOP Instruction Variations

Description Opcode (Hex) # 1X Bus Clock Cycles
NOP1 1F 3
NOP2 3F 6
NOP3 5F 9
NOP4 7F 12
NOP5 9F 15
NOP6 BF 18
NOP7 DF 21
NOP8 FF 24

Hardware Reference Manual 185

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

rxrdy Caollect the Receive Ready flags from the specified MAC ports and place them into
the RCV_RDY_LO and RCV_RDY_HI registers. In Master-Slave mode, the slave
snoopsthe Ready Busand readsthe Receive Ready flagsintoitsRCV_RDY_LOand
RCV_RDY_HI registers.

Table 6-15. rxrdy Instruction Variations

MAC Range Opcode (Hex) Cltfﬂ)l((g)l/fles MAC Range Opcode (Hex) Clo#g)k< g;?les
rxrdy MAC O FB 3 rxrdy MAC 3 98 3
rxrdy MACOto 1 DB 6 rxrdy MAC 3to 4 78 6
rxrdy MAC 0 to 2 BB 9 rxrdy MAC 3to 5 58 9
rxrdy MAC 0 to 3 9B 12 rxrdy MAC 3 to 6 38 12
rxrdy MAC O to 4 7B 15
rxrdy MAC 0 to 5 5B 18 rxrdy MAC 4 6B 3
rxrdy MAC 0 to 6 3B 21 rxrdy MAC 4to 5 4B 6

rxrdy MAC 4 to 6 2B 9
rxrdy MAC 1 DA 3
rxrdy MAC 1 to 2 BA 6 rxrdy MAC 5 4A 3
rxrdy MAC 1to 3 9A 9 rxrdy MAC 5 to 6 2A 6
rxrdy MAC 1to 4 7A 12
rxrdy MAC 1to 5 5A 15 rxrdy MAC 6 29 3
rxrdy MAC 1 to 6 3A 18
rxrdy MAC 2 B9 3
rxrdy MAC 2 to 3 99 6
rxrdy MAC 2 to 4 79 9
rxrdy MAC 2 to 5 59 12
rxrdy MAC 2 to 6 39 15

186 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o FBI Unit

txrdy Collect the Transmit Ready flags from the specified MAC ports and place them into
the XMIT_RDY_LO and XMIT_RDY _HI registers. In Master-Slave mode, the
slave snoops the Ready Bus and reads the Transmit Ready flagsinto its
XMIT_RDY_LO and XMIT_RDY_HI registers.

Table 6-16. txrdy Instruction Variations

MAC Range Opcode (Hex) Clgclli(g;csles MAC Range Opcode (Hex) Clgcllz(g;csles
txrdy MAC 0 F7 3 txrdy MAC 3 94 3
txrdy MACOto 1 D7 6 txrdy MAC 3to 4 74 6
txrdy MAC 0 to 2 B7 9 txrdy MAC 3to 5 54 9
txrdy MAC 0 to 3 97 12 txrdy MAC 310 6 34 12
txrdy MAC O to 4 77 15
txrdy MAC 0 to 5 57 18 txrdy MAC 4 67 3
txrdy MAC 0 to 6 37 21 txrdy MAC 4t0 5 47 6

txrdy MAC 4to 6 27 9
txrdy MAC 1 D6 3
txrdy MAC 1to 2 B6 6 txrdy MAC 5 46 3
txrdy MAC 1to 3 96 9 txrdy MAC 5to 6 26 6
txrdy MAC 1to 4 76 12
txrdy MAC 1to 5 56 15 txrdy MAC 6 25 3
txrdy MAC 1 to 6 36 18
txrdy MAC 2 B5 3
txrdy MAC 2to 3 95 6
txrdy MAC 2 to 4 75 9
txrdy MAC 2to 5 55 12
txrdy MAC 2 to 6 35 15

Hardware Reference Manual 187

Intel® IXP1200 Network Processor Family

FBI Unit

Table 6-17.

Table 6-18.

Table 6-19.

188

intel.

RxAutopush Perform RxAutopush operation. The RxAutopush operation does the following:
¢ |ncrements the Receive Ready Count inthe RCV_RDY _CNT register.

¢ |f enabled viathe RCV_RDY_CTL, it automatically writes the
RCV_RDY_CNT, RCV_RDY_LO, and RCV_RDY _HI registersto the Receive
Scheduler SRAM Transfer Registers.

¢ |f enabled viathe RCV_RDY_CTL register, the Receive Scheduler thread is
signaled viathe AUTO_PUSH_SIG context event signal when the RxAutopush
operation is complete.

In Master-Slave mode, Ready Bus signaling is generated by the Ready Bus master. The dave
snoops the Ready Bus, and, if it detects autopush signaling, it also performs an RxAutopush.

RxAutopush Instruction Variations

Description

Opcode (Hex)

IX Bus Clock Cycles

RxAutopush

oc

3

TxAutopush Perform TxAutopush operation. The TxAutopush operation does the following:

* |f enabled viathe XMIT_RDY_CTL, it automatically writesthe XMIT_PTR,
XMIT_RDY_LO, and XMIT_RDY _HI registersto the Transmit Scheduler
SRAM Transfer Registers.

¢ |f enabled viathe XMIT_RDY _CTL register, the Transmit Scheduler thread is
signaled viathe AUTO_PUSH_SIG context event signal when the TxAutopush
operation is complete.

In Master-Slave mode, Ready Bus signaling is generated by the Ready Bus master. The dave
snoops the Ready Bus, and, if it detects autopush signaling, it also performs a TxAutopush.

TxAutopush Instruction Variations

Description Opcode (Hex) # 1X Bus Clock Cycles
TxAutopush 9C 3
flwctl Writes the 8-bit data from the FLOWCTL_MASK register to the device also

specifiedinthe FLOWCTL_MASK register. In Master-Slave mode, only the master
executesthe flwectl instruction. When a dlave detects aflow control operation, it does
not perform any action. If the FLOWCTL_MASK register containsinvalid data, a

single cycle nop operation is performed.

flwetl Instruction Variations

Description

Opcode (Hex)

IX Bus Clock Cycles

flwetl

00

6 - flowctl_mask contains valid data
1 - flowctl_mask contains invalid data

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit

getl Used for Ready Bus communications between multiple | XP1200s. When this
instruction is executed, dataisread from a Ready Busslave SEND_CMD FIFOinto
the master GET_CMD FIFO. The get1 instruction is supported only in 3+ MAC
bidirectional mode and 3+ MAC unidirectional mode. One 1 XP1200 is designated as
the Ready Bus master that sends data to other devices on the Ready Bus. The other

device can be another 1 XP1200 in Slave mode. When the slave detects a get1, it

drivesthe data onto RDYBUS[7:0]. Up to eight longwords can be read from adave

in asingle getl instruction.

Table 6-20. Getl Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles
getl 1llw 1E 9
getl 2lw 3E 17
getl 3lw 5E 25
getl 4lw 7E 33
getl 5lw 9E 41
getl 6lw BE 49
getl 7lw DE 57
getl 8lw FE 65
get2 Same as get1 except it is used to get a message from another Ready Bus master in a

chain configuration (i.e., two | XP1200 Ready Buses separated by an external FIFO).
ThelXP1200 is ableto decode get1 but cannot decode get2. get2 can be decoded by

external hardware.

Table 6-21. Get2 Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles
get2_1lw 0OE 9
get2_2lw 2E 17
get2_3lw 4E 25
get2_4lw 6E 33
get2_5lw 8E 41
get2_6lw AE 49
get2_7lw CE 57
get2_8lw EE 65

Hardware Reference Manual

189

Intel® IXP1200 Network Processor Family

FBI Unit

intel.

send Used for Ready Bus communications between multiple | XP1200s. When this
instruction is executed, datais sent from the master SEND_CMD FIFO to the Ready
Bus. The send instruction is supported only in 3+ MAC bidirectional mode and 3+
MAC unidirectional mode. One I XP1200 is designated as the Ready Bus master that
sends data to other devices on the Ready Bus. The other devices can be another
IXP1200 in Slave mode or another 1 XP1200 in a chained configuration. Refer to
Section 6.6.3.2 for more information on Master-Slave modes.

Table 6-22. send Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles
send_1llw 0D 9
send_2lw 2D 17
send_3lw 4D 25
send_4lw 6D 33
send_5lw 8D 41
send_6lw AD 49
send_7lw CD 57
send_8lw ED 65

6.6.3.4 Reading the MAC FIFO Ready Flags

A typical MAC device (such asthe Intel® 21440 Octal 10/100 Mbps Ethernet Controller) provides
transmit and receive Ready flags that indicate whether the amount of datain a FIFO has reached a
certain threshold level. The Ready Bus Sequencer (Figure 6-19) periodically pollsthe Receive and
Transmit FIFO Ready Flags and places them into FBI registersif the Ready Bus Sequencer is

programmed with the rxrdy and txrdy instructions.

Figure 6-19. MAC Device Sequencer Flow

Ready Bus [—XWIT Rbv 1|

IX Bus Interface

Ready Bus I
Sequencer RCV_RDY_LO
T IXP1200
|
RDYCTL# |
(FIFO Status .
Flag Select)y RDYBUS[7:0] FDATIE3:0] X B;% r?;g"o'
4 TFIFO Status Flags
RFIFO Status Flags | [TFIFO | TFIFO | TFIFO | TFIFO
Threshold Level . | RFIFO RFIFO eee |RFIFO RFIFO
(one per FIFO)
8 Port MAC Device

A7080-01

190

Hardware Reference Manual

INial.

6.6.3.5

6.6.3.6

6.6.3.7

Intel® IXP1200 Network Processor Family
FBI Unit

Receive Ready Flags

When the Ready Bus Sequencer is programmed with arxrdy instruction, it reads the Receive
Ready flags from the MAC device(s) specified in the instruction and places the flags into the
RCV_RDY_HI and RCV_RDY _LO registers. Each bit in these registers correspondsto aMAC
port on the IX Bus and up to fifty-six portstotal from up to seven MAC devices are supported. A
single rxrdy instruction allows the Ready flags to be read from multiple MAC devices.

The IXP1200 also supports two Fast Port Receive Ready Flags. These flags are discussed in more
detail in Section 6.6.8. The Fast Port Receive Ready flags are placed into the RCV_RDY_CNT
register. All three registers can be autopushed to a Receive Scheduler SRAM Transfer Registers if
the Ready Bus Sequencer executes the RxAutopush instruction, and the Autopush operation is
enabled viathe RDYBUS TEMPLATE_CTL register.

If an IXP1200is configured as a Ready Bus slave, it snoops the Ready Bus control signals. When it
detectsthat amaster is performing aread of the Receive Ready flags, it also latchesthe dataintoits
RCV_RDY_LO and RCV_RDY_HI registers.

Transmit Ready Flags

When the Ready Bus Sequencer is programmed with atxrdy instruction, it reads the Transmit
Ready flags from the MAC device(s) specified in the instruction and places them into the
XMIT_RDY_LOand XMIT_RDY _HI registers. Each bit in these registers correspondstoaMAC
port on the I X Bus and up to fifty-six portstotal from up to seven MAC devices are supported. A
single txrdy instruction allows the Ready flags to be read from multiple ports. These registers can
be autopushed to the Transmit Scheduler SRAM Transfer Registersif the Ready Bus Sequencer
executes the TxAutopush instruction and the Autopush operation in enabled via the
XMIT_RDY_CTL register.

If an IXP1200is configured as a Ready Bus slave, it snoops the Ready Bus control signals. When it
detects that a master is performing aread of the Transmit Ready flags, it also latches the data into
its XMIT_RDY_LO and XMIT_RDY_HI registers.

Autopush Operation
The Ready Bus Sequencer supports two Autopush instructions: RxAutopush and TxAutopush.

The RxAutopush operation performs the following functions:
¢ |ncrementsthe Receive Ready Count inthe RCV_RDY _CNT register

¢ |f enabled viathe RCV_RDY_CTL register, it automatically writesthe RCV_RDY _CNT,
RCV_RDY_LO, and RCV_RDY_HI registersto the Receive Scheduler SRAM Transfer
Registers.

* If enabled viathe RCV_RDY_CTL register, the Receive Scheduler thread is signaled viathe
AUTO_PUSH_SIG context event signal when the RxAutopush operation is complete.

The TxAutopush operation performs the following functions:

* If enabled viathe XMIT_RDY_CTL register, it automatically writesthe XMIT_PTR,
XMIT_RDY_LO, and XMIT_RDY _HI registersto the Transmit Scheduler SRAM Transfer
Registers.

¢ |f enabled viathe XMIT_RDY_CTL register, the Transmit Scheduler thread is signaled viathe
AUTO_PUSH_SIG context event signal when the TxAutopush operation is complete.

Hardware Reference Manual 191

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

In Master-Slave mode, the Ready Bus master generates the Ready Bus sighaling and the slave snoops
the Ready Bus. When it detects autopush signaling, it also performs an autopush operation.

Autopush Versus Polling
There are two methods for reading the Ready Bus registers: polling and autopush.
The advantages to autopush are the following:

— Thelatest datais available to a Microengine thread without having to explicitly read it.
— Lower latency associated with reading the registers compared to polling.

— Since lower latency is achieved, a Microengine thread may spend more time performing
other tasks rather than waiting for the read operations to complete.

Polling requires that a Microengine thread periodically issue read references to the FBI Unit.
One example of apolling algorithm uses two Microengine threads to poll and process the
Ready Bus registers. The main Microengine thread performs the typical Receive or Transmit
Scheduler function, and a secondary Microengine thread running on the same Microengines
performs the simple task of reading the registers periodically into an absolute addressed
SRAM Transfer Registers. When the main scheduler thread is ready for the new data, it reads
the SRAM Transfer Register. The advantage of this method is that the secondary scheduler
thread would read the registers while the main scheduler thread is waiting for references to
complete. This allows the register read operations to be hidden.

Tx Autopush and Rx Autopush Sequence

Although 3+ MAC mode supports unique Rx and Tx autopush signaling, RDY CTL#[4] is
alwaysignored by a Ready Bus dave. A slave always cycles between transmit and receive
autopush if it detects the generic autopush signaling on the bus. The first autopush after the
sequencer is enabled is always interpreted by the slave as a Tx Autopush. When programming
the sequence of instructions in Master-Slave mode, the programmer should ensure that the
sequencer pushes the Transmit Ready flags first. The tables that follow show three examples
of the sequence of instruction for an autopush operation.

Example 6-4. Autopush Method 1

Instruction

Sequence Action Comment

txrdy MAC 0-1 | Master asserts signaling, slave snoops Tx Ready flags

Master asserts signaling and pushes Tx Ready flags,

TxAutopush slave pushes Tx Ready flags Flags are pushed in order and
— there is more time between the
Master asserts signaling, slave snoops Rx Ready two instances when the Autopush

rxrdy MAC 0-1
y flags prevent state is asserted.

Master asserts signaling and pushes Rx Ready flags,

RxAutopush slave pushes Rx Ready flags

192 Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family

Example 6-5. Autopush Method 2

FBI Unit

Instruction
Sequence

Action

Comment

txrdy MAC 0-1

Master asserts signaling, slave snoops Tx Ready flags

rxrdy MAC 0-1

Master asserts signaling, slave snoops Rx Ready
flags

TxAutopush

Master asserts signaling and pushes Tx Ready flags,
slave pushes Tx Ready flags

RxAutopush

Master asserts signaling and pushes Rx Ready flags,
slave pushes Rx Ready flags

There may be a minor impact on
performance since the Scheduler
is not able to access the Transfer
Registers for two consecutive
Autopush Prevent Window time
periods.

Example 6-6. Autopush Method 3

6.6.3.8

Instruction
Sequence

Action

Comment

rxrdy MAC 0-1

Master asserts signaling, slave snoops Rx Ready
flags

RxAutopush

Master asserts signaling and pushes Rx Ready flags,
slave pushes Rx Ready flags

txrdy MAC 0-1

Master asserts signaling, slave snoops Tx Ready flags

TxAutopush

Master asserts signaling and pushes Tx Ready flags,
slave pushes Tx Ready flags

Incorrect method: Flags are
pushed out of order.

Autopush Protection

The Microengine SRAM Transfer Registers and the GPRs are implemented as register files so
multiple registers can be read at one time. This allows a Microengine to read an operand for
one instruction and write the result from another in asingle cycle. However, only one source
can access a particular register at any one time. Access contention can occur when the SRAM
Transfer Registers are accessed by both the Microengines and the autopush write operation at
the same time.

To prevent contention, the FBI Unit providesthe PUSH_PROTECT state. All Microengine
threads can read this state using the br_inp_state instruction, although in most applications
only the Transmit and Receive Scheduler threads use it. When the FBI Unit is ready to
autopush to the Transfer Register, it asserts the PUSH_PROTECT state and waits for atime
specified in Autopush Prevent Window field of the RCV_RDY_CTL before writing to the
Transfer Registers.

Whenever a Microengine thread reads the SRAM Transfer Registers, it should check the
PUSH_PROTECT state (using the br_inp_state instruction). If it is set, it should wait until it
is cleared employing atight |oop structure. Otherwise, it should immediately read the registers
and move them to GPRs. The order in which the Autopush operation occurs is: transfer
register O, transfer register 1, and transfer register 2. The Microengine should also move the
data from the SRAM Transfer Registersto GPRs in this order.

Interpreting The Receive Ready Flags

The Ready Bus pollsthe MAC FIFO Status Flags periodically and asynchronously to other events
occurring in the 1XP1200. Ideally, the rate at which the MAC FIFO Ready flags are polled is
greater than the maximum rate at which the datais arriving at the MAC ports. This presents the

Hardware Reference Manual

193

Intel® IXP1200 Network Processor Family

FBI Unit

194

intel.

issue of determining whether the MAC FIFO Ready flags read by the Ready Bus are new or
whether they have already been read. The I XP1200 provides two methods that can be used to
determine which flags are new and which are old.

Receive Ready Count

Each time the RxAutopush instruction is executed, it increments the Receive Ready Count in
the RCV_RDY _CNT register. The Receive Ready Count can be used by the Receive

Schedul er to determine whether the state of specific flags have to be evaluated or whether they
can be ignored because Receive Reguests have been issued and the port is currently being
serviced. For example, if the FIFO threshold for a Fast Ethernet port is set so that the Receive
Ready flags are asserted when 64 bytes of data arein the MAC RFIFO, it can be said that the
flags do not change until the next 64 bytes arrive, 5120 ns later. If the Sequencer is
programmed to collect the Receive Ready flags four times each 5120 ns period, the next three
sets of Ready flags that are collected can be ignored.

This method of tracking the freshness of the Ready flagsis relatively simple to implement in
microcode. However, there is a chance that the Ready flags are ignored when they are actually
reporting new datain the FIFO. For most applications, this inaccuracy does not have any
negative repercussion for the receive process sinceit is reported when the next Ready flags are
collected. If greater accuracy is required, the Receive Reguest Count can be used.

Receive Request Count

Each time a Receive Request is completed and the receive control information is pushed onto
the RCV_CNTL FIFO, the FBI Unit increments the Receive Request Count. This counter is
recorded in the RCV_RDY _CNT register the first time the Ready Bus Sequencer executes
either an rxrdy or txrdy instruction for each program execution loop. The Receive Scheduler
can use this count to track which how many requests the Receive State machine has
completed. Asthe Receive Scheduler thread issues commands, it can maintain alistin
chronological order of the Receive Requests that it submits and the ports associated with each
reguest. The Receive Request count (RCV_RDY _CNT[15:8]) can be used to determine which
regquestsit can retire from thelist:
a. Receive Scheduler readsthe RCV_RDY _CNT register:
Receive Request Count read is 4 (no Receive Requests outstanding).
MAC Receive FIFO Ready Flags set for MAC 1/port 3, MAC 1/port 7, and MAC 2/port2.

b. Receive Scheduler issues Receive Requeststo MAC L/port 3, MAC 1/port 7, and MAC 2/
port2.

¢. Request for MAC 1/port 3is serviced by the hardware.

d. Receive Scheduler readsthe RCV_RDY_CNT register again:
Receive Request Count read is 5.
MAC Receive FIFO Ready Flags set for MAC 1/port 3, MAC 1/port 7, and MAC 2/port2.

e. Interpretation:

Ready flags for MAC 1/port 7 and MAC 2/port 2 are old, since those reguests have not
been processed.

Ready flag for MAC Lport 3 is new, since the Receive State Machine has processed that
reguest and there is data available.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

6.6.3.9 Flow Control

The flow control function allows the Ready Bus Sequencer to place asingle byte of data onto the
Ready Busto be used as flow control for the MACs. Device select signals are provided for up to
seven separate devices allowing the data to be targeted to multiple devices (the number of MAC
devices depends on the MAC mode).

A Microengine thread writes the 8-bit dataand aMAC number to the FLOWCTL_MASK register.
A Vdlid flag (the FCMA bit inthe RCV_RDY _CNT register) is set each time new dataiswrittento
the FLOWCTL_MASK register. A Microengine thread can determineif valid data has been written
to the FLOWCTL_MASK register by reading the Valid flag. When the flwctl instruction is
executed and thereisvalid datain the FLOWCTL_MASK register, the Ready Bus Sequencer
places the data onto the Ready Bus. If the Valid flag is not set, the sequencer executes aNOP for a
single I X Bus cycle and it proceeds to the next instruction.

In the Master-Slave mode, only the master can assert flow control to the MAC devices. When a
slave detects aflow control operation, it does not perform any action.

MAC devices (such asthe Intel 21440 Octal 10/100 Mbps Ethernet Controller) use the 8-hit dataas
aflow control signal to indicate that back pressure should be applied to data arriving on the
network. A Microengine thread can also send status information using the flow control function
during hardware debugging.

6.6.3.10 Ready Bus Communications

The Ready Bus provides a communications channel between the Microenginesin different
IXP1200s. The StrongARM* core does not have access to Ready Bus Communications. The
communications channel has a deterministic latency that is dependent on the Ready Bus sequencer
programming. Ready Bus Communicationsis only supported in 3+ MAC mode.

Ready Bus communications support two modes: Master-to-Slave and Chained M aster-to-Master.
These modes can be used separately or together. The Master-to-Slave mode provides
communication between a single master and single slave and does not require any interface logic
between the two | XP1200s. System designs with more than two | XP1200s can use the Master-to-
Master mode to pass messages to the next | XP1200 in a chained configuration. The Master-to-
Master mode requires external interface logic. The figure below shows multiple IXP1200s in both
the Master-to-Slave and Master-to-Master mode configurations.

Hardware Reference Manual 195

FBI Unit

Intel® IXP1200 Network Processor Family int9I
®

196

Chained Interface Circuit

| send +—— get2 send —— get2

J J I
I e -

IXP1200 send | 1XP1200 IXP1200 send| 1XP1200 IXP1200 send| 1XP1200
Network getl | Network Network getl | Network Network getl | Network
Processor Processor Processor Processor Processor Processor

master slave master slave master slave

| ,]
Figure below shows more detail

S 1

From select ——— FIFO FIFO —— select To!
| Previous WR RD Next |
 XP data data IXP,
, Network RD Get2 [15] Send [13] WR Network 1
1 Processor [| Processor |
: Chained Interface Circuit !

. Snoops RDYCTL#
Initial IXP1200 /_ and rgsponds

Ready Network to Getl and
IXP1200 Network
MaStLésr Processor Processor Send commands
RDYBUSI[7:0] RDYBUS[7:0] Initial
vee Ready
15.0 Bus
% RDYCTL#[4:0] | S>3 [150] RDYCTL#{4:0] Slave
s ’7 TK_IN
Master Decodes the Get2 Slave _%

— and Send command
and generates select signals.

A7199-01

The Ready Bus Sequencer supports two get instructions (get1 and get 2) and one send instruction
(send). The get1 and send instructions are used to communicate in the Master-to-Slave mode, and
the get2 and send instructions are used in the M aster-to-Master mode. Unique signaling is
provided on the RDY CTL#[4:0] pins whenever the Ready Bus Sequencer executes these
instructions. A Ready Bus slave snoops the RDY CTL#[4:0] signals and responds to the get1 or
send signaling. In the Master-to-Master mode, a Ready Bus master communicates with another
Ready Bus Master though external FIFOs. The RDY CTL# signals must be externally decoded to
control accessto the FIFOs. Since the send instruction is shared by the Master-to-Slave and
Master-to-Master modes, whenever the send instruction is executed, the send data is written to
both the Ready Bus slave and the chained Send FIFO. A Microengine thread in the receiving
IXP1200 must determineif it is the target for the send data.

The Ready Bus Master Sends and Gets messages each time the Get or Send instruction is executed
by the Ready Bus Sequencer. The datais transferred across the Ready Bus at a deterministic rate
since the time required to loop through a Ready Bus program loop execution is deterministic (and
so istherate at which the get and send instructions are executed). A message is defined as 16 bits.
However the get and send instructions specify the size of atransfer across the Ready Busin
increments of longwords. For reasons explained later in this section, it is expected that most
applications will implement a single Microengine thread to manage Ready Bus communications
between 1XP1200s.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N FBI Unit

The paragraphs that follow describe the get and send Ready Businstructions. Refer to Figure 6-21
while reading the descriptions for information on how the data flows during instruction execution.

Figure 6-21. Data Flow for Get and Send Instructions

Internal SRAM Pull Bus send Command FIFO

310 Full Status Signal
[31:0] (to the FBI Pull Engine)
[31:16) [15:0]
[RDYBUS_TEMPLATE_PROG3|
Internal SRAM Pull Bus |RDYBUSiTEMPLATE7PROG2|
bit bucket select [RDYBUS_TEMPLATE_PROG |
[31:0] 1
0 |Message 2|Message 1 instruction
0 | Message | Message
2 l«— remove 1 |« insert master/slave
3 pointer 2 pointer
Get_Cmd ‘5‘ Send_Cmd 3 < remove Ready Bus
emory Array . Memory Array 4 pointer Sequencer
| 7 insert 5
pointer 6
7
byte |byte |byte |byte
4 3 2 1
select
ibyte libyte 2 ibyte 3 | byte 4 | | Ready Bus Master
RDYBUSI[7:0] RDYCTL#[4:0]
IRDYBUSiTEMPLATEiPROG3
byte 4 [RDYBUS_TEMPLATE_PROG2
\— select o e seledt IRDYBUS TEMPLATE_PROG1
4 3 2 l - "
instruction
2 Message | Message | 0 [Message 2 Message 1] oo
2 ; master/slave
3
Send_Cmd 4 Get_ Cmd 3
Memory Array 5 Memory Array 4 insert Ready Bus
. 5 pointer |_Seduencer
7 6
7
3L 16 15 0
|~ select [31:0]
Internal SRAM Push Bus
[31:16] [15:0]
[31:0]
bit bucket Ready Bus Slave

Internal SRAM Pull Bus

A7200-01

Send

A Ready Bus master sends data to another 1XP1200 by writing 16-bit messagesto the
SEND_CMD register using the csr instruction. Two 16-bit messages must be written to the
SEND_CMD register before the messages are placed onto the Send_Cmd memory array
within the FBI Unit.

If the Send_Cmd memory array contains more than 4 longwords, and a Microengine thread
issues another write request to the SEND_CMD register, a back-pressure mechanism will
prevent the FBI Pull Engine from processing the request (and any other requests behind it in
the FBI Pull queue) until datais removed from the memory array and driven onto the Ready
Bus. When there are at least 4 entries available to service the next write request, the Pull
engine is alowed to compl ete the write request. This mechanism allows up to four longwords

Hardware Reference Manual 197

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

198

to bewritten in asingle instruction and ensure proper operation of the back-pressure
mechanism.

The send instruction supports writesto the SEND_CMD register of up to eight longwordsin a
singleinstruction. If the programmer chooses to manage the rate at which the dataiswrittento
the SEND_CMD register in software so that the FBI Pull engine does not stall, bursts greater
than four can be used. One way to manage the rate at which dataiswritten to the SEND_CMD
register isto have a single Microengine thread write to the SEND_CMD register. This
Microengine thread writes data to the SEND_CMD register and waits until the datais sent
before writing more data. A Microengine thread can determine if messages have been sent by
placing an autopush instruction in the Ready Bus program. When thisinstruction is executed,
the RCV_RDY_CNT fieldinthe RCV_RDY_CNT register isincremented and, if enabled in
the RCV_RDY _CTL register, the autopush signal event will occur. A Microengine Thread
can either wait for the autopush signal event or it can poll the RCV_RDY_CNT register to
determine if the RCV_RDY_CNT field has incremented.

When the Ready Bus Sequencer executes the send instruction, it always sends the amount of
data specified in the send instruction regardless of whether there is valid data in the memory
array. If thereisno valid data, zeroes are sent.

The Ready Bus Slave snoopsthe RDY CTL# signals, and when it detects the send signaling, it
reads the data, one byte at atime, on the Ready Busdata pins (RDYBUS[7:0]), latches the data
internally, and places the datainto the GET_CMD memory array after alongword is

assembl ed.

A Microengine thread in the Ready Bus Slave reads the messages from the GET_CMD
register. A dedicated signaling mechanism is not provided for the Microengine thread to
determine when data has been written to the GET_CMD memory array. However, the
RCV_RDY_CNT fieldinthe RCV_RDY _CNT register or the Autopush signal event can be
used as described earlier in this section. For thisreason, it is expected that most applications
will have a single Microengine thread manage Ready Bus communications so that only one
sourceisreading from the GET_CMD Register.

The Microengine thread must determine if the data it reads from the GET_CMD register is
valid. If the Ready Bus master does not send valid datato the slave, the 32-bit data contains all
ZEros.

For applications where the Ready Bus Master sends messages to both a Ready Bus Slave and
to another Ready Bus Master in the chained configuration, both devices respond to the send
signaling. In this case, the Microengine thread must distinguish if it isthe target for the data. A
software semantic that can be implemented to distinguish if it is the target for the dataisto
have the sending Microengine thread set the MSB of a message to a zero for aslave | XP1200
and a one for a chained I XP1200.

Get

The Ready Bus Sequencer in the Ready Bus Master gets datafrom another 1 XP1200 each time
the get1 or get2 instruction is executed. An I XP1200 configured as a Ready Bus Slave
recognizesthe signaling on the RDY CTL# pinswhen aget1 instruction is executed and drives
data from its Send_Cmd memory array onto the Ready Bus pins (RDYBUS[7:0]). A Ready
Bus Slave always ignores the signaling presented during the get2 instruction. The get2
signaling should be decoded by external logic and used to enable a FIFO in the chained
configuration.

Each get instruction specifies aread size of 1 to 8 longwords. The Sequencer reads the datain
byte increments across the 8-hit data bus, assembles them into a 32-bit value, and writes the
valueinto the GET_CMD memory array. The GET_CMD memory array is 8 entries by 32 bits
and is mapped to the GET_CMD register. Each time the GET_CMD register isread by a
Microengine thread, a memory array entry isread, the entry is cleared to zero, and a remove
pointer isincremented to point at the next item in the array. A Microengine thread reads the

Hardware Reference Manual

tel.

6.6.3.11

Intel® IXP1200 Network Processor Family
FBI Unit

GET_CMD register using the csr instruction and can read up to eight entriesin asingle
instruction.

The Ready Bus Slave always drives data onto the Ready Bus data pins (RDY BUS) whenever
the RDY CTL# signal specifiesagetl instruction whether valid dataiis present in the
Send_Cmd memory array or not. Invalid datais defined as any read of the GET_CMD register
that returns all zeroes (32 bits) It is up to the Microengine thread in the Ready Bus Master to
read the datain the GET_CMD register, detect, and discard invalid data.

When a Ready Bus Slave detects the get signaling on the Ready Bus control signals, it drives
the datafrom its SEND_CMD memory array onto the Ready Bus. After datais sent from the
Slave SEND_CMD memory array, the memory array entries are cleared to zero. A dedicated
signaling mechanism is not provided to the Microengines for determining when the Sequencer
gets data from the Ready Bus. However, the RCV_RDY_CNT fieldinthe RCV_RDY_CNT
register or the Autopush signal event can be used as described earlier in this section.

The get2 instruction is used for enabling the external Get FIFO from another Master devicein
the chained configuration. The get2 signaling is decoded to enable an external FIFO to drive
data onto the Ready Bus. Datais written into this FIFO by a Master | XP1200 on another
Ready Bus and read by the Master | XP1200 on the next Ready Businto its GET_CMD FIFO.

Example Ready Bus Sequencer Programs

Thefollowing Ready Bus Sequencer example programs show how theinstructions are used as well
as the number of Ready Bus cycles required for execution.

Example 6-7. Ready Bus Program for a Simple 2 MAC (16, 10/100 Mbps Ports) Single IXP1200

System
Instruction Instruction Instruction Description IX Bus Clock
Address Code P Cycles

. Fetch the Transmit Ready Bits for

instr_0 0xD7 txrdy MAC 0-1 MACs 0 through 1. 6

instr_1 0x9C TxAutopush 3

. Fetch the Receive Ready Bits for

instr_2 0xDB rxrdy MAC 0-1 MACs 0 through 1. 6

instr_3 0x0C RxAutopush 3
Write flow control MAC mask to the go(r\:t?g?rﬂgvsvk) or

instr_4 0x00 flwctl MAC. MAC and mask are specified in 1 (invalid flow
the FLW_CTL_MASK register.

- = control mask).
instr_5, instr_11 | Ox1F NOP1 Perform no operations. 7nopsx3=21
Total Instruction Cycles (@ 66 MHz). 40 or 45
Desired cycle rate (four times per minimum sized Fast Ethernet packet - 5120 ns). 84 cycles
RDYBUS_SYNC_COUNT_DEFAULT [RDYBUS_TIMER] (Minimum cycles = 83 + 1). 84

199

Hardware Reference Manual

Intel® IXP1200 Network Processor Family

FBI Unit

intel.

Example 6-8. Ready Bus Program for a 4 MAC (32, 10/100Mbps Ports) Dual IXP1200 System

6.6.4

200

Instruction Instruction . - IX Bus Clock
Address Code Instruction Description Cycles
. Fetch the Transmit Ready Bits for
instr_0 0x97 txrdy MAC 0-3 MACs 0 through 3. 12
instr_1 0x9C TxAutopush 3
. Fetch the Receive Ready Bits for
instr_2 0x9B rxrdy MAC 0-3 MACs 0 through 3. 12
instr_3 0x0C RxAutopush 3
Write flow control MAC mask to the go(;]/ﬁg?rfr:(;vsvk) or
instr_4 0x00 flwetl MAC. MAC and mask are specified in 1 (invalid flow
the FLW_CTL_MASK register. control mask).
. Get 4 messages (16 bytes) from
instr_5 Ox3E getl 2lw device 1. 17
. Put 4 messages (16 bytes) out to
instr_6 0x3D send_2lw device 1. 17
instr_7, instr_11 | Ox1F NOP1 Perform no operations 4nopsx3=12
Total Instruction Cycles (@66Mhz) 77 or 82
Desired cycle rate (4 times per minimum sized Fast Ethernet packet - 5120ns) 84
RDYBUS_SYNC_COUNT_DEFAULT [RDYBUS_TIMER] (Minimum cycles = 83 + 1). 84

Receive State Machine and RFIFO - Receiving Data From IX

Bus

The Microenginesinitiate transfers across the IX Bus, but it is the Receive State Machine that
performs the actual read transfer on the I X Bus. Theinterface to the Receive State Machineis
through two FBI registers: RCV_REQ and RCV_CNTL. The stepsinvolved with initiating I X Bus
receive transfers are listed below and shown in Figure 6-22. They are described in more detail in

later sections.

1. A Microengine thread ensures that any previous Receive Requests have been received into the
RCV_REQ FIFO.

2. The Microengine thread determines if thereisroom in the RCV_REQ FIFO for another
Receive Request.

3. Write a Receive Request and signal back when the FBI Unit completes the request.

4. The Receive State Machine processes the request, moves data into the RFIFO, and writes
control information to the RCV_CNTL FIFO.

5. The Receive State Machine generates a start_receive signal event to the Microengine thread

specified in the Receive Request.

The Microengine thread responds to the signal event and reads the control information from
the RCV_CNTL register to determine, among other things, where the datais in the RFIFO.

The Microengine thread reads the data from the RFIFO on quadword boundaries into its
SRAM Transfer Registers or it moves the data directly into SDRAM.

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family

FBI Unit
Figure 6-22. Receive State Machine and RFIFO - Receiving Data From IX Bus
®
@ ® ® @ ® Q)
fbi rec_req_avail RCV_REQ Register RCV_CNTL Ret‘;]ister(sstia igrleé\z\:%
(Signal Event) (Input State) 9
2-Entry FIFO 4-Entry FIFO
RFIFO

6.6.4.1

¥ A

Receive State Machine

From FBI
Push and Pull Engines

I IX Bus Pin Logic |
Y
. IX Bus data bus:
IX Bus Control Signals: PORTCTL#[4:0] SOP FDAT[63:0]
FPS[3:0] EOP 1
FBE#[7:0] TXASIS/TXERR
RXFAIL FAST_RX1 2
FAST RX22

Notes: 1. Used only by the Transmit State Machine
2. Receive State Machine uses these pins in Fast Port mode

A7088-02

Issuing a Receive Request

The RCV_REQ register is used to initiate a receive transfer on the IX Bus. Thisis mapped to a
two-entry FIFO that can be written by the Microengines.

Therate at which Receive Requests are issued to the Receive State M achine must be managed in
microcode. To assist in managing the rate at which Receive Requests are issued, the FBI Unit
provides status indicating that the RCV_REQ FIFO has room available for another Receive
Request. This statusis provided viatherec_req_avail state. Therec req_avail stateisasingle
signal provided to each Microengine that indicates whether thereisroom in the RCV_REQ
register. A Microengine thread can test this state using the br_inp_state instruction.

Therec_req_avail state does not indicate whether a Receive Request has been issued and is
currently being delivered to the RCV_REQ register. Therefore a Microengine should specify a
sig_done or ctx_swap after issuing each Receive Request and then wait for the signal to be returned
before testing therec_req_avail state. The following figure illustrates this point.

Hardware Reference Manual 201

Intel® IXP1200 Network Processor Family
FBI Unit

Figure 6-23. Issuing a Receive Request Flow

br_inp_state instruction.

the csr instruction should indicate

the request is received.

Y

Prepare a
Receive Request

Branch on the CSR signal or ctx swap
and wake when the signal is returned.

Branch on rec_req_avail state using the

request

issued
?

Receive

sig_done

from last

request
?

Is
rec_req_avail

set
?

When the Receive Request is issued,

that the FBI Unit should signal when

Issue a
Receive Request

A7055-0

6.6.4.2 Receive Request Format (RCV_REQ Register)

The RCV_REQ register instructs the Receive State Machine on how to receive data from the I X
Bus. This register is mapped to atwo-entry FIFO that is written by a Microengine thread and is
read by the Receive State Machine. Figure 6-24 shows the format of the RCV_REQ register.

202

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
FBI Unit

Figure 6-24. RCV_REQ Register Format

31 30 29 28 27 26 25

22 21 18 17 16 15 14 13 12 11 10 6 5 3 210

RES |

THSG

—
%2}

E2

@
E1 o e]

LL TID RM RP
Z|x|O|x

E
SIGRS

[TET!

IL I IL I L

L

1— Read data
from this
port

Read data from
this MAC

Thread ID to signal when
request is complete

— Signal receive scheduler thread select
Ignore Fast Ready flags
Assign 1 or 2 FIFO elements select
Fast / Slow port mode select
Receive FIFO element assigned to the first 64 bytes.

Receive FIFO element assigned to the second 64 bytes

Software defined message that can be passed to the thread assigned to process the packet

The length of the Packet Status data expected after an EOP is detected

Specifies the maximum number of IX Bus accesses made for this request

A7081-02

FA

TMSG

SL

Hardware Reference Manual

Maximum I X Bus Accesses. | ndicates the number of times the Receive
State Machine should attempt to access the IX Bus. The options are as
follows:

* For 64-bit bidirectiona I X Bus mode:
0: Fetch 8 quadwords from I X Bus
1: Fetch 9 quadwords from I X Bus

* For 32-bit unidirectional 1X Bus mode:
0: Fetch 16 longwords from I X Bus
1: Fetch 18 longwords from | X Bus

When FA = 1, thelast quadword of datais placed into the extended data
field of the specified RFIFO element. Cannot be set if the NFE field is
set.

Thread MeSsaGe. The Microengine thread that issues the Receive
Request may pass a 2-bit message through the FBI Unit viathisfield to
the Microengine thread specified in the TID field. The FBI copies the
value of thisfield to asimilar 2-bit field in the RCV_CNTL register
(RCV_CNTL[31:30]). In Fast Port mode, the value 3 (i.e., both bits set)
isreserved.

Status Length. Thisfield is only relevant in 32-bit unidirectional mode
andisignoredin 64-hit bidirectional mode. It specifiesthe size of the IX
Bus status information read after an EOP is detected, and therefore
specifies how many timesthe Receive State M achine needsto accessthe
IX Busto get the status. If thisbit is 0, statusis 32 bits and only requires
one access. If thishit is 1, statusis 64 bits and requires two | X Bus
accesses.

Note: In 64-bit bidirectional mode, one accessis aways
performed if statusis enabled.

203

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.6.4.3

204

E2

El

FS

NFE

IGFR

SIGRS

TID

RM

RP

Element 2. If the Receive State Machineisinstructed to fill two RFIFO
elements (see NFE field), the second 64 bytes of data are placed in this
element.

Element 1. Specifiesthe Receive FIFO element wherethe IX Busdatais
placed. If the Receive State Machine isinstructed to read two elements
of data (see NFE field), the first 64 bytes of data are placed in this
element.

Fast or Slow port mode. Specifies whether the Receive State Machine
should treat the request as a Fast Port or a Slow port. If Fast Port is
specified, this field also specifies which sequence numbers are
incremented and assigned to the request, and that the Receive State
Machine should perform speculative regquests.

Number of FIFO Elements. Specifies whether the Receive State
Machine should attempt to fill one or two RFIFO elements. If statusis
enabled and two RFIFO elements are specified, the status is always
placed in the status field of the first RFIFO element. Cannot be set if the
FA field is set.

IGnore Fast Ready Flag. If Fast Port mode is selected (see FS), the
Receive State Machine ignores the Fast Ready Flag pins (FAST_RX1,
FAST_RX?2) and processes the request regardless of the state of these
pins. Should only be used if it can be guaranteed that there is data
available in the MAC port Receive FIFO.

SIGnal Receive Scheduler. If set, the Receive Schedul er thread specified
intheRCV_RDY _CTL register, in addition to thethread specified inthe
TID field, issignal ed after the Receive Request iscompleted. Asaresult,
the datain the RCV_CNTL register must be read twice before the
Receive Request dataisretired from the RCV_CNTL FIFO.

Thread ID. Thisfield determines which Microengine thread is signaled
after the Receive Request is processed.

Receive MAC. During areceive, thisfield determineswhich MAC is
selected.

Receive Port. During areceive, this field determines which port of the
MAC is selected.

Processing Receive Requests

The Receive State Machine reads the RCV_REQ register to determine how it should receive data
from the I X Bus. Thisincludes how the signaling should be performed on the IX Bus, where the
data should be placed into the RFIFO, and which Microengine should be signaled once the datais

received.

The Receive State Machine looks for avalid Receive Request in the RCV_REQ FIFO. In 32-bit
unidirectional mode, the Receive State M achine processes the Receive Request immediately since
it always owns the 32-bit receive IX Bus. In 64-bit bidirectional mode, the Receive State Machine
reguests ownership of the IX Bus from the I X Bus Arbiter. The I X Bus Arbiter grants accessto the
IX Bus based on a round robin algorithm between the following resources.

* Receive State Machine (process one Receive Request)
* Transmit State Machine (transmit one valid TFIFO element)

Hardware Reference Manual

n

tel.

Note:

Intel® IXP1200 Network Processor Family
FBI Unit

¢ Another | XP1200 (Shared | X Bus mode only)

When the Receive State Machine is granted access to the I X Bus, it selects the MAC device by
asserting the appropriate PORTCTL# signals and it selects the specified port within the MAC by
asserting the FPS signals. It then begins receiving data from the MAC device on the FDAT data
bus. The Receive State Machine always attempts to read either eight or nine quadwords of data
fromthe MAC device on the I X Bus as specified in the Receive Request. If the MAC device asserts
the EOP signal, the Receive State Machine terminates the receive early (before the eight or nine
accesses are made).

The Receive State Machine calculates the total bytes received for each Receive Request and
reportsthe value in the RCV_CNTL register. If EOP isreceived, the Receive State Machine reads
the byte enabl e signals (FBE#) to determine the number of valid bytesin the last receive datacycle.

The FBE# signals areignored if the EOP signal is not asserted during a receive data cycle.

If status is enabled, the Receive State Machine expects the status data to be provided on the next
data cycle following the asserted EOP signal. The status data is placed into the RFIFO status field
associated with the RFIFO element.

If the Receive State Machine seesthe RXFAIL signal asserted during areceive data cycle, it aborts
thereceive, and, if the status option is enabled, it does not go back for status. It also indicatesin the
RCV_CNTL register that RXFAIL was asserted during the receive. The IX Bus data cycles
terminate as if EOP were seen (see Section 6.7).

After the FIFO element(s) are filled, the Receive State Machine creates control information about
the datain the RFIFO and placesit into the Receive Control register (RCV_CNTL). The assigned
Microengine thread uses the control information to process the data.

The RCV_CNTL register is mapped to afour-entry FIFO that iswritten by the Receive State
Machine and read by a Microengine thread. The FBI Unit signals the assigned thread when avalid
entry reaches the top of the FIFO. When a Microengine thread reads the RCV_CNTL register, the
datais popped off the FIFO. If the SIGRSfield is set in the RCV_REQ register, the Receive
Scheduler thread specified inthe RCV_RDY _CTL register is signaled in addition to the thread
specified in TID field. In this case, the datain the RCV_CNTL register must be read twice before
the Receive Request datais retired from the RCV_CNTL FIFO and the next thread is signaled.

The Receive State Machine writesto the RCV_CNTL register aslong asthe FIFO is not full. If the
RCV_CNTL FIFO isfull, the Receive State Machine stalls and stops accepting any more Receive
Requests.

Hardware Reference Manual 205

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

6.6.4.4 Receive Data Control Information Format (RCV_CNTL Register)

The RCV_CNTL register provides instruction to the signaled Microengine thread to process the
data. Thisregister is mapped to afour-entry FIFO that is written by the Receive State Machine and
read by a Microengine thread. Figure 6-25 shows the format of the RCV_CNTL register.

Figure 6-25. RCV_CNTL Register Format

31 30 29 24 23 20 19 18 17 14 13 10 9 8 7 21 0
Q x
)] oo
s MACPORT SOP 1=1&l sE FE |%|Z| wviDBytes |O|O
T THD SEQ W o|o

T SOP

Status
EOP
Status

Number of valid bytes
in the RFIFO element

|_Specifies whether SOP sequence
number is for Fast Port 1 or 2

Number of RFIFO elements
that contain valid data

Receive FIFO element assigned
to the first 64 bytes

Receive FIFO element assigned
to the second 64 bytes

An inverted copy of RCV_STATUS_FIFO[8]
[Receive OK for Intel MAC devices]

Receive Fail (RXFAIL) pin status
SOP sequence number for Fast Port mode
MAC port number, header thread ID or unused thread ID (depends on mode)

Software defined message copied from RCV_REQ[28:27]
A7079-01

THMSG THread MeSsaGe. A 2-bit message may be passed from the thread that
issues the Receive Request to the thread that reads the RCV_CNTL
register. The thread that issues the Receive Request writes a 2-bit
message to RCV_REQ[28:27]. The Receive State Machine copies the
message into this field.

Note: If the port serviced isaFast Port, the Receive State
Machine overwrites any message with the value 3 if the
speculative Receive Request is cancelled.

MACPORT/THD MAC Port Number/Header Thread ID.

¢ |f the Fast Port mode specifiedin RCV_RDY_CNTL[14:13] = 00
(single thread mode), and if the SOP field is cleared, then thisfield
isthe thread ID of the receive processing thread that was not used.
Or, if the SOPfield is set, thisfield isthe MAC port ID.

¢ |f the Fast Port mode specifiedin RCV_RDY_CNTL[14:13] = 01
(header/body thread mode), and if the SOP bit is cleared, then this

206 Hardware Reference Manual

SOP SEQ

RF

RERR

SE

FE

EF

SN

VLD BYTES

EOP

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit

field isthe header thread ID. Or, if the SOP field is set, thisfield is
the MAC port ID.

¢ If the Fast Port mode specifiedin RCV_RDY_CNTL[14:13] = 10
(Explicit Thread mode), this field specifiesthe MAC port ID.

Start of Packet Sequence Number. Relevant for Fast Ports. If the SOP
field is set, specifies the sequence number assigned to this request. The
SN field specifies whether the sequence number is for Fast Port 1 or 2.
If the SOPfield is cleared, specifiesthe MAC packet (MPKT) sequence
number assigned to this request.

Receive Fail. If set, the RXFAIL pin was asserted during receive,
indicating a packet was received with errors, the Receive Request was
aborted, and status is not transferred.

Receive ERRor. Relevant if statusis enabled. Provides an inverted copy
of bit 8 of the RFIFO element statusfield. The Intel 21440 Multiport 10/
100 Mbps Ethernet Controller MAC provides Receive OK statusin this
bit position that indicates no error occurred while receiving this data.

Note: If the RF field is set or statusis not enabled, statusis not
received and thisfield isirrelevant.

Second Element. A copy of the E2 field in the RCV_REQ register. If the
EFfield is set, this specifiesthe RFIFO element that contains the second
64 bytes of data.

First Element. Specifies the RFIFO element that contains the first 64
bytes of data.

Elements filled. Specifies whether one or two RFIFO elements were
filled during the Receive Request.

Sequence Number. Only relevant for Fast Port modes. Specifieswhether
the sequence number assigned inthe SOP_SEQfield isfor Fast Port 1 or
Fast Port 2.

Valid Bytes. If EOP is set, specifies the number of valid bytesin the
RFIFO element. Valid bytes are contiguous beginning at thefirst bytein
the RFIFO element. (Actual Valid Bytes=Valid bytes+ 1). If EOPisnot
set, thisfield should be ignored.

End Of Packet. If set, the EOP signal was asserted during an I X Bus
receive cycle.

Start Of Packet. If set, the SOP signal was asserted during areceive data
cycle. If the Receive Reguest indicated that the port was a Fast Port and
thisfield is set, the following additional functions are performed.

The sequence number for the specified Fast Port is incremented.

* Header Body Mode:
If thisfield is asserted, the Receive State Machine signals the
thread specified in the RCV_REQ TID field (header thread). If this
field was asserted on the previous Receive Request, the Receive
State Machine signals the thread specified in the RCV_REQ TID
field (body thread), latches this TID internally and uses the latched

207

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

TID for al future Receive Requests to this port until the SOP pinis
asserted once again.

* Single Thread Mode:
If SOP is asserted during this Receive Request, the Receive State
Machine usesthe TID field in the RCV_REQ register and latchesit
internally. If SOP is not asserted during a Receive Request, the
Receive State Machine uses the latched TID.

208 Hardware Reference Manual

n

6.6.4.5

Table 6-23.

Table 6-24.

®

Intel® IXP1200 Network Processor Family

Interpreting the Byte Enable Pins (FBE#[7:0])

Eight byte enable signals are provided to indicate which bytes are valid on the | X Bus.

FBI Unit

The Receive State Machine uses the FBE#{ 7:0] signals to calculate the number of bytes received
for each Receive Reguest. The Receive State Machine reports the byte count in the REC_CNTL
register. The number of bytes read for each receive data cycle is assumed to be eight unless the
EOP signal is asserted during the data cycle. In this case, the Receive State Machine reads the byte
enable signals (FBE#) to determine the number in the last receive data cycle. The FBE# signalsare
ignored if the EOP signal is not asserted during a receive data cycle.

The Transmit State Machine asserts the FBE# signals to indicate which bytes are valid during an
IX Bustransmit cycle. A Microengine thread writes the number of valid quadwords and the
number of valid bytesin the last quadword to the control field of the TFIFO. The Transmit State
Machine always asserts the correct byte enable signals regardless of whether the EOP signal is

asserted.

For bidirectional X Bus mode, FBE#[7:0] isasingle 8-hit bus. For unidirectional mode,
FBE#[7:0] is partitioned into two 4-bit buses where bits [3:0] are used for receive and bits[7:4] are
used for transmit.

The X Bus Endian bit inthe RDYBUS TEMPLATE_CTL register determines how the Transmit
and Receive State Machines interpret the byte enable signals based on either big endian or little
endian data. The IXP1200 interprets endian format based on longword boundaries as shown below.

64-bit Mode Endian Format

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
FD.AT FDAT FD.AT FD.AT FD.AT FD.AT FDAT FDAT [7:0]
[63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8]
Big Endian
Byte 5 ‘ Byte 6 ‘ Byte 7 ‘ Byte 8 ‘ Byte 1 ‘ Byte 2 ‘ Byte 3 ‘ Byte 4
Little Endian
Byte 8 ‘ Byte 7 ‘ Byte 6 ‘ Byte 5 ‘ Byte 4 ‘ Byte 3 ‘ Byte 2 ‘ Byte 1
Byte Enable Signaling Based On Endian Format
FBE#[7:0]
Valid Bytes
Big Endian Mode Little Endian Mode
1 OxF7 OxFE
2 OxF3 OxFC
3 OxF1 OxF8
4 O0xFO 0xFO
5 0x70 OxEO
6 0x30 0xCO
7 0x10 0x80
8 0x00 0x00

Hardware Reference Manual

209

Intel® IXP1200 Network Processor Family

FBI Unit

Table 6-25.

Table 6-26.

210

32-bit Mode Endian Format

intel.

63 56 55 48 47 40 39 32
FDAT [63:56] FDAT [55:48] FDAT [47:40] FDAT [39:32] Transmit
FDAT [31:24] FDAT [23:16] FDAT [15:8] FDAT [7:0] Receive
Big Endian
Byte 1 Byte 2 ‘ Byte 3 Byte 4 ‘
Little Endian
Byte 4 Byte 3 ‘ Byte 2 Byte 1 ‘

Byte Enable Signaling Based On Endian Format

Valid Bytes Big Endian Mode Little Endian Mode
1 0x7 OxE
2 0x3 0xC
3 0x1 0x8
4 0x0 0x0

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o FBI Unit

6.6.4.6 Reading the RFIFO

The Receive FIFO (RFIFO) is implemented as a memory array that can be written on quadword
boundaries. Each element of the RFIFO consists of ten quadwords and contains both Receive Data
and Extended Data/Status fields.

The RFIFO is aways read on quadword boundaries and can be read by the Microengines into the
SRAM Transfer Registers using ther_fifo_rd instruction. Or, the Microengines can instruct the
SDRAM Unit to move data from the RFIFO into SDRAM using the sdram instruction.

Figure 6-26 shows the quadword addresses for the RFIFO.

Figure 6-26. Quadword Addresses for RFIFO

Status Field
Extended Data Field

Receive Data Fields Element
[129]128] |7 |65 [4af[3]2]1]0] 1

(131]130| [15] 1413|1211]10] 9|8 | 2

(133]132| [23]22[21|20[19 1817 [16] 3

[135]134| [31]30[29]|28[27 2625 [24]| 4

[137]136| [39]38[37[36[35]34]33 [32] 5

[139[138] |47]| 46]|45[44 43 42]a1 |40 6

[141]140| [55]54[53|52]51 5049 [48] 7

[143]142| [63]|62[61|60[59 |58 |57 [56] 8

[145]144| [71] 70|69 |68 |67 |66 65 [64 | 9

(147 [146] |79 | 78| 77|76 [75 |74 |73 [72| 10

[149]148| [87]| 86| 85|84 |83 |82]81 [80] 11

[151]150| [95] 94 93|92]91 90|89 |88] 12

[153]152| [103]102{101|100][99 | 98 |97 |96 | 13

[155 [154 | |111]110][109]108]107[106]105 [104| 14

[157 |156| [119]118[117]116]115]114]113 [112] 15

(159|158 [127]126[125|124[123]122]121 [120] 16

A7072-02

* RFIFO DataField

The data field contains the data that is read from the I X Bus by the Receive State Machine.
The number of valid bytesin the datafield is reported in the RCV_CNTL register.

* RFIFO Extended Data and Receive Status Field

A Receive Request can instruct the Receive State Machine to gather nine quadwords of data -
one more than the data element can hold. It can also be programmed viathe

Hardware Reference Manual 211

FBI Unit

Intel® IXP1200 Network Processor Family int9I
®

RDYBUS TEMPLATE_CTL register to gather one or two quadwords of reception status
information after an EOP is detected. In both cases, the datais placed into the Extended Data/
Status field associated with the data.

The extended data option is supported in all modes except in 32-bit unidirectional 1X Bus
mode when 64-hit status is specified. The data placed into the extended data/status field is
presented in two formats based on the mode. See Figure 6-27 and Figure 6-28.

Figure 6-27. Format For 32-bit Unidirectional IX Bus Mode with 64-bit Status

Status

63 32 31 0
‘ RESERVED ‘ STATUS (LONGWORD 2) ‘
Extended Data

63 32 31 0
‘ RESERVED ‘ STATUS (LONGWORD 1) ‘

Figure 6-28. Format for All Other Modes

212

Status
63 3231 0

‘ STATUS (LONGWORD 2) ‘ STATUS (LONGWORD 1) ‘

Extended Data
63 3231 0

‘ EXTENDED DATA (LONGWORD 2) ‘ EXTENDED DATA (LONGWORD 1) ‘

The extended data option is enabled on a per-Receive-Request basis by setting the FA bit in the
RCV_REQ register. The Microengine threads that read the RFIFO know extended datais available
based on the number of quadwords reported in the RCV_CNTL register.

Some Intel X Bus MAC devices provide status on the I X Bus on the next read after an EOP is
asserted. The Receive State Machine can be enabled to automatically read this status and place it
into the RFIFO status field when it detects an EOP. For 64-bit bidirectional 1X Bus mode, one
quadword is always read and placed into this field. For 32-bit unidirectional 1X Bus mode, the
Receive Request can specify whether the status length is one longword or one quadword. The
format of the statusis dependent on the MAC device. The only thing the I XP1200 does with the
statusisto copy bit 8 to the Receive OK hit inthe RCV_CNTL register. This eliminates the need to
read the status field from the RFIFO.

Hardware Reference Manual

m Intel® IXP1200 Network Processor Family
N o FBI Unit

Thelntel 21440 Multiport 10/100 Mbps Ethernet Controller isan example of adevice that provides
32 bits of status on the X Bus. Figure 6-29 shows its status format.

Figure 6-29. Intel 21440 Multiport 10/100 Mbps Ethernet Controller Status Format

31|30(29(28|27|26(25|24|23(22|21|20({19|18|17|16|15|14|13|12|11|10|9 |8 |7|6|5|4[(3|2|1|0

LEN RES MLT |BRD|ROK|FLW|RES|MER| RTL [RNT|DRB|CRC|OVF
Bits Field Description

31:16 LEN Packet length

15:11 RES RESERVED

10 MLT Multicast packet

9 BRD Broadcast packet

8 ROK Receive OK

7 FLW Flow-control packet

6 RES RESERVED

5 MER MIl error

4 RTL Too long packet

3 RNT Runt packet

2 DRB Alignment error

1 CRC CRC error

0 OVF Receive FIFO overflow (if set, LEN field is not valid)

6.6.4.7 Receive Scheduler Thread

In general, it is preferable to have a single Microengine thread i ssue Receive Requests than to have
them issued by multiple Microengine threads. If asingle thread issues Receive Requests, the
following advantages are achieved:

* |tiseasier to manage RCV_REQ FIFO overflows.
* |tiseasier to maintain which RFIFO e ements are available.

* Itiseasier to determine which Microengine threads are available.

A single Microengine thread that issues Receive Requests is referred to as the Receive Scheduler
thread. The microcode developer can implement the Receive Schedul er to meet specific
application requirements, but, in general, the Receive Scheduler performs the following functions:

* Determines which MAC receive ports need to be serviced.

* Determines which Microengine thread to assign to a Receive Request.
¢ Determines which RFIFO elementsto assign to a Receive Request.

* |ssues Receive Requests to the FBI Receive State Machine.

Hardware Reference Manual 213

Intel® IXP1200 Network Processor Family

FBI Unit

intel.

To maintain full utilization of the IX Bus, the Receive Scheduler must perform its tasks as quickly
as possible to ensure that the Receive State Machine is always busy. The Receive Scheduler thread
must have real -time execution properties and istypically the only thread running on a Microengine
sinceit can not allow another thread to block its ability to perform its task. The tasks required of a
Receive Scheduler thread include:

1. Determining which ports need to be serviced by reading the RCV_RDY_HI, RCV_RDY_LO,
and RCV_RDY _CNT registers. The Receive Scheduler must also determine which Receive
Ready flags are new and which are old using either the Receive Request Count or the Receive
Ready Count inthe RCV_RDY_CNT register.

2. Tracking the thread processing status of the other Microengine threads by reading the
THD_DONE_REGO and THD_DONE_REGLI registers.

3. Determining which RFIFO elements are not in use. Since it is the Receive Scheduler that
assigns Receive threads to process the data in the RFIFO elements, and it also knows the
thread processing status from the THREAD DONE_REGO0 and THREAD_DONE_REG1
registers, it can determine which RFIFO elements are currently available. Thisis because a
Receive FIFO element assigned to a thread is not available aslong as the thread is busy. If the
thread has finished processing, the element is free to be used again.

4. Issuing Receive Requests to the IX Bus Receive State Machine by writing to the RCV_REQ
register.

Timing Consider ations When | ssuing Recelve Requests

To utilize the peak bandwidth of the I X Bus, the Receive Scheduler must i ssue Receive Requeststo
the Receive State Machine fast enough such that a Receive Request is always available for it to
process. Figure 6-30 shows the rate at which Receive Requests must be issued in order to take
advantage of the complete bandwidth of the I X Bus. The time period of the decision loop isin the
range of 42 to 47 Core clock cycles.

Figure 6-30. Receive Scheduler Decision Time

214

Execution loop

<47 cyc

Execution loop

<765 cyc

Execution loop

@

Execution loop

<680 cyc

Receive

Rx Scheduler
Thread

| Receive |
Thread

<288 ns
Must be serviced

Each element must

Rx Scheduler
Thread

Thread

<257 ns
Must be serviced

\
Each element must

Receive
State Machine,

RFIFO

IX Bus Pins

Receive
State Machine

every 288 ns be serviced every 4.6 us every 257 ns be serviced every 4.1us
| (288 ns x 16) | (257 ns x 16)
Im_| REC CTL | 16] | FBI Unit [[REc REQ | REC CTL | 16]] FBI Unit
15) | | 15] |
2[] 2| |
1 | 1

1X Bus Pins

119 cyc (288 ns @ 66 MHz)

x (64 bytes)

2| 8 cyc |1| 8 cyc

64-Bit Bidirectional Mode

.17 cyc (257 ns @ 66 MHz)

Receive (64 Bytes)

1]

32-Bit Unidirectional Mode

A7082-02

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
FBI Unit

6.6.5 Transmit State Machine and TFIFO - Transmitting Data on
the IXBus

Microengines initiate transfers across the | X Bus while the Transmit State Machine actually
performs the data transfers on the I X Bus. The Microengine interface to the Transmit State
Machineis through the TFIFO elements and the XMIT_VALIDATE FBI register. The steps
involved with I X Bus transmit transfers are listed bel ow. These steps are described in more detail
throughout this section.

Figure 6-31. IXB

us Transmit Transfer Steps

_csr read instruction or Autopush

“sdram or t_fifo_wr instructions

' ' XMIT_PTR Register |
fast_wr instruction l l l | | | | | |
31 3 0
: Valid 0
|XMIT—VALIDATE Reglsterl | | | | Flags Prepend Control 64-Byte Data Elements
e 30 N '
Set _ H 2
XMIT_RDY_CTL Register > "
(LTI D —t ¢ vansmit_pir
Copy of valid flags - status only i s € '
(Not required for transmit)] 13
N 2
- 13
I 14
15
[
Y
—>| Transmit [>
Read & Clear | state Machine

IX Bus Pin Logic

IX Bus Control Signals —> |X Bus Data Bus
PORTCTL# FPS[2:0]
FBE# TXASIS/TXERR
EOP

A7049-02

The stepsinvolved with initiating an 1X Bus transmit transfers are the following:

1. The Microengine must manage which TFIFO elements have been written with valid data and
which elements the Transmit State Machine has transmitted. A Microengine reads the remove
pointer from the XMIT_PTR register to determine which elements have been sent and updates
the TFIFO element status maintained in microcode.

2. The Microengine writes the data to the datafield of the next TFIFO element.
3. The Microengine writes the control information to the control field.

4. The Microengine sets the Valid flag for the element using the fast_wr instruction to the
XMIT_VALIDATE register and updates the TFIFO element status maintained in microcode.

Hardware Reference Manual

215

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.6.5.1

216

In the default mode, the Microengine should set the valid flag once the SDRAM referenceis
complete and the dataisin the TFIFO data element. This ensures that the Transmit State Machine
will not attempt to transmit that TFIFO element until the datais present.

In Dual Valid Bit mode, an additional flag is used for each TFIFO element. Thefirst valid flag is
set by the Microengine thread and the second is set by the SDRAM Unit once the memory
reference is complete. In this case, the Microengine does not need to wait for the datato be in the
TFIFO before setting its valid bit. Instead, it setsthe first valid bit once the control information is
written and then issues an sdram|t_fifo_wr,...], sigdone instruction. When the SDRAM Unit
completes that data write to the TFIFO, it will signal the Microengine as well as set the second
valid bit. (Note that the sig_done token must be used for thisto occur.)

The stepsinvolved with transmitting data onto the I X Bus are the following:

1. The Transmit State Machine checks the Valid flag(s) of the current element specified in
XMIT_PTR register.

2. If the Valid flag(s) is set, the Transmit State M achine reads the Control field and transmitsfirst
the datain the Prepend field (if enabled by bit [16] of the Control field) and then transmits the
datain the Datafield. If the Valid flag(s) is cleared, the Transmit State Machine waits at that
element until it is set.

3. At the beginning of the transfer of the TFIFO element across the I X Bus, the transmit pointer
isincremented by one and the process is repeated.

Initiating a Transmit Request (TFIFO Format)

From a Microengine perspective, the Transmit FIFO (TFIFO) isimplemented as a memory array
that can be written on quadword boundaries. From the Transmit State Machine perspective, the
elements are implemented as a circular buffer of 16 elements.

Each element of the TFIFO consists of ten quadwords and contains four fields: Transmit Data,
Prepend, Control, and Valid.

* The Transmit Datafield is a 64-byte TFIFO that holds the Transmit data.

* The Prepend field is 8 bytes and holds data that is sent before the Data field when the Prepend
option is enabled in the Control field.

¢ The Control field is 8 bytes and instructs the Transmit State Machine on how to transmit the
data.

* The Valid flag(s) indicates to the Transmit State Machine that the Data, Prepend, and Control
fields are valid and the element can be transmitted over the IX Bus.

Datais written to the TFIFO on quadword boundaries. A Microengine writes data from its SRAM
Transfer Register using thet_fifo_wr instruction. The sdram instruction can also be used to
instruct the SDRAM Unit to move data directly from SDRAM into the TFIFO. A Microengine can
writeto the TFIFO elementsin any order, however, the Transmit State M achine always servicesthe
elements contiguously. If the Transmit State Machine does not detect a Valid flag set for an
element, it stops transmitting until the Valid flag for that element is set.

The Valid flag should only be set after the data, control, and prepend fields are written. A
Microengine sets the Valid flag by writing to the XMIT_VALIDATE register using the fast_wr
instruction. Since the fast_wr instruction requiresimmediate data to be specified when the
microcode is assembled, the indirect reference is typically used to specify a 4-bit element number

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family

FBI Unit

(0-15). The FBI Unit reads the element number and automatically sets the Valid flag for the
appropriate TFIFO element. The current state of the Valid flags for each of the elements can be
read through the XMIT_RDY CTL register.

The format of the TFIFO elements as well as the quadword addresses are shown in Figure 6-32.
Figure 6-32. TFIFO Format and Quadword Word Address

Prepend Field
(Control Field

r Transmit Data Fields

Element

[129]128| [7] 6 [543]2 1]0]

|131|130| |15|14|13|12|11|1o| 9 | 8 |

[133]132| [23]22]21[20[19 [18[17 [16 |

[135]134| [31]30[29]28[27 | 26|25 |24 |

[137]136| [39]38[37]36[35]34[33 [32]

(139138 |47 | 46|45 [44 [43 [42[41 [40 |

[141 [140| [55] 54| 53|52 |51 |50]49 [48]

[143]142| [63] 62|61] 60|59 | 5857 |56 |

[145]144| [72] 70|69 | 68 [67 | 66 [65 |64 |

(147 [146] [79]| 78| 77|76 |75 | 74|73 [72|

o

[

8
9

[149[148] [87 | 86| 85|84 |83 |82]81 80| 10

[151]150| [95] 94 93] 92]91 90|89 [88] 11

[153 [152] [103]102|101|100{99 | 98|97 |96 | 12

[155 [154| [111]110]109|108{107 [106]105 [104] 13

[157 [156| [119]118|117|116[115]114]113 [112] 14

[159 |158| [127]126[125]|124[123]122]121 [120] 15

A7073-02

Transmit Data Field

The 64-byte transmit data fields contain the data that is sent onto the IX

Bus. The datais placed on the bus beginning at the lower quadword

address.

Control Field The 8-byte control field instructs the Transmit State Machine how to
transmit the data. The format of the control field is as follows:
63:19 18 17 16 15:13 12:10 9 8 7 6 5:3 2:0
VLD VLD MAC | PORT
RES | TXERR | TXASIS | PREPEND QWORDS | BYTES EOP | SOP | ERR | RES "NO | _NO
Hardware Reference Manual 217

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.6.5.2

6.6.6

218

TXERR TX Error. If set, the TXASIS'TXERR pinisasserted during thelast cycle
of the data transfer.

TXASIS TX Asls. If set, the TXASIS/TXERR pin is asserted during the first
cycle of the data transfer.

PREPEND If set, the datain the prepend field is transmitted on the I X Bus before
the datafield.

VLD QWORDS Valid Quadwords. Specifiesthe number of valid quadwordsof datainthe

TFIFO element. Valid quadwords are contiguous beginning at the first
quadword in the TFIFO e ement. The number of valid quadwords
transmitted equals VLD QWORDS + 1.

VLD BYTES Valid Bytes. Specifies the number of valid bytes using the FBE# sighals
inthelast valid quadword of data. The number of valid bytestransmitted
equalsVLD BYTES + 1.

EOP End Of Packet. If set, the EOP pinisasserted during thelast transmit data
cycle that contains valid data.

SOP Start Of Packet. If set, the SOP pin is asserted during the first transmit
data cycle. Note that if the prepend option is enabled, SOP is asserted
coincident with the prepend data and not the packet data.

ERR Error. If set, the Transmit State Machine does not send this element and
skipsto the next element. The valid bit for the element must be set for
the ERR bit to take effect.

MAC_NO MAC Number. Thisfield, along with the fact that thisis associated with
an | X Bustransmit, determines how the PORTCTL# signals are asserted.

PORT_NO Port Number. Determines how the FPS signal s are asserted during the 1 X
Bus transfer.

Prepend Field The 8-byte Prepend field is transmitted when the prepend bit in the

control field isset. The pupose of the prepend datais defined by the user.
It can, for example, be used as control information to a switching fabric.

Transmitting TFIFO Data

The Transmit State Machine checks the Valid flags for the TFIFO element associated with the
transmit pointer. If the Valid flag is set, it reads the control information from the control field and
transmits the data in the Data field and (if enabled) the datain the Prepend field. After the dataiis
transmitted, the Valid flag is cleared, the remove pointer isincremented and the Transmit State
Machine looks at the next Valid flag. The Transmit State Machine services the TFIFO elements
sequentially, wrapping around to element O after it services element 15. If the remove pointer
points to an element that does not have a Valid flag set, it stalls the Transmit State Machine which
waits for the flag to be set.

Transmit Scheduler Thread

The tasks involved with determining when and how to issue transmit requests indicate that it would
be best to have a single Microengine thread perform these functions. Thisthread isreferred to as
the Transmit Scheduler thread. The microcode devel oper can implement the Transmit Scheduler to
meet specific application requirements, but fundamentally it performs the following functions:

Hardware Reference Manual

6.6.6.1

Intel® IXP1200 Network Processor Family
FBI Unit

¢ Manages which transmit queues or the MAC ports have data available to transmit.
* Manages which MAC transmit ports can accept data.

* Manages which TFIFO elements are currently being used and which are available.
* Manages which Microengine thread to assign to issue the transmit request.

* Assigns a Microengine thread to transmit data to a specified port using a specified TFIFO
element.

The concept of a Transmit Scheduler thread is extended to the hardware from the point of view of
the TxAutopush operation. The TxAutopush operation enablesthe XMIT_RDY_LO,
XMIT_RDY_HI, and XMIT_PTR registers to be autopushed to a Microengine thread specified in
the XMIT_RDY _CTL register. It is expected that this thread perform the Transmit Scheduler
functions described above.

Assigning a Transmit Thread - Examples

Once the Transmit Scheduler decides which port to service and which Transmit thread to assign to
that port, it issues a Transmit Request to a Transmit thread. The transmit algorithm is
programmable. This section provides two examples.

Example 6-9. Assignment Using Inter-Thread Communications

This example illustrates the assignment of a Transmit Request to a Transmit thread using inter-
thread communications. I nter-thread communications may be implemented by allocating memory
as mailboxes and having the Transmit Scheduler write the Transmit Requests to a mailbox. Once
the request is written to the mailbox, the Transmit Scheduler signals the assigned Transmit thread
by writing to the Transmit Thread ID to the INTER_THD_SIG register. This generates asignal
event to the specified Microengine thread. The Transmit thread responds to the Interthread signal
event by reading the mailbox and processing the Transmit Request.

Example 6-10. Assignment Using Messages

This example takes a different approach. It is based on the premise that al the Transmit threads
reside on asingle Microengine. Theideais for the Transmit Scheduler to issue Transmit Requests
in the form of a message that iswritten to acircular buffer kept within Scratchpad memory. The
Transmit Scheduler maintains an insert pointer into the circular buffer and the Transmit threads
maintain a remove pointer. A typical message format is shown below.

31 | 30 16 15 12 11 8 7 0
VLD Unused Elcirﬂﬁpt Efnr?ggrt Transmit Queue
VLD Indicates whether the message is valid (1 = message is valid)

Element count Indicates number of TFIFO elements assigned (0 = no assignment)
Element number Identifies the TFIFO element number
Transmit Queue Identifies the transmit queue

The Transmit threads use absolute addressing to share a common general-purpose register (GPR)
that contains the remove pointer. When each Transmit thread wakes up, it uses the remove pointer
to read the task assignment message and checks the valid bit. If the messageisvalid, it increments

Hardware Reference Manual 219

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

the task assignment pointer in the global GPR and processes the request. The Transmit threads can
calculate the packet location based on the port, queue, and the base address of the transmit
descriptor queue base address. When the task is complete, the thread task is repeated.

6.6.7 IX Bus Arbiter

The IX Bus Arbiter isused only in 64-bit bidirectional mode. It selects whether the I X Bus
Interface Logic is owned by either the Receive State Machine, Transmit State Machine, or, if
enabled, another 1XP1200 on a shared IX Bus. The shared I X Bus mode bit in the

RDYBUS TEMPLATE_CTL register determines whether the IXP1200 is configured for single
I XP1200 mode or shared I X Bus mode.

Figure 6-33. IX Bus Arbiter Flow

RFIFO TFIFO
Valid
A .] Flags
Receive |l 'XBus | Transmit
Data/ State Machine “| Arbiter State Machine | _ Control Data
Status -

A \

,, l

Y

IX Bus Control Signals: Shared IX Bus Mode Signals: IX Bus Data Bus:
PORTCTL#[4:0] SoP TK_IN FDAT[63:0]
FPS[3:0] EOP TK_OUT

FBE#[7:0] FAST_RX1 SOP32 (FBUS_REQ_OUT)

RXFAIL FAST_RX2 EOP32 (FBUS_REQ_IN)

TXASIS/TXERR

A7056-02

For single I XP1200 systems, the | X Bus arbitration policy isto switch between granting ownership
to either the Receive State Machine or the Transmit State Machine. When the Receive State
Machineis granted ownership, it completes one Receive Request and then the arbitration movesto
the Transmit State Machine. When the Transmit State Machine is granted ownership it may
transmit one TFIFO element. If one of the state machines does not require access to the bus, the
other state machine is granted another turn.

For shared I X Bus configurations, the IX Bus arbitration policy is to switch between granting
ownership to the Receive State Machine, the Transmit State Machine, and another 1 XP1200. When
the Receive State Machine is granted ownership, it may complete one Receive Request. When the
Transmit State Machine is granted ownership, it transmits one TFIFO element. The I X Bus Arbiter
then looks at the EOP32 pin (which has the alternative function of 1X Bus Request Input) to
determine if another 1XP1200 is requesting ownership of the IX Bus. If so, the IX Bus Arbiter
deasserts the TK_OUT pin, relinquishing I X Bus ownership. Otherwise I X Bus ownership is
retained in the current 1 XP1200 for another set of transmits and receives. Whenever a Receive
Request is available or the next TFIFO element is validated, the IX Bus Arbiter requests | X Bus
ownership by asserting the SOP32 pin (which has the alternative function of IX Bus Request
Output). The I X Bus Arbiter then waits for its TK_IN pin to be deasserted, indicating that I X Bus
ownership has been granted.

220 Hardware Reference Manual

n

6.6.8

®

Intel® IXP1200 Network Processor Family
FBI Unit

Slow Ports and Fast Ports

The concept of Slow Ports and Fast Portsis relevant only to how packets are received on the 1X
Bus. The type of port used is defined by software on a per-port basis every time arequest isissued.
One factor that could determine which type of port to use is bandwidth. Figure 6-34 illustrates the
differences between Fast and Slow Ports. Both examples show atotal I X Bus bandwidth of 1 Gbps
for 64-bit bidirectional 1X Bus mode. The first example shows ten 100 Mbps ports, while the
second shows a single 1 Gbps port. Even though they require the same bandwidth, the data on the
Fast Port must be read ten times as fast as the Slow Port. Because of this, the IXP1200 addresses
two issues:

1. How to maintain the order in which packets are received from MAC ports.
2. How to issue Receive Requests such that a MAC port Receive FIFO does not overflow.

The following sections describe how thisis done.

Hardware Reference Manual 221

Intel® IXP1200 Network Processor Family m

FBI Unit

Figure 6-34. Slow Ports vs. Fast Ports

222

Example 1: Slow Port Packet Arrival Rate IX Bus
1c|;b

Ten Slow Ports | MAC 1 MAC 2 eeoeo MAC 9 MAC 10

100Mb 100Mb Nework 155Mb 100 Mb

l«———— MPKT arrival rate per port —>|

port1
port 2
port 3
port 4
port5
port 6
port 7
port 8
port 9
port 10
1 time
lus 2us 3us 4 us 5us 6 us 7 us 8 us 9us 10 us
Example 2: Fast Port Packet Arrival Rate IX Bus
1Gb
l
One Fast Port | MAC 1
T
Network
i 1Gb
— |«<— MPKT arrival rate per port
port 1 T T W T TN TN T TN T OO O O /O (OO (T (B[B
[— f —t —t —t —t —t —t —t it bt time
lus 2us 3us 4 us 5us 6 us 7us 8us 9us 10 us
Notes:
|:| Receive period on the IX Bus Transfer time across the IX Bus for 64 Bytes
D Transmit period on the IX Bus (approximately 10 cycles) @ 66 MHz = 150 ns
. MPKT = Network data fragment. The size of the
l Receive data present on the IX Bus data field of a single
RFIFO element (64 Bytes)
A7057-02

Hardware Reference Manual

n

6.6.8.1

®

Intel® IXP1200 Network Processor Family
FBI Unit

Maintaining Packet Order

Slow Ports and Fast Ports handle packet ordering differently due to therate at which data arrives at
the port and the rate at which a Microengine thread can process the data. The Receive State

M achine reads packets from the MAC ports in fragments equal in size to one or two 1XP1200
RFIFO elements. This document refers to the datain a single RFIFO element as a MAC Packet
(MPKT). The amount of processing required for an MPKT may include header processing (header
maodification, forward lookup, etc.) or smply moving a packet body fragment to memory.

Port Blocking - Slow Ports

Port blocking maintains packet order ensuring that each MPKT is processed serially. In other
words, each Receive Request is processed by a Microengine thread and placed into a buffer in
memory before another Receive Request isissued to the same port. The following steps
outline the tasks required for port blocking:

. The Receive Scheduler thread determines which ports need to be serviced (viathe Receive

ready Flags) and which Microengine threads are available to process a Receive Request (via
thread done or self destruct registers).

2. The Receive Scheduler thread maintains a record of thread to port assignments.

3. The Receive Scheduler thread issues a Receive Request and does not issue any more Receive

Requests to that port until the Receive Request has completed (i.e. the port is blocked).

. Receive State Machine processes the Receive Request and wakes the assigned Microengine

thread

. Assigned Microengine thread processes data, places datain memory, and signals the Receive

Scheduler that the Receive Request is complete.

. Repeat these steps for subsequent MPKTs.

Port Blocking requires the Receive Scheduler Thread maintain arecord of which threads it
assigns to which ports. After the Microengine threads assigned to the port completes the
Receive Request, it must notify the Receive Scheduler Thread that the Receive Request is
complete so that the port can be unblocked.

The 1 XP1200 provides two mechanismsthat allow the assigned Microengine thread to indicate
when the Receive Request has been completed: thread done and self destruct. Both methods
require that the assigned Microengine thread signal the Receive Scheduler by writing a
message to an FBI CSR (THD_DONE or SELF_DESTRUCT) and that the Receive Schedul er
poll the CSR periodically to determine the status.

The THREAD_DONE and SELF _DESTRUCT registers are described in Section 6.5.6.

The SELF_DESTRUCT CSR support a one-bit message. The assigned Microengine Thread
may set abit withinthe SELF_DESTRUCT register (using thefast_wr instruction) to indicate
that the Receive Request is complete. For example, Thread 12 may set bit 12 in the

SELF DESTRUCT register. When the Receive Scheduler reads the SELF DESTRUCT
register, the register valueis returned and al the bitsin the SELF_DESTRUCT register are
automatically cleared. The Receive Scheduler can then look at the returned value to determine
which threads have completed their assignments and then update its thread/port assignment
list.

The THREAD_DONE CSRs supports a two-bit message for each Microengine thread. The
assigned Microengine Thread may write a two-bit message to the THREAD_DONE register
(using thefast_wr instruction) to indicate when it has completed its task. Each time a message
iswritten to the THREAD_DONE register, the current messageis logically ORed with the
new message. The bit valuesin the THREAD_DONE registers are cleared by writinga“1” so

Hardware Reference Manual 223

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

224

the Scheduler thread may clear the messages in the THREAD_ DONE register by writing the
data read back to the THREAD_ DONE register. An example of four message typesis shown
below.

Example 6-11. Four Message Types

Message Meaning Description
00 Thread is busy. The thread is not available for another assignment.
. . The thread has completed its assigned Receive
01 Thread is idle - MPKT assignment complete. Request, but it did not see an EOP.
10 Thread is idle - MPKT assignment complete | The thread has completed its assigned Receive
and the last packet contained an EOP. Request and an EOP was detected.
The thread has removed all the data from the
11 REIEO Element is free. RFIFO so it can be assigned to another Receive

Request. However, the Thread can still be busy
working on a Receive Request.

The assigned threads write their status to the THREAD_DONE register whenever it changes.
For example, a Microengine thread may immediately write 00 to THREAD_DONE &fter the
Receive State Machine signal s the assigned thread. When the Receive Scheduler reads the
THREAD_DONE register, it can look at the returned value to determine the status of each
thread and then update its thread/port assignment list.

Sequence Numbers - Fast Ports

The packet rate of aFast Port is such that the rate at which the Receive State Machine reads
MPKTsfrom asingle MAC port is so fast that a Microengine thread may NOT be ableto
process an MPKT before the Receive State Machine brings in another MPKT from the same
port. A Fast Port assumes that the data arriving at asingle MAC port is placed into multiple
RFIFO elements and multiple Microengine threads are assigned to process the datain the
RFIFO elements. For example, asingle Fast Port may require eight RFIFO elements and six
Microengine threads to maintain full line rate.

Fast Ports preclude the use of port blocking since MPKTs are processed in parallel and by
different threads. The IXP1200 uses sequence numbers to ensure packet ordering for Fast
Ports. Two sets of sequence numbers are supported, one per Fast Port. Each set provides a
packet sequence number, an MPKT sequence number, and an enqueue sequence humber.
These sequence numbers are maintained as 4-bit counters within the FBI Unit and both
automatically roll over to zero after a count of fifteen. The sequence numbers can only be
incremented and can not be assigned any specific value.

A packet sequence number isincremented by the Receive State Machine once per Fast Port
Receive Request and placed into the RCV_CNTL register. A copy of the sequence number
field isalso maintained in the SOP_SEQL (for Fast Port 1) or SOP_SEQ?2 (for Fast Port 2)
register. The Receive State Machine increments the packet sequence numbersin a manner that
allows the microcode to track not only the sequence of packets, but also the sequence of the
individual MPKTs. If the SOP signal is detected during a Receive Request, the packet
sequence number provides a sequence number based on a packet (hereafter referred to as an
SOP sequence number). If the SOP signal is not detected during a Receive Request, the packet
sequence number is based on an MPKT packet (hereafter referred to asan MPKT sequence
number). The Receive threads can determine the type of packet sequence number since the
RCV_CNTL register contains both the packet sequence number and SOP status.

Both packet sequence numbers are implemented as two separate 4-bit counters. An SOP
sequence number counter isincremented each time an SOP is detected. An MPKT sequence
number counter inherits the SOP sequence number whenever the SOP signal is asserted, and is

Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
FBI Unit

incremented once per Receive Request when the SOP signal is not detected. The figure below
shows an example of how the sequence numbers are incremented.

Figure 6-35. Sequence Number Assignment for One Fast Port

6.6.8.2

SOP SOP SOP SOP

Y Y vy

[MPKTL || MPKT2 || MPKT3 || MPKT4 || MPKT5 || MPKT6 || MPKT7 || MPKT8 |

©) 2 3 @) 3 ® @ 5

Packets arriving over time

Y

Notes:
@ = Packet Sequence Numbers (SOP at the start of the MPKT)
1 = MPKT Sequence Number

A7070-01

The enqueue sequence numbers are used by the Receive threads to determine whether it is
their turn to place a packet onto atransmit queue. When an entire network packet has been
received, the Receive thread reads the enqueue sequence number from the appropriate
ENQUEUE_SEQ register. If the enqueue sequence number matches the SOP sequence
number assigned to the packet, the Receive thread can place the packet onto a transmit queue.
If the enqueue sequence number does not match, the Receive thread goesto sleep and waitsfor
a“ sequence number change” signal event to occur. When the event occurs, the Microengine
thread reads the enqueue sequence number again and checks for a match. If a match occurs,
the packet may be placed onto a transmit queue.

After apacket is placed on atransmit queue, the Receive thread increments the enqueue
sequence number. The enqueue sequence numbers are incremented by writing to either the
ENQUEUE_SEQ1 or ENQUEUE_SEQ?2 register using the fast_wr[incr_enq_num1] or
fast_wr[incr_enq_num?2] instruction, respectively. A Microengine thread may choose to
write its processing status to the THREAD_DONE register as well as incrementing the
engueue sequence number. Thisis accomplished with asingle fast_wr instruction to the
THREAD_DONE_INCRL register or the THREAD_DONE_INCR2 register.

Issuing Receive Requests

A Microengine thread must manage the rate at which it issues Receive Requests to ensure that it
does not issue more Receive Requests to a port than is required, but that it also issues enough
Receive Requests so that the MAC port Receive FIFO does not overflow.

Slow Ports - Guaranteed Availability

When using Slow Ports, a Microengine thread reads the MAC receive FIFO Ready Flags for
multiple ports, determines which ports have data available, and always issues Receive
Requests based on the knowledge that datais availablein the MAC Receive FIFO. Sinceit
reads multiple Receive FIFO Ready flags each time, it can issue multiple Receive Requests
before it has to read the flags again.

The fundamental rule for Slow Portsis that each Receive Request is issued based on the
knowledge that there is data waiting in the MAC receive FIFO. In other words, the Receive
State Machine is provided a guarantee that datais available at the MAC device when it starts
processing the Receive Request.

Hardware Reference Manual 225

Intel® IXP1200 Network Processor Family m
FBI Unit N
®

Fast Ports - Speculative Requests

Since Fast Ports operate at a much higher data rate than Slow Ports, the rate at which asingle
MAC port is required to be serviced precludes the concept of issuing Receive Requests only
when datais known to be availablein aMAC port Receive FIFO. The reason guaranteed
availability can not be supported for Fast Ports is because the latencies associated with the
following tasks may be greater than that packet arrival rate:

— Reading the Receive FIFO Ready flags from a MAC device.

— Reading the Receive FIFO Ready flags into a Microengine thread.

— Microengine thread making a decision on whether to issue a Receive Request.
— Writing the Receive Reguest to the FBI Unit.

— Receive State Machine Processing the Receive Request.

Fast Ports support these higher data rates by supporting speculative requests. Speculative
reguests allow a Microengine thread to issue multiple Receive Requests to a port based on the
speculation that thereis data available in the MAC receive FIFO. At the time the Receive State
Machine processes each Receive Request, the Receive State Machine determines if datais
available at the MAC port and either processes the request or it is canceled.

The Receive State Machine determines whether there is data available at either of the two Fast
Ports by reading the IXP1200s fast receive ready pins (FAST_RX1 and FAST_RX2). These
pins provide adirect connection to the MAC ports Receive FIFO Ready flags. The MAC ports
should assert these signals when the receive FIFO threshold level isreached. The Receive
State Machine will sample the fast ready pinsimmediately before processing a Receive
Request (RCV_REQ) from a Fast Port. Therefore, the fast ready pins need to be valid at that
point in time.

If afast ready pin is not asserted, the Receive State Machine cancels arequest and writes a
cancel message (binary 11) into the RCV_CNTL register’s message field. It then signalsthe
assigned Receive thread. The Receive thread should be programmed to read the RCV_CNTL
register, interpret the cancel message correctly and indicate to the Receive Scheduler thread
that it is available for other tasks.

The state of the two fast ready pinsisreflected in the RCV_RDY _CNT register. A Receive
Scheduler can read this register to determine whether it should issue a Receive Request to a
Fast Port. There are two methods for issuing Speculative Requests: Blind Speculative
Requests and Smart Speculative Requests.

The I XP1200 supports two Fast Ports. The following is required to support Fast Ports.

a. The MAC port must support afast ready pin, and it must be tied to one of the | XP1200s
fast ready pins (FAST_RX1 and FAST_RX2).

b. One of three Fast Port modes must be selected in the RCV_RDY _CTL register.

¢. The Receive Request must have the Fast Port bits set to indicate to the Receive State
Machine that the port is a Fast Port and which sequence number is assigned. Sequence
numbers are described in Figure 6.6.8.1.

Blind Speculative Requests

A Receive Scheduler can blindly issue Receive Requeststo the Receive State Machine without
knowledge of whether there is data available. Because of thetimeit takes for the Receive State
Machine to cancel arequest, Blind Speculative Requests affect 1X Bus performance by
introducing a three IX Bus cycle penalty for each cancelled request.

226 Hardware Reference Manual

6.6.8.3

Intel® IXP1200 Network Processor Family
FBI Unit

Smart Speculative Request

Smart Speculative Requests have the advantage of incurring less cancel penalties than the
blind Speculative Requests. For Smart Specul ative Requests, the Receive Scheduler thread
reads the fast Ready flags from the RCV_RDY _CNT register on aperiodic basis to determine
when it should issue Receive Regquests. Then it issues enough Receive Requests to cover the
data that might have arrived in the MAC port since the last time it read the Fast Ready flags.

Fast Port Modes

The Receive State M achine supports three Fast Port modes that determine how Receive threads are
assigned to process packet datain the RFIFO. A packet is defined as beginning with the assertion
of SOP and ending with the assertion of EOP. These Fast Port modes are referred as Single Thread,
Header/Body Thread and Explicit Thread modes. When selecting modes, consider the following:

— The Receive Scheduler thread needs to know which threads are avail able to assign threads
to process each Receive Request.

— Order must be maintained by using a SOP sequence number. An MPKT sequence number
may also be needed depending on the mode sel ected.

— The execution time for the Receive thread is variable. For example, the processing of a
header would take longer than the processing of subsequent data pieces.

Single Thread Mode

The single thread mode assigns a single thread to each packet when using Speculative
Requests.

The Receive State Machine supports the single thread assignments in the following manner.
When the Receive State Machine detects an SOP, it signals the thread specified in the
RCV_REQ register and saves the thread number in the header field of the

REC FASTPORT_CTL register. If it does not detect an SOP, the Receive State Machine
ignores the thread 1D presented in the RCV_REQ register and signals the thread specified in
the REC_FASTPORT_CTL register. The Receive State Machine writes the unused thread ID
to the RCV_CNTL register MACPORT/THD field. The unused thread ID must be returned to
the Receive Scheduler thread so it knows that the thread as available for processing. There are
several methods for returning the unused thread |D. Here are three possible methods:

— The Receive State Machine signals the Receive thread when the Receive Request is
complete and the Receive thread passes the unused thread D to the Receive Scheduler
thread using inter-thread communications.

— The Receive Scheduler can request that it be signaled as well as the Receive thread after
the Receive State M achine compl etes the Receive Request. In thiscase RCV_CNTL must
be read twice before data is removed from the 4-entry RCV_REQ FIFO. In most cases,
the Receive thread reads it once and the Receive Scheduler thread also readsit once. If
two reads are not performed to the RCV_CNTL FIFO, it becomes blocked and the
Receive State Machine stalls.

— The Receive State Machine signals the Receive thread when the Receive Request is
complete, and the Receive thread sets the bit corresponding to the unused thread ID in the
SELF DESTRUCT register. The Receive Scheduler thread periodically reads the self
destruct register to determine which threads are available.

Header/Body Threads Mode

The Header/Body thread mode assigns two threads per packet when using Speculative
Requests. The idea behind the Header/Body threadsis asfollows. Thefirst thread is the

Hardware Reference Manual 227

FBI Unit

Intel® IXP1200 Network Processor Family intel
®

6.6.8.4

228

Header thread and it is responsible for processing the header to determine how to forward the
packet. The second thread is the Body thread. It's responsible for moving the remainder of the
packet to memory. When the Body threads completes its task, it can use inter-thread signaling
to notify the header thread where the body of the packet islocated. The header thread can then
place the packet onto a transmit queue.

The Receive State Machine supports header and body threads in the following manner. When
the Receive State Machine detects an SOP, it signals the thread specified in the RCV_REQ
register and saves the thread number in the header field of the REC_FASTPORT_CTL
register. When the Receive State Machine processes the next request, it signals the thread
specified in the RCV_REQ register and saves the thread number in the body field of the
REC FASTPORT_CTL register.

From this point forward, the Receive State Machine ignores the thread ID presented in the
RCV_REQ register and signals the body thread specified in the REC_FASTPORT_CTL
register. The Receive State Machine writes the unused thread ID to the RCV_CNTL register’s
MACPORT/THD field. Aswith the single thread mode, the unused thread | D must be returned
to the Receive Scheduler thread so it knows that the thread is available for processing.

Explicit Thread Mode

The Explicit thread modeisidentical to the Slow Port mode in the way thread assignments are
made. |n other words, the Receive State Machine always uses the thread assignment in the
Receive Request. In this mode, the MPKT sequence number is provided to ensure that MPKTs
are queued in the correct order.

Timing Considerations for Back-to-Back Reads

Thetiming considerations outlined below are relative only when the Receive State Machine
performs two consecutive requests to the same port. This occurs for Fast Port mode where
Speculative Requests are issued to the same port and not for Slow Ports. As mentioned earlier,
Receive Requests should only be issued to Slow Ports only when there is data availablein the
Receive FIFO of the MAC port. Thisimplies that two consecutive requests to the same port never
occurs. Unpredictable results occur if two consecutive Receive Reguests are made in Slow Port
mode.

* Waiting for EOP

A 4-cycledelay onthe IX Busisintroduced for back-to-back requests to the same port since
the Receive State Machine must wait to determine if an EOP is present in the data for the
current Receive. If an EOP is present, it automatically reads the status for the port, if enabled,
before it begins the next Receive Request.

* Programmable FP_READY_WAIT Delay

The FP_READY_WAIT (Fast Port Ready Wait) FBI register specifies two 4-bit count values
(onefor each Fast Port) that determine how many 1X Bus clock cycles the Receive State

M achine waits between the time a Receive Request is compl ete, and the time the Receive State
M achine samples the Fast Receive Ready pins (FAST_RX1 and FAST_RX2) to begin the next
receive. A Receive Request is complete based on the following:

— If MAC status is not enabled: After the data cycle where the EOP signal is asserted.
— If MAC status is enabled: When status is requested.

— If Rxfail is asserted: After the data cycle when the Rxfail signal is asserted.

The FP_READY_WAIT delay is provided for the flexibility to support MAC devices that
provide the fast ready flag at different times. Thisdelay is programmable and has areset value
of 6 X Busclock cycles.

Hardware Reference Manual

6.7

6.7.1

Table 6-27.

Intel® IXP1200 Network Processor Family

FBI Error Specifications

FBI Unit

The sections that follow summarize the FBI states following a cancel , areceivefail, or areceive

error.

Cancel

A cancel occurs when a Fast Port speculative request is cancelled.

Cancel States

State

Value

rec_ctl<msg>

3

rec_ctl<macport/thd>

rec_reg<recport> (note - no thread stuffing)

rec_ctl<sopseqg#> Undefined
rec_ctl<rxfail> 0
rec_ctl<erroroccur> 0

rec_ctl<elem2>

rec_reg<elem2>

rec_ctl<elem1>

rec_reg<eleml1>

rec_ctl<elems_filled> Undefined
rec_ctl<segnum> Undefined
rec_ctl<validbytes> Undefined
rec_ctl<eop> Undefined
rec_ctl<sop> 0

thread signaled

rec_reg<thread_id> (Note - no header/body, etc.)

sched signaled

As specified by rcv_rdy_ctl<5> (sig_sched)

SOP seq num

Not incremented

collection count

Increment

Hardware Reference Manual

229

Intel® IXP1200 Network Processor Family m

FBI Unit |n

6.7.2 Receive Fail

A receive fail occurs when the RXFAIL pin is asserted.

Table 6-28. Receive Fail States

State Value
rec_ctl<msg> rec_req<msg>
rec_ctl<macport/thd> Based on rcv_rdy_ctl<14:13>:

00 (many_threads_mode) - rec_req<recport>
01 (2_threads_maode) - rec_reqg<recport>

10 (1_thread_mode) -
rec_req<recport> if rec_ctl<sop>
rec_reqg<thread_id> if Irec_ctl<sop> (thread_stuffing)

rec_ctl<sopseq#> If rec_ctl<sop>, then SOP seq hum
rec_ctl<rxfail> 1

rec_ctl<erroroccur> 0

rec_ctl<elem2> rec_reg<elem2>
rec_ctl<elem1> rec_reg<eleml1>
rec_ctl<elems_filled> Undefined

rec_ctl<segnum> rec_req<17> (Fast Port sel)
rec_ctl<validbytes> Undefined

rec_ctl<eop> IX Bus<eop>

rec_ctl<sop> IX Bus<sop>

thread signaled Based on rcv_rdy_ctl<14:13>:

00(many_threads_mode) - rec_reqg<thread_id>
01(2_threads_mode) - header/body

10(1_thread_mode) -
rec_reqg<thread_id> if rec_ctl<sop>

header_thread if rec_ctl<sop>

sched signaled As specified by rcv_rdy_ctl<5> (sig_sched)
SOP seq num Incremented if rec_ctl<sop>=1
collection count Increment

230 Hardware Reference Manual

intel.

6.7.3

Table 6-29.

Receive Error

Intel® IXP1200 Network Processor Family

FBI Unit

A receive error occurs when statusis enabled and bit 8 of the status signals that an error has

occurred.

Receive Error States

State

Value

rec_ctl<thmsg>

rec_req<msg>

rec_ctl<macport/thd>

Based on rcv_rdy_ctl<14:13>:
00(many_threads_mode) - rec_reqg<recport>
01(2_threads_mode) - rec_req<recport>

10(1_thread_mode) -
rec_reg<recport> if rec_ctl<sop>
rec_reg<thread_id> if Irec_ctl<sop> (thread_stuffing)

rec_ctl<sopseqg#>

If rec_ctl<sop>, then SOP seq num

rec_ctl<rxfail>

0

rec_ctl<erroroccur>

1

rec_ctl<elem2>

rec_reg<elem2>

rec_ctl<elem1>

rec_reg<eleml1>

rec_ctl<elems_filled>

IX Bus

rec_ctl<segnum>

rec_req<17> (fast port sel)

rec_ctl<validbytes> IX Bus
rec_ctl<eop> IX Bus<eop>
rec_ctl<sop> IX Bus<sop>

thread signaled

Based on rcv_rdy_ctl<14:13>:
00(many_threads_mode) - rec_req<thread_id>
01(2_threads_mode) - header/body

10(1_thread_mode) -
rec_reg<thread_id> if rec_ctl<sop>
header_thread if Irec_ctl<sop>

sched signaled

As specified by rcv_rdy_ctl<5> (sig_sched)

SOP seq num

Incremented if rec_ctl<sop> =1

collection count

Increment

Hardware Reference Manual

231

intel.

Intel® IXP1200 Network Processor Family
SDRAM Unit

SDRAM Unit 7

7.1

7.2

Overview

The SDRAM Unit provides an interface to up to 256 Mbytes of synchronous DRAM (SDRAM),
with excellent burst performance. The external SDRAM Bus operates at ¥ the Core frequency and
contains a 64-bit data bus, a 14-bit address bus, and control signals. An active memory
optimization feature allows the SDRAM controller to obtain high memory performance from
standard SDRAM devices by eliminating bank precharge latencies whenever possible.

Read and write operationsto SDRAM can be performed by the Microengines, StrongARM* core,
PCI bus masters (including 1,0 accesses), and the PCI DMA channels. Configuration registersin
the SDRAM Unit allow the user to set the timing characteristics of the SDRAM Bus.

Recommended (but not required) use of SDRAM would be to:
1. Store large data structures such as packet/cell/frame data and forwarding table information.

2. Hold StrongARM* core instruction code during runtime.

SDRAM Bus Configurations

Figure 7-1 shows typical connections between an I XP1200 and SDRAM. The StrongARM* core
must be programmed to configure the SDRAM Unit with the SDRAM CSRs before the SDRAM
devices can be accessed. This programmability allows the SDRAM Unit to support awide variety
of SDRAM devices. Refer to Section 4.5 in the | XP1200 Network Processor Programmer’s
Reference for a summary of the SDRAM CSRs.

The number of row address pins (from 11 to 13) and column address pins (from 8 to 10) are
programmabl e through the use of the SDRAM_MEMCTLO register. Two bank bits, supporting up
to four banks, are provided and are automatically assigned by the SDRAM Unit to the address pins
immediately following the row address bits. The SDRAM MDATA[63:0] pins are designed to
drive asingleload. The SDRAM clock is generated by the IXP1200 and an external clock driver is
typically required to drive the SDRAM devices to minimize clock skew. Figure 7-1 shows an
example of a 64 Mbyte SDRAM configuration using 1 Mbit x 16-bit x 4 bank devices.

Hardware Reference Manual 233

Intel® IXP1200 Network Processor Family

SDRAM Unit

Figure 7-1.

7.2.1

Table 7-1.

234

SDRAM Interface External Connections

in

SDRAM
Interface

MDATA[63:0]

MADR[14:0]

SDCLK

IXP1200

RAS#

CASH#

WE#

DQM

Column Address = MADR[7:0]
Row Address = MADR[11:0]
Bank Address = MADR[13:12]

MDATA[63:4: MDATA[47:32] MDATA[31:1 MDATA[15:
l [63:48] DQ[15:0] (47:32] DQ[15:0] [31:16] DQ[15:0] (1501 DQ[15:0]
MADR[11:0]
ADDR[11:0] ADDRI[11:0] ADDR[11:0] DDR[11:0]
MADR[13:12]
BANK[1:0] BANK([1:0] BANK[1:0] BANK[1:0]
r CSt# r Cs# r Cs# r CSH#
RAS# RAS# RAS# RAS:
CAS# CAS# CAS# CAS#
WE# WE# WE# WE;
DQMH/DQML DQMH/DQML DQMH/DQML DQMH/DQML
VDD ey VD J s VDO ces VDD ey
CLK CLK CLK CLK
J SDRAM SDRAM SDRAM SDRAM
IMx 16 x4 IMx 16 x 4 1M x 16 x 4 1M x 16 x 4

Zero Skew 1
Clock driver

Most Significant Longword

Least Significant Longword

64 Mbytes of SDRAM

A8103-01

Bank, Row, and Column Pin Assignments

Bank, row, and column address pin assignments are based on an internal SDRAM address. The
StrongARM* core generates a byte address while the Microengines generate a quadword address.
The number of external address pins used for the row and column addresses are programmed
through the SDRAM _CSR register. Table 7-1 shows the configurations supported by the SDRAM
Unit and Figure 7-2 shows the relationship between the internal address and the external addresses
for a32 Mbyte SDRAM configuration that uses 1 Mbit x 16 bit x 4 bank devices (i.e., the
configuration exampleillustrated in Figure 7-1).

SDRAM Configurations

Total SORAM | Sbream | Configuration | internal | g o | pac s | cas Bits
Memory Devices | Devices (per bank) Banks
8 Mbytes 4 16 Mhit | 512 K x 16-bit 2 MADR[11] | MADR[10:0] | MADR[7:0]
16 Mbytes 8 16 Mbit 1 M x 8-bit 2 MADR[11] | MADR[10:0] | MADR[8:0]
32 Mbytes 4 64 Mbit 2 M x 16-bit 2 MADR[13] | MADR[12:0] | MADR[7:0]
64 Mbytes 8 64 Mbit 4 M x 8-hit 2 MADR[13] | MADR[12:0] | MADRI[8:0]
32 Mbytes 4 64 Mbit 1 M x 16-bit 4 MADR[13:12] | MADR[11:0] | MADR[7:0]
64 Mbytes 8 64 Mbit 2 M x 8-bit 4 MADR[13:12] | MADR[11:0] | MADR([8:0]
64 Mbytes 4 128 Mbit | 2 M x 16-bit 4 MADR[13:12] | MADR[11:0] | MADR[8:0]
128 Mbytes 8 128 Mbit 4 M x 8-bit 4 MADR[13:12] | MADR[11:0] | MADR[9:0]
128 Mbytes 4 256 Mbit | 4 M x 16-bit 4 MADR[14:13] | MADR[12:0] | MADR[8:0]
256 Mbytes 8 256 Mbit 8 M x 8-bit 4 MADR[14:13] | MADR[12:0] | MADR[9:0]

Hardware Reference Manual

INial.

Figure 7-2. SDRAM Addressing

Intel® IXP1200 Network Processor Family
SDRAM Unit

SDRAM Memory Address

24 23 22
1 Il

1110 32 0

] | Intel® StrongARM* Byte Address

Notes:

in this configuration

* Other brands and names are the property of their respective owners.

I— Column Address (Programmable) - MADR[7:0]
Row Address (Programmable) - MADR[11:0]

Bank Selects - Two address pins higher than
the row address. In this case, MADR[13:12]

Upper StrongARM address bits are not used

A8110-01

7.2.2 Initializing the SDRAM Interface

Before accessing the SDRAM devices after a system reset, the StrongARM* core must initiaize
the SDRAM Unit and the SDRAM devices. The SDRAM Unit is configured by the StrongARM*
core through the use of four SDRAM CSRs. SDRAM_CSR, SDRAM_MEMCTLO,
SDRAM_MEMCTL1, and SDRAM_MEMINIT. The use of these registers allows the SDRAM

Unit to support awide variety of SDRAM devices. The parameters that are programmable are

listed in Table 7-2.

Table 7-2. Programmable SDRAM Registers

Programmable Values

Description

Refresh Count

The rate at which SDRAM refresh cycles are generated.

BURST Length

The maximum number of SDRAM accesses between CAS cycles.

CAS Latency

Expressed as a number of SDRAM clock cycles.

Row Address Width

Specifies the number of address pins used for the row address.

Column Address Width

Specifies the number of address pins used for the column address.

tRWT Read/Write Turnaround Time.
tDPL Data In to Precharge Time.
tDQZ DQM Data Out Disable Latency.
tRC Bank Cycle Time.

tRRD Bank-to-Bank Delay Time.
tRCD RAS-to-CAS Delay.

tRASmMIn Active Command Period.

tRP Precharge Time.

Hardware Reference Manual

235

Intel® IXP1200 Network Processor Family m
SDRAM Unit N
®

Table 7-2. Programmable SDRAM Registers (Continued)

Programmable Values Description

A new command may be issued following the mode register set
command once a delay equal to tRSC has elapsed. tRSC =
(calculated time - 1), where the minimum number of clock cycles is
tRSC calculated by dividing the minimum time specified by the SDRAM
manufacturer by the SDRAM clock cycle time (1/2 the IXP1200
Core clock frequency) and then rounding off to the next higher
integer.

Initialization Refresh. Specifies the number of times to issue a

INIT_RFRSH refresh during initialization.

Initialization Delay. Specifies the number of SDRAM cycles to wait

INIT_DLY after an INIT before accessing SDRAM.

The SDRAM initialization sequence begins by programming the SDRAM CSRs to specify the
timing and configuration parameters for the specific SDRAM devicesin the system.

Note: Thelast register to be programmed must be the SDRAM _CSR since it contains the INIT bit that
causes the other register settings to be loaded to the SDRAM Controller. Setting the INIT bit also
causes the SDRAM Unit to initialize the SDRAM devices by writing to their Mode Register.

Some SDRAM devices require that the SDRAM Unit wait for agiven number of clock cycles after
the power supply and SDRAM clocks have stabilized before they can be accessed for data. This
timing delay value is programmable viathe INIT_DLY parameter in the SDRAM_MEMINIT
register. After the initialization delay has completed, the SDRAM Unit issues a Precharge All
command, which puts all of the devicesinto the“all banksidle” state. Thisisthe only time that the
Precharge All command is used. All other precharge operations are performed exclusively on a
bank-by-bank basis.

After the banks have been put into an idle state, the Load Mode Register command is executed.
The Load M ode Register command programs the burst length, burst type, CAS latency, operating
mode and write burst mode into the SDRAM devices.

After the Load Mode Register command is complete, the SDRAM devices require aseries of Auto
Refresh commands to be executed by the SDRAM Unit. The number of Auto Refresh commands
performed is determined by the INIT_REFRSH field inthe SDRAM_MEMINIT register. After the
specified number of Auto Refresh commands have been executed, the SDRAM devices are ready
to accept other commands.

During initialization, the Command Service Priority Logic holds off al accessesto SDRAM
memory space. The arbiter is under control of thislogic.

7221 Configuration Registers (SDRAM_MEMCTLO)
The I XP1200 supports a sequential burst type and programmed write burst lengths. The burst

length and CA S latency for the SDRAM deviceis selected by programming the appropriate values
into the SDRAM_MEMCTLO CSR register. Table 7-3 provides more details on sequential bursts.

236 Hardware Reference Manual

intel.

Table 7-3.

7.2.3

Intel® IXP1200 Network Processor Family
SDRAM Unit

Sequential Bursts

Burst Starting Or(_der_ of access Burst Starting Order of access within
Length Column within a b_urst Length Column a burst (Sequential)
Address (Sequential) Address
2 A0 8 A2 A1 A0
0 0-1 00O 0-1-2-3-4-5-6-7
1 1-0 001 1-2-3-4-5-6-7-0
4 A1 A0 010 2-3-4-5-6-7-0-1
00 0-1-2-3 011 3-4-5-6-7-0-1-2
01 1-2-3-0 100 4-5-6-7-0-1-2-3
10 2-3-1-0 101 5-6-7-0-1-2-3-4
11 3-0-1-2 110 6-7-0-1-2-3-4-5
111 7-0-1-2-3-4-5-6

Whenever aboundary of the block is reached within a given sequence above, the following access
wraps within the block.

The SDRAM_MEMCTLO burst length field (bits [15:12]) must be written to the value that
corresponds to the desired burst size. Interleaved memory is not supported.

Memory reads and writes are done in bursts of one quadword (64 bits). Transfers can be from one
quadword up to the programmed burst length. For aread that requires less than one quadword (e.g.,
amemory read from PCI), the PCI Unit discards the unused data. For awrite that requiresless than
one quadword, the PCI uses the DQM (DQ Mask) pins to inhibit writing to some bytes. The DQM
pins aso inhibit writing to unoccupied bytes. The row/column multiplexer mode is the value
programmed into the SDRAM address and size register (see Section 5.4.3 of the | XP1200 Network
Processor Datasheet).

Descriptions of the SDRAM_CSR, SDRAM_MEMCTLO, SDRAM_MEMCTL1 and
SDRAM_MEMINIT registers can be found in the IXP1200 Network Processor Programmer’s
Reference.

SDRAM Bus Commands

The IXP1200 connects to the SDRAM devices via two buses - a control bus and a data bus. The
signal's on these buses are sampled synchronously on the rising edge of a master controlled clock
source (SDCLK) provided by the I XP1200.

Data returned from the SDRAM devices is sampled with a gated version of the Core clock. This
signal is nearly synchronous to SDCLK. Because the two clocks are pseudo-synchronous, the zero
delay clock buffer is a necessity.

The control bus consists of the RASH, CAS#, WE# and DQM signals. In general, RAS# (Row
Address Strobe) is used to indicate that the address being driven is arow address, CAS# (Column
Address Strobe) indicates a column address, and WE# (Write Enable) indicates the direction (i.e.,
write/read) of the transfer request. The DQM signal masks a data write when asserted on awrite
access, and forces the SDRAM devices off the data (DQ) bus when asserted during a read access.
Different combinations of the above signals are used to indicate other SDRAM commands such as
Load Mode Register, Precharge, and Self Refresh.

Hardware Reference Manual 237

SDRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

Table 7-4.

7.23.1

7.2.3.2

Figure 7-3.

238

When the control bus does not contain avalid command, it is driven with a NOP command, in
which al of itspinsare in the inactive state. The IXP1200 does not support Chip Select pins, so the
commands are always valid. Table 7-4 lists the SDRAM commands and the state of the pins for
each command.

SDRAM Commands and Pin States

NAME (FUNCTION) RAS# | CAS# | WE# | DQM ADDR DQ[15:0]

NO OPERATION (NOP) H H H X X X
ACTIVE (Select bank and activate row) L H H X Bank/Row | X

EuEerl)D (Select bank and column, and start Read H L H UH Bank/Col X
\l:/‘\(JFr{;;I;E (Select bank and column, and start Write H L L UH Bank/Col valid
BURST TERMINATE H H L X X Active
PRECHARGE (Deactivate row in bank or banks) | L H L X Code X

AUTO REFRESH L L H H X X

LOAD MODE REGISTER L L L X Opcode X

Note: H=high, L= Low, X=Don't Care

No Operation (NOP)

The No Operation (NOP) command is used to perform a NOP to an SDRAM devicethat is selected
(CS#isLOW). This prevents unwanted commands from being registered during idle or wait states.
Other commands aready in progress within the SDRAM devices are not affected by a NOP.

Load Mode Register

The mode register datais loaded through the MADR[11:0] address pins. The Load Mode Register
command is performed automatically by the SDRAM Unit when the StrongARM* core sets the
INIT bit inthe SDRAM_CSR. Figure 7-3 shows the format of the data on the address pins during a
Load Mode Register command.

Load Mode Register Command

MADR[9] MADR[3]
MADR[ll:lO]l MADR[8:7] MADR[6:4] l MADR[2:0]

/ b I

| Reserved | wB | Op Mode | CAS Latency | BT| Burst Length |
L IL 1

I— Programmable via SDRAM_MEMCTLO for 2,4, or 8
(Burst Type) Fixed for Sequential Bursts
Programmable via SDRAM_MEMCTLO for 2 or 3
Fixed at Standard Mode

(Write Burst Mode) Fixed indicating that the
Programmed burst length applies to reads and writes
Fixed at 0

A8111-01

Hardware Reference Manual

INial.

7.2.3.3

7.23.4

7.2.3.5

7.2.3.6

Note:

7.2.3.7

7.2.3.8

Intel® IXP1200 Network Processor Family
SDRAM Unit

Active

The Active command is used to open (or activate) arow in a particular bank for a subsequent
access. The value on the highest two address pins selects the bank, and the remaining address pins
select the row. This row remains active (or open) for accesses until a Precharge command is issued
to that bank.

A Precharge command isissued automatically by the SDRAM Unit before opening a different row
in the same bank.

Read

The Read command is used to initiate a burst read access to an active row. The value on the highest
two address pins select the bank. Depending on the number of column address bits that are
programmed into the SDRAM_CSR register, the starting column location may be MADR[9:0],
MADR[8:0], or MADRJ7:0]. Read data appears on the DQ pins based on the logic level of the
DQM pinstwo clocks earlier. If any DQM pin is registered high, its corresponding DQ will bein
the high impedance state two clocks later. If the DQM pin isregistered LOW, the DQ pinswill
provide valid data after two clocks.

Write

The Write command is used to initiate a burst write access to an active row. The value on the
highest two address pins sel ects the bank. Depending on the number of column address bitsthat are
programmed into the SDRAM _CSR register, the starting column location may be MADR[9:0],
MADR[8:0], or MADRJ[7:0]. Data appearing on the DQ pinsis written to the memory array based
onthelogic level of the DQM pins coincident with the data. If agiven DQM signal is registered
low, the corresponding data will be written to memory; if the DQM signal isregistered high, the
corresponding data inputs will be ignored, and a Write will not be executed to that byte/column
location.

Burst Terminate

The Burst Terminate command is used to truncate fixed-length bursts. The Burst Terminate
command isissued X cycles before the clock edge at which the last desired data element is valid,
where X equals the programmable CAS latency minus one.

CAS latency is specified by the SDRAM device manufacturer.

Self Refresh

The SDRAM Unit supports the Self Refresh function.

Precharge

The Precharge command is used to deactivate the open row in a particular bank or the open row in
all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the
Precharge command is issued. The SDRAM Unit indicates via MADR[10] whether one or all
banks are to be precharged, and in the case where only one bank isto be precharged, inputs
MADR[13:12] select the bank. Once abank has been precharged, it isin the idle state and must be
activated prior to any Read or Write commands being issued to that bank.

Hardware Reference Manual 239

SDRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

7.2.3.9

7.3

Figure 7-4.

7.3.1

240

Unsupported SDRAM Commands

The Command Inhibit, Auto Precharge, and Auto Refresh SDRAM commands are not supported
by the IXP1200 SDRAM Unit.

Interfacing to the SDRAM Unit

Figure 7-4 illustrates the internal components of the SDRAM Unit. This section describes how the
StrongARM* core, PCI Unit, 1X Bus Unit and the Microengines interface to the SDRAM Unit and
itsinternal components.

SDRAM Interfacing

sdram_bus
(32bit pulldata /32bit pushdata)
Push Pull Control

Microengine -
SDRAM Push Pull Engine| sdram signal event
SDRAM Pin 32, write I read 32
Interface [| dat
Points to ata
TrIFO| | BVt Data Buffer| either
RFIFO| ‘:ﬁggg' 16 x 32 bits| read path or AMBA
UENg[wr oniy| write path Bus
) Interface AMBA Bus
MDATA[63:0] AMB, 32, read J write 32, Logic
Data
MADR[13:0] E|‘ pCI
SDRAM | pasy control
CASH control
Up to 256MB Control
P SIQEI: Command AMBA Addressl command
Decoder Rd/Wr Latch
and
Ao 1< deress 7] PCI Command —(Pd?uj\?;ﬁf?d?;zs-bix wr)
(U2 core freq) Generator Data Queue (8) '
address, and control)

|— High Priority (8)
I Odd bank (16)
SDRAM — Even Bank(16)
CSRs — Order (24)
(AMBA Access Only) }\ Command Queues

<

Microengine
Command Bus

|<—

refresh

Command Programmable
Service Priority :I chained Refresh Timer
I External Devices | | SDRAM Unit Logic

A8106-01

SDRAM Command Service Priority Logic

The SDRAM Unit handles memory references from six sources:
* StrongARM* core
* PCI Unit
¢ Four Microengine Command Queues: (Odd Bank, Even Bank, Order, and Priority)

The SDRAM Unit contains Command Service Priority Logic that determines when each of the
references to memory from the sources gains access to the SDRAM Bus. The arbitration policy
exists at two levels: major units (Microengines, StrongARM* core, PCI Unit, and SDRAM
Refresh) and among the different types of Microengine commands. The arbitration policy used by
the Command Service Priority Logic is shown in Figure 7-5.

Hardware Reference Manual

Figure 7-5.

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit

Command Service Priority Logic Arbitration Policy

Priority O (Highest)

Chained
reference
in progress

Priority 1

After reset, AMBA
has highest priority
in round robin loop

Priority 2 (Round Robin loop)

Microengine
High Priority e

Y
Microengine
Opposite Bank

Priority 3

Priority 4
Microengine
Order

i) Priority 5 (Lowest)

Microengine
Same Bank

A8105-01

241

Intel® IXP1200 Network Processor Family m
SDRAM Unit N
®

7.3.1.1 Priority 0: Chained Referenced

The highest priority is given to chained references that are currently in progress. A chained
reference enters a command queue and is serviced at a priority level equal to the command queue
inwhichit is placed. When the chained referenceis serviced, the command queue from which it
was taken will have the highest priority until the chain is terminated. The command bus arbiter will
not service any more commands from the other Microengine Command Queues until thechainis
complete.

Note: Executing an abnormally long sequence of chained requests might affect the rate at which SDRAM
refreshes occur. The Refresh Controller is designed to generate requests such that the average
refresh rate is maintained, but chained accesses may have some bearing on the actual timing of the
execution of the Refresh commands.

7.3.1.2 Priority 1: Refresh Requests

Requests for SDRAM refresh cycles have the next priority after chained references, so that
SDRAM refreshes occur as close as possible to the rate at which they were programmed.

7.3.1.3 Priority 2: Round Robin Requests

The next three requests are grouped together in a Round Robin prioritization scheme. These
reguests are granted accesses in arotating priority fashion depending upon which interface last
received a grant.

At reset, an AMBA request will have the highest priority of the group, followed by PCI requests
and then the Microengines High Priority Queue, until a grant is generated to one of these three
units. After agrant is generated to one of the three units, the granted interface will have the lowest
priority of the three, while the remaining two interfaces move up in priority. This enables each unit
to have fair access to the SDRAM Bus. The Round Robin priority of the three units changes only
after agrant has been generated to one of the units and is static otherwise.

7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests

The remaining priorities are based on the Order, Odd bank, and Even Bank Microengine command
gueues. While the Microengine Order Queue request is static, the Odd and Even Bank command
gueues are dynamic, depending upon the bank of the last grant that was generated.

When the Command Service Priority Logic services acommand queue, the bank of the beginning
quadword address is hoted and registered by the Command Service Priority Logic. The next
command queue that is serviced is based on this bank information. If the bank of the previous
access was to the Even bank, the Command Service Priority Logic will assign priority 3 to the
Microengine Odd Bank command queue (the opposite bank), and priority 5 to the Microengine
Even Bank command queue (same bank). If the previous SDRAM access was to an odd bank, the
Even Bank command queue is assigned to priority 3 while the Odd Bank Queue (opposite bank) is
assigned priority 5. This allows the SDRAM Unit to optimize the performance of the SDRAM bus.
Refer to Section 7.3.4 for more information on active memory optimization.

242 Hardware Reference Manual

n

7.3.2

7.3.3

Note:

Intel® IXP1200 Network Processor Family
SDRAM Unit

Read-Modify-Write

The Read-M odify-Write function allows individual bytes to be written to the SDRAM devices. To
accomplish this, the SDRAM Unit firsts reads the data from a quadword address, modifies the
specified bytes, and then writes the modified quadword back to the SDRAM device. These three
steps are performed atomically. The SDRAM Unit supports Read-Modify-Write operations from
the Microengines, StrongARM* core, and PCI Unit.

The PCI requires byte write capability for byte lane support and single longword write operations.
The StrongARM* core requires byte write capability to support load and store byte and word
instructions. The Read-Modify-Write operations are transparent to the StrongARM* core and the
PCI Unit

The Microengines can explicitly request that a Read-M odify-Write operation be performed at an
SDRAM quadword address using the indirect reference option. The reference count must be a
value of 1 and the datathat is written is specified in an SDRAM write transfer register. A mask in
theindirect_ref specifies which bytes are to be modified.

Chained References

Chained references allow a source to issue multiple commands and be assured that the SDRAM
Unit will execute the commands as long as the source keeps the chain going.

The SDRAM Unit will automatically set the chained bit if it receives two or more consecutive
commands from the PCI Unit that request access to consecutive SDRAM longword addresses.

The Microengines issue chained references by specifying the chain_ref within the sdram
instruction. Aslong as the Microengine issues sdram instructions specifying the chain_ref
optional token, the chain is kept alive. From a Microengine perspective, the chained references
have three implications. First, the Command Bus Arbiter will not allow any other Microengineto
issue SDRAM commands until the chain has been completed. A chained request is considered
complete when all of the commands associated with the request have been entered into the
SDRAM Unit queuing structure, not when the actual memory access is compl ete.

Secondly, it indicates that the SDRAM Unit should process the SDRAM command from the same
command queue from which the chained reference was serviced and continue to service this
command queue until the chain is complete.

Thethird implication only occursif the sdram instruction specifies both thet_fifo_wr command
and the chain_ref optional token. In this caseit also causes the byte aligner to hold data | eft over
from the preceding non-aligned access in aresidue latch within the SDRAM Unit, so that the data
can be used on the next t_fifo_wr command that is part of the chain. Thisimproves bandwidth
during chained t_fifo_wr operations.

The chained references can only be submitted to the Priority or Order command queues. The
chain_ref optional token can not be used with the optimize_mem optional token.

When using achained reference, if an interface generates a chained request and failsto follow it up
immediately with another request, it will cause the Arbiter to stop until afollowing request is

Hardware Reference Manual 243

SDRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

7.3.4

Figure 7-6.

244

generated. It is precisely thisfunction which allowsthe SDRAM interface to hold off requests from
al interfaces until the SDRAM initialization sequence has been completed.

Active Memory Optimization

SDRAM s are burst-based memories requiring only a single address to be specified to transfer data
from several addresses. This means that the control bus is unused in many cases when burst
transfers are being performed. SDRAMs a so have multiple banks, but data can only be transferred
from asingle bank at atime. However, the other banks may be addressed via the control busin
preparation for the next data transfer. Each time SDRAM accesses cross a bank boundary, the
current bank must be closed and precharged. Thisrequires use of the control bus and can introduce
latencies associated with reading data from a different bank.

The SDRAM Unit can eliminate the | atencies associated with bank switching by taking advantage
of the multi-bank nature of SDRAM devices, and the unused control bus cycles to optimize
SDRAM datatransfers. It accomplishes thisin two ways:

1. By making use of cycles on the control bus that would otherwise be NOPs to prepare and have
waiting an access to another bank.

2. By making use of cycles on the control bus that would otherwise be NOPs to precharge the
bank that was closed while an access to another bank isin progress.

Thisalowsthe I XP1200 to eliminate precharge latency and increase the effective bandwidth of the
SDRAM Bus. Figure 7-6 illustrates how bank switching improves performance.

Bank Switching

SDRAM Address Bus
SDRAM Address/Data Bus || odd bank data burst | unused]| even bank data burst
SDRAM Control Bus Iprecharge odd bank ” addr cmds I
Consecutive Access to Opposite Banks Not Using Optimization Time
SDRAM Address Bus
SDRAM Address/Data Bus | odd bank data burst I even bank data burst |
SDRAM Control BUSI addr cmds " riw cmdl I addr cmds ”precharge odd bank I
Time

Consecutive Access to Opposite Banks Using Optimization

A8108-01

The SDRAM Unit in the IXP1200 provides an additional advanced feature that increases the
ability of the SDRAM Unit to exploit bank switching. This feature isimplemented as separate
command queues for references to the Odd Banks and the Even Banks. The SDRAM Unit can then
alternate between servicing commands from these queues.

The programmer decides whether a Microengine SDRAM reference should be sorted into the Odd
Bank or Even Bank Command Queue by specifying the optimize_mem optional token within the
sdram instruction. The SDRAM Unit automatically sorts the command based on the SDRAM
address. The commands submitted to the Odd and Even Bank Command Queues are not
guaranteed to be completed in the order in which they where issued. If order is important, the
optimize_mem option should not be used (in which case the command goes into the Order
command queue).

Hardware Reference Manual

intel.

7.4

7.4.1

Note:

Table 7-5.

7.4.2

Note:

Intel® IXP1200 Network Processor Family
SDRAM Unit

It is assumed that a majority of memory accesses will use the optimize_mem token. Continual
assignment of memory references to the Order or High Priority Queues defeats the purpose of the
memory optimization performance gain, and in some instances leads to less than desired
performance.

Microengine SDRAM Transactions

Microengines Command Queues

The Microenginesissue commands to the SDRAM Unit which in turn places them into one of four
Command Queues within the SDRAM Unit. An optional token within the instruction specifiesinto
which of the four queues a command is submitted. The four Command Queues, the queue sizes and
the optional tokens are listed in Table 7-5.

Command Queues

cﬂﬁ?ﬁg%ﬂiue Queue Size Instruction optional token
Odd Bank 16 optimize _mem
Even Bank 16 optimize _mem
Order (default) 16 order (or no optional token)
High Priority Queue 16 priority

The Command Queues are sized so that in typical operation, the queues should not fill completely.
A back-pressure mechanism will signal the Microengines Command Bus arbiter to cease alowing
SDRAM commands to be sent to the SDRAM Unit when any of the queues have only six entries
available. This ensures there is room for any SDRAM commands that have already been granted
access to the SDRAM Unit by the Microengine Command Bus arbiter.

When the SDRAM Unit processes an sdram instruction, the SDRAM Push-Pull Engine movesthe
data between the SDRAM Unit and the Microengine SDRAM write/read transfer registers viaan
internal 64-bit SDRAM databus. The SDRAM busisdivided into a 32-bit pull and 32-bit push bus
and data is moved across these buses at the Core frequency.

If a Microengine thread chooses to be signaled upon completion of a command, the sig_done or
ctx_swap optional token should be specified in instruction.

SDRAM Byte Aligner

The SDRAM Byte Aligner allows data to be read from SDRAM memory on non-quadword
aligned addresses, align the data and present it to the TFIFO (in the IX Bus Interface Unit) on
aligned quadword boundaries.

The Byte Aligner can only be used by the Microengines using the sdram instruction with the
t_fifo_wr command.

The SDRAM Unit aligns and merges data that is read from two consecutive quadword addresses to
create the non-aligned quadword. The four-bit byte alignment value specified in the indirect
reference data defines the alignment.

Hardware Reference Manual 245

SDRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

Table 7-6.

Table 7-7.

7.5

246

The alignment value can range from 0 to 7 and indicates the byte offset into the first quadword of
data. The remaining data comes from the next consecutive address. \WWhen more than one quadword
is specified in the sdram instruction, the unused data from the second address will be merged with
the data from the next address. Depending on burst size, memory accesses from SDRAM which
occur on non-byte aligned boundaries, the chain_ref optional token can be used to eliminate the
need for specifying the byte alignment between consecutive sdram instructions.

How the SDRAM Unit will perform the alignment is based on the Endian bit in the SDRAM_CSR
register. The endian format is based on bytes that are on longword boundaries (Little Endian
format: 8765 4321, Big Endian format: 5678 1234). The following example shows the results of
different alignment values for both Big and Little Endian modes. N is the address specified in the
sdram([t_fifo_wr] instruction or the last data read from the previous read in a chained reference.

The data at quadword addresses N and N+1 are as follows:

Data at Quadword Address N and N+1

SDRAM Address Data
N+1 1234 5678
N ABCD EFGH

The data at these two consecutive SDRAM quadword addresses are aligned and merged and
written to the TFIFO on quadword boundaries according to the different align values and the
endian mode specified. Table 7-7 shows the different possible alignment results.

Alignment Results

Align value Little Endian Mode Big Endian Mode
0 ABCD EFGH ABCD EFGH
1 8ABC DEFG BCD5 FGHA
2 78AB CDEF CD56 GHAB
3 678A BCDE D567 HABC
4 5678 ABCD 5678 ABCD
5 4567 8ABC 6781 BCD5
6 3456 78AB 7812 CD56
7 2345 678A 8123 D567

PClI SDRAM Transactions

Since the PCl Unit operates with longword (32 bit) data while the SDRAM interface to the
physical memory is quadword (64 bit), there must be a coalescing of datafrom the PCI Unit before
presenting it to the SDRAM devices. The SDRAM Unit performs this function.

The PCI Unit presents acommand and the data (if awrite isto take place) to the SDRAM Unit for
each PCI bus transfer. When performing a burst of consecutive commands that will address
contiguous memory locationsin SDRAM, the SDRAM Unit merges the commands into asingle
chained command if the read or write are to adjacent memory addresses. The merging of the
commands result in a single 64-bit access.

Hardware Reference Manual

Note:

7.6

7.6.1

Table 7-8.

Intel® IXP1200 Network Processor Family
SDRAM Unit

The SDRAM-to-PCI and PCI-to-SDRAM transfer operations are described in Chapter 5 (PCl
Unit) of the IXP1200 Network Processor Hardware Reference Manual.

It is possible that the SDRAM Unit will prefetch more data than was requested by a PCl host
device. If so, thisdatais buffered in the PCI Unit but will not persist past the deassertion of
FRAME#.

StrongARM* Core SDRAM Transactions

The StrongARM* core issues references to the SDRAM Unit viathe AMBA Bus. These requests
can be generated directly by the StrongARM* core Processor or by Icache, Dcache (main and
mini), StrongARM* core Read Buffer, or StrongARM* core Write Buffer.

StrongARM* core references to non-cached areas cause the StrongARM* core to stall until the
SDRAM Unit provides data at the AMBA Data Buffer. For write operations, the StrongARM* core
will stall until it gains access to the AMBA Bus, which is shared by the caches and buffers. Once
access is granted, the StrongARM* core will write datato the AMBA Bus Logic which trandates
the AMBA bus signaling into a Microengine-like command and the datais written into the AMBA
Data Buffer so that the StrongARM* core may continue to execute. When the SDRAM command
arbiter grants access to the AMBA Bus interface, the AMBA Bus command is completed and the
dataisread from the AMBA Data Buffer. The SDRAM Unit does not queue AMBA transactions
and therefore only one AMBA transaction can be in progress at atime: aread (that can prefetch) or
two writes. The AMBA Write Buffer can hold 16 longwords, up to two cache lines at atime. The
AMBA Data buffer isa FIFO, which is used for one type of transaction at atime, reading or
writing. For example, after reading datafrom SDRAM the buffer must be emptied before awrite to
SDRAM can utilize the buffer for the write data.

StrongARM* Core and Microengine SDRAM Address Space

Table 7-8 shows the Memory Map for the SDRAM address space. Natice that the StrongARM*
core addresses this space using byte addressing while the Microengines access this space using the
sdram instruction and longword addressing.

Memory Map for SDRAM Address Space

Microengine sdram

Memory Area Description

StrongARM Address Space
(Byte Addressing)

Instruction command
(Longword addressing)

SDRAM Control Registers

FFOO0 0000 - FF00 0014

Not supported

SDRAM Prefetch Memory (256 Mbytes)

D000 0000 - DFFF FFFF

Not supported

SDRAM non-Prefetch Memory (256

Mbytes)

C000 0000 - CFFF FFFF

read and write
0x000 0000 - Ox1FF FFFF

Cache Flush Area (16 Kbytes)

A000 0000 - A00O 4000

Not supported

Hardware Reference Manual

247

Intel® IXP1200 Network Processor Family m
SDRAM Unit N
®

7.6.1.1

7.6.1.2

7.6.1.3

7.6.1.4

Note:

7.7

7.7.1

Note:

248

SDRAM CSRs

The SDRAM Unit must be configured beforeit can be used. Only the StrongARM* core has access
to the four SDRAM CSRs (the SDRAM_CSR, SDRAM_MEMCTLO, SDRAM_MEMCTL1 and
SDRAM_MEMINIT registers). The SDRAM CSRs allow the bus timing and row and column
address pin assignments to be configured for a variety of SDRAM devices. The last register to be
programmed must be the SDRAM_CSR since it containsthe INIT bit that causes the other register
settings to be loaded by the SDRAM Controller.

SDRAM non-Prefetch Memory (256 Mbytes)

Located in the CO00 0000 - CFFF FFFF address space, access to memory at these addresses will
not cause an automatic fetch of the next eight longwords from memory.

SDRAM Prefetch Memory (256 Mbytes)

Located in the DO0OO 0000 - DFFF FFFF Address Space, access to memory at these addresses will
automatically fetch the next 8 longwords from memory to reduce SDRAM latency to the
StrongARM* core. Only StrongARM* core accesses support prefetch. Microengine accessto this
areawill not activate the prefetch logic.

Cache Flush Area (16 Kbytes)

The cache flush areais accessible only from the StrongARM* core. This area returns zeros when
read and isintended to facilitate rapid cache flushing by returning zero data without requiring an
external memory access. This spaceis used for read and write bursts. Non-bursted writes to this
space have no effect. Refer to Section 3.2.4.5 for more information.

If the cache is disabled then the StrongARM* core will not perform a burst.

SDRAM and the IX Bus Interface

Thetransfer of data between the IX Bus Interface Unit and the SDRAM interface is an important
part of the IXP1200. Data from external devices attached to the IX Busis stored in a 16-element
receive FIFO (RFIFO) located in the I X Bus Interface Unit. Datathat isto be transmitted to devices
connected to the I X Busis stored in a separate 16-element transmit FIFO (TFIFO) also located in
the IX Bus Interface Unit. A separate datapath exists in the IXP1200 for transfer of data between
SDRAM and these FIFOs.

SDRAM to TFIFO Operation

Moving datafrom SDRAM to the TFIFO is done by the Microengines using the sdram[t_fifo_wr,
...] instruction with the indirect_ref token.

Theindirect_ref token must be used with this command.

With this command, up to 16 quadwords (128 bytes) of data can be moved from SDRAM to the
specified TFIFO element(s). Each TFIFO element holds up to eight quadwords of data (64 bytes),
so a 16 quadword reference will span multiple TFIFO elements. When issued by a Microengine,
this command is placed in the Order queue. Once the SDRAM Service Priority logic services the

Hardware Reference Manual

7.7.2

Note:

7.7.3

Intel® IXP1200 Network Processor Family
SDRAM Unit

command, adata“push” to the IX Bus Interface Unit will result. Byte alignment is possible and is
specified in theindirect_ref portion of the command. The IX Bus Interface Unit can be optionally
signaled by the SDRAM Unit when the data transfer is complete.

Receive FIFO to SDRAM Operation

Moving datafrom RFIFO to SDRAM is done by the Microengines using the sdram[r_fifo rd, ...]
instruction with the indirect_ref token.

Theindirect_ref token must be used with this command.

With this command, up to 16 quadwords (128 bytes) can be moved from the RFIFO element(s) to
SDRAM. Each RFIFO element can hold up to eight quadwords of data (64 bytes), so a 16
quadword reference will empty two RFIFO elements. When issued by a Microengine, this
command is placed in the Order queue. Once the SDRAM Service Priority logic services the
command, adata“pull” from the IX Bus Interface Unit will result. Byte alignment is not possible
when moving data from the RFIFO to SDRAM.

SDRAM and IX Bus Data Path Operation

While the datapath is separate for transferring data to and from the I X Bus FIFOs, it should be
noted that the command path and thereby the Order queue is shared with the Microengines. The
internal datapath to and from the RFIFO and TFIFO elementsis 32 bits wide. Therefore, half the
data (32 bits) will be held for one cycle before sending it on the bus.

Transfers of datafrom the SDRAM Unit to the TFIFO out of the area marked as prefetchable will
not cause a prefetch operation to occur asthisis only for the StrongARM* core.

Hardware Reference Manual 249

intel.

Intel® IXP1200 Network Processor Family
SRAM Unit

SRAM Unit 8

8.1

8.2

Overview

The SRAM Unit provides access to three types of devices through a common bus interface:
* SSRAM. Up to 8 Mbytes of either Flow Thru or Pipelined Synchronous SRAM devices.

* BootROM. Flash or EPROM. Thisiswhere the StrongARM* core begins executing
instruction from after a reset.

¢ SlowPort. Other devices such as Lookup CAMs, encryption devices, and control and status
interfacesto MAC/PHY devices can be placed onto the SRAM Bus.

Each of the three types of devices are mapped to different address spaces and each address space
provides unique timing that is programmed via SRAM configuration registers. The devices on the
SRAM Bus can be accessed by the Microengines and the StrongARM* core. The external interface
consists of a 32-bit data bus, 19-bit address bus, and control signals. The busis clocked at half the
core frequency.

The SSRAM address space supports advanced functionality beyond simple reads and writes. These
functions are designed to offload the StrongARM* core and Microengines of common operations
that might otherwise require additional instructions that perform multiple memory operations.
These commands provide the following functionality.

* Eight Push-pop Registers for buffer management
* Bit Test, Set, and Clear commands for atomic bit operations
¢ FEight-entry Content-Addressable Memory (CAM) for locking eight separate memory areas

¢ Journal pointer management support.

The StrongARM* core addresses the four address spacesin the SRAM Unit using byte addressing
while the Microengines use longword addressing.

SRAM Bus Configurations

The SRAM Bus supports a 32-bit data bus, 19-bit address bus, and control signals. The busis
clocked at half the core frequency and three different address spaces support three different bus
timings. Figure 8-1 illustrates an example of external connections on the SRAM interface. The
sections that follow provide additional information about these address spaces.

Hardware Reference Manual 251

SRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

Figure 8-1.

8.3

252

SRAM External Connections

ce#
CE#[0:3] cel#
SOE# SLOW_EN# 322#
DQ[31:0] d[31:0]
A[18:0] addr{17:0]
T ol SSRAM
SCLK clk
SCLKIN Required for Flow Thru devices) T ZSSSGRKél:\)’IIZ Shown: 4 Mbyte = 256 Kbyte devices by
4b device x 4 devices
SP_DIR/LOW_EN# dir_apBLo]|\ |
SLOW EN# en . Slow Interface
b[31:0] Buffer i
| Tranceiver Logic
CE#[3:0] (Optional) Upper 16 data bits for
| SLOW_EN#, the 32-bit BootROM interface
GPIO[3] at reset
" low = 32-bit interface
. ce: high = 16-bit interface
A[18:0] addr18:0]
DQ[31:16] d[15:0]
SLOW_ WE# we #'
SLOW_RD# oot BoOtROM
512x16 Shown: Maximum BootROM configuration
8M Byte =512K byte devices by
— ce# 2 bytes/device x 8 devices
I . Minimum BootROM configuration (not shown)
DQ[15:0] addr[lS.O] 512K Byte = 128K byte devices x 2
d[lS.O] — bytes/device
——| we#
oe#
Flash
512x16
A[18:
[18:0] Decode CE[n}# 1 ce#
SP_CE# Logic CE[0l#[ce#
oet, Memory Mapped
addr Slow Port Devices
HIGH_EN#RDY# gj"’;ta
IXP1200 Slow Port
SRAM Unit Device
A7988-01

SSRAM Address Space

The SSRAM provides a memory source with lower access latency than the SDRAM interface. The
SSRAM isintended to contain lookup tables and buffer free-lists used by the processors when
moving data through the 1XP1200.

The SRAM Unit provides a 32-hit interface to 8 Mbytes of Synchronous SRAM (SSRAM). Both
Flow Thru devices and Pipelined Burst SSRAM devices are supported. Internally, the
Microengines always addresses the SRAM Unit using longword addressing while the
StrongARM* core uses byte addressing. However, the external physical memory is always
addressed using longword addresses.

Theinternal addressis used to generate the external: longword address (A[18:0] - maximum of 2
Mbytes), chip selects (CE#[3:0] - maximum 4 devices), and two additional chip selectswhich are
optional (HIGH_EN# and LOW_EN#). The external address pins A[18:0] always reflect the state
of the low 19-bits of the internal longword address. The primary chip selects (CE#[3:0]), and the

Hardware Reference Manual

Figure 8-2.

8.3.1

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit

two additional chip selects (HIGH_EN# and LOW_EN#) pins are also based on the internal
address and can be configured viathe SRAM CSRsto support the four memory configurations

illustrated in Figure 8-2.

Memory Configurations

1M Byte Maximum Configuration
(256K bytes address x 4 devices)
(128K bytes address x 2 banks x 4 devices)

Internal address Intel® StrongARM*
22 2120 19 18 17 16 1 OpByte Address
LITTTTI
2019 18 17 16 15 14 0 Longword

L 1 Address

T
External address A[x:0]
A[15:0] = wo/device select 256K byte/64K LW address
A[14:0] = w/device select 128K byte/32K LW address

Chip Enable LOW_EN#, HIGH_EN# (Optional)
0: LOW_EN#=0, HIGH_EN#=1
1: LOW_EN# =1, HIGH_EN#=0
Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

4M Byte Maximum Configuration
(1M byte address x 4 devices)
(512K byte address x 2 banks x 4 devices)

Internal address Intel StrongARM

22 212019 18 1 0 Byte Address

LITTI1 |

2019 18 17 16 0 Longword
L | Address

T
External address A[x:0]
A[17:0] = woldevice select 1M byte/256K LW address
A[16:0] = w/device select 512K byte/128K LW address

Chip Enable LOW_EN#, HIGH_EN# (Optional)
0: LOW_EN#=0, HIGH_EN#=1
1: LOW_EN# =1, HIGH_EN# = 0

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

2M Byte Maximum Configuration
(512K bytes x 4 devices)
(256K bytes x 2 banks x 4 devices)

Internal address Intel StrongARM

22 21201918 17 16 1 0 Byte Address

LILITTTT T 1

201918 17 16 15 0 Longword
L1 L 1 Address

T
External address A[x:0]
A[16:0] = wo/device select 512K byte/128K LW address
A[15:0] = w/device select 256K byte/64K LW address

Chip Enable LOW_EN#, HIGH_EN# (Optional)
0: LOW_EN# =0, HIGH_EN# = 1
1: LOW_EN# =1, HIGH_EN# =0
Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

8M Byte Maximum Configuration
(2M byte address x 4 devices)
(1M byte address x 2 banks x 4 devices)

Internal address Intel StrongARM

22212019 1 0 Byte Address

LI T I

20 19 18 17 0 Longword
L L | Address

T
External address A[x:0]
A[18:0] = wo/device select 2M byte/512K LW address
A[17:0] = w/device select 1M byte/256K LW address

Chip Enable LOW_EN#, HIGH_EN# (Optional)
A[18] = 0: LOW_EN# =0, HIGH_EN# = 1
A[18] = 1: LOW_EN# = 1, HIGH_EN# = 0

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

* Other brands and names are the property of their respective owners.
A7989-01

The CE#[3:0] chip select signals allow up to four physical devices to be selected without external
decode of the address pins. If required, the CE#[3:0] chip select signals can be qualified with the
HIGH_EN# and LOW_EN# pinsto alow atotal of eight banksto be selected without external
decode logic.

The SSRAM interface also alows await state to be inserted whenever the address switches
between the physical devices on the bus. Thisis set viathe SRAM CSRs and must be set when
using SSRAM devices that have a slower output disable time than output enable time. The wait
state is asserted whenever an access crosses a chip selects (CE#) or bank select (HIGH_EN# or
LOW_EN#) boundary.

Pipelined vs. Flow Thru SRAM Devices

The SSRAM Interface can be configured viathe SRAM _CSR to support either Flow Thru devices,
which have a pipeline delay of 2 clock cycles, or Pipelined Burst devices that support Dual Cycle
Deselect, which have apipeline delay of 3 clock cycles. Other types of SSRAM devices, including

253

Intel® IXP1200 Network Processor Family m
SRAM Unit N
®

single cycle deselect, are not supported. Figure 8-3 shows the | XP1200 internal logic associated
with the Pipelined and Flow Thru SSRAM devices and the internal logic of the IXP1200 SRAM
Unit.

The Pipelined SRAM devicesinclude an internal output buffer that latches the data while Flow
Thru devices do not. The I XP1200 supports the timing differences between the two types of SRAM
devices by adding an internal buffer that adds an extra clock cycle delay for the Flow Thru device.
Thisextradelay assuresthat the SRAM data arrives on the same clock cycle whether it comes from
Pipelined or Flow Thru devices.

Figure 8-3. Pipelined vs. Flow Thru SSRAM Device

Pipeline SSRAM Device IXP1200

SRAM_CSR
Pipeline Burst=0
Output
Bufer Read Data I D Q
b Q

-Ip QfF - -
RAM Array A
A A

Delay
A _[SACLK Buffer

T SCLK

; IXP1200
Flow Thru SSRAM Device SRAM CSR
Flow Thru=1
;mm s - 0
Read Data | P Q
D Q 1
A

Return

Path ———>> Delay
SACLK Buffer

RAM Array

A

[SCLK
Forward

< Path

A7990-01

Theinternal output buffer of the Pipelined SRAM is clocked by the IXP1200 SCLK signal. This
signal enters the SRAM device at the end of the trace resulting in a skew between the SCLK at the
IXP1200 and the SCLK at the SRAM device where the output buffer isactually clocked. This skew
is compensated for in the IXP1200 Flow Thru configuration by clocking the delay buffer in the
IXP1200 with an SCLK signal that traverses the board with an etch length equal to that of the
forward and return path to the SRAM device. The SCLKIN pinisused asthe input pin for the
return path signal that clocks the IXP1200 delay buffer.

The Flow Thru devices provide better performance than Pipelined devices for the case when aread
operation is followed by awrite operation, since the I XP1200 can begin the write operation one
cycle earlier. Figure 8-4 illustrates the performance advantage by showing the timing for awrite-
read-write operation for both Flow Thru and Pipelined devices.

254 Hardware Reference Manual

intel.

Figure 8-4.

8.4

Note:

Intel® IXP1200 Network Processor Family
SRAM Unit

Flow Thru Device

Flow-Through Devices

write read ; i write
Address Addr X Sddr idle X idle addr X ><

write ; read i write ><
Data data X idle X data X idle data X

Pipeline Burst Devices
write read ; ; ; write
Address Addr X Sddr idle X idle X idle X addr X

Data wite X ide X ide X [ad X' ige X e X:

A7991-01

BootROM Address Space

The BootROM address space supports up to 8 Mbytes of Flash or EPROM. This address space can
be accessed by the StrongARM* core and the Microengines. The BootROM is mapped to the
StrongARM* core physical address 0. After areset, the StrongARM* core begins fetching
instructions from this address space.

The StrongARM* core must boot from address 0000 0000h, which is mapped to the BootROM. It
cannot boot from PCI or any other devicesin its address map.

BootROM address space can be configured to support either a 16-bit or 32-bit data bus. The bus
sizeis determined at reset and is based on the state of the GPIO[3] pin (GPIO[3] pulled high = 16-
bit bus and GPIO[3] is pulled low = 32-hit bus).

The BootROM address space shares the four external chip select pins (CE#[3:0]) with the SSRAM
interface. These signals are asserted based on a 21-bit internal longword address. Three CE#
configurations are supported and are configured viathe SRAM CSRs (Figure 8-5). Asshown in
Figure 8-1, CE# signals should be gated with the SLOW_EN# signal to ensure that the BootROM
devices are not selected when the SSRAM asserts the CE# signals.

Hardware Reference Manual 255

Intel® IXP1200 Network Processor Family m

SRAM Unit

Figure 8-5.

Figure 8-6.

256

BootROM Addressing

2 Mbyte Maximum Configuration 4 Mbyte Maximum Configuration
Internal longword address ® Internal longword address
Intel® StrongARM* Intel StrongARM
22 2120 19 18 21 0 Byte Address 22 2120 19 21 0 Byte Address
[
20 19 18 17 16 0 Longword 20 19 18 17 0 Longword
L 1l | Address L M | Address
L External address A[x:0] L External address A[x:0]
A[16:0] = 512K byte/128K LW address A[17:0] = 1M byte/256K LW address
Chip Enable CE#[3:0] Chip Enable CE#[3:0]

00 CE#[3:0] = 1110 00 CE#[3:0] = 1110

01 CE#[3:0] = 1101 01 CE#[3:0] = 1101

10 CE#[3:0] = 1011 10 CE#[3:0] = 1011

11 CE#[3:0] = 0111 11 CE#[3:0] = 0111

8 Mbyte Maximum Configuration

Internal longword address
Intel StrongARM

22 2120 21 0 Byte Address
20 19 18 0 Longword
| | Address

L External address A[x:0]
A[17:0] = 2M byte/512K LW address

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101

10 CE#[3:0] = 1011 * Other brands and names are the
11 CE#[3:0] = 0111 property of their respective owners.
A7992-01

Figure 8-6 shows the timing characteristic for the BootROM interface. The programmable timing
valuesarelisted in thefigure (T1to T5). All thetime values are based on an internal counter that is
decremented each Core clock cycle. The BootROM timing parameters are programmed via the
SRAM_SLOW_CONFIG and SRAM_BOOT_CONFIG SRAM CSRs.

BootROM Timing

Internal Counter

LOW_EN#/DIRW#
SLOW_EN#
SP_CE#(SlowPort)

CE#[3:0](BootROM) |, [
SLOW_WE#] |
SLOW_RD# n 4 cycles min
(required)

T2 |

T3

T4

T5 (Total cycle time)

A7993-01

For applications where a small amount of BootROM is required, a 16-bit data bus mode may be
selected. This mode isintended to allow the StrongARM* core to Boot from 16-bit BootROM
devices. When this mode is selected, whenever the StrongARM* core reads data from the
BootROM address space, the SRAM Unit reads the data pins DQ[15:0], merges them into asingle

Hardware Reference Manual

8.5

Intel® IXP1200 Network Processor Family
SRAM Unit

32-bit longword and delivers them to the StrongARM* core. This only occurs during read
operations by the StrongARM* core. When the StrongARM* core performs awrite operation, it
must specify alongword address and place valid data only on the lower 16 bits.

The 16-bit data bus mode is not supported for the Microengines. When the 16-bit data bus mode is
selected, the Microengines aways read and write 32-bit data and software must recognize that
valid dataonly residesin the lower 16 hits.

BootROM address space can be configured to support a 16-bit data bus or a 32-bit bus. The bus
sizeis determined at reset and is based on the state of the GPIO[3] pin (GPIO[3] pulled high = 16-
bit bus and GPIO[3] is pulled low = 32-hit bus).

SlowPort Address Space

The SRAM Unit provides a 2 Mbyte address space (512K longword addresses) to access SlowPort
devices. The SlowPort address space alows peripheral devices to be placed onto the SRAM
interface. The SRAM SlowPort memory space has timing characteristics similar to the BootROM
memory space, although these two address spaces have their own programmabl e timing values that
are set viathe SRAM CSRs. Both the StrongARM* core and the Microengines have access to the
SRAM SlowPort.

The CE# signals are not supported when the SlowPort address space is accessed. Instead, the
SlowPort interface supports one chip select signal (SP_CE#) that is asserted whenever the
SlowPort address space is accessed. The SP_CE# signal can be qualified with the address pins to
derive more chip select signals.

The SlowPort interface supports a Ready indication (RDY #) which can be asserted by a SlowPort
deviceto indicate that either datais stable on the data bus during read access or that data was
latched by the SlowPort device during write access. This allows I XP1200 to dynamically vary the
bus timing to provide higher performance when devices with different timing characteristics are
placed on SlowPort interface. The SlowPort interface should be programmed to meet the timing
reguirements of the lowest device on the bus that does not support aRDY# pin. If al the SlowPort
devices support a RDY# pin, the SlowPort interface timing should be programmed to support the
fastest device on the bus.

Figure 8-7 shows the timing characteristic for the SlowPort interface. The programmable timing
valuesarelisted in thefigure (T1to T6). All thetime values are based on aninternal counter that is
decremented each Core clock cycle. If the HIGH_EN#/RDY# pinisconfigured asaRDY# pin (via
the SRAM_CSR) theinternal counter is paused at T6 until the RDY# signal is asserted by the
SlowPort device. Once the RDY# signal is asserted, atwo cycle synchronization delay occurs
before the counter resumes decrementing. The SlowPort timing parameters are programmed viathe
SRAM_SLOW_CONFIG and SRAM_SLOWPORT_CONFIG SRAM CSRs.

Hardware Reference Manual 257

Intel® IXP1200 Network Processor Family m
SRAM Unit N
®

Figure 8-7. SlowPort Timing

Internal counter is paused Two cycle
until RDY# is asserted I synchronization delay
LOW_EN#/DIRW# +
SLOW_EN# /
SP_CE#

SLOW_WE#
SLOW_RD#)

T1 4 cycles min

(required) >
T2
Wait

T3
T4

T5 (Total cycle time)

RDY#

(Asserted by
SlowPort device

Note: Total cycle time is decremented each core clock frequency

A7994-01

8.6 Slow Interface Logic

The BootROM and SlowPort devices are isolated from the SSRAM devices by the Slow Interface
Logic shown in Figure 8-1. Theisolation allows the buses to meet the electrical loading
reguirements specified in the IXP1200 datasheet and reduce etch run lengths thereby reducing
transmission line effects on the bus.

8.7 SRAM CSRs

The SRAM Control and Status Registers (CSRs) reside in the SRAM Unit and can be accessed by
both the Microengines and the StrongARM* core. These registers are described in detail in the
I XP1200 Network Processor Programmer’s Reference and are used for the following purposes:

* Configure the SSRAM timing and banks

¢ Configure the BootROM timing and banks

¢ Configure the Slow Port timing

* Configure and write to the SRAM Journal Area

When changing the SlowPort and BootROM timing, the following sequence should be followed to
ensure proper operation.

¢ To shorten atiming parameter change the assert and deassert times specified in the
SRAM_BOOT_CONFIG/SRAM_SL OWPORT_CONFIG registers before changing the total
cycle time specified in the SRAM_SLOW_CONFIG register.

258 Hardware Reference Manual

8.8

Figure 8-8.

¢ To lengthen atiming parameter, change the total cycle time specified in the

Intel® IXP1200 Network Processor Family

SRAM Unit

SRAM_SLOW_CONFIG register before changing the assert and deassert times specified in
the SRAM_BOOT_CONFIG/SRAM_SLOWPORT_CONFIG registers.

Advanced SRAM Commands

The SRAM Unit supports advanced functionality beyond simple read and write operationsto the
SSRAM space. These commands are designed to offload the StrongARM* core and Microengines
of managing common operations that might otherwise be managed in software requiring multiple
memory operations. These commands provide the following functionality.

¢ Eight Push-Pop Registersfor buffer management

¢ Bit Test, Set, and Clear commands for atomic bit operations

¢ Eight entry CAM for locking eight separate memory areas

* Journal pointer management support.

Figure 8-8 is ablock diagram of the SRAM Unit.

SRAM Unit Block Diagram

sram_bus

Microengine |
SRAM Push Pull Engine

Push Pull Control

|sram signal event

AMBA Write
32
Data Buffer = data
(8 longwords),
i AMBA
SRAM Pin 2 AMBA Read | 3, Bus
Interface Data Latch Interface
UEng Logic AMBA Bus
data| ~ AMBA
SSRAM data[31:0]
control
Pipeline or | address control
Flowthrough
1/2 core freq | control Command| AMBA Address| g
Up to 8 MB Decoder I Rd/Wr Latch comman
and
addr Address [|
Slow Generator| Co.mrnaer _QUEUES
StrongARM Interface [— High Priority (8) <—l
BootROM Logic | |order (16) Microengine
L (J Command Bus
Upto 8 MB st T Tock T —{Read (16)
" SRAM
list 2 CSRs lock 2
list 3 lock 3 Read_lock Fail (23)
list 4 lock 4 | Lock
Slow Port list 5 lock 5 | CAM] [service Priority
list 6 lock 6 Machine
Memory list 7 lock 7 failed read_lock commands
mapped list 8 lock 8 To FIQ and IRQ
I/0 devices Push-Pop ® . o FlQ an
Upto 8 MB Reuister: Intel® StrongARM* Interrupt Registers
| ExtenaiDevices | | SRAM Unit
Note: Other brands and names are the property of their respective owners.
A7995-02

Hardware Reference Manual

259

Intel® IXP1200 Network Processor Family m
SRAM Unit N
®

8.8.1 Push Pop Registers

Much of the activity that the SSRAM is intended to support is accessing linked lists. Each packet
that is received resultsin one or more free (or empty) data buffers and/or buffer descriptors being
pushed and/or popped from linked lists. To assist in this operation, the SRAM Unit has eight Push-
Pop registers.

Each Push-pop register can be programmed to contain a pointer to the head of alinked list. When
the register isread, the pointer is returned (popped) and SRAM Unit updates the register with the
new pointer to the head of the list. When the register is written with apointer (pushed), and SRAM
Unit updates the register and the linked list in SSRAM. The Push-Pop Registers takes what would
normally be three separate memory references (push = read-write-write, pop = read-read-write) and
trandate it into asingle operation for the StrongARM* core and Microengines. These registers can
be read and written by the StrongARM* core and any of the Microengines.

A system software architecture can be designed such that an application program executing on the
StrongARM* core builds up to eight linked listsin memory that may be used as buffers and
descriptors. The elements within the linked list must be at least one longword and the first
longword must contain a pointer to the next element in the linked list. The linked list must be built
such that the last item in the linked list contains a pointer to itself rather than a next item. The Push-
Pop hardware will then pop the same pointer each time a pop operation is performed when the list
is empty. Software must distinguish when there are no items on the linked list. One method might
be to force the last item on the list (i.e the first item popped) to a value of 0 and then write avalue
of 0to address 0. Then whenever a buffer is popped off the list, a simple compare of the immediate
data equal to O would indicate if the buffer list has been exhausted.

Figure 8-9. Push-Pop Operations

Push-Pop Register
| m |

\

W

End of the list

SRAM

A7996-01

The Pop operation is described below and shown in Figure 8-10.

1. A Microengine thread or the StrongARM* core reads the Push-Pop Register value (m). A pop
operation appears to the Microengines and the StrongARM* core as a single read operation to
the register. The Microengines explicitly indicate one of eight Push-Pop registersin the

260 Hardware Reference Manual

intel.

Intel® IXP1200 Network Processor Family
SRAM Unit

sram[pop] instruction. The StrongARM* core specifies the Push-Pop register by reading from
one of eight unique addresses. The SRAM Unit returns the “ popped” pointer to the
Microengine SRAM read transfer register or on the AMBA bus as data.

2. The SRAM Unit reads the value at address m (n) and writesit to the Push-Pop Register.

Figure 8-10. Pop Operation

Before Pop After Pop
Push-Pop Register Push-Pop Register

: i
n m
[p i : n
p
q

-,
=

[packet descriptor |

\

i

End of the list

SRAM SRAM
A7997-01

The Push operation is described below and illustrated in Figure 8-11.
1. Microengine or StrongARM* core writes the new pointer to the Push-Pop Register value (m).

A Microengine specifies the pointer in the address fields of the sram[push] instruction. The
StrongARM* core specifies both the Push-Pop register and the pointer in the address (rather
than the data). The eight Push-Pop registers are located at unique base addresses. The
StrongARM* core adds the pointer and the base address to form the write address, and
executes alongword write instruction. The datawritten is discarded by the SRAM Unit. A
push operation appears to the Microengines and the StrongARM* core as a single write
operation to the register.

. The SRAM Unit writes the address in the Push-Pop register (n) to the address being pushed

(m).

Hardware Reference Manual 261

Intel® IXP1200 Network Processor Family
SRAM Unit

Figure 8-11. Push Operation

Before Push

Push-Pop Register

After Push
Push-Pop Register

Figure 8-12.

262

:
m - -
| packet descriptor |
n p
<
< q

End of the list

\

il

End of the list

SRAM SRAM

A7998-01

Asnoted in the procedures above, the StrongARM* core address is used to specify both the push or
pop operation. Pop operations read a unique address for each queue. Push operations write to an
address equal to the base address of the Push-Pop list plus the pointer to be popped onto the Push-
Pop list. Figure 8-12 shows how the address is formed for Push and Pop operations.

Push-Pop Addressing

Push-Pop Push Base Pop Address 1 28 24 20 16 12 8 4 0
Register ~ Address o2 o[TTTTITI | [| | | |
0 2000 0000 2400 0000 L T L |_ '
1 2080 0000 2480 0000

For Push operations this specifies the pointer
2 2100 0000 2500 0000 For Pop opgrations this is i%nored P
3 21800000 2580 0000 Specifies the Push-Pop Register (0-7)
4 2200 0000 2600 0000
5 2280 0000 2680 0000 Specifies Push operation (0)
6 2300 0000 2700 0000 or Pop operations (1)
7 2380 0000 2780 0000 Specifies Push-Pop address space

Note: For Push operations the address written Note: SRAM Push-Pop Address for Intel® StrongARM* Core

equals the Push Base Address + pointer

Note: SRAM Push-Pop Address for Intel® StrongARM* Core

A7999-01

From the StrongARM* core perspective, the Push-Pop Registers should not be marked as a
cacheable area. A pop operation may be performed using the Read Buffer, however the data should
beinvalidated onceit is read from the Read Buffer. Push operations may be performed through the
write buffer.

Hardware Reference Manual

n

8.8.2

8.8.2.1

®

Intel® IXP1200 Network Processor Family
SRAM Unit

SRAM Lock CAM

The SRAM controller maintains an 8-entry CAM. This CAM is used to protect an areain SRAM
from being accessed by two or more processes (StrongARM* core and Microengine threads) at the
sametime. If a process wishes to protect against write access to an areain memory, it can take out
alock on the memory area. The Microengines access the Lock CAM function using the sram
instruction while the StrongARM* core maps these command into an 8 Mbyte address space
within the SRAM Unit address space (Figure 3-1).

Theread lock command performs two operations. First, it reads the address specified in the
command and second, it locks the memory location. The memory location is unlocked using either
the unlock command or the write_unlock command. The write_unlock command performs two
operations. First iswrite data to the address specified in the command and second it unlocks the
memory |ocation.

When the SRAM Unit processesaread lock command, it checksitseight entry CAM to determine
if alock has already been taken on the address specified in the command. If not, the SRAM Unit
places the address into one of the eight CAM entries, read the data at the address, and returns the
data to the requestor.

A read lock command can fail under two conditions:
* A lock has already been taken on the address specified in the command
* All eight Lock CAM entries are occupied

If the read_lock command fails, the command is placed into the Read lock Fail queue.

When an unlock or write_unlock command is serviced by the SRAM Unit, the address specified in
the command is removed from the Lock CAM. In the case of the write_unlock command, the data
specified by the command is also written to SSRAM. After the unlock or write_unlock command is
completed, the next command serviced by the SRAM Unit istaken from the head of the Read lock
Fail queue. If thefirst entry in the Read lock fail queue specifies an address that is no longer in the
Lock CAM, the command is serviced. Commands continue to be taken from the Read lock fail
gueue until ahead of the Read lock fail queue specifies an addressthat is currently in the CAM or
the queue is empty. If the head of the queue specifies an addressthat is currently in the Lock CAM,
the SRAM Unit will discontinue processing the Read lock Fail queue and return to servicing the
other command queues. Since only the first entry in the Read |ock queue is checked when an
unlock occurs, alocked entry may block unlocked entries in the Read_lock Fail queue from
completing (see Section 8.8.2.3).

ReadLock and Microengines

The Microengines access the Read lock CAM using the sram instruction and can read multiple
longwords using asingle read lock command. Each thread can only have one read_lock request
pending at atime. To enforce this hardware requirement, the Microengine Assembler requires the
user to perform a context swap when issuing aread lock. If the SRAM controller places a

read lock command in the Read_lock Fail queue, the thread remains swapped out until the

read lock isremoved from the Read lock fail queue and placed into the CAM. Thus, athread is
swapped in only when aread lock is achieved.

Hardware Reference Manual 263

SRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

8.8.2.2

ReadLock and StrongARM* Core

The StrongARM* core maps the read |ock, unlock, and write_unlock commands into three
separate 8 Mbyte address spaces (refer to Figure 3-1). If aread lock operation fails, the SRAM
Unit always returns the read data, and a status bit is set in the SRAM_CSR to indicate that the
read lock hasfailed. If enabled, an interrupt can be generated when aread lock fails, or the
StrongARM* core may read the status bit immediately after reading from the read lock address
space. Datais always returned to the StrongARM* core so that the StrongARM* core can continue
processing while the failed read lock command isin the Read lock Fail queue. When the SRAM
Unit retries afailed read_lock command from the Read lock Fail queue and the lock is achieved,
another status hit is set in the SRAM_CSR register indicating that the lock was achieved. The
StrongARM* core may poll this status bit or, if enabled, an interrupt can be generated when the bit
isset. Once are-tried read_lock is achieved, the StrongARM* core must read (not read |ock) the
lock location once more to get the data. Figure 8-13 illustrates the logic.

Figure 8-13. Read_Lock Logic

8.8.2.3

264

=)

;

IRQ

SRAM_CSR |

Other control and status bits | | | |
31 543 2 10 Control and Status

| |— Read_lock status (failed vs. achieved)

Command in the Read_lock fail queue
was retried and lock was achieved

Intel® StrongARM* Core Read Lock

— Read_lock achieved interrupt type FIQ
Read_lock achieved interrupt type IRQ

Read lock achieved interrupt enable

* Other brands and names are the property of their respective owners.
A8000-01

From the StrongARM* core perspective, the read lock, write_unlock, and unlock address spaces
should not be marked as a cacheable area. A read |ock operation may be performed using the Read
Buffer, however the StrongARM* core must read the read lock achieved bit and the data should be
invalidated onceit is read from the Read Buffer. Write_unlock and unlock operations may be
performed through the Write Buffer.

A CAM entry holds a single address and does not hold any information on the size of the memory
that is being locked. If arange of memory isto be locked, software needs to manage and enforce
this semantic.

Maintaining Read_lock Order

The SRAM_CSR register containsaread lock order bit (RLK) that ensures that read locks are
completed in the order in which they whereissued. If thisbit is set, whenever aRead |ock fails, the
command is placed into the Read_lock Fail queue and all subsequent Read [ock commands are
also placed into the Read _|ock Fail queue regardless of whether or not the address resides in the
CAM.

Hardware Reference Manual

8.8.2.4

8.8.2.5

Figure 8-14.

8.8.3

Intel® IXP1200 Network Processor Family
SRAM Unit

There is no hardware protection preventing any of the processes from writing to alocked area, so
vigilance must be maintained in software to ensure a Read lock is performed on memory areas
designated as protected viathe Lock CAM before the memory areais accessed.

Filling the Read_Lock Fail Queue

The SRAM Read |ock Fail queue holds up to a maximum of 23 failed read_|lock requeststhat are
processed as described in Section 8.8.2. If aread lock command isissued, either from the
Microengines or the StrongARM* core, and the Read_lock Fail queue isfull, the commmand is
placed in the first entry of the Read lock Fail queue, overwriting any address that is currently
there.

In order to prevent the wrapping of the Read lock Fail queue, software must be written so that it
monitors and controls the number of read_|ocks commands outstanding at any point in time.

Application Example: Read lock

The following example describes how theread lock and write_unlock commands can beusedin a
practical application. The example describes how adesigner might implement atransmit queue for
each physical network port. These transmit queues are maintained within SRAM and each transmit
gueue is defined by a queue descriptor. The queue descriptor contains a pointer to the first packet
on the queue, apointer to the last packet on the queue, and the number of packets on the queue. The
packets themselves are maintained as alinked list of packet descriptors. Any of the Microengine
threads and the StrongARM* core must first lock the transmit queue before modifying the linked
list. This ensures two or more processes do hot make changes to the list at the same time and
possibly corrupt the integrity of the transmit queue. The Read |ock command can be used to read
the queue descriptor data and lock the transmit queue in asingle instruction. After thelinked list is
modified, the Write_unlock command can be used to update the queue descriptor and unlock the
gueue in asingle instruction.

Read_Lock Application

o_desc_base [ead and @i pointer [> Lokt descriptor > Pkt descriptor 2 |~ Pkt descriptor n
<

000
q_desc_base+1 | number of items in list

Queue Descriptor Linked list of packet descriptors

Software Semantic: Locking q_desc_base implies that the Queue Descriptor and all the items on
the Packet list are locked and should not be accessed by the another process.

A8001-01

Bit Test & Set / Bit Test & Clear

The SRAM Unit supports an SRAM bit write command that allows individua bits to be set or
cleared and may also return the state of the bits prior to setting or clearing. The SRAM Unit
accomplishes this by performing a Read-Modify-Write operation at the address specified based on
the bit mask provided as write data.

When a Microengine thread issues a SRAM hit write operation reference, the command is placed
into the write/order command queue and the bit mask is provided in an SRAM write transfer
register aswrite data. If the test operation is also specified, the same transfer register is used to
deliver the pre-modified test value back to the Microengine thread for test operations.

Hardware Reference Manual 265

SRAM Unit

Intel® IXP1200 Network Processor Family int9I
®

8.8.4

When the StrongARM* core issues a bit operation reference, awrite operation is performed on the
AMBA bus and the write data contains the bit mask. The SRAM Unit performs the Read-M odify-
Write operation and writes the test value to the SRAM_TEST_MOD SRAM CSR. The
StrongARM* core can read this register immediately after performing the Read-M odify-Write
operation since the SRAM Unit stalls the StrongARM* core until the Read-Modify-Write
operationiscomplete. Sinceit isthe SRAM Unit that performsbit operations, bit operations should
only be performed on memory areas that are non-cacheable. To avoid coherency problems, test
operations should not be performed on memory areas marked as bufferable. The reasoning is that
the StrongARM* core software would not know when it can read the test value since it does not
know when a write operation is completed by the write buffer.

SRAM Journaling

The SRAM Unit provides hardware support for maintaining ajournal within SRAM. This allows
the Microengines and StrongARM* core to write debug or other data to afixed location (the
SRAM_AUTO_BASE register). The SRAM Unit places the datain SRAM in a user-defined
journal area. The SRAM Unit assists the Microengines in creating ajourna by maintaining the
pointersto thejournal areain SRAM. There arethree pointers that specify the start (base), end, and
current position of the journal area. These areinitialized viathe SRAM_AUTO_BASE,
SRAM_AUTO_END, and SRAM_AUTO_PTR SRAM registers. The SRAM registers are
accessible by the StrongARM* core and the Microengines. When specifying the pointers, the
entire address space from SRAM_AUTO_BASE to SRAM_AUTO_END must fall within the
physical SSRAM address space. Unpredictable results will occur if any of this address range falls
within the BootROM, Slowport, or SRAM register address spaces.

Figure 8-15. SRAM Journaling Address Space

266

8M

__~ SRAM_AUTO_END

Journal Area

SRAM_AUTO_PTR (current pointer)

N SRAM_AUTO_BASE

SSRAM Address
Space

A8002-01

Hardware Reference Manual

intel.

8.9

8.9.1

Table 8-1.

Intel® IXP1200 Network Processor Family
SRAM Unit

The Journal registers should be initialized in the following order to ensure proper operation.

SRAM_AUTO_END Writing this register clears the sram_auto_ptr register

Writing this also writes base address to the sram_auto_ptr
register

SRAM_AUTO_BASE
Once these SRAM registers are initialized, awrite to the SRAM_AUTO_PTR register will cause
the following data to be written to SRAM at the address in the pointer register:

[31:29] Microengine ID/StrongARM* core ID
[28:27] Thread ID
[26:0] User defined data

The SRAM Unit will supply the Microengine ID and thread 1D if the source is a Microengine.
Otherwise, the StrongARM* core should write the entire 32 bits using an ID of 7 and athread 1D of
0 (bits [31:27] = 11100). After each write, the current pointer (SRAM_AUTO_PTR) is
incremented. The SRAM Unit will automatically wrap around to the base address when the pointer
reaches the end of the journal area. There is no hardware support to determine when the journal has
filled and wrapped around to the beginning.

Software can determine the current pointer by reading the SRAM_AUTO_PTR register. However,
each time the register isread, the current pointer isincremented.

Interfacing to the SRAM Unit

This section describes how the StrongARM* core and Microengines interface to the SRAM Unit.

SRAM Map

Table 8-1 shows the memory map for the SRAM address space. Notice that the StrongARM* core
addresses this space using byte addressing while the Microengines access this space using the
sram instruction and longword addressing.

Memory Map for SRAM Address Space

Physical Microengine sram Microengine
Device Function StrongARM Address Instruction Address Space
Space (Byte Addressing) (Longword
Space Command -
Addressing)
SlowPort SlowPort 3840 0000 - 385F FFFF read/write 70 0000 - 7F FFFF
SRAM CSRS | SRAM CSRs 3800 0000 - 3800 0013 read/write 60 0000 - 60 0080
SRAM Pop Command | 2400 0000 - (see Figure 8-4) | pop 00 0000 - 1F FFFF
SRAM Push Command | 2000 0000 - (see Figure 8-4) | push 00 0000 - 1F FFFF
. bit_wr
SRAM Bit Test & Set 1980 0000 - 19FF FFFF (test_and_set_bits) 00 0000 - 1F FFFF
. bit_wr
SRAM Bit Test & Clear | 1900 0000 - 197F FFFF (test_and_clear_bits) 00 0000 - 1F FFFF
SRAM Bit Set 1880 0000 - 18FF FFFF bit_wr (set_bits) 00 0000 - 1F FFFF
SRAM Bit Clear 1800 0000 - 187F FFFF bit_wr (clear_bits) 00 0000 - 1F FFFF

Hardware Reference Manual

267

Intel® IXP1200 Network Processor Family

SRAM Unit

Table 8-1.

8.9.2

Table 8-2.

268

Memory Map for SRAM Address Space

intel.

. . . Microengine
Phys_lcal . StrongARM Address Mlcroenglng sram Address Space
Device Function Space (Byte Addressing) Instruction (Longword
Space P y 9 Command gwe
Addressing)
SRAM Unlock 1600 0000 - 167F FFFF unlock 00 0000 - 1F FFFF
SRAM Write Unlock 1400 0000 - 147F FFFF write_unlock 00 0000 - 1F FFFF
SRAM Read Lock 1200 0000 - 127F 7777 read_lock 00 0000 - 1F FFFF
SRAM Read/Write 1000 0000 - 107F FFFF read/write 00 0000 - 1F FFFF
BootROM BootROM 0000 0000 - 007F FFFF read/write 20 0000 - 3F FFFF

Microengine SRAM Transactions

The SRAM Unit provides three command queues: Priority, Write/Order, and Read. There are three
optional tokens specified by the Microengine sram instruction which determine the command
gueue in which the commands are submitted. The three optional tokens are priority,
optimize_mem, and ordered.

The Priority Queue has a higher priority than the Read and Write/Order queues. The Write/Order
gueue is the default queue when an optional token is not specified. It can also be explicitly
specified using the ordered optional token. Both read and write commands are placed into the
Write/Order queue where they are assured to be serviced in the order in which they were issued.

The optimize_mem token causes an sram command to be placed into either the Read or Write/
Order Queue based on the type of reference. The reason commands are grouped into the Read and
Order/Write queues is to improve performance by reducing the number of read-to-write bus
turnaround cycles on the SRAM bus. Thisis accomplished by servicing multiple commandsin the
Read queue before switching to the Order/Write queue and visa versa. The following table shows
which commands queues the sram commands are delivered to when the optimize_mem optional
token is used in the instruction.

The optimize_mem token cause an SRAM command to be place into either the Read or Write/
Order queue based on the type of reference. The reason commands are grouped into the Read and
Order/Write queues is to improve performance by reducing the number of read-to-write bus
turnaround cycles on the SRAM bus. Thisis accomplished by servicing multiple commandsin the
Read queue before switching to the Order/Write queue and visa versa. The only commands that are
segregated into the Read queue are the SRAM[Read], SRAM[Read_L ock], and SRAM][Pop]
commands. All other commands are explicitly placed into the Write/Order queue.

The three command queues, the queue sizes and the optional token are listed in the Table 8-2.

SRAM Command Queue Sizes

Microengine Command Qu_eue Instruction Optional Token
Queue Size
Read only Queue 16 optimize _mem

Order and Write Queue 24 optimize _mem or no optional token

High Priority Queue 8 priority

Hardware Reference Manual

8.9.3

Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit

The command queues are sized so that in typical operation, the queues should not fill. If any of the
command queues fill, a back-pressure signal notifies the Command Bus Arbiter to cease allowing
SRAM commands to be sent to the SRAM Unit. Backpressure is applied when any of the queues
have only six entries available. This ensures there isroom in the queues for any SRAM commands
that have already been granted access to the command bus by the command bus arbiter.

When the SRAM Unit processes an SRAM instruction, the SRAM Push-Pull Engine movesthe
data between the SRAM Unit and the SRAM transfer registers via an internal 64-bit SRAM bus.
The 64-bit busisdivided in half so that 32 bits connect to SRAM Read transfer registers and 32
bits connect to SRAM Writetransfer registers. If a Microengine thread chooses to be signaled upon
completion of acommand, the sig_done or ctx_swap optional token should be specified in the
instruction.

StrongARM* Core SRAM Transactions

The StrongARM* coreissuesreferencesto the SRAM Unit viathe AMBA Bus. These requests can
be generated directly by StrongARM* core Processor or the Icache, Dcache (main and mini),
StrongARM* core Read Buffer , StrongARM* core Write buffer (Note that in most cases the

I cache would fetch instructions from the SDRAM Unit).

The programmer should be aware that StrongARM* core referencesto non-cached areas will cause
the StrongARM* core to stall until the SRAM Unit provides data at the AMBA read data latch.

For write operations, the StrongARM* core will stall until is gains accessto the AMBA Buswhich
is shared by the caches and buffers. Once accessis granted, the StrongARM* core will write datato
the AMBA Bus Logic which translates the AMBA bus signaling into a Microengine-like command
and the data is written into the AMBA Write Data Buffer so that the StrongARM* core may
continue to execute. When the SRAM Command Arbiter grants accessto the AMBA Businterface,
the AMBA Bus command is completed and the data is read from the AMBA Write Data Buffer.
The SRAM Unit does not queue AMBA transaction and therefore only one AMBA transaction can
bein progress at atime. The AMBA Write Data Buffer can hold 8 longwords, allowing it to hold
up to one cacheline at atime.

For the best performance, it is recommended that the programmer take advantage of the Dcaches,
Read Buffer and Write Buffer. Table 8-3 lists the address spaces and the recommendations for
marking these areas as cacheable or bufferable.

Table 8-3. Cacheable and Bufferable Address Spaces
Physical Device Function Dcache Read Write Buffer
Space Buffer

SlowPort SlowPort Yes! Yes! Yes
SRAM CSRS SRAM CSRs No Yes? Yes
SRAM Pop Command No Yes?

SRAM Push Command No Yes
SRAM Bit Test & Set No No
SRAM Bit Test & Clear No No
SRAM Bit Set No - Yes
SRAM Bit Clear No Yes
SRAM Unlock No Yes
SRAM Write Unlock No Yes

269

Intel® IXP1200 Network Processor Family m

SRAM Unit |n

Table 8-3. Cacheable and Bufferable Address Spaces

Physical Device Function Dcache Read Write Buffer
Space Buffer

SRAM Read Lock No Yes? -

SRAM Read/Write Yes Yes Yes

BootROM BootROM Yes

IThe designer should evaluate the ramifications based on the specific SlowPort
device.

2Data should be invalidated immediately after the StrongARM* core reads the data
from the read buffer.

270 Hardware Reference Manual

m Intel® IXP1200 Network Processor Family

|n o SRAM Unit

8.9.4 SRAM Burst Count

A burst count is provided to the SRAM Unit by the following 1 XP1200 components:
* Microengines
* StrongARM* core

StrongARM* core Icache and Dcache (main and mini)

StrongARM* core Read Buffer

StrongARM* core Write buffer

The Microengines specify the burst count in the instruction. Burst counts generated by the
StrongARM* core are accepted by the AMBA Bus Logic which generates a single Microengine-
like command that includes the burst count. Table 8-4 lists the burst sizes generated by the
Microengines and StrongARM* core.

Table 8-4. Burst Sizes

Longword

Source Operation Burst Size Comments
)) read or write 1t08 sram instruction
Microengines - - - ——
read or write 1to 16 sram instruction using indirect_ref

A burst size of 1 that specifies byte or word writes
StrongARM?* core | read or write 1 requires the SRAM Unit to perform a Read-Modify-
Write operation

read 8 Line fills
Dcache - - - —

write 4or8 Line and half line evictions
Icache read 8 Line fills (Icache fills are typically from SDRAM)
Read Buffer read 14,8 Controlled via the Coprocessor 15

READ_BUFFER_OPERATIONS register (Register 9)

A burst size of 1 that specifies byte or word writes
requires the SRAM Unit to perform a Read-Modify-
Write Buffer write 1,2,3,4,8 Write operation

Write buffer performs burst counts greater than 1 only
for the StrongARM store multiple instructions

8.9.5 SRAM Command Service Priority

The SRAM Unit services SRAM reference commands from five sources:
* StrongARM* core
¢ Three Microengine Queues (Read, Write/Order, Priority)
* Read |lock Failed Queue

Hardware Reference Manual 271

Intel® IXP1200 Network Processor Family
SRAM Unit

Table 8-5.

8.9.6

272

intel.

The Service Priority Machine decides from which source to get the next command. The decision
policy is based on the table below. The priority is dependent on the command that was previously
serviced.

SRAM Command Service Priority

Priority Previous Requested SRAM Instruction

Write-Unlock or Unlock Read, Read-Lock, or Pop Write, B|t_|;5uest,hB|t_CIr, or

* *
1 Read Lock Fail queue AMBA requests (StrongARM AMBA requests (StrongARM
core) core)
*
2 AMBA requests (StrongARM High priority High priority
core)

3 High priority Read queuel Write/Order queuel
4 Write/Order queue? Write/Order queue? Read queue2
5 Read queue?
1services four commands from the Write/Order queue regardless of whether it is a read or a write. After four
order commands are serviced, continue to service commands in the Write/Order queue until either a read
command is serviced (in which case it switches to the Read queue) or a maximum of eight commands are
serviced from the Write/Order queue (in which case it switches to the Read queue regardless of the last
command serviced).
23ervices eight commands from the Read queue then it switches to the Write/Order queue

If the previous command was awrite_unlock or unlock command, the Read |ock Fail queue has
the highest priority. This queue holds the highest priority until alock cannot be granted or until the
gueue isdrained. Note that the Service Priority Machine only checks the head of the queue for a
locked entry.

A timeslot exists between two consecutive AMBA bus transactions such that a pending
Microengine command may be serviced between two consecutive AMBA Bus commands. Note
that StrongARM* core commands that generate burst counts are treated single commands. Refer to
Section 8.9.4 for more on StrongARM* core burst counts.

Read-Modify-Write

The Read-M odify-Write function allows individual bytes to be written to SRAM devices. To
accomplish this, the SRAM Unit firsts reads data from alongword address, modifies the specified
bytes, and then writes the modified longword back to the SRAM device. These three steps are
performed atomically. The SRAM Unit supports Read-M odify-Write operations for the
Microengines and the StrongARM* core.

The StrongARM* core performs Read-M odify-Write operations for bit write operations (bit test,
set, and clear) and byte and word writes to non-cached memory. Read-M odify-Write operations are
performed automatically by the SRAM Unit.

The Microengines perform Read-M odify-Write operations on the SRAM longword addresses
using the indirect reference option. The reference count specified in the instruction must be avalue
of 1 and the datato be written is specified in an SRAM write transfer register. A mask specified by
the indirect reference determines which bytes are modified at the longword address.

Hardware Reference Manual

	Intel® IXP1200 Network Processor Family
	Introduction 1
	1.1 About this Document
	1.2 Related Documentation
	1.3 Conventions
	1.3.1 Data Terminology
	1.3.2 Definitions

	Technical Introduction 2
	2.1 Overview
	2.2 IXP1200 Functional Units
	2.3 Key Architectural Features
	2.4 Some Architectural Concepts
	2.4.1 References
	2.4.2 Signals and Synchronization
	2.4.3 Context Swapping and Threads
	2.4.4 Some Examples
	2.4.5 Local Data Storage and Block Transfers
	2.4.6 Concurrency

	2.5 Typical Packet Data Flow
	2.6 External Interfaces
	2.7 Internal Architecture
	2.7.1 StrongARM* Core
	2.7.2 Microengines
	2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit

	2.7.3 SRAM Unit
	2.7.4 SDRAM Unit
	2.7.4.1 Internal SDRAM Bandwidth and Internal Data Busses
	2.7.4.2 Chained References

	2.7.5 PCI Unit
	2.7.6 IX Bus Unit
	2.7.6.1 Ready Bus
	2.7.6.2 IX Data Bus Modes
	2.7.6.3 Scratchpad RAM
	2.7.6.4 Hashing Unit
	2.7.6.5 IXB3208 Bus Scaling Fabric

	2.8 Software Development Tools

	StrongARM* Core 3
	3.1 Overview
	3.2 ARM* Architecture
	3.2.1 Coprocessors
	3.2.2 Memory Management Unit (MMU)
	3.2.2.1 MMU Faults and CPU Aborts
	3.2.2.2 Data Aborts
	3.2.2.3 Interaction of the MMU, Icache, Dcache, and Write Buffer
	3.2.2.4 MMU Enable/Disable

	3.2.3 Instruction Cache (Icache)
	3.2.3.1 Icache Operation
	3.2.3.2 Icache Validity
	3.2.3.3 Icache Enable/Disable and Reset

	3.2.4 Data Caches (Dcaches)
	3.2.4.1 Main Data Cache
	3.2.4.2 Mini Cache
	3.2.4.3 Dcaches Enable/Disable and Reset
	3.2.4.4 Dcache Operation
	3.2.4.5 Software Dcache Flush

	3.2.5 Write Buffer
	3.2.5.1 Write Buffer Operation
	3.2.5.2 Enabling and Disabling the Write Buffer

	3.2.6 Read Buffer
	3.2.6.1 Read Buffer Operation

	3.2.7 ARM* Instruction Set and Timing
	3.2.8 Exceptions
	3.2.8.1 Exception Priorities
	3.2.8.2 Exception Vector Table
	3.2.8.3 Hard Reset
	3.2.8.4 Abort
	3.2.8.5 Undefined Instruction

	3.2.9 StrongARM* Core Debug Support
	3.2.9.1 Instruction Breakpoint
	3.2.9.2 Data Breakpoint

	3.3 Memory Map
	3.4 FIQ and IRQ Interrupts
	3.5 Internal Peripheral Units
	3.5.1 UART
	3.5.1.1 Receive Procedure
	3.5.1.2 Transmit Procedure

	3.5.2 Timers
	3.5.3 Real-Time Clock (RTC)
	3.5.3.1 RTC Setup Procedures
	3.5.3.2 Using the RTC Alarm
	3.5.3.3 Determining the Trim Values

	3.5.4 General Purpose I/O (GPIO)

	3.6 Boot Sequence

	Microengines 4
	4.1 Overview
	4.2 Microengine Block Diagram
	4.2.1 Multithread Support
	4.2.2 Control Store
	4.2.3 128 General-Purpose Registers (GPRs)
	4.2.4 128 Transfer Registers
	4.2.5 ALU and Shifter
	4.2.6 Command Bus Arbiter
	4.2.7 Local CSRs

	4.3 Microengine Instruction Set
	4.4 Execution Pipeline
	4.5 Branch Decisions
	4.5.1 Class 3 Instructions
	4.5.2 Class 2 Instructions
	4.5.3 Class 1 Instructions
	4.5.4 Postponed Branch Decision
	4.5.5 Deferred Branch
	4.5.6 Setting Condition Codes Early
	4.5.7 Guess Branch

	4.6 Execution States
	4.6.1 Reset State
	4.6.2 Stopped State
	4.6.3 Running State
	4.6.4 Paused State

	4.7 Programming the Microengines
	4.7.1 Starting Point of Program Execution

	4.8 Microengine Registers
	4.8.1 General-Purpose Registers
	4.8.2 Transfer Registers
	4.8.2.1 Managing Solicited Accesses
	4.8.2.2 Managing Unsolicited Autopush Accesses

	4.9 ALU and Shifter
	4.9.1 Condition Codes
	4.9.2 Multiply Support

	4.10 Changing Contexts
	4.10.1 Signal Events
	4.10.2 Context Event Arbiter (Waking a Thread)

	4.11 Interfacing to Other Functional Units
	4.11.1 References Using Transfer Registers
	4.11.1.1 Setting Up the Transfer Registers
	4.11.1.2 Issuing a Command
	4.11.1.3 Command Serviced in Queue
	4.11.1.4 Moving Data to and from Transfer Registers
	4.11.1.5 Signaling Completion

	4.11.2 PCI DMA
	4.11.3 FAST_WR Instruction
	4.11.4 Indirect References

	4.12 Local CSRs
	4.13 Find Bit Set Instructions
	4.14 Input States
	4.15 Inter-Processor Communications
	4.15.1 Generating StrongARM* Core Interrupts
	4.15.2 Generating Inter-thread Signal Events
	4.15.3 Communication Example

	4.16 Chained SDRAM References
	4.17 Debugging Support
	4.17.1 Determining If a Microengine is Executing
	4.17.2 Stopping, Starting, and Hopping the Microengines
	4.17.3 Breakpoints
	4.17.4 Reading Microengine GPR and Read Transfer Registers
	4.17.5 Creating a Journal

	PCI Unit 5
	5.1 Overview
	5.2 Hardware Description
	5.2.1 PCI Bus Arbiter
	5.2.2 DMA Channels
	5.2.2.1 Allocation of the DMA Channels
	5.2.2.2 StrongARM* Core Initiated DMA Channel Operation
	5.2.2.3 Microengine Initiated DMA Channel Operation
	5.2.2.4 SDRAM-to-PCI Transfer
	5.2.2.5 PCI-to-SDRAM Transfer

	5.2.3 I2O* Message Unit
	5.2.3.1 I2O Inbound FIFO Operation
	5.2.3.2 I2O Outbound FIFO Operation

	5.2.4 Mailbox and Doorbell Registers
	5.2.5 PCI Interrupt Pin

	5.3 PCI Transactions
	5.3.1 Generating the Address
	5.3.1.1 Target Transactions - Internal Address Generation
	5.3.1.2 Master Transactions - PCI Address Generation
	5.3.1.3 Master Configuration Transactions - PCI Address Generation

	5.3.2 Enabling PCI Bus Transactions
	5.3.3 PCI Target Transactions
	5.3.3.1 Unsupported PCI Cycles As Target
	5.3.3.2 Memory Write to SDRAM (Target Write)
	5.3.3.3 Memory Read, Read Line, Read Multiple to SDRAM (Target Read)
	5.3.3.4 Type 0 Configuration Write
	5.3.3.5 Type 0 Configuration Read
	5.3.3.6 Write to CSR
	5.3.3.7 Read to CSR
	5.3.3.8 Write to I2O Address
	5.3.3.9 Read to I2O Address

	5.3.4 PCI Master Transactions
	5.3.4.1 Unsupported PCI Cycles As Master
	5.3.4.2 Memory Write, Memory Write and Invalidate
	5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple
	5.3.4.4 I/O Write
	5.3.4.5 I/O Read
	5.3.4.6 Configuration Write
	5.3.4.7 Configuration Read
	5.3.4.8 Special Cycle
	5.3.4.9 IACK Read
	5.3.4.10 PCI Request Operation
	5.3.4.11 Master Latency Timer

	5.3.5 Errors As PCI Target
	5.3.5.1 Address Parity Error
	5.3.5.2 Write Data Parity Error
	5.3.5.3 Read Data Parity Error

	5.3.6 Errors As PCI Master
	5.3.6.1 Master Abort
	5.3.6.2 Write Data Parity Error
	5.3.6.3 Target Abort on Write
	5.3.6.4 Read Data Parity Error
	5.3.6.5 Target Abort on Read

	FBI Unit 6
	6.1 FBI Architecture
	6.2 Push/Pull Engine Interface
	6.2.1 Push and Pull Engines
	6.2.2 Microengine Initiated FBI References
	6.2.3 StrongARM* Core Initiated FBI References
	6.2.4 FBI Signal Events (to Microengines)
	6.2.5 Command Ordering
	6.2.6 FBI Command Bus Arbiter Signaling
	6.2.7 Scratchpad Test and Set/Clear Instructions
	6.2.8 Scratchpad Increment Instruction
	6.2.9 Hash Instruction

	6.3 Scratchpad Memory
	6.3.1 Read and Write Operations
	6.3.2 Bit Write Operations
	6.3.3 Auto Increment Operations

	6.4 Hash Unit
	6.4.1 Hashing Operation
	6.4.2 Hash Algorithm

	6.5 FBI CSRs
	6.5.1 CSR Reads and Writes
	6.5.2 FAST_WR Support
	6.5.3 FBI CSR Description Summary
	6.5.3.1 IX Bus Receive Registers
	6.5.3.2 IX Bus Transmit Registers
	6.5.3.3 IX Bus and Ready Bus Configuration Registers
	6.5.3.4 Ready Bus Control Registers
	6.5.3.5 Hash Unit Configurations Registers
	6.5.3.6 FBI Interrupt/Signal Registers
	6.5.3.7 Thread Status Registers
	6.5.3.8 Miscellaneous Registers

	6.5.4 Cycle Count Register
	6.5.5 Self Destruct Register
	6.5.6 Thread Status Registers (THREAD_DONE)

	6.6 IX Bus Interface
	6.6.1 Configuring the IX Bus and Ready Bus
	6.6.2 IX Bus and Ready Bus Modes
	6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes
	6.6.2.2 1-2 MAC Mode and 3+ MAC Mode
	6.6.2.3 Shared IX Bus Mode
	6.6.2.4 Status Mode

	6.6.3 Ready Bus
	6.6.3.1 Ready Bus Sequencer
	6.6.3.2 Ready Bus Master and Slave Modes
	6.6.3.3 Ready Bus Instructions
	6.6.3.4 Reading the MAC FIFO Ready Flags
	6.6.3.5 Receive Ready Flags
	6.6.3.6 Transmit Ready Flags
	6.6.3.7 Autopush Operation
	6.6.3.8 Interpreting The Receive Ready Flags
	6.6.3.9 Flow Control
	6.6.3.10 Ready Bus Communications
	6.6.3.11 Example Ready Bus Sequencer Programs

	6.6.4 Receive State Machine and RFIFO - Receiving Data From IX Bus
	6.6.4.1 Issuing a Receive Request
	6.6.4.2 Receive Request Format (RCV_REQ Register)
	6.6.4.3 Processing Receive Requests
	6.6.4.4 Receive Data Control Information Format (RCV_CNTL Register)
	6.6.4.5 Interpreting the Byte Enable Pins (FBE#[7:0])
	6.6.4.6 Reading the RFIFO
	6.6.4.7 Receive Scheduler Thread

	6.6.5 Transmit State Machine and TFIFO - Transmitting Data on the IX Bus
	6.6.5.1 Initiating a Transmit Request (TFIFO Format)
	6.6.5.2 Transmitting TFIFO Data

	6.6.6 Transmit Scheduler Thread
	6.6.6.1 Assigning a Transmit Thread - Examples

	6.6.7 IX Bus Arbiter
	6.6.8 Slow Ports and Fast Ports
	6.6.8.1 Maintaining Packet Order
	6.6.8.2 Issuing Receive Requests
	6.6.8.3 Fast Port Modes
	6.6.8.4 Timing Considerations for Back-to-Back Reads

	6.7 FBI Error Specifications
	6.7.1 Cancel
	6.7.2 Receive Fail
	6.7.3 Receive Error

	SDRAM Unit 7
	7.1 Overview
	7.2 SDRAM Bus Configurations
	7.2.1 Bank, Row, and Column Pin Assignments
	7.2.2 Initializing the SDRAM Interface
	7.2.2.1 Configuration Registers (SDRAM_MEMCTL0)

	7.2.3 SDRAM Bus Commands
	7.2.3.1 No Operation (NOP)
	7.2.3.2 Load Mode Register
	7.2.3.3 Active
	7.2.3.4 Read
	7.2.3.5 Write
	7.2.3.6 Burst Terminate
	7.2.3.7 Self Refresh
	7.2.3.8 Precharge
	7.2.3.9 Unsupported SDRAM Commands

	7.3 Interfacing to the SDRAM Unit
	7.3.1 SDRAM Command Service Priority Logic
	7.3.1.1 Priority 0: Chained Referenced
	7.3.1.2 Priority 1: Refresh Requests
	7.3.1.3 Priority 2: Round Robin Requests
	7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests

	7.3.2 Read-Modify-Write
	7.3.3 Chained References
	7.3.4 Active Memory Optimization

	7.4 Microengine SDRAM Transactions
	7.4.1 Microengines Command Queues
	7.4.2 SDRAM Byte Aligner

	7.5 PCI SDRAM Transactions
	7.6 StrongARM* Core SDRAM Transactions
	7.6.1 StrongARM* Core and Microengine SDRAM Address Space
	7.6.1.1 SDRAM CSRs
	7.6.1.2 SDRAM non-Prefetch Memory (256 Mbytes)
	7.6.1.3 SDRAM Prefetch Memory (256 Mbytes)
	7.6.1.4 Cache Flush Area (16 Kbytes)

	7.7 SDRAM and the IX Bus Interface
	7.7.1 SDRAM to TFIFO Operation
	7.7.2 Receive FIFO to SDRAM Operation
	7.7.3 SDRAM and IX Bus Data Path Operation

	SRAM Unit 8
	8.1 Overview
	8.2 SRAM Bus Configurations
	8.3 SSRAM Address Space
	8.3.1 Pipelined vs. Flow Thru SRAM Devices

	8.4 BootROM Address Space
	8.5 SlowPort Address Space
	8.6 Slow Interface Logic
	8.7 SRAM CSRs
	8.8 Advanced SRAM Commands
	8.8.1 Push Pop Registers
	8.8.2 SRAM Lock CAM
	8.8.2.1 ReadLock and Microengines
	8.8.2.2 ReadLock and StrongARM* Core
	8.8.2.3 Maintaining Read_lock Order
	8.8.2.4 Filling the Read_Lock Fail Queue
	8.8.2.5 Application Example: Read_lock

	8.8.3 Bit Test & Set / Bit Test & Clear
	8.8.4 SRAM Journaling

	8.9 Interfacing to the SRAM Unit
	8.9.1 SRAM Map
	8.9.2 Microengine SRAM Transactions
	8.9.3 StrongARM* Core SRAM Transactions
	8.9.4 SRAM Burst Count
	8.9.5 SRAM Command Service Priority
	8.9.6 Read-Modify-Write

