
Intel® IXP1200 Network
Processor Family
Hardware Reference Manual

December 2001

Part Number: 278303-009

ii Hardware Reference Manual

Intel® IXP1200 Network Processor Family

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IXP1200 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries

*Other names and brands may be claimed as the property of others.

Revision History

Revision Date Revision Description

8/30/99 001 Beta 1 release.

10/29/99 002 Beta 3 release.

3/2/00 003 Beta 4 release.

6/5/00 004 Version 1.0 release.

9/27/00 005 Version 1.1 release.

12/20/00 006 Version 1.2 release.

6/1/01 007 Version 1.3 SDK release.

8/10/01 008 Version 2.0 SDK release. Miscellaneous changes.

12/07/01 009 Version 2.01 SDK release. Miscellaneous changes.

Intel® IXP1200 Network Processor Family
Contents
1 Introduction...15

1.1 About this Document ...15
1.2 Related Documentation...15
1.3 Conventions ..16

1.3.1 Data Terminology ...16
1.3.2 Definitions...16

2 Technical Introduction ..17

2.1 Overview ...17
2.2 IXP1200 Functional Units..18
2.3 Key Architectural Features ..19
2.4 Some Architectural Concepts..21

2.4.1 References ...21
2.4.2 Signals and Synchronization ..22
2.4.3 Context Swapping and Threads ...23
2.4.4 Some Examples ...24
2.4.5 Local Data Storage and Block Transfers..25
2.4.6 Concurrency ...26

2.5 Typical Packet Data Flow..26
2.6 External Interfaces ..29
2.7 Internal Architecture ..30

2.7.1 StrongARM* Core...31
2.7.2 Microengines ..33

2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit....37
2.7.3 SRAM Unit..37
2.7.4 SDRAM Unit ...41

2.7.4.1 Internal SDRAM Bandwidth and Internal Data Busses42
2.7.4.2 Chained References..42

2.7.5 PCI Unit ..43
2.7.6 IX Bus Unit ...45

2.7.6.1 Ready Bus...46
2.7.6.2 IX Data Bus Modes ...47
2.7.6.3 Scratchpad RAM ...47
2.7.6.4 Hashing Unit ..47
2.7.6.5 IXB3208 Bus Scaling Fabric..48

2.8 Software Development Tools ..49

3 StrongARM* Core...51

3.1 Overview ...51
3.2 ARM* Architecture...51

3.2.1 Coprocessors ...51
3.2.2 Memory Management Unit (MMU) ...52

3.2.2.1 MMU Faults and CPU Aborts ..52
3.2.2.2 Data Aborts ...52
3.2.2.3 Interaction of the MMU, Icache, Dcache, and Write Buffer52
3.2.2.4 MMU Enable/Disable...53

3.2.3 Instruction Cache (Icache) ...54
Hardware Reference Manual iii

Intel® IXP1200 Network Processor Family
3.2.3.1 Icache Operation ... 54
3.2.3.2 Icache Validity ... 54
3.2.3.3 Icache Enable/Disable and Reset ... 54

3.2.4 Data Caches (Dcaches) ...55
3.2.4.1 Main Data Cache... 55
3.2.4.2 Mini Cache .. 55
3.2.4.3 Dcaches Enable/Disable and Reset.. 55
3.2.4.4 Dcache Operation ... 55
3.2.4.5 Software Dcache Flush ... 57

3.2.5 Write Buffer ..57
3.2.5.1 Write Buffer Operation... 58
3.2.5.2 Enabling and Disabling the Write Buffer.................................... 58

3.2.6 Read Buffer ..58
3.2.6.1 Read Buffer Operation .. 59

3.2.7 ARM* Instruction Set and Timing ... 60
3.2.8 Exceptions.. 60

3.2.8.1 Exception Priorities.. 61
3.2.8.2 Exception Vector Table ... 61
3.2.8.3 Hard Reset .. 61
3.2.8.4 Abort.. 62
3.2.8.5 Undefined Instruction .. 63

3.2.9 StrongARM* Core Debug Support ... 63
3.2.9.1 Instruction Breakpoint.. 63
3.2.9.2 Data Breakpoint...63

3.3 Memory Map ... 64
3.4 FIQ and IRQ Interrupts.. 66
3.5 Internal Peripheral Units..68

3.5.1 UART ... 68
3.5.1.1 Receive Procedure.. 69
3.5.1.2 Transmit Procedure... 69

3.5.2 Timers .. 69
3.5.3 Real-Time Clock (RTC).. 70

3.5.3.1 RTC Setup Procedures ... 71
3.5.3.2 Using the RTC Alarm .. 71
3.5.3.3 Determining the Trim Values... 72

3.5.4 General Purpose I/O (GPIO)..72
3.6 Boot Sequence.. 73

4 Microengines.. 75

4.1 Overview ... 75
4.2 Microengine Block Diagram .. 76

4.2.1 Multithread Support.. 76
4.2.2 Control Store .. 77
4.2.3 128 General-Purpose Registers (GPRs).. 77
4.2.4 128 Transfer Registers... 77
4.2.5 ALU and Shifter ..77
4.2.6 Command Bus Arbiter .. 77
4.2.7 Local CSRs ..78

4.3 Microengine Instruction Set... 78
4.4 Execution Pipeline... 79
4.5 Branch Decisions .. 80
iv Hardware Reference Manual

Intel® IXP1200 Network Processor Family
4.5.1 Class 3 Instructions ..81
4.5.2 Class 2 Instructions ..82
4.5.3 Class 1 Instructions ..83
4.5.4 Postponed Branch Decision ...84
4.5.5 Deferred Branch ...85
4.5.6 Setting Condition Codes Early ...86
4.5.7 Guess Branch...86

4.6 Execution States ...87
4.6.1 Reset State...87
4.6.2 Stopped State...87
4.6.3 Running State...88
4.6.4 Paused State..88

4.7 Programming the Microengines ..89
4.7.1 Starting Point of Program Execution ..89

4.8 Microengine Registers...90
4.8.1 General-Purpose Registers..90
4.8.2 Transfer Registers..91

4.8.2.1 Managing Solicited Accesses..92
4.8.2.2 Managing Unsolicited Autopush Accesses93

4.9 ALU and Shifter ...94
4.9.1 Condition Codes...95
4.9.2 Multiply Support..96

4.10 Changing Contexts..97
4.10.1 Signal Events ...98
4.10.2 Context Event Arbiter (Waking a Thread) ..100

4.11 Interfacing to Other Functional Units...101
4.11.1 References Using Transfer Registers ..102

4.11.1.1Setting Up the Transfer Registers ...103
4.11.1.2Issuing a Command ..103
4.11.1.3Command Serviced in Queue ...106
4.11.1.4Moving Data to and from Transfer Registers106
4.11.1.5Signaling Completion ..107

4.11.2 PCI DMA ..107
4.11.3 FAST_WR Instruction...108
4.11.4 Indirect References ..108

4.12 Local CSRs ...111
4.13 Find Bit Set Instructions ..112
4.14 Input States ...115
4.15 Inter-Processor Communications ..115

4.15.1 Generating StrongARM* Core Interrupts..116
4.15.2 Generating Inter-thread Signal Events ...117
4.15.3 Communication Example ...118

4.16 Chained SDRAM References..119
4.17 Debugging Support ...119

4.17.1 Determining If a Microengine is Executing ...119
4.17.2 Stopping, Starting, and Hopping the Microengines120
4.17.3 Breakpoints ..120
4.17.4 Reading Microengine GPR and Read Transfer Registers122
4.17.5 Creating a Journal ..122
Hardware Reference Manual v

Intel® IXP1200 Network Processor Family
5 PCI Unit.. 125

5.1 Overview ... 125
5.2 Hardware Description.. 127

5.2.1 PCI Bus Arbiter ..127
5.2.2 DMA Channels ... 128

5.2.2.1 Allocation of the DMA Channels.. 128
5.2.2.2 StrongARM* Core Initiated DMA Channel Operation.............. 129
5.2.2.3 Microengine Initiated DMA Channel Operation 130
5.2.2.4 SDRAM-to-PCI Transfer..131
5.2.2.5 PCI-to-SDRAM Transfer..131

5.2.3 I2O* Message Unit ... 132
5.2.3.1 I2O Inbound FIFO Operation ... 133
5.2.3.2 I2O Outbound FIFO Operation .. 134

5.2.4 Mailbox and Doorbell Registers ... 135
5.2.5 PCI Interrupt Pin... 140

5.3 PCI Transactions... 141
5.3.1 Generating the Address ...141

5.3.1.1 Target Transactions - Internal Address Generation 142
5.3.1.2 Master Transactions - PCI Address Generation...................... 142
5.3.1.3 Master Configuration Transactions - PCI Address Generation143

5.3.2 Enabling PCI Bus Transactions ... 143
5.3.3 PCI Target Transactions .. 143

5.3.3.1 Unsupported PCI Cycles As Target .. 143
5.3.3.2 Memory Write to SDRAM (Target Write)................................. 144
5.3.3.3 Memory Read, Read Line, Read Multiple to SDRAM

(Target Read) .. 144
5.3.3.4 Type 0 Configuration Write.. 145
5.3.3.5 Type 0 Configuration Read ... 145
5.3.3.6 Write to CSR ... 145
5.3.3.7 Read to CSR ... 146
5.3.3.8 Write to I2O Address ... 146
5.3.3.9 Read to I2O Address ... 146

5.3.4 PCI Master Transactions.. 147
5.3.4.1 Unsupported PCI Cycles As Master.. 147
5.3.4.2 Memory Write, Memory Write and Invalidate147
5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple ... 148
5.3.4.4 I/O Write .. 149
5.3.4.5 I/O Read.. 149
5.3.4.6 Configuration Write.. 150
5.3.4.7 Configuration Read ... 150
5.3.4.8 Special Cycle... 150
5.3.4.9 IACK Read .. 151
5.3.4.10PCI Request Operation ... 151
5.3.4.11Master Latency Timer ... 151

5.3.5 Errors As PCI Target .. 152
5.3.5.1 Address Parity Error ..152
5.3.5.2 Write Data Parity Error .. 152
5.3.5.3 Read Data Parity Error .. 152

5.3.6 Errors As PCI Master ... 152
5.3.6.1 Master Abort.. 153
5.3.6.2 Write Data Parity Error .. 153
5.3.6.3 Target Abort on Write .. 153
vi Hardware Reference Manual

Intel® IXP1200 Network Processor Family
5.3.6.4 Read Data Parity Error ..153
5.3.6.5 Target Abort on Read..154

6 FBI Unit ..155

6.1 FBI Architecture...156
6.2 Push/Pull Engine Interface ..158

6.2.1 Push and Pull Engines ...159
6.2.2 Microengine Initiated FBI References ..159
6.2.3 StrongARM* Core Initiated FBI References ...160
6.2.4 FBI Signal Events (to Microengines) ..160
6.2.5 Command Ordering..160
6.2.6 FBI Command Bus Arbiter Signaling..160
6.2.7 Scratchpad Test and Set/Clear Instructions...161
6.2.8 Scratchpad Increment Instruction...161
6.2.9 Hash Instruction ...161

6.3 Scratchpad Memory ..162
6.3.1 Read and Write Operations..162
6.3.2 Bit Write Operations ...163
6.3.3 Auto Increment Operations ..164

6.4 Hash Unit...165
6.4.1 Hashing Operation ...165
6.4.2 Hash Algorithm...167

6.5 FBI CSRs ..168
6.5.1 CSR Reads and Writes ..168
6.5.2 FAST_WR Support...168
6.5.3 FBI CSR Description Summary..169

6.5.3.1 IX Bus Receive Registers..169
6.5.3.2 IX Bus Transmit Registers...170
6.5.3.3 IX Bus and Ready Bus Configuration Registers......................170
6.5.3.4 Ready Bus Control Registers ..171
6.5.3.5 Hash Unit Configurations Registers ..171
6.5.3.6 FBI Interrupt/Signal Registers ...171
6.5.3.7 Thread Status Registers..172
6.5.3.8 Miscellaneous Registers ...172

6.5.4 Cycle Count Register ...172
6.5.5 Self Destruct Register ..172
6.5.6 Thread Status Registers (THREAD_DONE) ..173

6.6 IX Bus Interface...174
6.6.1 Configuring the IX Bus and Ready Bus..174
6.6.2 IX Bus and Ready Bus Modes ...177

6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes....177
6.6.2.2 1-2 MAC Mode and 3+ MAC Mode ...177
6.6.2.3 Shared IX Bus Mode ...178
6.6.2.4 Status Mode ..182

6.6.3 Ready Bus..183
6.6.3.1 Ready Bus Sequencer ..184
6.6.3.2 Ready Bus Master and Slave Modes185
6.6.3.3 Ready Bus Instructions ...185
6.6.3.4 Reading the MAC FIFO Ready Flags......................................190
6.6.3.5 Receive Ready Flags ..191
6.6.3.6 Transmit Ready Flags ...191
6.6.3.7 Autopush Operation ..191
Hardware Reference Manual vii

Intel® IXP1200 Network Processor Family
6.6.3.8 Interpreting The Receive Ready Flags.................................... 193
6.6.3.9 Flow Control .. 195
6.6.3.10Ready Bus Communications... 195
6.6.3.11Example Ready Bus Sequencer Programs............................. 199

6.6.4 Receive State Machine and RFIFO - Receiving Data From IX Bus..... 200
6.6.4.1 Issuing a Receive Request.. 201
6.6.4.2 Receive Request Format (RCV_REQ Register) 202
6.6.4.3 Processing Receive Requests .. 204
6.6.4.4 Receive Data Control Information Format (RCV_CNTL

Register).. 206
6.6.4.5 Interpreting the Byte Enable Pins (FBE#[7:0]) 209
6.6.4.6 Reading the RFIFO ... 211
6.6.4.7 Receive Scheduler Thread.. 213

6.6.5 Transmit State Machine and TFIFO - Transmitting Data on the
IX Bus... 215
6.6.5.1 Initiating a Transmit Request (TFIFO Format) 216
6.6.5.2 Transmitting TFIFO Data... 218

6.6.6 Transmit Scheduler Thread.. 218
6.6.6.1 Assigning a Transmit Thread - Examples 219

6.6.7 IX Bus Arbiter ... 220
6.6.8 Slow Ports and Fast Ports.. 221

6.6.8.1 Maintaining Packet Order.. 223
6.6.8.2 Issuing Receive Requests... 225
6.6.8.3 Fast Port Modes.. 227
6.6.8.4 Timing Considerations for Back-to-Back Reads...................... 228

6.7 FBI Error Specifications ..229
6.7.1 Cancel .. 229
6.7.2 Receive Fail ... 230
6.7.3 Receive Error ... 231

7 SDRAM Unit... 233

7.1 Overview ... 233
7.2 SDRAM Bus Configurations.. 233

7.2.1 Bank, Row, and Column Pin Assignments... 234
7.2.2 Initializing the SDRAM Interface... 235

7.2.2.1 Configuration Registers (SDRAM_MEMCTL0) 236
7.2.3 SDRAM Bus Commands.. 237

7.2.3.1 No Operation (NOP)..238
7.2.3.2 Load Mode Register ..238
7.2.3.3 Active... 239
7.2.3.4 Read.. 239
7.2.3.5 Write.. 239
7.2.3.6 Burst Terminate...239
7.2.3.7 Self Refresh...239
7.2.3.8 Precharge.. 239
7.2.3.9 Unsupported SDRAM Commands .. 240

7.3 Interfacing to the SDRAM Unit .. 240
7.3.1 SDRAM Command Service Priority Logic .. 240

7.3.1.1 Priority 0: Chained Referenced ... 242
7.3.1.2 Priority 1: Refresh Requests ... 242
7.3.1.3 Priority 2: Round Robin Requests ... 242
7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests... 242
viii Hardware Reference Manual

Intel® IXP1200 Network Processor Family
7.3.2 Read-Modify-Write ...243
7.3.3 Chained References...243
7.3.4 Active Memory Optimization...244

7.4 Microengine SDRAM Transactions ...245
7.4.1 Microengines Command Queues...245
7.4.2 SDRAM Byte Aligner ..245

7.5 PCI SDRAM Transactions...246
7.6 StrongARM* Core SDRAM Transactions ..247

7.6.1 StrongARM* Core and Microengine SDRAM Address Space..............247
7.6.1.1 SDRAM CSRs ...248
7.6.1.2 SDRAM non-Prefetch Memory (256 Mbytes)248
7.6.1.3 SDRAM Prefetch Memory (256 Mbytes)248
7.6.1.4 Cache Flush Area (16 Kbytes) ..248

7.7 SDRAM and the IX Bus Interface..248
7.7.1 SDRAM to TFIFO Operation ..248
7.7.2 Receive FIFO to SDRAM Operation ..249
7.7.3 SDRAM and IX Bus Data Path Operation ..249

8 SRAM Unit..251

8.1 Overview ...251
8.2 SRAM Bus Configurations...251
8.3 SSRAM Address Space ..252

8.3.1 Pipelined vs. Flow Thru SRAM Devices...253
8.4 BootROM Address Space ...255
8.5 SlowPort Address Space...257
8.6 Slow Interface Logic ..258
8.7 SRAM CSRs..258
8.8 Advanced SRAM Commands..259

8.8.1 Push Pop Registers..260
8.8.2 SRAM Lock CAM ...263

8.8.2.1 ReadLock and Microengines...263
8.8.2.2 ReadLock and StrongARM* Core ...264
8.8.2.3 Maintaining Read_lock Order..264
8.8.2.4 Filling the Read_Lock Fail Queue ...265
8.8.2.5 Application Example: Read_lock...265

8.8.3 Bit Test & Set / Bit Test & Clear ...265
8.8.4 SRAM Journaling ...266

8.9 Interfacing to the SRAM Unit...267
8.9.1 SRAM Map ...267
8.9.2 Microengine SRAM Transactions...268
8.9.3 StrongARM* Core SRAM Transactions..269
8.9.4 SRAM Burst Count ...271
8.9.5 SRAM Command Service Priority ..271
8.9.6 Read-Modify-Write ...272
Hardware Reference Manual ix

Intel® IXP1200 Network Processor Family
Figures

2-1 IXP1200 Block Diagram ..18
2-2 Thread waiting for signal ... 22
2-3 Thread synchronizing with signal .. 22
2-4 Context Swapping ... 24
2-5 Microengine Transfer Registers and internal data paths 25
2-6 Typical Packet Data Flow in the IXP1200 (Simplified) .. 27
2-7 StrongARM Block Diagram ... 31
2-8 Microengine internal structure... 33
2-9 SRAM Unit external interfaces .. 38
2-10 SRAM Unit Block Diagram .. 38
2-11 SDRAM Unit Block Diagram ...41
2-12 PCI Unit Block Diagram ..43
2-13 IX Bus data flow .. 45
2-14 Simplified IX Bus Unit Block Diagram ... 46
2-15 Developer’s Workbench - Thread History Display .. 50
3-1 StrongARM* Core Memory Map ...65
3-2 FIQ and IRQ Interrupts.. 67
3-3 Timer Block Diagram... 70
4-1 Microengine Block Diagram .. 76
4-2 Class 3 Branch Decision ... 81
4-3 Class 2 Branch Decision ... 82
4-4 Class 1 Branch Decision ... 83
4-5 Postponed Branch Decision.. 84
4-6 Execution States ... 87
4-7 GPR Addressing ... 90
4-8 Transfer Register Addressing ... 91
4-9 Push Protect Timing..93
4-10 Microengine Shift and Rotate Procedure ..95
4-11 Context Arbitration Policy.. 101
4-12 Microengine References Using Transfer Registers .. 103
4-13 Command Bus Arbitration Policy .. 106
4-14 Indirect References ... 108
4-15 Reading and Writing Local CSRs.. 112
4-16 Load Bit Set and Find Bit Set Execution ... 114
4-17 StrongARM* Interrupts .. 116
4-18 Inter-thread Signal Events... 117
4-19 StrongARM* Core and Microengine Communication.. 118
5-1 PCI Unit Block Diagram ..126
5-2 PCI Bus Arbiter ...127
5-3 DMA Descriptor Reads ... 128
5-4 DMA Channel Operations Initiated by Microengine .. 131
5-5 I20 Overview Diagram ... 132
5-6 Circulation of MFAs... 135
5-7 How the StrongARM* Core Generates Doorbell Interrupts to a PCI Device..... 137
5-8 How the PCI Device Generates Doorbell Interrupts to the StrongARM* Core..138
5-9 How the StrongARM* Core Initializes Doorbell Interrupts................................. 139
5-10 PCI Interrupts .. 140
5-11 Target Transactions - Internal Address Generation .. 142
x Hardware Reference Manual

Intel® IXP1200 Network Processor Family
5-12 Master Transactions - Internal Address Generation..142
5-13 Master Configuration Transactions ...143
6-1 FBI Unit Block Diagram ...156
6-2 Push/Pull Engine Interface Block Diagram..158
6-3 Scratchpad Memory Mapping ...163
6-4 How SRAM Transfer Registers are Used..165
6-5 Hash Operation Flow...166
6-6 IX Bus Interface...174
6-7 RCV_RDY_CTL Register ..175
6-8 XMIT_RDY_CTL Register ...175
6-9 RDYBUS_TEMPLATE_CTL Register ...176
6-10 RDYBUS_SYNCH_COUNT_DEFAULT Register ...176
6-11 RDYBUS_TEMPLATE_PROGx Registers..177
6-12 TK_OUT Output ..178
6-13 Dual IXP1200 System Using Dynamic Token Passing179
6-14 Shared IXP1200 System Using Fixed Token Passing180
6-15 Shared IXP1200 System Using Dynamic Token Passing181
6-16 Receive State Machine Behavior when EOP Occurs on the Last IX Bus

Data Cycle...182
6-17 Ready Bus Block Diagram ..183
6-18 Ready Bus Instruction Sequence ..184
6-19 MAC Device Sequencer Flow ...190
6-20 Master-to-Slave and Master-to-Master Chained Ready Bus Configuration196
6-21 Data Flow for Get and Send Instructions ..197
6-22 Receive State Machine and RFIFO - Receiving Data From IX Bus201
6-23 Issuing a Receive Request Flow ...202
6-24 RCV_REQ Register Format ..203
6-25 RCV_CNTL Register Format...206
6-26 Quadword Addresses for RFIFO...211
6-27 Format For 32-bit Unidirectional IX Bus Mode with 64-bit Status......................212
6-28 Format for All Other Modes ...212
6-29 Intel 21440 Multiport 10/100 Mbps Ethernet Controller Status Format213
6-30 Receive Scheduler Decision Time ..214
6-31 IX Bus Transmit Transfer Steps ..215
6-32 TFIFO Format and Quadword Word Address ...217
6-33 IX Bus Arbiter Flow..220
6-34 Slow Ports vs. Fast Ports ..222
6-35 Sequence Number Assignment for One Fast Port ..225
7-1 SDRAM Interface External Connections ...234
7-2 SDRAM Addressing ..235
7-3 Load Mode Register Command ..238
7-4 SDRAM Interfacing..240
7-5 Command Service Priority Logic Arbitration Policy ...241
7-6 Bank Switching..244
8-1 SRAM External Connections...252
8-2 Memory Configurations ...253
8-3 Pipelined vs. Flow Thru SSRAM Device ...254
8-4 Flow Thru Device ..255
8-5 BootROM Addressing..256
8-6 BootROM Timing...256
Hardware Reference Manual xi

Intel® IXP1200 Network Processor Family
8-7 SlowPort Timing .. 258
8-8 SRAM Unit Block Diagram .. 259
8-9 Push-Pop Operations.. 260
8-10 Pop Operation ... 261
8-11 Push Operation ...262
8-12 Push-Pop Addressing ... 262
8-13 Read_Lock Logic .. 264
8-14 Read_Lock Application ... 265
8-15 SRAM Journaling Address Space... 266
xii Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Tables

1-1 Data Terminology ..16
2-1 Summary of StrongARM* Core Internal Connections ...32
2-2 Summary of Microengine Internal Connections ..36
2-3 Calculation of Internal and External Bandwidths...37
2-4 Summary of SRAM Unit Internal Connections ..40
2-5 Summary of SDRAM Unit Internal Connections..42
2-6 Summary of PCI Unit internal connections..44
2-7 Summary of IX Bus Unit Internal Connections ..48
3-1 Valid MMU, Dcache, and Write Buffer Combinations..53
3-2 Effects of the Cacheable and Bufferable Bits on the Data Caches56
3-3 StongARM Core instruction Timing ...60
3-4 Exception Vectors ...61
3-5 UART Supported Data Formats ..68
3-6 RTC Registers...71
3-7 GPIO Pins and IX Bus Modes ...72
4-1 Summary of Microengine Instructions ...78
4-2 Execution Pipeline...79
4-3 Instructions Categorized by Class...80
4-4 Class 3 Instructions ...81
4-5 Class 2 Instructions ...82
4-6 Class 1 Instructions ...83
4-7 Transfer Register Usage (Solicited Access)..91
4-8 Transfer Register Usage (Unsolicited Access)..92
4-9 ALU Operations...94
4-10 ctx_swap Instructions ..98
4-11 Signal Event Request Methods ...98
4-12 Explicitly Requested Signal Events ...99
4-13 Nonexplicit Signal Events..99
4-14 Instructions Using Transfer Registers ...102
4-15 Bus Utilization..107
4-16 Fast_wr 10-Bit Immediate Data...108
4-17 Indirect Reference Instructions..109
4-18 Local CSRs ...111
4-19 Result Register Bits...113
4-20 Journal Register Initialization Order ..123
5-1 FIFO Pointers ..133
5-2 Doorbell Interrupt Registers ..136
5-3 Doorbell Interrupt Functions ..137
5-4 Master Configuration Transactions ...143
6-1 FBI Resources...156
6-2 FBI Push and Pull Task Priorities..159
6-3 Instructions Assigned to FBI Command Queues ..159
6-4 10-Bit Immediate Data...168
6-5 Receive Request Registers...169
6-6 Sequence Numbers Registers ..169
6-7 IX Bus Transmit Registers...170
6-8 IX Bus and Ready Bus Configuration Registers..170
6-9 Ready Bus Control Registers ..171
Hardware Reference Manual xiii

Intel® IXP1200 Network Processor Family
6-10 Hash Unit Configurations Registers .. 171
6-11 FBI Interrupt/Signal Registers ... 171
6-12 Thread Status Registers ... 172
6-13 Miscellaneous Registers ... 172
6-14 NOP Instruction Variations.. 185
6-15 rxrdy Instruction Variations.. 186
6-16 txrdy Instruction Variations.. 187
6-17 RxAutopush Instruction Variations .. 188
6-18 TxAutopush Instruction Variations .. 188
6-19 flwctl Instruction Variations.. 188
6-20 Get1 Instruction Variations.. 189
6-21 Get2 Instruction Variations.. 189
6-22 send Instruction Variations.. 190
6-23 64-bit Mode Endian Format... 209
6-24 Byte Enable Signaling Based On Endian Format ...209
6-25 32-bit Mode Endian Format... 210
6-26 Byte Enable Signaling Based On Endian Format ...210
6-27 Cancel States.. 229
6-28 Receive Fail States ... 230
6-29 Receive Error States ... 231
7-1 SDRAM Configurations ... 234
7-2 Programmable SDRAM Registers .. 235
7-3 Sequential Bursts .. 237
7-4 SDRAM Commands and Pin States ... 238
7-5 Command Queues .. 245
7-6 Data at Quadword Address N and N+1... 246
7-7 Alignment Results ... 246
7-8 Memory Map for SDRAM Address Space... 247
8-1 Memory Map for SRAM Address Space ... 267
8-2 SRAM Command Queue Sizes... 268
8-3 Cacheable and Bufferable Address Spaces ... 269
8-4 Burst Sizes .. 271
8-5 SRAM Command Service Priority ... 272
xiv Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Introduction
Introduction 1

1.1 About this Document

This document serves as the hardware reference manual for the Intel® IXP1200 Network Processor
Family. This includes the IXP1200, IXP1240 and IXP1250. This book is intended for use by
Developers and is organized as follows:

Section 2, Technical Introduction contains a hardware overview.

Section 3, StrongARM* Core describes the operation of the embedded StrongARM* core.

Section 4, Microengines describes the operation of the Microengines.

Section 5, PCI Unit describes the operation of the PCI Unit.

Section 6, FBI Unit describes the operation of the IX Bus Interface Unit.

Section 7, SDRAM Unit describes the operation of the SDRAM Unit.

Section 8, SRAM Unit describes the operation of the SRAM Unit.

1.2 Related Documentation

Further information on the IXP1200 is available in the following documents:

IXP1200 Network Processor Datasheet - Contains summary information on the IXP1200 including
a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP1240 Network Processor Datasheet - Contains summary information on the IXP1240 including
a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP1250 Network Processor Datasheet - Contains summary information on the IXP1250 including
a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP1200 Network Processor Family Microcode Programmer’s Reference Manual - Contains
detailed programming information for designers.

IXP1200 Network Processor Development Tools User’s Guide - Describes the IXP1200
Workbench and the development tools you can access through the use of the Workbench.

IXP1200 Network Processor Family Microcode Software Reference Manual - Contains detailed
software technical information for designers.
Hardware Reference Manual 15

Intel® IXP1200 Network Processor Family
Introduction
ARM* Architecture Reference Manual. Available from ARM. Contact: ARM Limited, 985
University Ave., Suite 5, Los Gatos, CA 95030. Phone: 408-399-5199. FAX: 408-399-8854.
Email: info@arm.com. WWW: http://www.arm.com.

1.3 Conventions

The following conventions are used in this manual:

1.3.1 Data Terminology

1.3.2 Definitions

MPKT

The data read from a MAC device receive FIFO as the result of a single receive request to the
receive state machine. Read in as 64 bytes.

Packet

The data framed between the assertion of an SOP signal and assertion of its associated EOP signal.

Table 1-1. Data Terminology

Term Words Bytes Bits

Byte ½ 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64
16 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Technical Introduction 2

This chapter is a relatively detailed introduction to the IXP1200 microarchitecture, and it’s key
features. It serves as a base from which the user can better understand the more detailed chapters
that follow.

2.1 Overview

The IXP1200 is an integrated Network Processor, comprised of a single StrongARM processor, six
Microengines, standard memory interfaces, and high-speed bus interfaces. It is targeted at
networking applications requiring a high degree of flexibility, programmability, scalability,
performance, and low power consumption. The unique architecture of the IXP1200 affords the user
a highly concurrent packet processing model, while keeping the programming model simple. This
is accomplished by providing many features in hardware that simplify the programming model.

The IXP1200 allows the designer to implement in software, what was previously implemented in
custom ASICs. This flexible, reprogrammable approach has many advantages, including faster
development time, easier bug-fixes, the ability to add features to products after deployment in the
field, and the ability to conform to standards that are not yet solidified.

The Microengines are custom processors implemented specifically for networking applications.
They are especially well suited to high-speed data manipulation and movement. The Microengines
being fully programmable processors, are able to examine packet contents at all levels of the
networking stack. This makes them suitable not only for layer 2 and 3 switching/forwarding, but
also for applications that require deeper inspection and manipulation of packet contents.

The IXP1200 has a number of noteworthy features that are described in more detail in Section 2.3,
“Key Architectural Features:

• Multi-Processing - allows multiple network packets to be processed in parallel.

• Distributed Data Storage architecture - positions data close to where it’s needed for faster
access, - in the Microengines.

• Hardware Multi-Threading - allows each Microengine to process multiple packets with
minimal context switching overhead.

• Active Memory Optimizations - executes a series of memory requests in the most efficient
manner, thereby increasing effective memory bandwidth.

• Multi-level Concurrency - allows multiple packets to be processed simultaneously by
overlapping the data accesses required to process one packet, with the compute cycles required
to process another packet.

• Block Data Movement - efficient movement of large amounts of data.

• Scalability - allows the architecture to scale with increasing processing demands.
Hardware Reference Manual 17

Intel® IXP1200 Network Processor Family
Technical Introduction
2.2 IXP1200 Functional Units

Figure 2-1 is a simplified block diagram of the IXP1200 which shows the six main functional units.
These functional units are described briefly below, and are described in more detail in the
following sections. The internal busses are shown as a “cloud” here for the sake of simplicity. The
many internal busses that connect the various functional units are described in more detail in
Section 2.7, “Internal Architecture.

• StrongARM* core - A full 32-bit RISC processor core with integrated caches that can be used
for management functions, running routing protocols, exception handling, and other tasks.

• Six Microengines - These compact, efficient RISC engines can be used for any function
requiring high-speed packet inspection, data manipulation, and data transfer. These are fully
programmable 32-bit engines with a 5-stage execution pipeline and a large (256) register set.
Hardware multithreading, and context-sensitive register windows enable very fast context
switching.

• SDRAM Unit - A shared, intelligent memory interface that can be accessed by the
StrongARM* core, the Microengines, and devices on the PCI bus. A glue-less interface to

Figure 2-1. IXP1200 Block Diagram

A8488-01

64

i.e. MAC
Control

116 MHz

Multiple,
independent,
high speed

internal
busses

(200 MHz)

32

64

116 MHz

10/100/1000 MB
Ethernet MACS

ATM, T1/E1
etc.

Other
IXP1200 Processor

IX Bus 104 MHz

32

Host CPU
(optional)

PCI MAC Device
(optional)

PCI Bus 66 MHz

SDRAM
Unit

StrongARM* Core
232 MHz

PCI Bus Unit

SRAM
Unit

Intel® IXP1200 Processor

SRAM
 up to 8 MB

FlashROM
up to 8 MB

Memory
Mapped I/O

Devices

SDRAM
up to 256 MB

* Other names and brands may be claimed as the property of others.

IX Bus
InterfaceUnit

232 MHz

Microengine 6

Microengine 5

Microengine 4

Microengine 3

Microengine 2

Microengine 1
18 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
standard, low-cost SDRAMs. Capable of moving blocks of data between the SDRAM and the
Microengines or the IX Bus Unit or devices on the PCI bus.

• SRAM Unit - A shared, intelligent memory interface that is accessible by the StrongARM and
the Microengines. A glue-less interface to standard pipelined and flowthrough SRAMs.
Capable of moving blocks of data between the SRAM and the Microengines

• PCI Bus Interface Unit - A standard interface that may be used to interface to other PCI
devices, or another host processor.

• IX Bus Unit - An intelligent data movement engine controlled by the Microengines. Capable
of transferring blocks of data between the IXP1200 and networking devices such as MACs and
SARs. While the IX Bus Unit can perform many sophisticated data transfer operations internal
to the IXP1200, the (external) IX Bus Interface itself is simple, and it is straightforward to
design peripherals for it. The IX Bus is described in more detail in Section 2.7.6.

Other functions contained within the IXP1200 include:

• A hardware hashing unit (48 or 64 bit)

• An on-chip 4KByte Scratchpad RAM for storing globally accessible data, and passing
messages between processors and between threads.

• On-chip Transmit and Receive FIFOs for buffering data on the IX Bus.

• Connecting the different functional units within the IXP1200 are a series of high speed busses
that transfer data between the units. These are parallel data paths that operate independently of
each other and increase the data throughput within the network processor.

• The IXP1200 also contains a UART for debug purposes; a number of counters that can be used
for time-stamping, etc; and a number of features for inter-processor and inter-thread
communication.

The IX Bus Interface is the high speed data flow interface to the IXP1200. Whereas the PCI
interface is fast, and runs at up to 66 MHz, it is limited by the PCI bus protocol, and by the bus
width. This does not preclude the PCI bus from being used as the main data path into and out of the
IXP1200, but it should be remembered that there is no direct connection (internally) between the
PCI Unit and the Microengines.

The IXP1200 has three types of memory resources available to the programmer: SRAM, SDRAM,
and Scratchpad RAM. These memories vary in latency, size, and bandwidth. The advantage of
having these three types of memories is that each of the memories operate in parallel, and the
programmer may make use of each of these in areas suited to their characteristics.

For example, SDRAM memory is typically used for packet data storage and very large tables,
whereas SRAM memory is used for table lookups where low latency is very important. Scratchpad
RAM being internal to the IXP1200 is smaller, but with very low latency and is most often used for
interprocess communication, and shared semaphores or counters.

2.3 Key Architectural Features

• Multi-Processing - The six Microengines, plus the StrongARM make up the compute
resources of the IXP1200. They share a common set of resources: SDRAM, SRAM, PCI, IX
Bus, Scratchpad RAM, and a number of other functions (described later).

• Distributed Data Storage Architecture - Each of the Microengines has its own local register
file of 256 (32-bit) registers. 128 of these registers are Transfer Registers. The Microengines
Hardware Reference Manual 19

Intel® IXP1200 Network Processor Family
Technical Introduction
have a load-store architecture. A Microengine cannot access data external to it. Instead, it must
bring the data into its Transfer Registers, operate on it, and then write the data from the
Transfer Registers out to its destination (i.e. SDRAM). Once the data is in its Transfer
Registers, a Microengine has single-cycle access to it, thus greatly speeding up its processing
capabilities. When data is not in its Transfer Registers, a Microengine can issue a Reference
Command to fetch the required data, then "go to sleep" while waiting for the data to come
back. This is where hardware multi-threading comes into play.

• Hardware Multi-Threading - Each of the Microengines actually has four Program Counters,
and is designed to be able to support up to four Threads (also called Contexts). When one of
the Threads is waiting for some data to be fetched, it can "go to sleep" and allow another
Thread within the same Microengine to run. This allows four program threads to run on the
same Microengine, thus utilizing the Microengine compute resources in a much more efficient
fashion.

This leads to better silicon utilization, and lower power than an approach in which more
Microengines are implemented, but without multi-threading. In a non-multi-threading design,
Microengines end up spending a lot of time just waiting for the data to come back. Multi-
threading in the IXP1200 is implemented in hardware, but controlled by software. Performing
multi-threading in hardware makes zero overhead context switching possible, as described in
Section 2.7.2, “Microengines.

• Active Memory Optimization - Both the SDRAM and SRAM Units have a number of queues
and optimization logic built in. This allows the six Microengines (actually the 24 Microengine
threads) as well as the StrongARM to request read or write transfers from the memory units,
and allows the memory units to intelligently determine the optimal order in which to carry out
these requests. Though these Active Memory Optimizations are implemented in hardware,
they are controlled by software on an instruction by instruction basis.

• Concurrency - Due to the several independent data and control busses internal to the
IXP1200, data can be moved simultaneously:

— between the SDRAM Unit and the Microengines or IX Bus Unit
(in both directions: read and write, - simultaneously)

— between the SRAM Unit and the Microengines
(in both directions: read and write, - simultaneously)

— between the SDRAM Unit and the PCI Unit

— between the IX Bus Unit and the Microengines

All these can occur simultaneously, and independently of each other. These are under software
control, but implemented in hardware, so the programmer need not worry about the details.

There are additional forms of concurrency in the IXP1200, which are described in more detail
in Section 2.4.6.

• Block Transfers - Due to the large register set on each of the Microengines, a single
instruction can cause up to 64 bytes of data to flow from one functional unit to another, or up
to 128 bytes of data to flow across the IX Bus. This makes better use of the Microengine
compute resources, as well as reducing code size.

• Scalability - The IXP1200 architecture implements scalability in a number of different
dimensions. Firstly, the architecture is such, that future members of the IXP1200 family can
add additional Microengines, while maintaining the same programming model. Secondly,
future IXP network processors can increase the instruction store within the Microengines.
Thirdly, multiple IXP1200s can be connected in a single design, allowing increased processing
power or data bandwidth.
20 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Connecting the six functional units are a number of very high-speed internal busses. These busses
operate at the full core frequency (currently 232 MHz). The busses are detailed in the descriptions
of the individual functional units in Section 2.7, “Internal Architecture, however, it should be noted
here that there are separate Read and Write busses between some of the functional units allowing
simultaneous transfers across these busses. Also, some of the functional units have separate,
unshared busses connecting them (i.e. PCI Unit to SDRAM Unit). In addition to these internal
busses which significantly improve the performance of the IXP1200, several of the functional units
have their own DMA engines (called Push-Pull Engines). These Push-Pull Engines are transparent
to the programmer, but serve as hardware DMA Controllers to move blocks of data between the
functional units. The combination of multiple independent busses, the Microengines, and the Push-
Pull Engines serve to move large amounts of data within the IXP1200 concurrently. Thus, internal
data-path bottlenecks are removed. More detail on the functioning of the internal busses, as well as
the Push-Pull Engines follows in a later section.

2.4 Some Architectural Concepts

The IXP1200 architecture introduces some new concepts, and also makes use of some existing
concepts but uses them in novel ways. This section gives a broad overview of these concepts and
how they work together to form the IXP1200 architecture. Understanding these concepts is key to
understanding the IXP1200 architecture.

2.4.1 References

Standard microprocessors (such as the integrated StrongARM processor) access memory directly
by issuing the memory address, and then waiting for the data to be returned. If the data is not
returned immediately, wait states are generated and compute cycles are wasted.

In comparison, the Microengines utilize a form of addressing called References. To access data
external to a Microengine, a Microengine executes a Reference Command, but does not have to
wait for the data to come back. Instead it can do some other useful work by letting another program
thread within the Microengine run.

While the Microengines have a set of local registers just like any other microprocessor, they do not
have direct access to SDRAM, SRAM, and other resources that are not within the Microengine. A
Microengine accesses its local registers in one clock cycle, however, to access resources that are
not local to it, the Microengine issues Reference Commands (to bring data into the local registers).

Reference Commands are used to:

• request a read or write from/to SDRAM

• request a read or write from/to SRAM

• request a read or write from/to on-chip Scratchpad RAM

• request a hashing operation to be performed on data in the transfer registers

• request data to be transferred over the IX Bus interface (to/from a device on the IX Bus)

• request data to be moved between SDRAM and the IX Bus Unit

• request data to be transferred between Microengine transfer registers and the IX Bus Unit

In general, anything that takes time to complete, is implemented through a Reference Command,
and the Microengine need not wait for the transfer to complete.
Hardware Reference Manual 21

Intel® IXP1200 Network Processor Family
Technical Introduction
2.4.2 Signals and Synchronization

Since a Microengine can issue a Reference Command but does not need to wait for the requested
action to be completed, some means must be provided so that the Microengine may know when the
requested task has been completed. To accomplish this, the different functional units (i.e. SRAM
Unit, SDRAM Unit, etc.) have the ability to send signals back to the requesting Microengine
indicating when the requested task has been completed.

A Microengine can issue a Reference Command, and simply wait for the signal to be returned as
shown in Figure 2-2.

Or a Microengine can continue to execute instructions while the transfer is in progress and do some
other useful work, and then later check to see if the signal has been received (shown in Figure 2-3).

Alternatively, the Microengine Thread can issue a Reference Command, and then swap out as
described in the next section, and illustrated in Figure 2-4 “Context Swapping".

Signals are the primary method provided within the architecture to allow Microengine Threads to
gain notification that events external to the Microengine have occurred. Signals are used not only
to signify the completion of Reference Commands, but also for inter-processor and inter-thread
communication. For example, threads may signal each other to indicate an event, or the
StrongARM* core may signal any of the Microengine threads.

Figure 2-2. Thread waiting for signal

A8909-01

Thread 0
executing code

Thread 0
continues to execute

Thread 0 loops,
waits for signal

Transfer in progressExecutes Reference Signal Received

Time

Figure 2-3. Thread synchronizing with signal

A8910-01

Thread 0
executes code

Thread 0
does other

work

Thread 0
continues to execute

Thread 0
loops, waits

for signal

Transfer in progressExecutes Reference Signal Received

Time
22 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Signals are not preemptive. They serve only to notify a thread of an event, or to enable a thread that
is waiting for a signal.

2.4.3 Context Swapping and Threads

The Microengines utilize a feature called Hardware Multithreading. Each Microengine has four
Program Counters, and supports four Threads. Each thread has its own Thread ID, and the
IXP1200 hardware (i.e. the various functional units) are ‘thread-aware’. When a Microengine
Thread issues a Reference Command, the receiving functional unit (i.e. SDRAM Unit) recognizes
which thread issued that command, and can send a completion signal specifically back to that
thread. In this way, multiple threads within a Microengine can issue Reference Commands, and the
completion signals are sent back to the specific threads that issued the commands in the first place.
This is all done by the hardware, so the programmer need not worry about keeping track of
Reference Commands, and the IXP1200 programming model remains simple, and easy to use.

As mentioned above, a Microengine (actually, a Microengine thread) can issue a Reference
Command, and then swap out, allowing another thread (within the same Microengine) to run. In
this way, while one Microengine thread is waiting for data, or some operation to complete, another
thread is allowed to run and complete some useful work (Figure 2-4). Since the functional units are
thread aware, when a particular Reference Command is complete, the specific thread that issued
the command is signalled, enabling it to ‘wake up’ and continue to run, since the data it was
waiting for is now available

It should be noted that a thread does not simply “wake up” whenever it receives a signal. The
Microengine architecture is not interrupt driven, and so signals do not preempt a thread that is
already executing. Context switching occurs only when an executing thread explicitly gives up
control. The ctx_arb Microengine instruction allows the context arbiter to determine which thread
runs next. In addition, the ctx_arb option on Reference Commands issues the Reference Command
and then allows context arbitration to take place. Context arbitration does not occur at any other
time.

A thread that is swapped out and waiting for a signal is temporarily disabled (for arbitration) until
the signal is received. The Microengine Context Arbiter is described in more detail in Microengine
Section.
Hardware Reference Manual 23

Intel® IXP1200 Network Processor Family
Technical Introduction
2.4.4 Some Examples

As an example, say Thread A (Microengine #1, Thread 2) is processing a packet header by doing a
lookup in SRAM. Instead of waiting for the data to come back from SRAM, Thread A can continue
to execute instructions, and begin to store the packet payload data to SDRAM. Later, when
necessary, it can check to see if a signal has been received from the SRAM Unit so that it knows
that the SRAM operation has been completed, and can then continue to process the header.

Alternatively, as an example that shows context swapping, say Thread A is doing a lookup in
SRAM, and due to the nature of the algorithm, cannot continue processing till the data is available.
In this case, Thread A would issue the SRAM Reference Command and swap out (all in one
instruction). At this point, Thread B (Microengine #1, Thread 3) would execute its program,
probably working on a different packet than Thread A. Later, when the SRAM Reference
Command issued by Thread A completes, the SRAM Unit would send Thread A a signal, enabling
it to ‘wake up’ and continue to execute its code where it left off. It should be noted that Thread A
cannot begin executing code again until Thread B relinquishes control (swaps out explicitly).

Again, this is all accomplished in the hardware so that the programmer does not have to keep track
of all the signals and Reference Commands that have been issued. The programmer treats each
thread as a logically separate entity, simplifying the IXP1200 programming model. The result,
however, is that the six Microengines, each with four logically separate threads, can be effectively
executing 24 different programs. It is even possible (though not likely from a practical,
implementation point of view) that each of the 24 threads can be working on a separate packet.

Figure 2-4. Context Swapping

A8489-01

Thread 0

Thread 1

Thread 0 executing

Thread 2 disabled

Time

Thread 0 issues an
SDRAM Reference

Command and swaps out

SDRAM access
complete, and signal

sent to Thread 0

Thread 0 resumes

Thread 1 executing

Thread 0 executing

Thread 2
Thread 3 disabledThread 3

Thread 1 executes a ctx_arb
instruction and gives up control
24 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.4.5 Local Data Storage and Block Transfers

As shown in Figure 2-5 each of the Microengines contains 128 Transfer Registers. 64 of these are
for transferring data between the Microengine and SDRAM (called SDRAM Transfer Registers),
while the other 64 are for transferring data between the Microengine and the other functional units
(called SRAM Transfer Registers). Though the SRAM Transfer Registers are named so, they
transfer data between the Microengine and all the functional units (except SDRAM).

Since the Microengines have this large local data transfer register area, one Reference Command
can cause a block of data to be loaded into one portion of the transfer register area, while another
Reference Command (say from a different thread in the same Microengine) can cause a block of
data to be loaded into a different portion of the transfer register area, - without overwriting each
other. As shown in Figure 2-5, these data transfers can happen simultaneously because there are
four separate and independent data busses that connect the Microengines to the different functional
units. These bus structures are described in more detail below. Another feature of this architecture
is the ability to move large blocks of data with a single instruction. For example, a single Reference
Command instruction from a Microengine can cause a block of data to (up to 64 bytes) to be read
from, or written to the SRAM or SDRAM.

This large data transfer register area is shared by all four of the Microengine threads. Just as the
IXP1200 functional units are thread-aware, so too are the transfer registers. In this way, when
different threads within the same Microengine issue Reference Commands, the data requested by
one thread does not overwrite the data requested by another thread. Each thread (context) has it’s
own window of registers (one fourth of the total registers). This helps to keep the IXP1200
programming model simple and easy to use.

Figure 2-5. Microengine Transfer Registers and internal data paths

A8490-01

SRAM Unit
Microengine

IX Bus Unit

SRAM
Transfer
Registers

SDRAM
Transfer
Registers

General
Purpose
Registers

Write Bus

Read Bus

Write Bus

PCI Unit

x6

128 128

SDRAM Unit

Read Bus
Hardware Reference Manual 25

Intel® IXP1200 Network Processor Family
Technical Introduction
2.4.6 Concurrency

Concurrency within the IXP1200 architecture takes a number of different forms:

Of course, there is the concurrency of seven processors within the IXP1200. But beyond that, the
architecture is such that there is a lot of concurrency at the individual Microengine level as well.
While one thread within a Microengine is executing code, data transfers on behalf of any (or all)
four threads can be occurring. In addition, since internal to the IXP1200 there are separate busses
to the SDRAM and the SRAM, data transfers to both devices can be occurring in parallel.
Furthermore, there are separate Read and Write busses for the SRAM and SDRAM as can be seen
in Figure 2-5. This allows the Microengine Transfer Registers to transfer data to the SRAM and
SDRAM in both directions (read and write) simultaneously.

Similarly, it is also possible for the other functional units to be executing tasks on behalf of the
Microengines simultaneously. This can be happening while a particular thread is ‘sleeping’. A
good example of this would be when a Microengine thread executes a Hashing Reference
Command and then swaps out. When the swap occurs, another thread within the same Microengine
can execute code, probably processing a separate packet. Meanwhile, at the same time the Hashing
Unit will be executing the hash on behalf of the sleeping thread.

2.5 Typical Packet Data Flow

What follows is a simplified description of how a packet would be processed in a ‘typical’
application. The IXP1200 architecture is discussed in much more detail in further sections, but the
description immediately below serves as a general introduction to acquaint the designer with the
general flow of data through the IXP1200. An Ethernet application is used for illustration.
26 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Generally, packet data moves through the IXP1200 in the following steps:

1. The Ethernet MAC receives data.

2. A MicroEngine instructs the IX Bus Unit (via a Reference Command) to get the data from the
MAC and store it in the Receive FIFO (RFIFO). The IX Bus unit takes care of the actual
transfer, independent of the Microengine.

3. The IX Bus Unit signals a Microengine thread that the data has been transferred.

4. The Microengine instructs the SDRAM Unit to transfer the data from the Receive FIFO to
SDRAM (this actually takes place in the background). The SDRAM unit takes care of the
actual transfer, independent of the Microengine.

5. The Microengine transfers the first few bytes (header) into its Transfer Registers (via a
Reference Command to the IX Bus Unit).

6. It processes the header (or however much of the packet needs to be inspected), and determines
what to do. It can make use of tables stored in SRAM (or SDRAM) to do lookups.

7. It modifies the packet header, if necessary, and writes out the new header to SDRAM.

8. It instructs the SDRAM Unit to write the packet data out to the Transmit FIFO. The SDRAM
unit takes care of the actual transfer, independent of the Microengine. When the transfer is
complete, the SDRAM Unit notifies the Microengine thread.

9. The Microengine instructs the IX Bus Unit to transfer the data to the appropriate MAC.

Figure 2-6. Typical Packet Data Flow in the IXP1200 (Simplified)

A8491-01

UnitUnit

Ethernet MAC

SDRAM
Unit

StrongARM*
Core

Microengine

PCI Bus Unit

SRAM
Unit

Intel® IXP1200 Processor

SRAM
 up to 8 MB

SDRAM
up to 256 MB

Transfer
Registers

* Other names and brands may be claimed as the property of others.

Multiple,
independent,
high speed

internal
busses

(232 MHz)

IX Bus Unit

Tx FIFO Rx FIFO
Hardware Reference Manual 27

Intel® IXP1200 Network Processor Family
Technical Introduction
The IXP1200 is a store-and-forward packet processing architecture. When a device on the IX Bus
(say, an Ethernet MAC) has data it needs to transfer to the IXP1200, it asserts a pin. One or more of
the Microengines monitor these pins on a continuous basis. When it is noticed that a device on the
IX Bus has data, a Microengine issues a Reference Command requesting the IX Bus Unit to
transfer data from that device into the Receive FIFOs within the IX Bus Unit (Figure 2-6).

The IX Bus Transmit and Receive FIFOs serve as temporary buffer areas where IX Bus data is
stored. When the data transfer is complete and the received data from the MAC now resides in the
Receive FIFO, the IX Bus unit sends a signal to a Microengine thread. The thread may then
transfer a number of bytes from the Receive FIFO (presumably the packet header) into its local
Transfer Registers. It can also send a separate request to the IX Bus Unit to send the entire “chunk”
of received data to SDRAM. While the IX Bus Unit is transferring the data to SDRAM, the
Microengine can be processing the packet header. It can do table lookups in SRAM, perform
hashing (using the hardware hashing unit) on the header fields, etc.

The IX Bus deals with data in chunks of 64 bytes called MPKTS (“m-packets”). For larger packets
(larger than 64 bytes), as additional portions of the packet are transferred from the MAC into the
Receive FIFO, the Microengine issues additional Reference Commands to have the data moved
from the Receive FIFO directly to SDRAM, thereby buffering the packet in SDRAM. The
Microengine needs to issue only one or two instructions to cause a whole block (1 or 2 MPKTs) of
data to move directly between the IX Bus Unit and SDRAM. The Microengine is in complete
control of each of these operations.

When the Microengine has finished processing the packet header, it writes the new packet header
into SDRAM. Then, it monitors the devices on the Transmit (destination) side, and when the
destination device is able to receive data from the IXP1200, the Microengine issues a Reference
Command to the SDRAM Unit requesting that a chunk of data be moved from SDRAM to the
Transmit FIFO. Now that the data to be transmitted is in the Transmit FIFO, a separate Reference
command from the Microengine requests the IX Bus Unit to transmit the data to the appropriate
device on the IX Bus.

In Figure 2-6 it may be noticed that data is not shown flowing into and out of SRAM. It is possible
to use SRAM as a data buffer area, however the architecture is such that the SDRAM has greater
bandwidth. Also there is a direct data path between the SDRAM and the IX Bus Unit. There is no
direct path between the IX Bus and the SRAM Unit. The SRAM is intended more for packet
descriptor tables and other lookup tables where low latency access is required.

While in the above description, it would seem as if the same Microengine (or Microengine thread)
does all of these tasks, it is not necessarily so. Different Microengines or different threads could be
sharing these tasks, depending on how the system is architected. Also, in the above description it
may seem as if the Microengine (or Microengine thread) has to wait for each of the operations to
complete, it is not necessarily so. When a Reference Command is issued, the Microengine thread
does not need to wait for completion. It can either continue to do other useful work, or swap out
and let another thread run. This tends to make for much higher utilization of the compute resources
within the Microengine.
28 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.6 External Interfaces

The SDRAM interface is a glueless interface supporting up to 256 Mbytes of standard SDRAM
with a 64-bit data path. The intent is for the SDRAM to hold any large data tables, such as routing
tables. The SRAM interface supports either pipelined, or flow-through SRAMs with a 32-bit data
path, and up to 8 Mbytes of memory. The intent is for the SRAM to hold any buffer management
(i.e. table pointers, etc.) data that require low latency accesses. The SRAM and SDRAM interfaces
run concurrently, and independently of each other, thereby allowing the designer to spread the
burden of memory accesses between both types of devices, so neither one becomes a bottleneck.

Both SDRAM and SRAM interfaces run at half the core clock frequency, so while the part
internally runs at 232 MHz, the SRAM and SDRAM run at 116 MHz. The IXP1200 was
architected to use standard SRAM and SDRAM to reduce system cost, while at the same time
optimizing these interfaces to get maximum utilization out of these memories. These optimizations
are described in further detail in Section 2.7.3, “SRAM Unit, and Section 2.7.4, “SDRAM Unit. At
116 MHz, the SDRAM interface has a maximum bandwidth of 928 MBytes/sec, while the SRAM
interface has a maximum bandwidth of 464 MBytes/sec. Whereas the SDRAM interface offers a
higher bandwidth, the SRAM interface offers a significantly lower latency. A properly architected
design will take advantage of the features of both types of memory.

The PCI interface is compliant to the PCI 2.1 Specification. This is a 32-bit PCI interface that can
run at 33 MHz with the standard number of PCI loads, or at up to 66 MHz in a point-to-point
configuration. Additional loading of the PCI bus is possible by de-rating of the PCI clock speed.
The PCI interface is intended to be used for communication between the IXP1200 and any PCI
peripheral (such as a local Ethernet MAC), or a separate host processor. If used with a host
processor, it is intended for the IXP1200 to perform all data movement/processing tasks, while the
host processor is responsible for management tasks. The PCI interface allows maximum data rates
of 264 MBytes/sec at 66 MHz. Whereas the IXP1200 PCI bus does not have as high a bandwidth as
the IX Bus, it can still be used as the major data path in less demanding applications.

The IX Bus is an Intel proprietary bus, and is the main data path to and from the IXP1200. While
the bus is proprietary, no licensing is required, and Intel encourages its customers and third party
silicon vendors to design devices that interface to this bus. An IX Bus Design Guide, IX Bus
Functional Model, and IBIS models are available. The IX Bus is very similar to a bus employed by
Seeq* and Lucent* network devices (MACs) as well. Currently, Intel produces two devices that
hookup to the IX Bus without any additional glue logic. These is an octal Fast Ethernet (10/100
Mbps) MAC device, and a dual Gigabit Ethernet MAC. Future IX Bus devices are currently in
design. More detailed information on the IX Bus can be found in this Manual, and in the IX Bus
Design Guide.

The IX Data Bus is a 64-bit data bus that runs at up to 104 MHz. At 104 MHz, the IX Bus has a
maximum bandwidth of 832 MBytes/sec (6.6 Gbits/sec). The IX Bus can be configured to run in a
number of different modes and speeds. These include a 64-bit bidirectional mode in which data can
be transferred in only one direction at a time, and a 32-bit unidirectional mode in which data can be
simultaneously transferred in both directions, but with half the data bus width.
Hardware Reference Manual 29

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7 Internal Architecture

When standard microprocessors (such as the StrongARM, MIPS, Pentium, etc.) execute a memory
or I/O request, they have to wait for the data to be returned before they can continue to execute
instructions. By comparison, the IXP1200 Microengines do not require the data to be returned
before they can continue to execute instructions. The Microengines issue what are called Reference
Commands. These Reference Commands are targeted at a specific Functional Unit, and request the
Unit to carry out some action (such as fetching data from memory) on behalf of the Microengine.
In fact, each Microengine has four Threads, or Contexts, each of them distinct. It is not simply a
Microengine that issues a Reference Command, but a specific Thread. Since there are six
Microengines, up to 24 Threads can be running. While the targeted Functional Unit carries out the
action on behalf of the Microengine Thread, the Microengine can continue to execute instructions.
The functional unit sends a signal back to the Microengine Thread to indicate that the task is
completed. The Microengine Thread may wait for this signal to be returned (retaining control of
the Microengine execution unit), or it may swap out, and allow one of the other three Thread to run
instead. This is controlled at the Microengine instruction level, and is described in more detail
below. On an instruction by instruction basis, the programmer can decide on whether the Reference
Command will cause a swap, or not.

As mentioned above, the Microengines each have 256 32-bit registers. The reason for such a large
register set, is that it allows the four Threads to run without interfering with each other. This is
because the Microengines implement Context Relative Addressing of the registers. When using
context relative addressing, the register set is split into 4 equal parts, with each of the Threads able
to address only its portion of the register set. In this way, when a Thread swaps out and another
Thread runs, there is no need to save state. This allows for Zero Overhead Context Swaps, where it
is possible for there to be no bubbles in the execution pipeline of the Microengine (the
Microengines implement a 5-stage execution pipeline, as described in Section 2.7.2). Thus,
frequent swapping of Threads in the Microengines incurs little or no performance penalty. In fact,
the architecture of the IXP1200 encourages context swaps as frequently as necessary. In this way,
maximum utilization is made of the Microengines while a particular Thread is waiting for
something to complete. While other multiprocessor network processor architectures may
implement more Microengines, the IXP1200 makes better use of silicon by getting optimal
utilization of the Microengines. In the IXP1200 24 separate Threads can be executing completely
separate code while sharing common resources.

A Reference Command can cause up to 64 bytes of data to flow between the Microengine transfer
registers and a functional unit. For example, if a thread had identified which Virtual Circuit (VC) a
packet belongs to, and it needs to examine the QoS parameters for that particular VC, it can fetch
them from SDRAM. These parameters are often not just a word or two in length, but may be, say
40 bytes in length. A single Microengine Reference Command can get the SDRAM Unit to transfer
all 40 bytes into its transfer registers and signal the thread when it is done. While the Microengine
is executing instructions at the core clock frequency (say 232 MHz), the SDRAM clock runs at half
the core clock frequency (116 MHz), and takes a number of cycles to complete the request. The
thread can swap out and allow another thread to process a different packet, while this transfer is in
process.
30 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.1 StrongARM* Core

The StrongARM is a full 32-bit RISC microprocessor core running at 232 MHz. It is a custom
implementation of the ARM architecture, but with a number of notable features. The ARM
architecture has been around since the early nineties, and standard tools for the architecture are
available from ARM Limited, the Free Software Foundation (GNU tools), etc. The StrongARM is
a 5-stage pipelined processor with 16K bytes of instruction cache (organized as 512 lines of 32
bytes), and 8K bytes of data cache (organized as 256 lines of 32 bytes). In addition, the core
contains a 512 byte minicache which is intended for data that is read once, operated on, and then
discarded. The intent is for the minicache to reduce flushing of the main data cache. The
StrongARM also has a very high MIPS/Watt ratio, making it ideally suited for high performance,
low power embedded applications. The ARM architecture is Endian-agnostic in that it can run in
either Big-Endian or Little-Endian mode.

Future members of the IXP family of Network Processors may use either the StrongARM* core or
the XScale core (the next generation of the StrongARM).

A cacheline fill reads a full 32 bytes, and uses a round robin replacement algorithm. The Data
Cache is a write-back cache, and allocates on read, but not on write.

The StrongARM may be used in different ways, depending on the application. If the system
already contains a high-level (host) processor, the StrongARM can leave system maintenance to
the host processor and act as the exception processor and higher-layer processor for the
Microengines. In this case, the StrongARM could run a mini-kernel, and execute routing protocols,
while the Microengines would do the fast-path packet processing. The host processor and the
IXP1200 communicate over the PCI interface.

In designs where there is no host processor, the StrongARM would be the main processor. It would
run a Real Time Operating System, perform maintenance functions, as well as the other functions
mentioned above.

Figure 2-7. StrongARM Block Diagram

A8516-01

16K
Instruction

Cache

SA-1
RISC
Core

PC

Addr

Data Bus

8K
Data Cache

Minicache

Read BufferWrite Buffer
Hardware Reference Manual 31

Intel® IXP1200 Network Processor Family
Technical Introduction
The StrongARM Core has access to the resources shown in Table 2-1.

The StrongARM has access to the SDRAM, the SRAM, the PCI interface. It does not have access
to the IX Bus, as this is the main high-speed data path for the IXP1200, and is better handled by the
Microengines. The StrongARM boots from Flash memory over the SRAM interface. It can then
load the Microengines with their own programs (the Microengines have their own internal
instruction store). The StrongARM communicates with the Microengines via shared registers and a
shared on-chip Scratchpad RAM. The StrongARM has the ability to enable or disable any of the
Microengines or any of the Microengine threads. The StrongARM can change a Microengine’s
instruction store at any time by disabling the Microengine, writing to the instruction store, and then
re-enabling the Microengine. Though this is a form of downloading the Microengine instruction
store "on-the-fly", it is should not be considered "real-time", as downloading the instruction store
takes hundreds of clock cycles. The StrongARM can also examine and modify some of the
Microengine registers, including the four thread program counters.

The StrongARM may fetch its instructions either from Flash, SDRAM, or SRAM. Typically, the
StrongARM would boot from Flash, and then execute from SDRAM. Though the StrongARM and
the Microengines share these memory interfaces, the caches on the StrongARM mitigate its affect
on Microengine-SDRAM bandwidth.

Table 2-1. Summary of StrongARM* Core Internal Connections

Unit Resource

PCI Unit

Full access to the PCI Bus, including all PCI bus transactions.

Full access to PCI Unit registers.

Separate, shared 32-bit bus between the StrongARM core (ATU) data bus and the PCI
Unit.

SDRAM Unit Full access to SDRAM.

SRAM Unit Full access to SRAM, including Flash and other devices hooked up to the SRAM Bus.

IX Bus Unit

Access to Control and Status registers within the IX Bus Unit.

Access to Scratchpad RAM within the IX Bus Unit.

No access to the Receive or Transmit FIFOs or the IX data bus.

Microengines

Access to Microengines’ Program Control Store to program the Microengines.

Access to Control and Status Registers, including PC (Program Counter).

No access to Microengine Transfer Registers.
32 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.2 Microengines

Figure 2-8 is a block diagram of a single Microengine. This block is replicated six times in the
IXP1200, so each Microengine contains its own instruction store, its own set of 256 registers and
other Control/Status Registers (CSRs). All the Microengines are identical, so that functions may be
interchanged between them. For example, any Microengine can act as a Scheduler, while a number
of other Microengines can do the actual packet processing. There is no fixed function for any of the
Microengines, - all are fully programmable.

The Microengines operate at the core clock frequency of the IXP1200, just like the StrongARM
(up to 232 MHz). All instructions execute in one clock cycle.

Each Microengine’s instruction store is 1K x 32 bits (2K on later steppings of the IXP1200). Since
all Microengine instructions are 32-bits in length, a Microengine can contain 1K instructions (2K
on later steppings). The Microengines are implemented as 5-stage pipelined processors. In the first
stage, the instruction is fetched from the instruction store; in the second stage, the instruction is

Figure 2-8. Microengine internal structure

A8515-01

Microengine
Controller

Microengine Internal Structure

A-Side MUX

Shifter

ALU

Command
Reference

FIFO
32 SDRAM
Regs Write

Transfer

32 SRAM
Read Transfer

Registers

32 SDRAM
Read Transfer

Registers

64 A-Side
Regs

General
Purpose

64 A-Side
Regs

General
Purpose

32 SRAM
Regs Write

Transfer

Other CSRs

Program Ctr 0

Commands to other Functional Units

To SRAM Data and other writeable destinations

From SRAM and other readable sources

To SDRAM

From SDRAM

Context
Arbiter

And Event
Processor

Even
Signals

Program Ctr 1

Program Ctr 2

Program Ctr 3

Instr. Decode

Microprogram
Control Store

B-Side MUX
Hardware Reference Manual 33

Intel® IXP1200 Network Processor Family
Technical Introduction
decoded; in the third stage the operands are fetched from the registers; in the fourth stage the
operands proceed through the ALU; and in the fifth stage, the result is written out to the destination
register.

The Microengine’s 128 GP (General Purpose) Registers are divided into 2 banks, an A bank and a
B bank. This is so that two operands can be fetched simultaneously (in the same clock cycle). The
ALU instructions are of the form:

A_register <opcode> B_register => destination_register

The 128 Transfer Registers are divided into separate SRAM and SDRAM Transfer Registers, and
are further divided into Read and Write portions. That is, there are 32 SDRAM Read Transfer
Registers, 32 SDRAM Write Transfer Registers, 32 SRAM Read Transfer Registers, and 32 SRAM
Write Transfer Registers. Each of these four sets of transfer registers has a separate data path to its
respective functional units. Therefore, data can be transferred on all four busses simultaneously.
Due to this overlapping of data transfers, as well as Context Switching capability, the IXP1200 is
capable of a very high degree of concurrency.

The Microengines can transfer data to and from the other functional units only through these
Transfer Registers. As mentioned above, a block of data can be moved to or from the Transfer
Registers with one instruction. The read transfer registers are only for data coming from a
functional unit, into the Microengine, while the write transfer registers are only for data being
written from a Microengine out to one of the functional units. A Microengine cannot read from a
write transfer register, and cannot write to a read transfer register.

Therefore, it should be noted that these Transfer Registers are not general purpose registers, rather
they act as ports to their respective functional units.

The SDRAM Transfer Registers are used solely for transfer of data to and from the SDRAM unit.
However, the SRAM transfer registers are used to transfer data to or from either the SRAM Unit or
the IX Bus Unit (i.e. to transfer data to the IX Bus Receive and Transmit FIFOs, the Hash Unit, or
the Scratchpad RAM), or the accessible registers within the PCI Unit (DMA Controller registers).

While a Microengine controls the data being transferred to and from its transfer registers, the
transfer is actually accomplished by the respective functional unit.

A Microengine has four Program Counters, and therefore up to four threads (also called contexts).
Each thread is logically separate from the others, and this is implemented at the hardware level.
The four threads can be executing the same code out of the Microengine instruction store, or they
can be executing different code. It all depends on where each thread's respective program counter is
pointing. For example, it is quite typical to have all four threads of one Microengine executing the
same packet processing code (such as IP Verify, Longest Prefix Match, etc.), except that each of the
four threads will be operating on a different packet, and will each will have its Program Counter
executing at a different point in the program code. By comparison, it is also quite common to have
two logically different functions running on the same Microengine. One thread can be controlling
the Transmit portion of the IX Bus, while another thread on the same Microengine can be doing the
Transmit Scheduling (queuing, etc.). It is completely up to the programmer how the threads are
used.

It can be assured that a Microengine thread does not overwrite another thread's registers, as long as
the threads use context relative addressing. By using context relative addressing, each of the
threads has its own set of General Purpose and Transfer Registers. When a context switch takes
place no registers have to be saved, so there is little or no overhead involved in context switching.
34 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Since the Microengines are 5-stage pipelined processors, when a branch instruction is executed, it
is possible for instructions following the branch instruction to be aborted in the pipeline. This is
fairly typical of pipelined processors. These instructions that follow the branch instruction may
have already been decoded, and their operands already fetched. If the branch is taken, processing of
these instructions will have to be aborted. To reduce, and at times eliminate, these bubbles in the
execution pipeline, the IXP1200 implements deferred execution of instructions. To take advantage
of this feature, instructions (up to three) that would normally be placed before the branch
instruction, can now be placed after the branch instruction, and a bit-field within the branch
instruction indicates that the following instruction(s) should continue to proceed through the
execution pipeline. In this way, when the branch is taken and the Microengine has to change its
program counter, while it fetches and decodes a new series of instruction, the previous ones
(following the branch instruction) continue to be executed. At times, this can reduce the branch
penalty to zero. To take advantage of this without increasing the level of complexity for the
programmer, the Microengine assembler performs this type of optimization automatically.

In addition, the Microengine instruction set, includes guess branch instructions to further improve
instruction pipeline performance. So, if the programmer knows that most times the branch will be
taken, the guess-branch-taken instruction can be used (as opposed to the guess-branch-not-taken
instruction). When using the guess-branch-taken instruction, when the execution unit decodes this
instruction (in stage 3 of the pipeline) it will automatically start fetching the next instruction from
the branch destination rather than the next linear instruction.

As far as instruction pipelining is concerned, Context Switching is very similar to executing a
branch instruction. Both cause the normal linear fetching of instructions, and execution through the
pipeline to be disrupted. So, the Microengines make use of deferred instructions on Context
Switches as well. Once again, this reduces Context Switching overhead, making maximum use of
Microengine compute power.

Threads also have the ability to use what is called Absolute Addressing. Absolute addressing is
used when: (a) one or more of the threads requires more than its share of registers, and/or (b) the
threads in a Microengine need to communicate with each other and need to use a shared register.
By using a shared register, all four threads within a Microengine can communicate with each other
without having to go “outside” the Microengine, - very efficient. But by using absolute addressing,
one does not give up the benefits of context relative addressing. This is because absolute and
context relative addressing are controlled on an instruction by instruction basis. On a given
instruction the programmer may indicate whether to use context relative addressing, or absolute
addressing. Most often, context relative addressing will be used, thereby keeping things “clean”
and logically distinct. It is usually on an exception basis that absolute addressing is used, - when
needed.

Context Switching is implemented in a combination of hardware and software. A separate unit
within the Microengine, the Context Arbiter, continually keeps track of which threads are ready to
run. When a context swap occurs, the Context Arbiter is ready to allow the next ready thread to run,
- on the next cycle. No cycles are lost in arbitration. The Context Arbiter uses a round robin
algorithm to decide which thread to run next, however, any thread that is waiting or disabled, is
skipped over. Though the actual context switching is done in hardware, it is controlled by software.
A thread will continue to run, until it explicitly causes itself to be swapped out. An executing thread
can cause a context swap to occur by either (a) executing a ctx_swap (context swap) instruction, or
by issuing a Reference Command and indicating that it should be swapped out until the Reference
Command has completed. A running thread that does not explicitly cause a context swap, will run
indefinitely. It is the programmer's responsibility to write his/her code so that this does not happen.
The IXP1200 architecture is such, that frequent context swaps are recommended, so that anytime a
thread is waiting for a transfer of data, it should swap out.
Hardware Reference Manual 35

Intel® IXP1200 Network Processor Family
Technical Introduction
There is a 64 bit barrel shifter in front of the ALU, allowing an arbitrary shift-and-accumulate to
occur within one pass through the execution unit. These hardware features as well as a strong set of
bit and byte manipulation instructions allow for a very powerful, and efficient instruction set,
particularly suited to networking applications.

The Microengines have access to the resources shown in Table 2-2.

The Microengines have full access to SRAM and SDRAM via their transfer registers. The
Microengines may make use of the PCI interface, but only by way of the two DMA engines within
the PCI Unit. The PCI Unit’s DMA Controllers transfer data based on DMA descriptors which are
in SDRAM. The StrongARM or the Microengines can construct these DMA descriptors, and then
instruct one of the DMA controllers to process the DMA Descriptor. The PCI Unit, and its DMA
Descriptors are described in more detail in the PCI Unit section below. The Microengines also have
full access to all of the functionality within the IX Bus Unit. The IX Bus is completely controlled
by the Microengines, while the StrongARM has only limited access to the IX Bus Unit. The IX-
Unit and its features are described in much more detail in the IX Bus Unit section below. The
Microengines can interrupt the StrongARM, and leave “messages” for it in a shared area
(Scratchpad RAM, SRAM, or SDRAM), but that is the extent to which the Microengines have
access or control over the StrongARM processor. Inter-thread signaling and Microengine-
StrongARM communication is discussed further in the Inter-process/Thread Synchronization
section.

To aid in synchronization, resource-sharing, and inter-process communication, the Microengines
implement a number of features. The Microengines have atomic instructions (where the read,
modify, and write operations are indivisible, and done without interruption) which can act upon
data in SRAM, or in Scratchpad RAM. The Scratchpad RAM also has an autoincrement (atomic)
instruction.

The Microengine instruction set is further detailed in the IXP1200 Programmer’s Reference
Manual.

Table 2-2. Summary of Microengine Internal Connections

Unit Resource

StrongARM Core
The Microengines may interrupt the StrongARM core. The StrongARM core can read a
register to determine which Microengine generated the interrupt.

No other access to StrongARM Core.

PCI Unit
No access to the PCI Bus. Access only to the Control and Status Registers for the two
DMA Controllers in the PCI Unit. By programming these registers, the Microengines
may initiate DMA transfers between a block of SDRAM memory and a PCI device.

SDRAM Unit Full access to SDRAM.

SRAM Unit Full access to SRAM, including Flash and other devices hooked up to the SRAM Bus.

IX Bus Unit Full access to the IX Bus Unit, including the Scratchpad RAM, Hardware Hashing Unit,
Receive and Transmit FIFOs, Ready Bus, and Control and Status Registers.

Microengines

Each Microengine has access to its Program Control Store so it can execute
instructions. The Microengines do not have read or write access to the Control Store
(they cannot read or write their own Control Store, only the StrongARM core can do
that).

Inter-thread signalling between Microengine threads is provided.

Each Microengine is self-contained, so one Microengine cannot access the Control
Store, or Registers of another Microengine.
36 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit

The Microengines make use of a pair of shared busses to transfer data between the Microengines’
SRAM Transfer Registers and either the SRAM Unit or the IX Bus Unit (see Figure 2-5
“Microengine Transfer Registers and internal data paths"). (Note that the SDRAM Unit has it’s
own data paths connecting the SDRAM Unit and the SDRAM Transfer Registers). The Read bus
and the Write bus are each 32 bits wide, operate independently of each other, and run at the core
clock speed (currently 232 MHz). Data can be transferred to/from the SRAM on odd cycles, while
data can be transferred to/from the IX Bus Unit on even cycles.

As can be see in Table 2-3, since the SRAM internal bandwidth in both the read and write
directions is equal to the external bandwidth, there is no internal bottleneck to SRAM.

2.7.3 SRAM Unit

The SRAM is intended to store Lookup Tables, Free Buffer Lists, and Data Buffer Queue Lists. In
short, any data that needs to be accessed quickly. While the lookup can be done in SRAM, the
results of the lookup can point to larger data structures that are better stored in SDRAM. The
SRAM interface is 32 bits wide, and supports either Pipelined SRAMs, or Flow-Through SRAMs.
The SRAM data bus width is half that of the SDRAM because it is not intended for bulk data
storage, but for fast lookups. The SRAM interface is also intended to be used as a Flash Memory
interface (for booting the StrongARM), and a General Purpose I/O Interface (Figure 2-9). Each of
these three types of interfaces (SRAM, Flash, General Purpose) can be programmed to have
different timing, so that they are not encumbered by the slowest devices sitting on the SRAM
interface. The General Purpose Interface can be used to interface to external CAM lookup engines,
or to Ethernet MAC access ports (for MAC programming, and accessing MAC manageability
registers, - reading RMON and SNMP registers). This type of connection is shown in Figure 2-9.

Table 2-3. Calculation of Internal and External Bandwidths

Calculation based on 232 MHz core clock frequency, 104 MHz IX Bus frequency

Read/Write SRAM external bandwidth 32 bits x 116 MHz 3.7 Gbps

Read SRAM internal bandwidth to Microengine
Read Transfer Registers (32 bits x 232 MHz) / 2 3.7 Gbps

Write SRAM internal bandwidth to Microengine
Write Transfer Registers (32 bits x 232 MHz) / 2 3.7 Gbps

Read/Write IX Bus external (pin-side) bandwidth 64 bits x 104 MHz 6.6 Gbps

Read IX Bus internal bandwidth to Microengine
Read Transfer Registers (32 bits x 232 MHz) / 2 3.7 Gbps

Write IX Bus internal bandwidth to Microengine
Write Transfer Registers (32 bits x 232 MHz) / 2 3.7 Gbps
Hardware Reference Manual 37

Intel® IXP1200 Network Processor Family
Technical Introduction
Figure 2-9. SRAM Unit external interfaces

Figure 2-10. SRAM Unit Block Diagram

A8517-01

SRAM
(up to 8MB)

FlashROM
(up to 8MB)

Memory
Mapped I/O

Devices

10/100/1000 MB
Ethernet MACs

64

SRAM
Unit

IX Bus
Interface (IXB)

Unit

IX Bus

Intel® IXP1200
Network Processor

32
116 MHz

I.e MAC
Control

A8518-01

SRAM
SRAM Data

Signals Back
To Microengine

Microengine
References

Boot
ROM

SA Core
References

MAC
Console

Port

Queue Service
Aribiter 8 Entry CAM

Microengine
Queues

Reads
Order/Write

Readlock Fail
Priority
38 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
Figure 2-10 is a simplified block diagram of the SRAM Unit. The main function of the SRAM Unit
is to take all the SRAM memory references coming from the different Microengine threads as well
as the StrongARM, and execute them in as efficient a manner as possible. When a thread issues a
Reference Command to the SRAM Unit, it can append an optional token to the end of the
instruction. For example,

sram [write,$xfer1,tempa,tempb,4], optimize_mem

This essentially says: “Write the content of the SRAM transfer registers $xfer1 through $xfer4 to
the memory locations at the address specified by tempa + tempb. Optimize memory by placing this
reference in either the Read or order queue.” The optimize_mem optional token at the end of the
instruction instructs the SRAM Unit which queue to put the command reference into. Note that 16
bytes of data are transferred with this instruction (4 transfer registers x 4 bytes each).

The SRAM Queue Arbiter decides on a cycle by cycle basis which SRAM accesses to execute. For
example, if the presently executing SRAM cycle is a READ cycle, then the SRAM Unit tries to
complete as many READs as possible before going through a bus turnaround cycle and proceeding
with any WRITE accesses. By doing this, bus turnaround cycles are avoided and the IXP1200 can
get more utilization out of the SRAMs. In practice, this technique manages to squeeze out an
additional 18% - 30% of usable SRAM bandwidth.

Since a thread's SRAM references can be “arbitrarily” re-ordered by the SRAM Unit, there must be
a way for the programmer to force certain SRAM references to occur in the order in which they are
executed. In general, this is not an issue, but under certain circumstances it is necessary for certain
accesses to occur in order. For this purpose, an Order/Write queue is provided. If the programmer
deems it necessary for certain SRAM references to occur in order, he/she simply appends the order
token, to those instructions (in place of the optimize_mem token used in the earlier example).

A Priority queue is also provided. References in the Priority queue take precedence over any of the
references in any of the other queues. To make use of the Priority queue, the priority token is
appended to the end of the instruction.

The SRAM Unit also includes an 8-entry CAM (Content Addressable Memory) that is used for
resource sharing. When using conventional semaphores to restrict access to shared resources, a lot
of compute resources are wasted in the continuous polling required to check the semaphore. While
the IXP1200 can also use semaphores, the very useful feature of an 8-entry Read Lock CAM has
also been implemented. To understand this feature, let us take the simple example of a shared
counter (which counts the number of packets processed) that is accessible by all 24 threads. Say
one of the threads wants to update the counter. It can execute an SRAM Read Lock instruction
indicating a specific SRAM memory location, say location 0x1000. If the Read Lock succeeds,
then the thread continues to run, and the instructions following the Read Lock will continue to be
executed. Say another thread (which may be within the same Microengine, or within another
Microengine) also wants to update the same counter. It will try to take out a Read Lock on the same
memory location (0x1000) by executing an SRAM Read Lock instruction with that address. In this
case, the CAM recognizes that specific address (0x1000) is within the CAM, and is already locked,
and so causes the Read Lock to fail. This Read Lock request is now placed in the Read Lock Fail
queue, and the thread requesting the Read Lock is now stalled. The next time a Read UNlock
Reference Command is executed, the rest of the entries in the Read Lock Fail queue are processed.
And when the lock on the address 0x1000 is released, the second thread can continue to run. This
feature saves a lot of Microengine cycles since one of the threads is not continuously polling a
semaphore, instead it just continues to wait until the read lock is released and the code continues to
run. It also saves SRAM cycles, as continuous polling would eat up SRAM bandwidth as well.
Hardware Reference Manual 39

Intel® IXP1200 Network Processor Family
Technical Introduction
It should be noted that the concept of a Read Lock is only logical, in that there is no hardware
protection of the SRAM location that is locked (0x1000 in the example above). Instead, as long as
each of the threads sharing the resource tries to do a Read Lock before accessing the resource, there
is no contention.

Since the StrongARM processor’s pipeline stalls when it is waiting for an external access to
complete, it is given priority over the Microengines in accessing the SRAM. While this “steals”
SRAM cycles from the Microengines, this is completely under the control of the system designer.
It is the responsibility of the system designer to ensure that the StrongARM code and the function it
is tasked with, do not steal too many SRAM cycles from the Microengines.

The SRAM Unit is connected to the units shown in Table 2-4.

Table 2-4. Summary of SRAM Unit Internal Connections

Unit Access

StrongARM Core Full access.

PCI Unit No connection between the SRAM Unit and the PCI Unit.

SDRAM Unit No connection between the SRAM Unit and the SDRAM Unit.

IX Bus Unit No connection between the SRAM Unit and the IX Bus Unit.

Microengines Full access.
40 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.4 SDRAM Unit

Figure 2-11 is a simplified block diagram of the SDRAM Unit. Like the SRAM Unit, the main
function of the SDRAM Unit is to take the various Reference Commands from the Microengines
and the StrongARM, and fetch the data on the “pin-side” of the SDRAM in an optimal fashion. In
this case, however, it is not READ/WRITE bus turnaround cycles that are avoided, but RAS-
Precharge overhead that is reduced. The SDRAM Unit tries to alternate access to ODD banks of
SDRAM with accesses to EVEN banks of SDRAM, thereby overlapping the RAS-Precharge time
of one bank with an access to the other bank. Once again, Order and Priority queues are provided
so that certain accesses can occur in order, and certain access can take priority, respectively. Again,
StrongARM accesses take precedence over Microengine accesses for the same reason as with the
SRAM Unit.

The PCI Unit also has access to the SDRAM. Any device residing on the PCI bus can access
SDRAM memory. As well, the two DMA Controllers in the PCI Unit have the ability to move data
between the SDRAM and a PCI device.

The SDRAM Unit also has a Byte Aligner which is in the data path between the SDRAM and the
IX Bus Unit. This feature is especially useful in networking applications where a packet header
needs to be replaced with new packet header of a different size. This can cause all subsequent
words within a packet to be mis-aligned with respect to the SDRAM memory width (a quadword).
Without a byte aligner, a Microengine would have to read a word from memory, extract the
necessary portion, read a second word from memory, append the new portion, and create a new

Figure 2-11. SDRAM Unit Block Diagram

A8519-01

SDRAM
Up to

256 MB

Byte
Aligner

Queue Service Aribiter

PCI Unit
Request

Logic

SA Core
Request

Logic

Microengine Queues

SDRAM Unit Internal Structure

6 Entry ODD Queue

16 Entry EVEN Queue

8 Entry ORDER Queue

24 Entry PRIORITY Queue

Microengine
Command
Reference

FIFOs

SA Core
SDRAM
Memory

References

PCI
Memory

References

14-bit Address

64 Data Bits at 116 MHz
Hardware Reference Manual 41

Intel® IXP1200 Network Processor Family
Technical Introduction
quadword-aligned result. This would unnecessarily consume a lot of Microengine resources. The
Byte Aligner is smart enough to accumulate results from previous reads, so that it can continue to
byte align subsequent words from SDRAM.

It should also be noted that the SDRAM Unit has a direct path to the IX Bus Transmit and Receive
FIFOs, so the Microengines don’t get in the way. So, a single instruction from a Microengine can
cause up to 64 bytes of (hardware byte aligned) data to flow between SDRAM and the IX Bus Unit.
Meanwhile, the Microengine thread can be performing other useful work.

The SDRAM Unit is connected to the units shown in Table 2-5.

2.7.4.1 Internal SDRAM Bandwidth and Internal Data Busses

There are two direct data paths between the SDRAM Unit and the IX Bus Unit. One is an SDRAM
read data path to transfer data from the IX Bus Unit’s Receive FIFOs into SDRAM, and the other is
an SDRAM write data path to transfer data from SDRAM to the IX Bus Unit’s Transmit FIFOs.
These two busses operate independently of each other. Whereas both of these internal busses are 32
bits wide, they operate at twice the clock frequency of the SDRAM external (pin-side) data bus. So,
while the external SDRAM data bus operates at (64 bits x 116 MHz) 7.4 Gbps, each of the two
internal (read & write) data busses also operate at (32 bits x 232 MHz) 7.4 Gbps. Therefore, the
internal SDRAM bus bandwidth equals or exceeds the external bus bandwidth, ergo no internal
bottleneck in the data path.

2.7.4.2 Chained References

To take advantage of SDRAM architecture and sequential accesses to the same SDRAM page
(SDRAM row address stays the same), the IXP1200 implements a feature called Chained
References. In this mode the SDRAM Unit executes the Chained SDRAM Command References
contiguously (and at a high priority so no interruptions can occur) so that sequential chained
references can take advantage of SDRAM page hits. To make use of this, the SDRAM reference
command must append the optional chained_reference token to the end of the instruction.

It should be noted that abnormally long chained references can interfere with SDRAM refresh, and
that care should be taken so that these chained references do not unduly interfere with other
Microengine thread SDRAM command references.

Table 2-5. Summary of SDRAM Unit Internal Connections

Unit Resource

StrongARM Core Full access.

PCI Unit

There is a separate, and unshared 32-bit bus connecting the SDRAM Unit and
the PCI Bus Unit. This allows devices on the PCI Bus better access to data
buffers within the SDRAM Unit.

The two DMA Controllers in the PCI Unit have access to SDRAM data.

SRAM Unit No connection between the SDRAM Unit and the SRAM Unit.

IX Bus Unit There is a 32-bit bus connecting the SDRAM Unit and the IX-Bus Unit’s Receive
and Transmit FIFOs.

Microengines Full access.
42 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.5 PCI Unit
.

Figure 2-12 is a simplified block diagram of the PCI Unit. The PCI Unit is a standard 32 bit PCI
2.1 compliant interface with some additional features. The PCI bus can be run at 33 MHz with the
standard number of loads, while at 66 MHz, a point to point configuration is supported. For speeds
between 33 and 66 MHz, additional loads can be supported, but with a de-rating of the bus speed.

The PCI Unit is connected to the units shown in Table 2-6.

Figure 2-12. PCI Unit Block Diagram

A7975-01

PCI Data Path and Bus Interface Logic

Interrupt Logic

Other CSRs

Doorbell Timer

DMA
Channel

DMA
Channel

SDRAM Interface Logic AMBA Bus Translation
Interface Logic

Address/Command to SDRAM Unit

* Other brands and names are the property of their respective owners.

SDRAM Data
[63:0]

Intel® StrongARM* Core
AMBA Bus

32-Bit PCI Bus @ 33/66 MHz

PCI Unit

Inbound
FIFO

Outbound
FIFO

PCI Read
Data

addr ctrl rd wr

Sideband Control from SDRAM Unit

Microengine
Commands

DMA
Request
Arbiter

PCI Bus
Arbiter

Arbiter Signals
Hardware Reference Manual 43

Intel® IXP1200 Network Processor Family
Technical Introduction
The PCI Unit is connected to the SDRAM Unit, and the StrongARM processor. There is a separate,
unshared data bus connecting the SDRAM Unit to the PCI Unit. Devices on the PCI bus have full
access to SDRAM. The StrongARM processor also has full access to the PCI interface and can be
a bus master. The PCI Unit also contains a PCI Bus Arbiter. The Arbiter supports up to 3 bus
masters, one of which is the IXP1200 whose arbiter is enabled. If an external PCI Bus Arbiter is
required, the internal Arbiter can be disabled (the state of the pci_cfn[1] pin activates or disables
the PCI bus arbiter at bootup time). The PCI Unit also supports Doorbells and Messaging.

Two DMA Controllers are integrated into the PCI Unit. Each can be used by either the
StrongARM, or by any of the Microengines. The DMA Controllers are programmed by means of
DMA Descriptors that reside in SDRAM. DMA Descriptors contain the start address in memory,
the number of words that need to be transferred, the destination address on the PCI side, and
whether the Descriptor is chained. Chained Descriptors are a series of Descriptors, where each
Descriptor points to the next Chained Descriptor, till the last Descriptor is reached. In this way,
non-contiguous blocks of data from SDRAM can be moved to PCI as if they were one contiguous
block. This is useful for scatter/gather of data.

The PCI Unit contains a number of FIFOs which help to burst data across the PCI bus, making
transfer more efficient.

The Microengines have access to only the DMA Controllers within the PCI Unit. There is no
connection between the PCI Unit and SRAM, and also no connection between the PCI Unit and the
IX Bus Unit. It is not expected that data will need to be transferred between SRAM and the PCI
interface. When transferring data between the PCI Unit and the IX Bus, the Microengines have to
intervene. Typically, the data would be transferred from the IX Bus Unit’s FIFOs directly to
SDRAM (note that one instruction from a Microengine can transfer up to 64 bytes between the IX
Bus Unit and SDRAM; note also, that there is direct connection between the IX Bus Unit and the
SDRAM Unit). Then, the Microengine thread would utilize one of the PCI DMA controllers to
transfer data over the PCI interface.

Table 2-6. Summary of PCI Unit internal connections

Unit Resource

StrongARM Core Full access. The StrongARM core can access any devices on the PCI Bus. The
StrongARM core can program any of the PCI Unit’s Control and Status Registers.

SDRAM Unit

Unshared, direct 32-bit bus connecting SDRAM Unit and the PCI Unit. Devices on
the PCI Bus have access to SDRAM.

DMA Controllers within the PCI Unit can transfer data between SDRAM and
devices on the PCI Bus.

SRAM Unit

No connection between the SRAM Unit and the PCI Unit.

Devices on the PCI Bus cannot access SRAM.

DMA Controllers within the PCI Unit cannot access SRAM.

IX Bus Unit

No connection between the IX Bus Unit and the PCI Unit.

Data that needs to be transferred between the IX Bus (Transmit and Receive
FIFOs) and the PCI Bus must be transferred by the Microengines (by way of their
Transfer Registers).

Microengines

The Microengines can only access the Control and Status Registers for the DMA
Controllers within the IX Bus Unit.

No other access. The Microengines cannot access devices on the PCI Bus (and
vice versa).
44 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.6 IX Bus Unit

The IX Bus Unit consists of a number of parts: the 64 bit, high-speed data path and related control
signals; the Receive and Transmit FIFOs; a separate Ready Bus which is described in more detail
later in this section; and lastly it contains some additional functions such as the Scratchpad RAM, a
cycle-count register, and the hardware Hashing Unit.

Figure 2-13 is a simplified block diagram showing how data from the IX Bus interface flows
through the IXP1200. The thick, block arrows show how data from the IX Bus Interface (the pins),
must first go into the Receive FIFO. Once data is in the Receive FIFO, it can then be transferred to
either the Microengines (Transfer Registers), or SDRAM. Data to be transmitted to devices on the
IX Bus can only come from the Transmit FIFO. So data is first transferred from SDRAM (or the
Microengines) into the Transmit FIFO, and then transferred from the Transmit FIFO to the devices
on the IX Bus (the pin side interface).

The main task of the IX Bus Unit, is to receive requests from the different Microengine threads,
and to execute them. The IX Bus Unit transfers data between the pin-side of the IX Bus interface,
and FIFOs within the IX Bus Unit itself. It also transfers data between the IX Bus FIFOs and other
functional units within the IXP1200. Thus, the IX Bus Unit is an intelligent “buffering unit”, that
buffers data on the IX Bus interface, before it travels to various other units within the IXP1200.
These transfers are purely under the control of the Microengines.

The IX Bus Unit contains a Receive FIFO and a Transmit FIFO which buffer the data that flows
over the IX Bus. The Receive FIFO in fact really consists of 16 FIFO Elements each 64 bytes deep
(though in one of the modes it can be as deep as 72 bytes). These 16 FIFO Elements are shared by
all of the Microengine threads. Software has to ensure that only one thread has “ownership” of a
FIFO element at a time. When a Microengine thread instructs the IX Bus Unit to fetch data from
one of the devices on the IX Bus, it also indicates where to put the data (which FIFO element(s)).
Once the data has been fetched from the device on the IX Bus, the IX Bus Unit signals the
requesting thread. The thread can then move the data from the Receive FIFO element to wherever
it chooses (either SDRAM, or into Microengine Transfer Registers)

Figure 2-13. IX Bus data flow

A8520-01

IX-Bus Unit Receive
FIFO

Transmit
FIFO

SDRAM Unit

Ethernet MAC Other IX-Bus Device

Intel® IXP1200 Network Processor

Microengines
Hardware Reference Manual 45

Intel® IXP1200 Network Processor Family
Technical Introduction
2.7.6.1 Ready Bus

The Ready Bus is a separate bus from the IX Data Bus. The Ready Bus has it’s own 8-bit data bus
and associated control signals. The Ready Bus serves three functions:

• It is used to periodically capture the “ready flags” (MAC FIFO status indicators) from each of
the devices on the IX Bus. For example, the Ready Bus would periodically capture the ready
flags for each of the MAC devices on the IX Bus. This is especially important for multi-port
MAC devices (such as the IXF440) where there are multiple receive and transmit FIFOs, each
with it’s own ready flag. These flags serve to indicate when the FIFOs reach a pre-
programmed threshold level. For example, when one of the MAC’s ports Receive FIFO has hit
a critical threshold level, the data must be emptied from it soon, or the data will overflow. The
Ready Flags are captured by the Ready Bus Sequencer, and made available for inspection by
the Microengines. Once a Microengine notices that one of the ports requires attention, it can
make sure that the port is serviced.

• The Ready Bus also serves to transfer data between IXP1200s in applications where several
IXP1200s share the IX Bus. The 8-bit data bus is used transfer data between IXP1200s (in a
daisy chained fashion).

• The Ready Bus also serves to assert flow control signals to the MACs (or other network data
ports hooked up to the IX Bus).

The Ready Bus Sequencer is implemented as a programmable state machine. The Microengines or
the StrongARM core may program the Controller by writing up to twelve instructions into it.
Typically, the last instruction would cause a jump back to the first instruction, causing the program

Figure 2-14. Simplified IX Bus Unit Block Diagram

A8911-01

TFIFO
16 elements

(10 quadwords
each)

FBI CSRs

Scratchpad
RAM

Hash Unit

RFIFO
16 elements

(10 quadwords
 each)

IX Bus
Interface

Logic

Ready Bus
Sequencer

Receive State
 Machine

Transmit State
 Machine

IX BusIX Bus Arbiter

IX Bus Interface

Ready Bus
46 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
to continually loop. In this way, the Ready Bus Sequencer, continually samples the MACs’ Ready
Flags and makes them available to the Microengines. The Microengines examine the Ready Flags
to determine which ports require servicing.

There are two ways that the Microengines can access these ready flags. One way is by accessing
the registers within the IX Bus Unit that contain the ready flags. The second way is by using the
Autopush mechanism, where the Ready Bus Sequencer can be programmed to “push” the ready
flags into a specified Microengine Transfer Register. In the second approach, the Microengine need
not issue Reference Commands to access these registers which are external to the Microengine, but
only need to check its own (local) Transfer Registers.

2.7.6.2 IX Data Bus Modes

The IX Data Bus can be configured to operate in several different modes depending on the devices
that are connected to it. The 64 bit data bus can be made to operate in either a 64 bit Bidirectional
Mode, or a 32 bit Unidirectional Mode. In the 64 bit bidirectional mode, the data path is wider,
however data can travel in only one direction at a time and read/write bus turnaround cycles must
take place (dead cycles). In the 32 bit unidirectional mode, the 64 bit data bus is split into two 32
bit busses, one for incoming data, and the other for outgoing data. The 32 bit unidirectional busses
operate independently of each other because the receive bus is controlled by the Receive State
Machine, while the transmit bus is controlled by the Transmit State Machine. From a programming
point of view, the Microengines issue transmit and receive requests to the IX Bus Unit in the same
way, regardless of which of the two modes is programmed.

In the 64 bit Bidirectional Mode, it is possible to have several IXP1200 processors sharing the IX
Bus. This is called Shared IX Bus Mode. In this mode, multiple IXP1200s are connected to the IX
Bus, and a token is passed between them (in a daisy chained manner) to determine ownership of the
bus.

In addition, the IX Bus control pins may be configured to operate in two different MAC addressing
modes: 1-2 MAC Mode, and 3+ MAC Mode.

2.7.6.3 Scratchpad RAM

The Scratchpad RAM (1K x 32 bits), which is accessible by the StrongARM core as well as the
Microengines, is not a standalone unit but is located within the IX Bus Unit. The Scratchpad RAM
supports three different types of operations: read/write, bit operations, and auto-increment
operations. While the StrongARM can only perform read/write operations, all three types of
operations are available to the Microengines. The bit operations modify the specified bits, and
consist of the following operations: set bits, clear bits, test and set, and test and clear. These
operations make the Scratchpad RAM area very useful for inter process communication,
semaphores, and mailboxes.

The Scratchpad also forms the third memory resource available to the StrongARM and the
Microengines. By distributing memory accesses across these three (SRAM, SDRAM, Scratchpad)
memories an application can take advantage of these accesses occurring in parallel.

2.7.6.4 Hashing Unit

The Hardware Hashing Unit is also located within the IX Bus Unit. It is capable of doing either 48
bit or 64 bit hashes. The hashing function takes the input 48 (or 64) bits, and produces the hashed
48 (or 64) bit result. The Hashing Unit is only accessible to the Microengines. Once a Microengine
thread requests a hash, the IX Bus Unit pulls the data out of the specified Transfer Registers,
Hardware Reference Manual 47

Intel® IXP1200 Network Processor Family
Technical Introduction
performs the hash, and returns the result to the Transfer Registers. With a single instruction, a
Microengine can request either one, two, or three hashes to be performed. These are queued up by
the IX Bus Unit, and then performed sequentially.

The Hashing Unit performs the hashing function in 8 bit blocks, passing the 48 or 64 bits of the
data into the unit 8 bits at a time. Whereas the hashing algorithm is fixed, the polynomials are
programmable.

2.7.6.5 IXB3208 Bus Scaling Fabric

The IXB3208 is an IX Bus scaling fabric component that offers glueless connection of multiple
IXP1200s. Up to eight IXP1200s can be connected using four IXB3208s. Different configurations
are possible and more detail may be found in the IXB3208 Product Brief and IXB3208 Datasheet.
The IB3208 implements a full crossbar switching fabric.

The IX Bus Unit is connected to the Units shown in Table 2-7.

Table 2-7. Summary of IX Bus Unit Internal Connections

Unit Resource

StrongARM Core

Limited Access.

The StrongARM core can access the Scratchpad RAM within the IX Bus Unit, as
well as a number of Control and Status Registers within the IX Bus Unit. See the
Appendix for a table of IX Bus registers that appear in the StrongARM memory
map.

The StrongARM Core cannot access the Receive and Transmit FIFOs within the
IX Bus Unit.

The StrongARM Core can program the Ready Bus Controller within the IX Bus
Unit.

SDRAM Unit
Two direct, unshared, independent busses connect the SDRAM Unit with the IX
Bus Unit. The SDRAM read bus is connected to the Receive FIFO, while the
write bus is connected to the Transmit FIFO.

SRAM Unit

No connection between the SRAM Unit and the IX Bus Unit’s FIFOs. Data that
needs to be transferred between the IX Bus (Transmit and Receive FIFOs) and
SRAM must be transferred by the Microengines (by way of their Transfer
Registers).

PCI Unit

No connection between the IX Bus Unit and the PCI Unit.

Data that needs to be transferred between the IX Bus (Transmit and Receive
FIFOs) and the PCI Bus must be transferred by the Microengines (by way of their
Transfer Registers).

Microengines
Full Access, including access to the Scratchpad RAM, the Hashing Unit,
programming the Ready Bus Controller, the Receive and Transmit FIFOs, and all
Control and Status Registers.
48 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction
2.8 Software Development Tools

The IXP1200 software development tools consist of the following elements:

• An Assembler for the Microengine instruction set.

• The StrongARM tools (C Compiler and Assembler) can be obtained from ARM Limited*, or a
number of other software tool vendors.

• A Linker and Loader is provided to link and load the Microengine code with the StrongARM
code.

• The Transactor is a software model of the IXP1200. It eases the debugging of IXP1200 code
by providing a data accurate model of the IXP1200 on a cycle by cycle basis. The Developer’s
Workbench graphically displays a history of each of the twenty four threads (Figure 2-15) so
the user may easily discern how the software in running and may more easily debug the
application.

• The Developer’s Workbench is a graphical user interface that ties these tools together to work
seemlessly, and ease the development and debugging of IXP1200 code. The Developer’s
Workbench also has a number of other very useful features, including execution profiling,
statistics gathering, a C-like scripting facility, data-watch windows, breakpoints, queue
statistics, etc.

• The Transactor also has a software simulation interface called the Foreign Model. By using the
Foreign Model, designers can link models of external devices (say MACs, SARs, or any
custom devices) into the Transactor model. In this way, a more complete environment for
debugging the entire application is provided.
Hardware Reference Manual 49

Intel® IXP1200 Network Processor Family
Technical Introduction
Figure 2-15. Developer’s Workbench - Thread History Display
50 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
StrongARM* Core 3

3.1 Overview

The Intel® IXP1200 Network Processor Family devices contain an Intel StrongARM* processor
based on the Intel® SA-1 core. The IXP1200 documentation refers to this processor as the
“StrongARM* core”. The Intel SA-1 core implements the ARM* V4 architecture as defined in the
ARM Architecture Reference Manual. This chapter supplements the ARM Architecture Reference
Manual by describing the differences between the StrongARM* core and the fundamental ARM*
architecture, the implementation options supported by the IXP1200 (such as MMU, caches, etc.),
and how the StrongARM* core is integrated as a component of the overall IXP1200 system.

This chapter is organized as follows:

• Section 3.2, “ARM* Architecture” describes how the StrongARM* core varies from the
ARM* V4 architecture. This section supplements the ARM Architecture Reference Manual.

• Section 3.3, “Memory Map” describes how the other components of the network processor
map into the StrongARM* core 4 Gbyte address space.

• Section 3.4, “FIQ and IRQ Interrupts” describes the interrupt hierarchy used in the IXP1200.

• Section 3.5, “Internal Peripheral Units” describes the UART, general purpose I/O pins, real-
time clock, and four 24-bit system timers that can be accessed by the StrongARM* core.

• Section 3.6, “Boot Sequence” describes what the StrongARM* core must do to boot the
IXP1200.

3.2 ARM* Architecture

This section describes the ARM* implementation options supported by the StrongARM* core. The
StrongARM* core implements the ARM* V4 architecture as defined in the ARM Architecture
Reference Manual. It is highly recommended that the reader be familiar with the ARM Architecture
Reference Manual prior to reading this section. In this section, as in StrongARM* and ARM
documentation, a word refers to 32 bits and a halfword refers to 16 bits. For all other sections, refer
to Table 1-1 for data terminology.

3.2.1 Coprocessors

The StrongARM* core supports Coprocessor 15 (see the IXP1200 Network Processor
Programmer’s Reference Manual for a description of the Coprocessor 15 registers). All other
coprocessor instructions cause an undefined instruction exception. No support for external
coprocessors is provided.

Coprocessor 15 contains registers local to the StrongARM* core that control and configure the
cache, write buffer, MMU, read buffer, breakpoints, some clocking functions, and other
configuration options. These registers are accessed using MRC and MCR instructions to
coprocessor 15 with the processor in any privileged mode. Only some of registers 0-15 are valid;
the result of an access to an invalid register is unpredictable.
Hardware Reference Manual 51

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.2 Memory Management Unit (MMU)

The MMU has two primary functions:

• It translates virtual addresses into physical addresses.

• It controls memory access permissions.

The StrongARM* core implements the standard ARM* memory management functions using two
32-entry (4 bytes per entry) fully associative translation buffers (TBs). One is used for instruction
accesses and the other for data accesses. Each TB entry can map a segment, a large page, or a small
page. On a TB miss, the translation table hardware is invoked to retrieve the translation and access
permission information. Once retrieved, if the entry maps to a valid page or section, then the
information is placed into the TB. The replacement algorithm in the TB is round-robin. For an
invalid page or section, an abort is generated and the entry is not placed in the TB. The data TBs
support both the flush-all and flush-single-entry operations, while the instruction TBs support only
the flush-all operation. The Memory Management Unit is configured via the Coprocessor 15
registers.

3.2.2.1 MMU Faults and CPU Aborts

The MMU generates the following faults:

Alignment: Generated by a word load or store if the two low-order address bits are
nonzero or by a half word load or store if the low-order address bit is a
one.

Translation: Generated by access to pages marked invalid by the memory-
management page tables.

Domain/Permission: Generated by accesses to memory that are protected by the current mode,
domain, and page protection.

3.2.2.2 Data Aborts

The StrongARM* core takes a data abort exception upon MMU-generated exceptions or accesses
to reserved memory space.

A linefetch during a cache read can be safely aborted on any word in the transfer. If an abort occurs
during the linefetch, the cache is purged so it does not contain invalid data. If the abort happens
before the word that was requested by the access is returned, the load is aborted. If the abort
happens after the word that was requested by the access is returned, the load completes and the fill
is aborted (but no exception is generated).

3.2.2.3 Interaction of the MMU, Icache, Dcache, and Write Buffer

The MMU, Icache, Dcache, and write buffer can be enabled or disabled independently. The Icache
can be enabled with the MMU either enabled or disabled. However, the Dcache and write buffer
can only be enabled when the MMU is enabled. Because the write buffer is used to hold dirty
copyback cached lines from the Dcache, it must be enabled along with the Dcache. Therefore, only
four of the eight combinations of the MMU, Dcache, and write buffer enables are valid. There are
no hardware interlocks on these restrictions, so invalid combinations cause undefined results.
52 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.2.4 MMU Enable/Disable

The following procedures must be observed when enabling and disabling the MMU.

To enable the MMU:

1. Program the Coprocessor 15 TRANSLATION_TABLE_BASE and
DOMAIN_ACCESS_CONTROL registers.

2. Program level 1 and level 2 page tables as required.

3. Enable the MMU by setting bit 0 of the Coprocessor 15 CONTROL_CP15 register.

Note: Care must be taken if the translated address differs from the untranslated address. This is because
the three instructions following the enabling of the MMU are fetched using “flat translation”, and
enabling the MMU may be considered a branch with delayed execution. A similar situation occurs
when the MMU is disabled. Consider the following example:

After enabling the MMU, if the virtual address for the code page being addressed maps to a
different physical address, several instructions are fetched before address translation takes effect.

To disable the MMU:

1. Disable the write buffer by clearing bit 3 in the Coprocessor 15 CONTROL_CP15 register.

2. Disable the Dcache by clearing bit 2 in the Coprocessor 15 CONTROL_CP15 register.

3. Disable the Icache by clearing bit 12 in the Coprocessor 15 CONTROL_CP15 register.

4. Disable the MMU by clearing bit 0 in the Coprocessor 15 CONTROL_CP15 register.

Table 3-1. Valid MMU, Dcache, and Write Buffer Combinations

MMU Dcache Write Buffer

Off Off Off

On Off Off

On Off On

On On On

Example 3-1. MMU Enable/Disable Example

MOV R1, #0x1

MCR 15,0,R1,0,0 ; Enable MMU

Fetch non-translated

Fetch non-translated

Fetch non-translated

Fetch Translated
Hardware Reference Manual 53

Intel® IXP1200 Network Processor Family
StrongARM* Core
Note: If the MMU is disabled and subsequently reenabled, the contents of the TB is preserved. If the
contents are now invalid, the TB should be flushed by writing the Coprocessor 15
TLB_OPERATIONS register before reenabling the MMU.

3.2.3 Instruction Cache (Icache)

The StrongARM* core supports a 16 Kbyte instruction cache (Icache) to reduce effective memory
access time. Its operation is transparent to program execution. The Icache has 512 lines of 32 bytes
(8 words), arranged as a 32-way set associative cache, and uses the virtual addresses generated by
the processor core. The Icache is always reloaded a line at a time (8 words). It may be enabled or
disabled via the Coprocessor 15 CONTROL_CP15 register, and is automatically disabled on the
assertion of the RESET pin or through a software reset sequence.

The Icache supports the flush all function. Replacement is round-robin within a set. The Icache can
be enabled while memory management is disabled. When memory management is enabled, the C
bit (cacheable) in each translation descriptor entry can disable caching for an area of virtual
memory. If memory management is disabled, all addresses are marked as cacheable (C=1).

3.2.3.1 Icache Operation

The instruction cache is searched regardless of the state of the C bit; only reads that miss the cache
are affected. If, on an Icache miss, the C bit equals 1 or the Memory Management Unit (MMU) is
disabled, a linefetch of 8 words is performed and it is placed in a cache bank with a round-robin
replacement algorithm. If, on a miss, the MMU is enabled and the C bit equals 0 for the given
virtual address, an external memory access for a single word is performed and the cache is not
written. The Icache should be enabled as soon as possible after reset for best performance.

3.2.3.2 Icache Validity

The Icache operates with virtual addresses, so care must be taken to ensure that its contents remain
consistent with the virtual-to-physical mappings performed by the memory management unit. If the
memory mappings are changed, the Icache validity must be ensured. The Icache is not coherent
with stores to memory, so programs that write cacheable instruction locations must ensure the
Icache validity. Instruction fetches do not check the write buffer, so data must not only be pushed
out of the cache but the write buffer must also be drained. The entire Icache can be invalidated by
writing to coprocessor 15 CACHE_CONTROL_OPERATIONS (Register 7). The cache is flushed
immediately when the register is written, but the following instruction fetches may come from the
cache before the register is written.

3.2.3.3 Icache Enable/Disable and Reset

The Icache is automatically disabled and flushed when the StrongARM* core is reset. Once
enabled, cacheable read accesses cause lines to be placed in the cache. If the Icache is subsequently
disabled, no new lines are placed in the cache, but the cache is still searched and if the data is
found, it is used by the processor. If the data in the cache must not be used, then the cache must be
flushed.

To enable the Icache, set bit 12 in the control register. The MMU and Icache may be enabled
simultaneously with a single control register write. To disable the Icache, clear bit 12 in the
Coprocessor 15 CONTROL_CP15 register.
54 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.4 Data Caches (Dcaches)

The StrongARM* core supports two logically separate data caches: the main data cache and the
mini data cache (or minicache) that reduce effective memory access time. Its operation is
transparent to program execution.

3.2.4.1 Main Data Cache

The main data cache, an 8 Kbyte write-back Dcache, has 256 lines of 32 bytes (8words) in a 32-
way set-associative organization. It is intended for use during most data accesses. This cache
allocates on loads to an address space marked in the MMUs translation descriptor as Bufferable (B
bit =1) and cacheable (C bit =1). Replacements in the main data cache are selected according to a
set of round-robin pointers. At reset, the pointer in each block of the Dcache points to way zero of
each 32-way block. As lines are allocated, the pointers are incremented to the next way of the set.
After way 31 is allocated, the next line fill replaces (and copies back to memory, if dirty) the data in
way zero. The cache supports the flush-all, flush-entry, and copyback-entry functions. The
copyback-all function is not supported in hardware. This function can be provided by software.

3.2.4.2 Mini Cache

The minicache is a 512-byte write-back cache. It has 16 lines of 32 bytes (8 words) in a two-way
set-associative organization and provides an alternate caching structure for dealing with large data
structures that could thrash the main data cache. This cache allocates on loads to an address space
marked in the MMUs translation descriptor as not Bufferable (B bit =0) and cacheable (C bit =1).
Replacements in the minicache use the same round-robin pointer mechanism as in the main data
cache. However, since this cache is only two-way set-associative, the replacement algorithm
reduces to a simple least-recently-used (LRU) mechanism.

3.2.4.3 Dcaches Enable/Disable and Reset

The Dcaches are automatically disabled and flushed when the StrongARM* core is reset. To enable
the Dcaches, the MMU must first be enabled by setting bit 0 in the CONTROL_CP15 register
(Register 1), and then the Dcaches should be enabled by setting bit 2 in the CONTROL_CP15
register. The Dcaches can be disabled by clearing bit 2 in the CONTROL_CP15 register. The
Dcaches are also controlled by the cacheable or C bit and the bufferable or B bit stored in the
MMU translation descriptor table. For this reason, to use the Dcaches, the MMU must be enabled.
The two functions may be enabled simultaneously with a single write to the control register. Once
enabled, cacheable read accesses cause lines to be placed in the Dcaches. If subsequently disabled,
no new lines are placed in the Dcaches, but they are still searched and if the data is found, it is used
by the processor. Write operations continue to update the Dcaches, thus maintaining consistency
with the external memory. If the data in the Dcaches must not be used, then the Dcaches must be
flushed.

3.2.4.4 Dcache Operation

The Dcaches are accessed in parallel and the design ensures that a particular line entry exists in
only one of the two at any time. Both Dcaches use the virtual address generated by the processor
and allocate only on loads (write misses never allocate in the cache). Each line entry contains the
physical address of the line and two dirty bits. The dirty bits indicate the status of the first and the
second halves of the line. When a store hits in the Dcaches, the dirty bit associated with it is set.
Hardware Reference Manual 55

Intel® IXP1200 Network Processor Family
StrongARM* Core
When a line is evicted from the Dcaches, the dirty bits are used to decide if all, half, or none of the
line is written back to memory using the physical address stored with the line. The Dcaches are
always reloaded a line at a time (8 words).

The C bit (cacheable) in each translation descriptor entry determines whether, on load misses, the
data being read should be placed in one of the two data caches. The cacheable bit does not affect
cache hits. That is, if a data access hits in the cache, the data is assumed to be valid and the load or
store is performed. Typically, main memory is marked as cacheable to improve system
performance and I/O space as noncachable to stop the data from being stored in the cache. For
example, if the processor is polling a hardware flag in I/O space, it is important that the processor is
forced to read data from the external peripheral, and not a copy of initial data held in the cache.
When the cacheable bit is set (1), a linefetch of 8 words is performed and placed in a cache bank
with a round-robin replacement algorithm. When the cacheable bit is cleared (0), an external
memory access is performed and the cache is not written.

The B bit (bufferable) does not affect writes that hit the Dcaches. If a store hits in the Dcaches, the
store is assumed to be bufferable. Write-backs of dirty lines are treated as bufferable writes. See
Section 3.2.5 for more information on the B bit. Table 3-2 summarizes the effects of the B and C
bits on the Dcaches.

The Dcaches should be flushed prior to changing the B and C bit in the translation descriptor table
mapping. The Dcaches operate with virtual addresses, so care must be taken to ensure that their
contents remain consistent with the virtual-to-physical mappings performed by the memory
management unit. If the memory mappings are changed, the validity of the Dcaches must be
ensured.

Table 3-2. Effects of the Cacheable and Bufferable Bits on the Data Caches

Load Store

B C Cache Hit Cache Miss Cache Hit Cache Miss

0 0 Deliver cache data. Load from memory.
 – No allocate.

Store to either cache.
 – Mark line dirty.

Store to memory.
– No allocate.

0 1 Deliver cache data. Allocate to minicache. Store to either cache.
 – Mark line dirty.

Store to memory.
– No allocate.

1 0 Deliver cache data. Load from memory.
 – No allocate.

Store to either cache.
– Mark line dirty.

Store to memory.
– No allocate.

1 1 Deliver cache data. Allocate to main data
cache.

Store to either cache.
– Mark line dirty.

Store to memory.
– No allocate.
56 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.4.5 Software Dcache Flush

The StrongARM* core supports the flush and clean operations on single entries of the Dcaches by
writes to the cache operations registers. Flush whole cache is also supported. Since this is a write-
back cache, to prevent the loss of data, a flush of the whole cache must be preceded by a sequence
of loads to cause the cache to write back any dirty entries. The StrongARM* core memory
controller provides an internally decoded memory space to perform coherent Dcache flushing. This
space resides in the upper 512 megabytes of the memory map (starting at virtual address E000
0000h) and, when accessed, is detected by the memory controller, which then returns zeros without
incurring an external memory latency. The following code causes the main data cache to flush all
dirty entries:
;+

;Call:

; R0 points to the start of a 8192 byte region of readable data used

; only for this cache flushing routine.

; bl writeBackDC

;Return:

; R0, R1, R2

; Data cache is clean

;-writeBackDC

mov r0, 0hE000000

add r1, r0, #8192

l1

ldr r2, <r0>, #32

teq r1, r0

bne l1

mcr p15, 0, r0, c7, c6, 0

mov pc, r14

A similar routine may be written to flush the minicache. To perform this flush, the MMU B and C
bit settings must be as described in Section 3.2.4.4. The invalidate all operation also invalidates the
minicache. Since the Dcaches work with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more than one
virtual address, the cache cannot maintain consistency, since each virtual address has a separate
entry in the cache, and only one entry is updated on a processor write operation. To avoid any
cache inconsistencies, doubly mapped virtual addresses should be marked as noncachable.

3.2.5 Write Buffer

The write buffer improves system performance by buffering up to 8 blocks of data of 1 to 16 bytes
at independent addresses. It can be enabled or disabled via the W bit (bit 3) in the Coprocessor 15
CONTROL_CP15 register (Register 1). The buffer is disabled and all entries are marked empty
following reset. Operation of the write buffer is further controlled by the cacheable or C bit and the
bufferable or B bit, which are stored in the MMU translation descriptor table. For this reason, to
use the write buffer, the MMU must be enabled. The two functions can be enabled simultaneously
with a single write to the control register. For a write to use the write buffer, both the W bit in the
CONTROL_CP15 register and the B bit in the corresponding translation table entry must be set. It
is not possible to abort buffered writes externally. With the exception of store multiples, stores do
not merge with other data at the same line address in the write buffer. A drain write buffer operation
is supported.
Hardware Reference Manual 57

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.5.1 Write Buffer Operation

When the StrongARM* core performs a store, the Dcaches are first checked. If one of the Dcaches
hits on the store and the protection for the location and mode of the store allows the write, then the
write completes in the Dcaches and the write buffer is not used. If the location misses in the
Dcaches, then the translation entry for that address is inspected and the state of the B and C bits
determines which of the three following actions are performed (if the write buffer is disabled via
the CONTROL_CP15 register, writes are treated as if the B bit is a zero):

• If the write buffer is enabled and the processor performs a write to a bufferable and cacheable
location (B=1,C=1), and the data is in one of the caches, then the data is written to that cache,
and the cache line is marked dirty. If a write to a bufferable area misses in both data caches, the
data is placed in the write buffer and the CPU continues execution. The write buffer performs
the external write sometime later. If a write is performed and the write buffer is full, then the
processor is stalled until there is sufficient space in the buffer. No write buffer merging is
allowed in the StrongARM* core except during store multiples.

• If the write buffer is enabled and the processor performs a write to a bufferable but
noncachable location and misses in the Dcaches (B=1,C=0), the data is placed in the write
buffer and the CPU continues execution. As with the cacheable case, merging is allowed only
on store multiples. The write buffer performs the external write sometime later.

• If the write buffer is disabled or the CPU performs a write to an unbufferable area (B=0), the
processor is stalled until the write buffer empties and the write completes externally. This
requires several external clock cycles.

3.2.5.2 Enabling and Disabling the Write Buffer

To enable the write buffer, first ensure that the MMU is enabled by setting bit 0 in the
CONTROL_CP15 register, then enable the write buffer by setting bit 3 in the CONTROL_CP15
register. The MMU and write buffer can be enabled simultaneously with a single write to the
control register.

To disable the write buffer, clear bit 3 in the CONTROL_CP15 register. Any writes already in the
write buffer complete normally, but a drain write buffer needs to be done to force all writes out to
memory.

Note: The write buffer is used for copybacks from the Dcache even when it is disabled.

3.2.6 Read Buffer

The IXP1200 contains a software-programmable read buffer that can increase the performance of
critical loop code by prefetching data. The read buffer enables the preallocation of read-only data
into one of four 32-byte buffers without stalling the pipe. For subsequent loads that hit in the read
buffer, data is sourced from the buffer instead of the Dcaches at a rate of 1 word per core clock.
Also, because the programmer specifies which entry of the read buffer is used, critical data can be
“locked” in to eliminate bus latency.

The read buffer is controlled using coprocessor 15, READ_BUFFER_OPERATIONS (Register 9),
and provides the capability to allocate 1 word, a half line (4 words), or a full line (8 words) into one
of four entries of the read buffer. Half line loads are automatically aligned onto half block
boundaries (the lower four address bits are ignored). Full-line loads are automatically aligned onto
58 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
line boundaries (the lower five address bits are ignored). For partial cache line read buffer loads,
only the words actually fetched are marked valid and can be sourced from the buffer. A small
queue is used to ensure that subsequent read buffer load instructions go out in order.

Software can flush either a single entry or the entire buffer (four entries).

3.2.6.1 Read Buffer Operation

Read buffer operations are performed by writing instructions to the Coprocessor 15
READ_BUFFER_OPERATIONS register (Register 9). When a read buffer allocate instruction is
executed, the virtual address is looked up in the Translation Buffer (TB) to check for a translation
hit and possible access violations. If the access misses in the TB, the pipe is stalled until the page is
fetched through the normal hardware tablewalk mechanism. If an access violation occurs, the read
buffer load is NOPed. For example, a read buffer allocate instruction can generate a data abort.
Once the read buffer allocate has received a TB hit and no access violations, a bus access is
requested that fills the appropriate buffer without stalling the core pipeline. Subsequent load
instructions to this virtual address result in a read buffer hit and data is sourced from the
appropriate entry to the core. Any two data words with the same virtual address may not be
contained in the read buffer at the same time. If a read buffer allocate references a data word that is
already contained in another read buffer entry, then the old read buffer entry is invalidated and the
new allocation is performed. It is possible for a portion of a cache block at a given virtual address
to be contained in one read buffer entry while another portion of the same block is contained in
another read buffer entry. However, a given word can not be in more than one entry at a time.

If a load instruction misses in the read buffer, a normal cache fill is performed (provided the cache
is enabled and the page is marked cacheable). It then presents the possibility of having a partial line
resident in the read buffer as well as having the line present in one of the Dcaches. This presents
coherency issues that must be managed by software. If this situation does occur and the addressed
data is in both the Dcache and the read buffer, then the data is sourced from the read buffer. If a
read buffer entry contains a partial cache block (1 or 4 words), those words are sourced from the
read buffer while the remaining words are sourced from the data cache or memory.

Read buffer allocate instructions are not affected by the cache enable bit (bit 2 in the control
register) or by the C bit in the MMU. Any read buffer allocate to a valid read buffer entry causes
that read buffer entry to be invalidated, followed by a new allocation for the desired data. This
occurs regardless of the address of the data currently in the buffer. For example, back-to-back read
buffer allocate instructions to the same entry at the same address invalidates the entry caused by the
first instruction prior to performing the second fill.

A read buffer allocate or a load instruction that is issued to a read buffer entry currently being filled
stalls until the fill completes. If a data abort is signaled on a read buffer allocate, the fill completes.
After that, if a load to that entry is attempted, a data abort exception is issued. The coprocessor 15
register provides the ability to invalidate individual entries in the read buffer or to invalidate the
entire buffer in one operation. Read buffer coherency must be managed in software. Writes to
addresses present in the read buffer are not written into the buffer. Specific read buffer entries must
be invalidated before writing to the addresses or changing the page tables of the entries. Coherency
is not checked between the read buffer and the write buffer. The write buffer should be drained
prior to performing a read buffer load.
Hardware Reference Manual 59

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.7 ARM* Instruction Set and Timing

The StrongARM* core implements the instruction set defined in the ARM Architecture Reference
Manual. Table 3-3 lists the instruction timing for the StrongARM* core. The result delay is the
number of cycles that the next sequential instruction would stall if it used the result as input. The
issue cycles are the number of cycles that this instruction takes to issue. For most instructions, the
result delay is zero and the issue cycles is one. For load and stores, the timing is for cache hits.

3.2.8 Exceptions

Exceptions arise when the normal flow of program execution needs to be broken; for example, so
that the processor can be diverted to handle an interrupt from a peripheral. The processor state just
prior to handling the exception must be preserved so that the original program resumes when the
exception routine has completed. Many exceptions may arise at the same time. The StrongARM*
core handles exceptions by making use of banked registers to save state. The contents of PC and
CPSR are copied into the appropriate R14 and SPSR, and the PC and mode bits in the CPSR bits
are forced to a value that depends on the exception. Interrupt disable flags are set where required to
prevent otherwise unmanageable nestings of exceptions. In the case of a reentrant interrupt handler,
R14 and the SPSR should be saved onto a stack in main memory before re-enabling the interrupt.
When transferring the SPSR register to and from a stack, it is important to transfer the whole 32-bit
value, and not just the flag or control fields. When multiple exceptions arise simultaneously, a fixed
priority determines the order in which they are handled. The priorities are listed in the following
section. Most exceptions are fully defined in the ARM Architectural Reference. This section
specifies the exceptions where the StrongARM* core implementation differs from the ARM
Architectural Reference.

Table 3-3. StongARM Core instruction Timing

Instruction Group Result Delay Issue Cycles

Data processing 0 1

Mul or Mul/Add giving 32-bit result 1..3 1

Mul or Mul/Add giving 64-bit result 1..3 2

Load single – write-back of base 0 1

Load single – load data zero extended 1 1

Load single – load data sign extended 2 1

Store single – write-back of base 0 1

Load multiple (delay for last register) 1 MAX (2, number of registers loaded)

Store multiple – write-back of base 0 MAX (2, number of registers loaded)

Branch or branch and link 0 1

MCR 2 1

MRC 1 1

MSR to control 0 3

MRS 0 1

Swap 2 2
60 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.2.8.1 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in
which they are handled:

1. Reset (highest priority).

2. Data abort.

3. FIQ.

4. IRQ.

5. Prefetch abort.

6. Undefined instruction, software interrupt (lowest priority).

Not all exceptions can occur at once. Undefined instructions and software interrupts are mutually
exclusive because they correspond to particular (nonoverlapping) decodings of the current
instruction. If a data abort occurs at the same time as a FIQ, and FIQs are enabled (that is, the F flag
in the CPSR is clear), the IXP1200 enters the data abort handler and then immediately proceeds to
the FIQ vector. A normal return from FIQ causes the data abort handler to resume execution.
Placing data abort at a higher priority than FIQ is necessary to ensure that the transfer error does
not escape detection; the time for this exception entry should be added to worst-case FIQ latency
calculations.

3.2.8.2 Exception Vector Table

When an exception occurs, execution is forced from a fixed memory address corresponding to the
type of exception. These memory addresses are listed in Table 3-4. At boot time, these vectors are
mapped to the physical address in the BootROM space. The MMU can remap the virtual address to
these vectors into the physical address of faster SDRAM space. The X bit in the Coprocessor 15
CONTROL_CP15 register allows the base virtual address of the interrupt vectors (0000 0000h) to
be re-mapped to a base address of FFFF 0000h.

3.2.8.3 Hard Reset

Any of the following conditions cause a StrongARM* core reset:

• The RESET_IN# pin is asserted asynchronously.

• The PCI_RST# pin is asserted and the PCI_CFN[0] pin is not asserted.

• The watchdog timer = 0 and the WE (watchdog enable) bit of the SA_CONTROL register = 1.

Table 3-4. Exception Vectors

Exception Type Vector

Reset 0000 0000h

Undefined Instructions 0000 0004h

Software Interrupt 0000 0008h

Prefetch Abort (instruction Prefetch memory abort) 0000 000Ch

Data Abort (data access memory abort) 0000 0010h

IRQ (interrupt) 0000 0018h

FIQ (fast interrupt) 0000 001Ch
Hardware Reference Manual 61

Intel® IXP1200 Network Processor Family
StrongARM* Core
• The SA1200_RESET register is written from the StrongARM* core. Subfunctions may be
reset individually via this register.

• A software reset from the PCI bus occurs.

During reset, the StrongARM* core stops executing instructions, asserts the RESET_OUT# pin,
and performs idle cycles on the bus. When reset deasserts, the StrongARM* core does the
following:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into
them. The values of the saved PC and CPSR are not defined.

2. Forces M[4:0]=10011 (32-bit supervisor mode) and sets the I and F bits in the CPSR.

3. Forces the PC to fetch the next instruction from address 0x0000 0000.

At the end of the reset sequence, the MMU, Icache, Dcache, and write buffer are disabled.
Alignment faults are also disabled, and little endian mode is enabled. During power up,
RESET_IN# must be asserted for 150 milliseconds after VDD and VDDx are stable to allow the
internal 3.686 MHz oscillator to stabilize. After the negation of reset, the PLL begins its internally
timed locking sequence. The assertion of reset is destructive; the state of the real-time clock and the
contents of SDRAM are lost.

3.2.8.4 Abort

An abort can be signaled by the MMU through a data breakpoint or through a reference to reserved
memory. An abort indicates that the current memory access cannot be completed or that a
prespecified breakpoint address and (optionally) a data pattern has been reached. The StrongARM*
core checks for an abort during memory access cycles. When aborted, the StrongARM* core
responds in one of two ways:

1. If the abort occurred during an instruction prefetch (a prefetch abort), the prefetched
instruction is marked as invalid but the abort exception does not occur immediately. If the
instruction is not executed, for example, as a result of a branch being taken while it is in the
pipeline, no abort occurs. An abort takes place if the instruction reaches the head of the
pipeline and is about to be executed.

2. If the abort occurred during a data access (a data abort), the action depends on the instruction
type.

a. Single data transfer instructions (LDR, STR) abort with no registers modified.

b. The swap instruction (SWP) is aborted as though it had not executed, though externally
the read access may take place.

c. Block data transfer instructions (LDM, STM) abort on the first access that cannot
complete. If write-back is set, the base is NOT updated. If the instruction would normally
have overwritten the base with data (for example, an LDM instruction with the base in the
transfer list), the original value in the base register is restored.

When either a prefetch or data abort occurs, the StrongARM* core does the following:

1. Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for data aborts) in
R14_abt; saves CPSR in SPSR_abt.

2. Forces M[4:0]=10111 (abort mode) and sets the I bit in the CPSR.

3. Forces the PC to fetch the next instruction from either address 0x0C (prefetch abort) or address
0x10 (data abort).
62 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch abort) or
SUBS PC, R14_abt,#8 (for a data abort). This restores both the PC and the CPSR, and retry the
aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be implemented when
suitable memory management software is available. The processor is allowed to generate arbitrary
addresses, and when the data at an address is unavailable, the MMU signals an abort. The processor
traps into system software, which must work out the cause of the abort, make the requested data
available, and retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

3.2.8.5 Undefined Instruction

If the StrongARM* core attempts to access a coprocessor other than coprocessor 15, it takes the
undefined instruction trap. The coprocessor load (LDC), store (STC), and data (CDP) instructions
also take the undefined instruction trap. Permissions are set so that access to coprocessor 15 is
privileged except where protection is programmable with respect to the read buffer operations.

3.2.9 StrongARM* Core Debug Support

The StrongARM* core supports breakpoints that provide the user with the ability to stop execution
after seeing specific data in either the instruction or data streams. Execution then proceeds to an
exception routine during which the user may examine the internal state of the machine. This
section describes the instruction and data breakpoint facilities. The breakpoints are enabled through
additions to coprocessor 15.

3.2.9.1 Instruction Breakpoint

The instruction breakpoint allows the user to stop the processor execution after the execution of an
instruction at a selected address. This address is programmed into the instruction breakpoint
address and control register (IBCR) via the BREAKPOINT_DEBUG (Register 14). Access to this
register is privileged. The IBCR register is 32 bits wide and contains the address value for the
breakpoint, and a bit to enable the breakpoint.

When the breakpoint is enabled, the StrongARM* core executes until the instruction at this address
is fetched and the fetch address equals the program counter (ignoring bits 0 and 1 of the address).
At this point, the processor takes a prefetch abort exception. The interrupt routine must examine
R14 (the saved program counter) to determine if the exception was caused by the breakpoint.

3.2.9.2 Data Breakpoint

The data breakpoint allows the user to stop the processor execution after a load or store operation
to a particular address. Data Breakpoints are configured through four registers (DBAR, DBVR,
DBMR, and DBCR) that are accessed via the BREAKPOINT_DEBUG (Register 14). Access to
BREAKPOINT_DEBUG register is privileged. The data breakpoint address is programmed into
the data breakpoint address register (DBAR) and is a full 32-bit value (to permit breakpoints on
byte accesses).

For stores, the breakpoint condition may also be programmed to include a particular data pattern as
well as the reference address. The data value is programmed by way of the data breakpoint value
register (DBVR) and the data breakpoint mask register (DBMR). The DBVR is a 32-bit register
containing the value against which the store data is compared. The data value can be further
Hardware Reference Manual 63

Intel® IXP1200 Network Processor Family
StrongARM* Core
qualified through the data breakpoint mask register (DBMR). The DBMR is a 32-bit register
containing mask information indicating which bits in the store data should be compared against the
DBMR. A 1 in a particular bit position in the DBMR indicates the bit in the DBVR that should be
compared against the store data to qualify the breakpoint. To cause a breakpoint on a store data
value, the address breakpoint must also be enabled, otherwise no breakpoint occurs.

Breakpoints on loads are permitted only through an address match. Breakpoints on load address,
store address, and store data are enabled and disabled through the data breakpoint control register
(DBCR). A single bit is defined for each action. When a breakpoint is taken, the processor takes a
data abort exception and sets bit 9 in the fault status register (FSR).

3.3 Memory Map

The 4 Gbyte StrongARM* address space is decoded into seven internal device select signals. Five
of the device selects are used by the IXP1200. Figure 3-1 shows the StrongARM* core memory
map.

• Device 0 (0000 0000h through 3FFF FFFFh) is dedicated to static memory devices
(BootROM, SRAM, Aynchronous I/O, and SRAM CSRs). The StrongARM* core always
boots at address 0000 0000h. The width of the physical devices on the SRAM Unit is always
32 bits.

• Device 1 (4000 0000h to 7FFF FFFFh) is dedicated to the PCI unit. The PCI configuration
register and the PCI CSRs portions of this memory space are also mapped into the PCI address
space.

• Device 3 (9000 0000h to 9FFF FFFFh) is dedicated to the StrongARM* system registers.
These registers control the system clock, first level interrupt registers, UART, general-purpose
I/O pins, and real-time clock.

• Device 5 (B000 0000h to BFFF FFFFh) is dedicated to the AMBA translation unit (ATU). The
ATU provides an interface between the StrongARM* core and the FBI, scratchpad memory,
microengine SRAM read transfer register and microengine local CSRs.

• Device 6 (C000 0000h to FFFF FFFFh) is dedicated to the SDRAM unit. The width of the
physical devices on the SDRAM unit is always 64 bits. This space also includes the SDRAM
CSRs.
64 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
Figure 3-1. StrongARM* Core Memory Map

A9461-01

Address Range**	 Description

3840 0000 - 385F FFFF	 SlowPort

3800 0080 - 3800 00FF	 Command FIFO Test

3800 0000 - 3800 0028	 SRAM CSRs

2400 0000 (See table ->)	 Pop Command

2000 0000 (See table ->)	 Push Command

1980 0000 - 19FF FFFF	 Bit Test & Set

1900 0000 - 197F FFFF	 Bit Test & Clear

1880 0000 - 18FF FFFF	 Bit Write Set

1800 0000 - 187F FFFF	 Bit Write Clear

1600 0000 - 167F FFFF	 CAM Unlock

1400 0000 - 147F FFFF	 Write Unlock

1200 0000 - 127F FFFF	 Read Lock

1000 0000 - 107F FFFF	 Read/Write

0000 0000 - 007F FFFF	 BootROM

0	 2000 0000	 2400 0000

1	 2080 0000	 2480 0000

2	 2100 0000	 2500 0000

3	 2180 0000	 2580 0000

4	 2200 0000	 2600 0000

5	 2280 0000	 2680 0000

6	 2300 0000	 2700 0000

7 	 2380 0000	 2780 0000

Descriptor

List

Push

Operations*

(base addr)

Pop

Operations

0000 0000h

2000 0000h

4000 0000h

Device 0

Device 1

SRAM UNIT

PCI UNIT

Address Range	 Description

6000 0000 - 7FFF FFFF	PCI Memory Cycle Access

5401 0000 - 5FFF FFFF	Reserved

5400 0000 - 5400 FFFF	PCI I/O Cycle Access

53C0 0000 - 53FF FFFF Reserved

5300 0000 - 53BF FFFF PCI Type 0 Configuration Cycle Access

5200 0000 - 52FF FFFF PCI Type 1 Configuration Cycle Access

4200 0400 - 51FF FFFF Reserved

4200 0000 - 4200 03FF Local PCI Configuration Space and PCI Unit CSRs

4000 0000 - 41FF FFFF	Reserved

8000 0000h

Device 5
AMBA Translation Unit

(ATU)

Device 4

Device 3
StrongARM Core System

Device 2
Reserved

Reserved

9000 0000h

Base Address	 Microengine

B000 6800	 Microengine 5

B000 6000	 Microengine 4

B000 5800	 Microengine 3

B000 5000	 Microengine 2

B000 4800	 Microengine 1

B000 4000	 Microengine 0

Base Address	 Microengine

B000 2800	 Microengine 5

B000 2000	 Microengine 4

B000 1800	 Microengine 3

B000 1000	 Microengine 2

B000 0800	 Microengine 1

B000 0000	 Microengine 0

Device 6
SDRAM UNIT

Address Range	 Description

FF00 0000 - FF00 0014	SDRAM Control Registers

D000 0000 - DFFF FFFF	SDRAM Prefetch Memory (256 Mbytes)

C000 0000 - CFFF FFFF	SDRAM non-Prefetch Memory (256 Mbytes)

A000 0000 - A000 4000	Cache Flush Area (16 Kbytes)

A000 0000h

B000 0000h

C000 0000h

FFFF FFFFh

Microengine SRAM Transfer Register

Microengine CSRs

Scratch Pad Memory
Address Range: B004 4000 - B004 4FFF

FBI CSRs
Base Address: B004 0000

SDRAM

PCI Unit

SRAM Unit

Intel® StrongARM* System Registers
Base Address: 9000 0000

* To push descriptor, write to

base addr + pointer. (Data

written has no effect.)

**All unspecified SRAM addresses

are reserved.

Notes:
Devices 0 through 5 address data in longwords.
Device 6 addresses data in quadwords.
SRAM Transfer Registers: Thirty-two (32) Microengine specific SRAM Transfer registers are addressed by
adding four times their absolute register address (see Table 2-4 of the Programmer's Reference Guide) to the
base address of the Microengine being referenced. The core reads the Microengine SRAM Write Transfer
Register and writes to the Microengine SRAM Read Transfer Register.

* Other names and brands may be claimed as property of others.
Hardware Reference Manual 65

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.4 FIQ and IRQ Interrupts

The StrongARM* core supports two interrupt pins: FIQ and IRQ. FIQ has the higher priority. The
StrongARM* core must enable the IRQ and FIQ interrupts by clearing the I and F bits of the
Current Operating Status Register (CPSR). To ensure that a pending interrupt is taken, an interrupt-
enabling write to CPSR (using the MSR instruction) must be separated from an interrupt-disabling
write to the CPSR by at least two instructions.

The IXP1200 allows a number of sources to generate either an IRQ or FIQ. These sources are
managed through a series of registers organized in the hierarchy shown in Figure 3-2.
66 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
Figure 3-2. FIQ and IRQ Interrupts

A7084-03

thd
0

thd
1

thd
2

thd
3

thd
4

thd
5

thd
6

thd
7

thd
8

thd
9

thd
10

thd
11

thd
12

thd
13

thd
14

thd
15

thd
16

thd
17

thd
18

thd
19

thd
20

thd
21

thd
22

thd
23cint

cint
irq

ue
fiq

cint
fiq

ue
irq

IREG Register

soft
int

timer
1

timer
2

timer
3

timer
4

PCI
door

PCI
DMA1

PCI
DMA2

PCI
irq

start
BIST

rec
SERR

i2o
in post

PCI
dis tmr

data
perr

PCI rec
targ abt

PCI rec
mas abt

IRQEnable Register

FIQEnable Register

IRQRawStatus Register

To
FIQ

uengine FIQ

uengine IRQ

Cint FIQ

Cint IRQ

Interrupts in the IRQ and FIQ - Status, EnableSet, EnableClear, Status, Raw Status Registers

IRQSoft Register

IRQEnableClear Register IRQStatus Register

FIQStatus Register

FIQRawStatus Register

PCI_CACHE_LAT_HDR_BIST register

FIQ Register

CintPCI

SRAM_CSR

Readlock Achieved
Readlock Retry

Readlock Achieved Enable

SRAM

RTC_DIV
RTC Interrupt signal
FIQ + IRQ Enable

RTC

FIQ Enable
IRQ Enable

Read onlyWrite only

IRQEnableSet Register

FIQEnableClear Register

FIQEnableSet Register

Write only

Write only

Read only

Read only

Read only

Read only

Read only

Read & Write

Read
&
Write

ueng

To
IRQ

IRQ Register

CintPCISRAM ueng

Read only

Read only

Read these to determine
which PCI Unit event
caused the PCI interrupt

Read this to determine
which microengine thread
caused the ueng interrupt

Write these to
clear interrupts

Write this to
clear Cint
interrupt

Read these to determine which
event caused the interrupt

FIQ Enable

FIQ Enable

IRQ Enable

IRQ Enable

Write to cause and clear
soft interrupts

Read this to determine
which SRAM Unit event
caused the SRAM interrupt.
Write these to clear interrupts.

Write this to clear
RTC interrupt.

SA_CMD_STAT register
SA_CONTROL register
When all inbound posted entries are retired

Specific to external device
CHAN_x_CONTROL register

DBELL_SA_MASK or
DBELL_PCI_MASK registers

IRQSoft/FIQSoft register
TIMERx_CLR register

Where PCI Unit interrupts are disable/cleared

FIQSoft Register

SA_CONTROL register

PCI INTERRUPT

SRAM INTERRUPT

RTC & UART INTERRUPT

Microengine & Cint
INTERRUPT

FIRST LEVEL INTERRUPTS

Read & Write

DMA1
NO

DMA2
NOperr

UART

UART_CSR
TX & RX Interrupt signals
TX & RX FIQ + IRQ Enable

Read & Write
Write this to clear
UART interrupts.

SDRAM_CSR

Read this to determine
which SDRAM Unit event
caused the SDRAM interrupt
Write these to clear interrupts

SDRAM INTERRUPTRead & Write

UENG Parity Error
PCI Parity Enable

UENG Parity Enable

PCI Parity Error
SACore Parity Enable
SACore Parity Error

FIQ Enable

IRQ Enable

SDRAM

SDRAM

db
int0

db
int1

db
int2

RTC UART

Pwr
Mgmt

PWR_MGMT register

CHAN_x_CONTROL register
Hardware Reference Manual 67

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.5 Internal Peripheral Units

This section describes the following peripherals that can be accessed only by the StrongARM*
core.

• UART

• Four 24-bit timers

• Four general-purpose I/O pins

• Real-time clock

3.5.1 UART

The StrongARM* core supports a UART that provides a serial communication channel between
the StrongARM* core and another device. The UART supports standard baud rates and data
formats commonly used by computer RS-232-C ports. The UART supports transmit and receive
pins. It does not support controls pins such as RTS, CST, DTR, DSR.

The UART is controlled using three registers:

• UART_CR: UART configuration register.

• UART_SR: UART status register.

• UART_DR: UART data register.

The UART can be configured to support the data formats shown in Table 3-5 via the UART_CR
(UART control register).

The UART can also be enabled to generate an IRQ interrupt when the transmit FIFO is completely
empty or when the receive FIFO contains at least one byte of valid data. Software can determine
which event generated the interrupt by reading the UART_SR register. After the interrupt is
serviced, software must clear the interrupt by writing to the UART_CR register.

As an alternative to using interrupts, software can poll the UART_SR to determine when it should
read the receive FIFO or when it can write data to the Transmit FIFO. Three status bits are
provided for transmit status, Transmit FIFO Full, Transmit FIFO empty and Transmit FIFO Ready.
Transmit Ready indicates that there is room for at least one byte in the transmit FIFO. This is
logically equivalent to the opposite of Transmit FIFO Full. Two status bits are provided for receive
status, Receive FIFO Full, and Receive FIFO Ready. Receive Ready indicates that there is at least
one byte in the Receive FIFO.

Table 3-5. UART Supported Data Formats

Settings Options

Data Size 5, 6, 7, 8 bits.

Stop Bit 1 or 2.

Parity None, Even, Odd.

Standard Baud Rates 300 bps to 230.4 kbps (system clock = 3.6864 MHz).

StrongARM* Interrupts Transmit and Receive.

Transmit Break (send all zeroes) Yes.
68 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
The UART transmit and receive FIFOs are mapped to the UART_DR (UART data Register). Both
the Transmit and Receive FIFOs provide eight entries. A write to the UART_DR register places the
data into the Transmit FIFO which then places data serially onto the TXD pin. Reading the
UART_DR register delivers the receive data along with three error status bits affiliated with the
data. The three error status bits indicate whether a Receiver Overrun, Error Framing Error, and/or
Parity Error occurred during the read.

3.5.1.1 Receive Procedure

1. Configure the UART to the desired data settings by writing the UART_CR register.

2. Enable the receive interrupt in the UART_CR. An IRQ interrupt occurs when the receive FIFO
contains at least one byte of data.

3. When a UART interrupt occurs, read the UART_SR to determine if the source of the interrupt
was the transmitter (Transmit FIFO empty) or receiver (Receive FIFO Full).

4. If the interrupt source was the receiver, inspect the UART_SR data to determine whether there
are any errors associated with the received data. Pay particular attention to the Receiver
Overrun Error, as this indicates a break in the data sequence within the receive FIFO. The
framing error and parity error apply only to the next byte to be read from the receive FIFO.

5. Read the data in the UART_DR.

6. Determine if the data contains a parity or framing error by looking at bits 8 and 9 of the data. If
an overrun error occurred, bit 10 indicates the last valid data that was received before the
overrun occurred.

3.5.1.2 Transmit Procedure

1. Configure the UART to the desired settings and enable the UART.

2. Write up to 8 bytes to the UART_DR.

3. Enable the transmit interrupt and select either an FIQ or IRQ interrupt in the UART_CR. An
interrupt occurs when the transmit FIFO is empty.

4. When an interrupt occurs, read the data in the UART_SR to determine whether the source of
the interrupt was the transmitter (Transmit FIFO empty) or receiver (Receive FIFO Full).

5. If the transmitter generated the interrupt, write eight more bytes into the UART.

3.5.2 Timers

The IXP1200 supports four 24-bit timers that can be accessed only by the StrongARM* core. Each
timer can be preloaded and either free run, or decremented to zero and then reloaded. Each timer is
clocked in one of three ways:

• Core Clock

• Core Clock divided by 16

• Core Clock divided by 256
Hardware Reference Manual 69

Intel® IXP1200 Network Processor Family
StrongARM* Core
When a timer reaches zero, it generates an interrupt. The interrupt can be enabled or disabled in the
IRQ_ENABLE/FIQ_ENABLE registers. These timers are physically located in the PCI unit, so
they generate a PCI Interrupt to the StrongARM* core. The interrupt remains asserted until cleared
by a write of any data to the associated TMER_CLR register. Figure 3-3 is a block diagram of the
timer functions.

Timer 4 can be used as a watchdog timer. If the watchdog enable (WE) bit in the SA_CONTROL
register is set, a reset sequence is initiated when timer 4 counts to zero.

System software can use the watchdog as follows. Set timer 4 for periodic interrupts and disable
the interrupt on IRQ/FIQ. A periodic process (based on one of the other timers) would write to
TIMER_4_LOAD. If that process ever fails to write to TIMER_4_LOAD within the countdown
time, then the IXP1200 is reset. Once the watchdog enable bit is set, it can only be cleared by a chip
reset.

3.5.3 Real-Time Clock (RTC)

The IXP1200 contains a real-time clock (RTC) that provides a general-purpose real-time reference
for use by the StrongARM* core. Typically the RTC is programmed to increment the counter on
each rising edge of an internally generated 1 Hz clock to provide a time base with a one-second
resolution. The 1 Hz clock is generated by dividing the system clock (Typically 3.6864 MHz) by a
fixed value of 128 and then by a programmable divisor that is set in the RTC_DIV register.

In addition to the counter, the RTC incorporates a 32-bit alarm count register. On each rising edge
of the 1 Hz clock, the counter is compared to the alarm count register. If the values match and if the
RTC interrupt is enabled, an interrupt is issued.

The RTC must be initialized by software upon power up. Thereafter, the counter remains valid until
power is removed from the IXP1200. The value2 of the RTC registers is unaffected by a reset
except for bits 16 to 18 in the RTC_DIV register. These bits are set to zero to clear any pending
interrupts and to disable the RTC interrupt to the StrongARM* core. The StrongARM* core is
responsible for enabling the interrupts after a reset.

Figure 3-3. Timer Block Diagram

A7971-01

TIMERx_LOAD

Divide
by 16

Divide
by 16

Core
Clock 24-bit

Down
Counter

TIMERx_CTL

Intel® StrongARM* Core

Timer Interrupt
FIQRAWSTATUS,
IRQRAWSTATUS

Watchdog Reset
(timer 4 only)

TIMERx_VAL

Notes:
 x indicates timer 1,2 ,3, or 4
* Other brands and names are the property of their respective owners
70 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
The divider logic is programmable to allow the user to “trim” the counter to adjust for inherent
inaccuracies in the system clock frequency. At power-up, the registers that determine the trim
amount contain zeros, effectively disabling the trim logic.

Table 3-6 lists the registers used by RTC.

3.5.3.1 RTC Setup Procedures

The following procedure describes the setup of the RTC.

1. Write the following to the RTC_DIV register:

a. An appropriate divisor. If the system clock frequency is 3.6864 Mhz, this value is 7080h).

b. Clear the write enable bit in this register to indicate that this write is to the divisor field.

2. Write the start value for the RTC_CNTR register into the RTC_ALM register.

3. If you choose to implement trimming, write the proper trim interval to the RTC_TINT register.
The trim procedure is in Section 3.5.3.3.

4. Write the following to the RTC_TVAL register:

a. If you choose to implement trimming, the proper value should be provided. If you do not
choose to implement trimming, this should be written with zero.

b. If the prescaler (divide by 128) is to be used (as is the usual case), set the prescaler bit.
Otherwise, clear it.

c. Set the load bit to write the values in the RTC_DIV, RTC_ALM, RTC_TINT, and
RTC_TVAL registers to the RTC working registers. The value in the RTC_ALM is loaded
into the RTC_CNTR working register.

5. Clear the load bit in the RTC_TVAL register while maintaining the proper trim value in the
register.

3.5.3.2 Using the RTC Alarm

The RTC alarm can issue either an IRQ or FIQ interrupt to the StrongARM* core whenever the
value in the RTC_CNTR equals the value in the RTC_ALM register. The following procedure
outlines the setup of the RTC Alarm:

1. Write the desired alarm value to the RTC_ALM registers.

2. Enable the RTC interrupt by writing to the RTC_DIV register. The write enable bit in the
RTC_DIV register must be set when writing to the interrupt fields of this register.

Table 3-6. RTC Registers

RTC Register Description

RTC_CNTR RTC Count value: Holds the current one second counter value.

RTC_DIV RTC Divisor: Holds the programmable divisor used to produce 1Hz clock.

RTC_TINT Trim Interval Count: This count decrements once every second. When the count
equals zero, the next RTC count value used equals RTC_DIV minus RTC_TVAL.

RTC_TVAL Trim Value: Specifies the number of clocks to trim.

RTC_ALM Alarm Count: When this register equals RTC_CNTR an FIQ interrupt can be
generated.
Hardware Reference Manual 71

Intel® IXP1200 Network Processor Family
StrongARM* Core
3. When an interrupt occurs, the interrupt service routine must clear the interrupt by writing to
the interrupt clear bit in the RTC_DIV register. To clear the interrupt, the write enable bit in the
RTC_DIV register must be set.

3.5.3.3 Determining the Trim Values

The inherent inaccuracies of oscillators, aggravated by varying capacitance of the board
connections, cause inaccuracies in the 1Hz time base. The RTC supports an automatic periodic trim
adjustment in the 1 Hz clock period that improves the accuracy of the RTC. Over time these small
inaccuracies of 1 Hz time base add up. When trimming is enabled, every RTC_TINT seconds the
second count value (which is usually equal to RTC_DIV) is set to equal RTC_DIV minus
RTC_TVAL.

The oscillator frequency is measured to be freq(meas) = 3,688,243 Hz. We arbitrarily pick a TINT
value of 15 seconds.

3.5.4 General Purpose I/O (GPIO)

The IXP1200 supports four general-purpose I/O pins that are controlled by the StrongARM* core.
Each pin can be configured as either an input or an output via the GPIO_EN register. Regardless of
whether the pin is configured as an input or output, the GPIO_DATA register contains the data that
is present on the GPIO pins. The StrongARM* core writes to those register bits that are configured
as outputs and reads the register bits that are configured as inputs.

At reset, the state of GPIO[3] is used to configure the BootROM Bus width. If GPIO[3] is pulled
low, the BootROM Bus width is configured to 32 bits. If GPIO[3] is pulled high, the BootROM
Bus width is 16 bits. The FBI unit uses some or all of the GPIO pins (as determined by the
GPIO_EN register) to control the IX Bus in certain modes. Table 3-7 shows how the GPIO pins are
used in the different IX Bus modes.

Example 3-2. Automatic Periodic Trim Adjustment

RTC_DIV = (freq(meas)/128)

= 28814 (708Eh)

RTC_TINT = Fh (15 seconds)

RTC_TVAL = (freq(meas) - (RDIV x 128)) x RTINT

= (3,688,243 -(28814 x 128)) x 15

= 765 (2FD)

Table 3-7. GPIO Pins and IX Bus Modes

Mode GPIO[0] GPIO[3:1]

Bidirectional mode
(2 MAC mode)

Owned by the FBI unit and used as
flow control for MAC 1.

Owned by StrongARM* core as
GPIOs.

Bidirectional mode (3-7 MAC
mode)

Owned by the StrongARM* core as
a GPIO.

Owned by StrongARM* core as
GPIOs.

Unidirectional mode
(2 MAC mode)

Owned by the FBI unit and used as
flow control for MAC 1.

Owned by FBI unit and used as
transmit FPS[2:0]

Unidirectional mode (3-4 MAC
mode)

Owned by the FBI unit and used as
an active low enable for an
external decoder for the
PORTCTL[3:2] signals.

Owned by FBI unit and used as
transmit FPS[2:0]
72 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
StrongARM* Core
3.6 Boot Sequence

Boot Sequence tasks must be performed by the IXP1200 after reset for proper processor
functioning. The boot sequence tasks configure IXP1200 resources to a determined state by writing
predetermined values to certain registers. Some register settings are determined by the components
selected, such as SDRAM, SRAM, and BootROM. Other register settings are determined by the
desired processor performance and system configuration.

The resources that must be configured after reset are the Phase-Locked Loop (PLL), the SRAM
controller, the SDRAM controller, and the Memory Management Unit (MMU). There are other
resources that if used during the boot sequence must be configured at this time. They are the UART
and the PCI Interface.

For a more detailed description of the registers and their settings, please refer to the appropriate
sections in the IXP1200 Network Processor Hardware Reference Manual and the IXP1200
Network Processor Programmer’s Reference.

The configuration tasks must be performed in the following sequence.

1. Configure PLL. Configure PLL to the desired core clock frequency. Changing this value
will affect other configuration settings that are specified in units of the core clock
frequency. The register that configures the PLL is:

PLL_CFG

2. Configure Clock Switching. Configure test, clock, and idle control operations.

StrongARM Coprocessor 15 - TEST_CLOCK_AND_IDLE_CONTROL

3. Configure SRAM. Configure the SRAM controller. It is important that these registers be
programmed in the order given below. The registers that configure the SRAM controller
are:

SRAM_CSR

SRAM_SLOW_CONFIG

SRAM_BOOT_CONFIG

SRAM_SLOWPORT_CONFIG

4. Release from Reset. After reset, the SDRAM controller is not automatically brought out
of reset. For this unit to function it must be brought out of reset. This is done by
configuring the following register:

IXP1200_RESET

5. Configure SDRAM. Configure the SDRAM controller. This is done through a sequence
of register writes. Some of these register settings are defined in terms of the core clock
frequency. In this sequence, it is important that the SDRAM_CSR be written last. In doing
so, the new parameters will updated in the SDRAM controller. It is recommended that
these registers not be reprogrammed after the initial boot sequence. The registers that
configure the SDRAM controller are:

SDRAM_MEMCTL_0

SDRAM_MEMCTL_1

SDRAM_INIT

SDRAM_CSR
Hardware Reference Manual 73

Intel® IXP1200 Network Processor Family
StrongARM* Core
6. Configure and Enable MMU. Configure the Memory Mapped Unit, Cache, and Buffer.
This is done by configuring the following register:

StrongARM Coprocessor 15 - CONTROL_CP15

7. Configure PCI. If loading an image over the PCI during the Boot Sequence is required,
the following registers must be configured in the order specified for PCI operations to
function:

PCI_ADDR_EXT

DRAM_BASE_ADDR_MASK

If the IXP1200 is the PCI Central Function device, configure the following four registers:

PCI_MEM_BAR

PCI_IO_BAR

PCI_DRAM_BAR

PCI_CMD_STAT

SA_CONTROL

8. Configure Serial Port. If loading an image over the serial port during the Boot Sequence
is required, the following register must be configured.

UART_CR
74 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
Microengines 4

4.1 Overview

Each IXP1200 Network Processor contains six programmable 32-bit RISC processors. These RISC
processors are referred to as Microengines and are the distinguishing feature that separates the
IXP1200 Network Processor Family from other microprocessors. The Microengines support a 32-
bit RISC instruction set tailored to networking and communications applications. The
Microengines operate at the IXP1200 core frequency and all instructions execute in a single cycle.

The six Microengines each provide the following features:

• Hardware multithread support for four contexts

• Programmable 1K instruction Control Store (program memory)

• 128 32-bit general purpose registers

• 128 32-bit Transfer Registers (for transferring data into and out of the Microengines)

• Powerful ALU and Shifter capable of performing an ALU and shift operation in a single cycle
Hardware Reference Manual 75

Intel® IXP1200 Network Processor Family
Microengines
4.2 Microengine Block Diagram

This section provides an overview of the Microengine block diagram shown in Figure 4-1.

4.2.1 Multithread Support

Hardware multithread support allows four separate programs to share execution time on a
Microengine. When a program is not executing, each program context is preserved in hardware
through separate program counters, signal event states, and relatively addressed register set
(General Purpose Registers (GPRs) and Transfer Registers) for each program. When a program is
put to sleep, a context switch occurs and another program begins executing. The overhead
associated with switching contexts is a maximum of one cycle, however a deferred instruction can
be used to eliminate this overhead.

Context Arbiter logic determines which Microengine thread will be allowed to run when a thread
puts itself to sleep. The Context Event Arbiter makes the decision based on signal events from the
other functional units.

Figure 4-1. Microengine Block Diagram

A7521-02

Microengine

seq#1_event

32 SDRAM
Read Transfer

Registers

32 SRAM
Read Transfer

Registers

32 SRAM
Write Transfer

Registers

32 SDRAM
Write Transfer

Registers

Other
Local CSRs

64 A-Side
GPRs

64 B-Side
GPRs

Program
Counters

(per context)

decode

Control Store
1024 x 32-Bit
Instructions

sdram_event
sram_event

inter_thd_event
fbi_event

pci_event

cmd_bus

sram_fbi_pull[31:0]

sdram_pull[31:0]

sram_fbi_push[31:0]

sdram_push[31:0]

A B

Shifter

ALU
condition codes

Microengine
Controller

Address

Command FIFO

immed data

(one of six)

seq#2_event

start_rec_event
autopush_event

Indirect
Reference

Registers per Context
16 GPR A-side
16 GPR B-side
8 SRAM Read Transfer
8 SRAM Write Transfer
8 SDRAM Read Transfer
8 SDRAM Write Transfer

Signal
Events

(per context)

Context
Event
Arbiter

Pointer

Command
Queue
Full
status
inputs

SRAM_unit
SRAM_unit
PCI unit
FBI unit

Bus
Grant
Outputs

Bus
Request
Inputs

To
Each
Microengine

From
each
Microengine find bit

set logic

To SDRAM Unit

To SRAM Unit, FBI Unit
(CSR, TFIFO, RFIFO)

To All Units
(SRAM, SDRAM, FBI, PCI)

voluntary
76 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.2.2 Control Store

Each Microengine contains a programmable Control Store that holds the microcode program. The
four program threads associated with the Microengine share the Control Store. The Control Stores
support 1024 32-bit instructions and must be programmed by the StrongARM* core upon system
initialization.

4.2.3 128 General-Purpose Registers (GPRs)

Each Microengine supports 128 32-bit GPRs. The GPRs can be addressed using relative addressing
or absolute addressing. Relative addressing divides the GPRs among the Microengine threads so
that each thread has exclusive access to a subset of GPRs (32 maximum). Absolute addressing
allows a register to be shared among all the threads within a Microengine.

4.2.4 128 Transfer Registers

Data is moved into and out of the Microengines via the Transfer Registers. Each Microengine
supports 128 32-bit Transfer Registers. This register set is divided into 32 SRAM Read, 32 SRAM
Write, 32 SDRAM Read, and 32 SDRAM Write Transfer Registers. Each register subset connects
to the other functional units via four separate 32-bit data buses. The SDRAM registers are used to
move data between the SDRAM Unit and the Microengine. The SRAM Transfer Registers are used
to move data between the SRAM Unit or FBI Unit and the Microengine.

The Transfer Registers can be addressed using relative addressing or absolute addressing. Relative
addressing divides the Transfer Registers amongst the Microengine threads so that each thread has
exclusive access to a subset of Transfer Registers (8 SRAM read, 8 SDRAM read, 8 SRAM write,
8 SDRAM write). Absolute addressing allows a register to be shared among all the threads within a
Microengine.

4.2.5 ALU and Shifter

The Microengines contain a powerful 32-bit ALU and Shifter capable of performing an ALU and
shift operation in a single cycle. The two inputs of the ALU (A and B) can operate on data supplied
by the SRAM/FBI read Transfer Registers, SDRAM read Transfer Registers, GPRs, and immediate
data within the instruction. The ALU can perform addition, subtraction, and logical operations as
well as generate sign, zero, and carry out condition codes based on these operations.

4.2.6 Command Bus Arbiter

The six Microengines issue references to the other functional units within the IXP1200 (SRAM,
SDRAM, FBI, and PCI) via a Command Bus. All six Microengines share the Command Bus.
When a Microengine thread executes a reference instruction, a command is placed into a two-entry
Command FIFO within the Microengine. The Command Bus Arbiter arbitrates between the
Command FIFO within each Microengine to determine which one will be allowed access to the
shared Command Bus.
Hardware Reference Manual 77

Intel® IXP1200 Network Processor Family
Microengines
4.2.7 Local CSRs

Each Microengine contains a set of control and status registers. The StrongARM* core accesses the
register to program the Control Store and provide control and status information when debugging.
A Microengine can access its own set of local CSRs (except USTORE_ADDRESS,
USTORE_DATA, or ALU_OUTPUT) using the local_csr_rd and local_csr_wr Microengine
instructions. These registers are described in Table 4-18.

4.3 Microengine Instruction Set

Table 4-1 lists the RISC instructions supported by the Microengines. Each instruction executes in a
single cycle. The instructions are described in more detail in the IXP1200 Network Processor
Programmers Reference Manual.

Table 4-1. Summary of Microengine Instructions (Sheet 1 of 2)

Instruction Description

Arithmetic, Rotate, and Shift Instructions

ALU

ALU_SHF

DBL_SHIFT

Perform an ALU operation.

Perform an ALU and shift operation.

Concatenate two longwords, shift the result, and save
a longword.

Branch and Jump Instructions

BR, BR=0, BR!=0, BR>0, BR>=0, BR<0, BR<=0,
BR=cout, BR!=cout Branch on condition code.

BR_BSET, BR_BCLR Branch on bit set or bit clear.

BR=BYTE, BR!=BYTE Branch on byte equal or not equal.

BR=CTX, BR!=CTX Branch on current context.

BR_INP_STATE Branch on event state (e.g., SRAM done).

BR_!SIGNAL Branch if signal deasserted.

JUMP Jump to label.

RTN Return from a branch or a jump.

Reference Instructions

CSR CSR reference.

FAST_WR Write immediate data to the thd_ done CSRs.

LOCAL_CSR_RD, LOCAL_CSR_WR Read and write CSRs .

R_FIFO_RD Read the receive FIFO.

PCI_DMA Issue a request to the PCI Unit.

SCRATCH Scratchpad reference.

SDRAM SDRAM reference.

SRAM SRAM reference.

T_FIFO_WR Write to the transmit FIFO.
78 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.4 Execution Pipeline

Each Microengine instruction is pipelined through a five-stage execution unit. Table 4-2 shows
descriptions of the work performed in each pipeline stage.

Once the execution pipeline is filled with instructions, an instruction is executed every cycle.
Instructions such as branch, jump/return, and context swapping result in a branch decision that may
introduce aborted instruction to the pipeline that reduce the efficiency of the Microengines.

A datapath is provided so that if an instruction in P2 specifies an operand that is modified by an
instruction in P3, the value of the operand that is used is the value modified by the instruction in P3
rather than the stale data that was fetched in P2.

Local Register Instructions

FIND_BSET, FIND_BSET_WITH_MASK Determine position number of first bit set in an
arbitrary 16-bit field of a register.

IMMED Load immediate word and sign extend or zero fill with
shift.

IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3 Load immediate byte to a field.

IMMED_WO, IMMED_W1 Load immediate word to a field.

LD_FIELD, LD_FIELD_W_CLR Load byte(s) into specified field(s).

LOAD_ADDR Load instruction address.

LOAD_BSET_RESULT1, LOAD_BSET_RESULT2 Load the result of a find_bset or find_bset_with_mask
instruction.

Miscellaneous Instructions

CTX_ARB Perform context swap and wake on event.

NOP Perform no operation.

HASH1_48, HASH2_48, HASH3_48 Perform 1, 2, or 3 48-bit hash operations.

HASH1_64, HASH2_64, HASH3_64 Perform 1, 2, or 3 64-bit hash operations.

Table 4-1. Summary of Microengine Instructions (Sheet 2 of 2)

Instruction Description

Table 4-2. Execution Pipeline

Pipeline Stage Description

P0 Lookup of instruction

P1 Initial instruction decode and formation of the source register address

P2 Read of operands from source registers

P3 Perform ALU, shift, or compare operations and generate the condition
codes

P4 Write result to destination register.
Hardware Reference Manual 79

Intel® IXP1200 Network Processor Family
Microengines
4.5 Branch Decisions

Any instruction that makes a branch decision may cause one or more instructions in the execution
pipeline to be aborted. This section described the branch decision and the effect it has on the
execution pipeline. The IXP1200 supports three mechanisms to reduce or eliminate the aborted
cycles introduced as a result of the branch decision: deferred branches, setting condition codes
earlier, and branch guessing. These topics are discussed after this section.

An instruction that makes a branch decision does so based on the result of an operation that occurs
in either the P1, P2, or P3 instruction pipeline stage. The specific pipeline stage where the decision
is made depends on the instruction. For this discussion, these instructions are classified into three
classes. Table 4-3 lists the instructions by class.

Table 4-3. Instructions Categorized by Class

Class 3 Class 2 Class 1

br_bclr and br_bset br=0 br sdram

br=byte and br=!byte br!=0 br=ctx sram

jump br>0 br!=ctx hash1_48

rtn br>=0 ctx_arb hash2_48

br_!signal br<0 csr hash3_48

br_inp_state br<=0 r_fifo_rd hash1_64

br=cout t_fifo_wr hash2_64

br!=cout scratch hash3_64
80 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.5.1 Class 3 Instructions

Class 3 instructions always make the branch decision in the P3 execution pipeline stage. Figure 4-2
illustrates a class 3 instruction causing three instructions to be aborted in the Execution Pipeline.
Class 3 instructions are listed in Table 4-4.

Table 4-4. Class 3 Instructions

Instruction Why Branch Decision Is Made In P3

br_bclr and br_bset ALU operation must be performed to determine if the bit is
clear or set.

br=byte and br=!byte ALU operation must be performed to determine if the bytes
match.

jump ALU operation must be performed to determine jump address

rtn ALU operation must be performed to determine return address

br_!signal

Whenever a signal event is tested, the signal event bit is
automatically cleared if it is set. The branch decision is not
made until P3 to ensure that the signal event bit is not cleared
until we are sure that an another instruction that proceeds it in
the execution pipeline will not abort the instruction. If an
instruction makes it to P3, the instruction will not be aborted.

br_inp_state

Branch decision is made to ensure that the br_inp_state
instruction is not aborted by an instruction that precedes it. If
an instruction makes it to P3, the instruction will not be
aborted.

Figure 4-2. Class 3 Branch Decision

A7509-02

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg

Instruction that set and test cc

Other Instruction

Execution
Pipeline
Stage

P0

P1

P2

P3

P4

Microengine
Execution Pipeline

Action
Contents of

Execution Stage

Aborted

Aborted

Branch decision is
made and the three
instructions that follow
the class 3 instruction
may be aborted

Aborted
Hardware Reference Manual 81

Intel® IXP1200 Network Processor Family
Microengines
4.5.2 Class 2 Instructions

Class 2 instructions make the branch decision based on condition codes that are generated by
another instruction. These instructions listed in Table 4-5.

Table 4-5. Class 2 Instructions

Since condition codes are not generated until the P3 stage, the branch decision can not be made
until the instruction that sets the condition codes is in P3 and the branch instruction is in either the
P1 or P2 stages. Consider the following cases:

Case 1: If the branch instruction is in the P2 stage when the instruction that generates the condition
codes is in the P3 stage, the branch decision causes two instructions to be aborted.

Case 2: If the branch instruction is in the P1 stage when the instruction that generates the condition
codes is in the P3 stage, the branch decision causes one instruction to be aborted.

The branch decision can not be made in P0 since the initial instruction decode performed in P1
must occur first.

Class 2 instructions

br=0 br>0 br<0 br=cout

br!=0 br>=0 br<=0 br!=cout

Figure 4-3. Class 2 Branch Decision

A7508-01

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg

Instruction that set cc

Branch on cc instruction

Other Instruction

Execution
Pipeline
Stage

P0

P1

P2

P3

P4

Action

Aborted

Aborted

Instruction that set cc

Branch on cc instruction

Other Instruction

Aborted

Other Instruction (cc not set)

CASE 1 CASE 2

Branch decision can be
made in either stage
82 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.5.3 Class 1 Instructions

Class 1 instructions make the branch decision in the P1 stage, after the initial decoding of the
instruction. Once the instruction is known, (and in the case of br=ctx, and br!=ctx the context is
checked) all the information is available to make the branch decision.

Class 1 instructions can be classified into two groups: branch instructions and context switch
instructions. The context switch instructions change the execution contexts as well as branch to the
next instruction that is to be executed in the context to which it is switching. Table 4-6 lists the
class 1 instructions by category.

Table 4-6. Class 1 Instructions

Branch Instruction Context Switch Instructions

br ctx_arb hash1_48

br=ctx csr hash2_48

br!=ctx r_fifo_rd hash3_48

t_fifo_wr hash1_64

scratch hash2_64

sdram hash3_64

sram

Figure 4-4. Class 1 Branch Decision

A7510-02

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg Other Instruction

P0

P1

P2

P3

P4

Microengine
Execution Pipeline

Action
Contents of

Execution Stage

Aborted

Branch decision
is made and the
instruction that
follows the class 1
instruction may be
aborted

Other Instruction

Other Instruction

Instruction that causes branch

Execution
Pipeline
Stage
Hardware Reference Manual 83

Intel® IXP1200 Network Processor Family
Microengines
4.5.4 Postponed Branch Decision

The branch decision logic within each Microengine makes one branch decision per cycle. There
may be cases where two branch decisions can be made in the same cycle. For example, consider
the case where a class 3 instruction is in P3 at the same time as a class 1 instruction is in P0
(Figure 4-5). The branch decision logic makes a decision on the instruction in P3 and defers the
decision for the instruction in P1 until the next cycle (when that instruction propagates to P2).

Figure 4-5. Postponed Branch Decision

A7511-02

Execution
Pipeline
Stage

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg Other Instruction

P0

P1

P2

P3

P4

Microengine
Execution Pipeline

Action
Contents of

Execution Stage

Branch decision is made
and the three instructions
that follow the class 3
instruction may be aborted.

Class 3 Instruction

Other Instruction

Class 1 Instruction

Branch decision is post-
poned until the next cycle
and (if it's not aborted)
made when this
instruction is in P2.

Other Instruction
84 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.5.5 Deferred Branch

Before beginning the discussion of deferred instructions, it should be noted that the IXP1200
Assembler supports an optimization option that automatically performs deferred branch
optimization. It does so by recognizing when instructions can and can’t be deferred and rearranges
the instruction accordingly. This section is provided for those programmers who understand the
result of the assembly optimization and choose to manually insert deferred tokens.

The purpose of a deferred branch is to reduce or eliminate aborted instructions in the execution
pipeline. In a deferred branch, an instruction that follows a branch decision is allowed to execute
before the branch takes effect (i.e., the effect of the branch is “deferred” in time). If useful work can
be found to fill the wasted cycles after the branch instruction, the branch latency can be hidden.

Deferred branches are supported using the “defer” optional token within an instruction. The
IXP1200 Assembler can perform the deferred instruction option manually or automatically. The
example below demonstrates how a deferred operation eliminates aborted instructions to improve
compute efficiency. The first table shows a program that does not use the deferred branch. The
second table shows the improved compute efficiency of the same program when deferred branches
are used.

Status: E = executed A = aborted N = not executed due to branch

Status Microcode example with NO deferred instructions

E immed[$xfer0, 0xff, <<8]

E immed[$xfer0, 0xff, <<8]

E alu_shf[gpr1, gpr2, +, $xfer1, <<1]

E br=0[label1#]

A alu_shf [gpr3, 0, B, gpr2, <<16] ; Aborted due to branch

A ld_field_w_clr [gpr1, 0001, $xfer2, >>8] ; Aborted due to branch

-- label1#:

E alu_shf [gpr3, 0, B, gpr4, <<16]

Status Microcode example with deferred instructions

E alu_shf_[gpr1, gpr2, +, $xfer1, <<1]

E
br=0_[label1#], defer[2] ; BRANCH LATENCY FILL OPTIMIZATION:

 ; the microword below was "pushed" down 2 positions

E
immed[$xfer0, 0xff, <<8] ; BRANCH LATENCY FILL OPTIMIZATION:

; the microword below was "pushed" down 2 positions

E immed[$xfer0, 0xff, <<8]

N alu_shf_li[gpr3, 0, b, gpr4, <<16]

N ld_field_w_clr_b[gpr1, 0001, $xfer2, >>8]

-- label1#:

E alu_shf_li[gpr3, 0, b, gpr2, <<16]
Hardware Reference Manual 85

Intel® IXP1200 Network Processor Family
Microengines
4.5.6 Setting Condition Codes Early

Class 2 instructions can be arranged so that the condition codes upon which the branch decision is
made are set two or more instructions before the branch (refer to the class 2, case 2 example in
Section 4.5.2). This allows one aborted instruction to be eliminated because the branch decision
can be made one cycle earlier.

4.5.7 Guess Branch

The guess_branch optional token allows instructions to be prefetched from the “branch-taken” path
before it makes the actual branch decision. If it is omitted, the operation assumes a branch-not-
taken guess. This qualifier is valid on br_bset, br_bclr, br_inp_state, br_!signal and on
conditional branches affected by ALU condition codes that have been set during the previous
instruction. It is not valid on: br=ctx, br!=ctx, br=byte, br!=byte, jump, or rtn. Note, however,
that br=byte unconditionally guesses the branch taken path, and br!=byte unconditionally guesses
the branch not taken path.

Supports guess_branch Does Not Support guess_branch

br_bset br=cout br<0 br br!=byte

br_bclr br>0 br=0 br=ctx jump

br_inp_state br!=cout br<=0 br!=ctx rtn

br_!signal br>=0 br!=0 br=byte
86 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.6 Execution States

A Microengine can be placed in one of four execution states. Figure 4-6 defines the Microengine
states and shows the possible transition between states. These states are described in the following
sections.

4.6.1 Reset State

All the Microengines are automatically placed into the Reset state when a system reset is
performed. The StrongARM* core or a PCI device may place individual Microengines into the
Reset state via the IXP1200_RESET register in the PCI Unit. When a Microengine is placed into
reset, the following events occur:

• The Microengine does not execute instructions.

• The Command FIFO is cleared.

• Some bits within the local CSRs are set to their reset state while others are indeterminate. The
reset values are defined in the IXP1200 Network Processor Programmer’s Reference Manual.

• The Control Store, GPRs, and Transfer Registers are in an indeterminate state

4.6.2 Stopped State

When a Microengine is released from the Reset state, it is placed into the Stopped state. The
Microengine retains the state caused by a reset, however the StrongARM* core may program the
local CSRs and Control Store as well as read and write to the GPRs and Transfer Registers. Since
the reset condition disables all four contexts (by writing zeroes to the CTX_ENABLES registers),
the Microengines will not execute instructions when it is in the stopped state.

Figure 4-6. Execution States

A7504-01

Reset

Stopped

Paused

Running
Hardware Reference Manual 87

Intel® IXP1200 Network Processor Family
Microengines
4.6.3 Running State

A Microengine is placed in the Running state when it is not in reset and one or more contexts are
enabled via the CTX_ENABLES registers. The StrongARM* core can place the Microengines into
the Running state either from the Stopped or the Paused states.

Before the StrongARM* core transitions a Microengine from the Stopped to the Running state, it
should first initialize the local CSRs and program the Control Store. The following list describes
the basic tasks required to transition a Microengine from the Reset to the Running state.

1. Program the Control Store (refer to Section 4.7).

2. Set the active context number in the ACTIVE_CTX_STS register to the desired context that
should start running first (typically context 0).

3. Set the next context number in the CTX_ARB_CNTL register to the desired context that
should start running after the first context (typically context 1).

4. Set the CTX_ENABLES register so that the desired contexts are enabled to run.

When the StrongARM* core transitions a Microengine from the Paused to the Running state, it is
expected the Microengines local CSRs, Control Store, GPRs and Transfer Registers will all be in a
known state and that the transition only requires that the contexts be enabled via the
CTX_ENABLES register.

4.6.4 Paused State

A Microengine is placed in the Paused state by disabling the context enables when a Microengine
is running (via the CTX_ENABLES register). A Microengine continues to run until it executes an
instruction that causes a change of context. Since all the contexts have been disabled, the
Microengine gracefully stops and retains the state of its local CSRs, Control Store, GPRs, and
Transfer Registers. After the StrongARM* core disables all the contexts, it can poll the AB bit in
the ACTIVE_CTX_STS register to determine when the Microengine changes contexts and enters
the Paused state.

The StrongARM* core can place a Microengine into the Paused state or a Microengine can place
itself into the Paused state. However, a Microengine can not place another Microengine into the
Paused state. A Microengine places itself into the Paused state by writing to the CTX_ENABLES
register using the local_csr_wr instruction. The StrongARM* core can remove a Microengine
from the Paused state by writing to the CTX_ENABLES register.

When a Microengine is placed into the Paused state, the previous, current, and next context are
reported in the local CSRs. The active context (reported in the ACTIVE_ARB_CNTL register)
contains the context that was paused. The previous context (reported in the ACTIVE_CTX_STS
register) contains the context that was running before the active context. The next context (reported
in the ACTIVE_CTX_STS register) contains the context that is enabled to run after the active
context.
88 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.7 Programming the Microengines

The StrongARM* core should be programmed to load each Control Store upon system
initialization. Intel provides a Program Loader that can be used to program the Control Stores. The
Program Loader is a library of C functions that loads program images from an object file (created
by the IXP1200 assembler) into a Microengine Control Store, updates images with application
shared symbol pointers, and initializes Microengine registers. The Program Loader is described in
the IXP1200 Network Processor Software Reference Manual.

The steps taken by the StrongARM* core to read and write to the Control Store are listed below for
programmers that choose to perform these tasks without using the Program Loader libraries.

1. Place the Microengines into the Reset or Paused state.

2. Write the USTORE_ADDRESS register with a Control Store address, making sure the Control
Store Enable (CSE) bit in the register is set.

3. Writing an instruction to the USTORE_DATA local CSR loads the instruction into the Control
Store.

4. Reading the USTORE_DATA local CSR returns the current instruction at the Control Store
address.

5. Repeat steps 2 and 3 for each Control Store address to program the entire Control Store.

4.7.1 Starting Point of Program Execution

Each Microengine thread begins executing at the address specified in the CTX_PC field of the
CTX_n_STS local CSR. The StrongARM* core must set this field before a Microengine is
removed from reset since its value is indeterminate.

When a programmer designs a Microengine program so that two or more threads execute different
programs located in the Control Store, the br=ctx or br!=ctx instructions can be used to begin
program execution. For example, the following three instructions located at the beginning of a
Control Store will cause each thread to begin executing at different locations within the Control
Store.
br=ctx [0, thread_0_start#];instruction format: br=ctx[ctx,label#]
br=ctx [1, thread_1_start#];where ctx is the context label and is 0, 1, 2, or 3
br!=ctx[3, thread_2_start#];and label# is the location to where the branch will occur

An alternative approach is to have the StrongARM* core program the CTX_PC field of the
CTX_n_STS local CSR to the specific Control Store address where the thread should begin
executing.
Hardware Reference Manual 89

Intel® IXP1200 Network Processor Family
Microengines
4.8 Microengine Registers

The sections that follow describe the Microengine general-purpose registers and Transfer
Registers.

4.8.1 General-Purpose Registers

Each Microengine supports 128 32-bit general-purpose registers (GPRs). The GPRs are divided
into an A-bank and a B-bank. Each bank supports one read port with a data path to either the A or
B input of the ALU/Shifter and a write port from the output of the ALU/Shifter. The dual ports
allow the Microengines to perform simultaneous read and write operations allowing instructions to
execute in a single cycle.

The assembler supports symbolic register naming which is a feature provided in higher level
programming languages. It allows the programmer to write programs using descriptive symbolic
names, and the assembler manages how they are mapped to physical registers. The assembler
supports context-relative and absolute address modes.

Context relative addressing logically subdivides the GPRs into four equal regions of 32 registers,
so that each thread has exclusive access to one of the regions. Context-relative addressing is a
powerful feature that enables four different threads to maintain separate data areas. It also
eliminates overhead normally associated with preserving the register set when switching between
contexts. Absolute addressing enables any GPR register to be shared among the four threads in a
Microengine.

Figure 4-7. GPR Addressing

A7503-01

16 context 3

Relative addressing
notation: register_name

Assembler Notation:

Absolute addressing
notation: @register_name64 A Bank

64 B Bank

128 General Purpose
 Registers

16 context 2

16 context 1

16 context 0

16 context 3

16 context 2

16 context 1

16 context 0
0

63

Absolute
Address

0-15

Relative
Address

0

63

0-15

0-15

0-15

0-15

0-15

0-15

0-15
90 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.8.2 Transfer Registers

Each Microengine supports 128 32-bit Transfer Registers that are used to move data to and from
the Microengines. Each Transfer Register supports one read port and one write port. The dual ports
allow the Microengines to perform a simultaneous read and write, allowing instructions to execute
in a single cycle.

As shown in Figure 4-8, these registers are divided into 64 SRAM and 64 SDRAM Transfer
Registers that are connected to the SRAM and SDRAM buses. Of the 64 SRAM/SDRAM Transfer
Registers, 32 are connected to the pull buses and are used to move data from the Microengine
Transfer Registers to memory and 32 are connected to the push buses and are used to move data to
the Microengine Transfer Registers.

Table 4-7 lists the Microengine and FBI Ready Bus instructions that use Transfer Registers. Note
that all instructions other than the sdram instruction use SRAM Transfer Registers.

Figure 4-8. Transfer Register Addressing

A7519-02

8 context 3

32
SRAM Read

128 Transfer Registers

0

31

Absolute
Address

Relative
Address

0-7

0-7

0-7

0-7

32
SRAM Write

32
SDRAM Read

32
SDRAM Write

0

31
0

31
0

31

8 context 2
8 context 1

8 context 0

8 context 3

8 context 2
8 context 1

8 context 0

8 context 3

8 context 2
8 context 1

8 context 0

8 context 3

8 context 2
8 context 1

8 context 0

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

Relative addressing notation:
 $sram_xfer_name
 $$sdram_xfer_name

Assembler Notation:

Absolute addressing notation:
 @$sram_xfer_name
 @$$sdram_xfer_name

Table 4-7. Transfer Register Usage (Solicited Access) (Sheet 1 of 2)

Microengine
Instruction Request Destination Operation

csr FBI Unit Read and write an FBI CSR

hash1_48,
hash2_48,
hash3_48

FBI Unit Perform 1, 2, or 3 48-bit hash operations

hash1_64,
hash2_64,
hash3_64

FBI Unit Perform 1, 2, or 3 64-bit hash operations
Hardware Reference Manual 91

Intel® IXP1200 Network Processor Family
Microengines
Instructions that support burst counts greater than one also require more than one Transfer Register
per read or write operation. The Transfer Register specified in the instruction specifies the register
that is the beginning of a contiguous set of registers that receive or supply the data on a read or
write operation, respectively. Single transfers to and from the SRAM Transfer Registers always
occur in 32-bit increments. Single transfers to and from the SDRAM Transfer Registers always
occur in 64-bit increments and require two SDRAM Transfer Registers per read or write operation.

4.8.2.1 Managing Solicited Accesses

The individual Microengine threads are responsible for managing when the Transfer Register may
be reused and guaranteeing that the data in the registers is correct. For example, if a write Transfer
Register is being used by a thread to provide data to SDRAM, the thread must not overwrite this
register until it is provided with an SDRAM signal event indicating that the data has been promoted
to SDRAM and the register may now be reused.

A thread can have only one instance of a specific signal event pending at any time. For example, if
a thread requests an SRAM signal, it must wait until that signal event occurs before requesting
another SRAM signal event.

As a performance optimization, every reference to a particular functional unit does not require a
signal event. Instead, a signal event can be overloaded with multiple references as long as the
references are issued to the same command queue in the functional unit. Issuing the references to

scratch FBI Unit
Read and write Scratchpad
Increment data in the Scratchpad
Set or clear specific bits in the Scratchpad

pci_dma PCI Unit Write a PCI descriptor address to a PCI DMA channel

sram SRAM Unit

Read and write SRAM
Set or clear specific bits in SRAM
Lock memory and read the data
Write data and unlock memory
Unlock memory
Push a pointer onto a link list (up to eight list supported)
Pop a pointer off a linked list
Read and write BootROM memories
Read and write the Slow Port memory space

sdram SDRAM Unit Read and write SDRAM

r_fifo_rd FBI Read data from the RFIFO into an SRAM Transfer Register

t_fifo_wr FBI Write data to the TFIFO from an SRAM Transfer Register

Table 4-8. Transfer Register Usage (Unsolicited Access)

Ready Bus
Instruction Request Destination Operation

RxAutopush FBI (Ready Bus) The Ready Bus may be enabled to write 1,2,or 3 FBI
registers to the SRAM Transfer Registers

TxAutopush FBI (Ready Bus) The Ready Bus may be enabled to write 2 or 3 FBI
registers to the SRAM Transfer Registers

Table 4-7. Transfer Register Usage (Solicited Access) (Sheet 2 of 2)

Microengine
Instruction Request Destination Operation
92 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
the same queue ensures that the commands will be completed in the order in which they were
issued. If a signal event is requested on the last reference, it is implicitly guaranteed that all
references have been completed.

If the thread uses multiple command queues in a given functional unit (e.g., SRAM order queue
and read queue), the order in which the references are completed can not be guaranteed and
therefore a signal event for a particular functional unit cannot be overloaded. In this case, a thread
must issue the references in the execution order, request a signal event for each reference, and it
must not issue the next reference until the previous reference has completed.

4.8.2.2 Managing Unsolicited Autopush Accesses

The Ready Bus Autopush instruction will cause the FBI Push Engine to perform an unsolicited
write to a Microengine SRAM read Transfer Register. It is possible for a Microengine thread to
read the Transfer Register while the FBI push engine is writing to the same register. If this occurs,
the integrity of the data can not be guaranteed. The Autopush Protection Mechanism can be used to
ensure that a Microengine read of a Transfer Register and an Autopush write operation will not
occur at the same register address at the same time.

The Autopush Protection Mechanism provides an input state to all the Microengines to indicate
when an autopush operation is in progress. A Microengine thread should test the push_protect
input state using the br_inp_state instruction before reading the Transfer Registers that are
affected by the Autopush operation. If the push_protect state is not asserted, the Microengine
should read the Transfer Registers contiguously beginning at the very next cycle (instruction) after
the br_inp_state instruction to ensure that the push operation does not collide with the
Microengine. If the push_protect state is asserted, the Microengine should wait until it is deasserted
before accessing the Transfer Registers.

The timing of the push_protect signal is shown in Figure 4-9. The push protect window is provided
to ensure that an Autopush operation does not begin while a Microengine is reading the Transfer
Registers. The push protect window is programmable via the RCV_RDY_CTL register and should
be set to a value equal to twice the maximum number of registers that are being pushed per
Autopush operation. For example, if RCV_RDY_CTL[7:6] is set so that one register is used during
an Autopush and XMIT_RDY_CTL[7:6] is set so that three registers are used, then the push
protect window should be set to a value of six (3 x 2). The number of registers that can be
Autopushed during a TxAutopush or RxAutopush operation can vary from 1 to 3 and is determined
by setting RCV_RDY_CTL[7:6] and XMIT_RDY_CTL[7:6].

If the Ready Bus sequencer program contains two Autopush instructions back-to-back (e.g.,
TxAutopush followed by RxAutopush), then a single push_protect signal is asserted with only one
push protect window. Otherwise, a push protect signal containing a push protect window is
asserted for each Autopush operation.

Figure 4-9. Push Protect Timing

A7525-02

Push Protect Window

push_protect
state

Push Data to Transfer Registers
(2 Core clock cycles per register)

Xfer0 Xfer1 Xfer2

t= RCV_RDY_CTL[12:10] x 2
(Core clock cycles)

SRAM FBI Bus is used by SRAM Unit
Hardware Reference Manual 93

Intel® IXP1200 Network Processor Family
Microengines
4.9 ALU and Shifter

Each Microengine contains a powerful 32-bit ALU and shifter capable of performing an ALU and
shift operation in a single cycle. The two inputs of the ALU (A and B) can be data supplied by the
SRAM read Transfer Registers, SDRAM read Transfer Registers, GPRs, or immediate data within
the instruction. The ALU can perform addition, subtraction, and logical operations as well as
generate sign, zero, and carry out condition codes based on these operations.

The B input supports a 64-bit barrel shifter. The shifter shifts a 32-bit input to the right and
produces a 32-bit output to the ALU. The right shift operation is performed by placing the shift
operand into the lower 32 bits and zeros into the upper 32 bits of the 64-bit shifter and then shifting
right by the specified amount. The result is taken from the lower 32 bits.

Right rotate operations are almost identical to right shift operations except that the shift operand is
placed into both the upper and lower 32 bits. Left shift operations are emulated by placing the zeros
into the lower 32 bits and the shift operand into the upper 32 bits, shifting right by 32 minus the
specified the left shift amount, and taking the lower 32 bits as the result. For example, to shift left
by 12, the indirect value would be 20 (32-12 = 20). See Figure 4-10.

Table 4-9. ALU Operations

ALU
Operation Description

B B operand (A operand is ignored).

~B Inverted B operand (A operand is ignored).

+ A operand + B operand.

+carry A operand + B operand + previous carry-in (carry-in equals previous carry-out).

+4 A operand + B operand truncate to the least significant 4 bits (upper 7 nibbles zeroed).

+8 A operand + B operand truncate to the least significant 8 bits (upper 3 bytes zeroed).

+16 A operand + B operand truncate to the least significant 16 bits (upper 2 bytes zeroed).

- A operand - B operand.

B-A B operand - A operand.

AND A operand AND B operand (Bit-wise AND).

~AND Inverted A operand AND B operand (Bit-wise AND).

AND~ Inverted B operand AND A operand (Bit-wise AND).

OR A operand OR B operand (Bit-wise OR).

XOR A operand XOR B operand (Bit-wise exclusive OR).

+IFsign

If the Sign condition code is set, A operand + B operand.
If the Sign condition code is not set, result is B operand.

When using +IFsign in an ALU or ALU_SHF instuction, note that the condition code is set by
the second instruction immediately preceding the current one. This is in contrast to a branch
instruction, where the condition code is set by the instruction immediately preceding the current
one.
94 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
The alu_shf and dbl_shf instructions allow the user to specify an indirect shift value using the
optional tokens <<indirect or >>indirect. When the >>indirect token is used, the shift value is
specified by the lower 5 bits of the A operand from the previous instruction executed. This 5-bit
value specifies the right shift value when the >>indirect token is used. When the <<indirect token
is used, the actual shift value is equal to 32 minus the 5-bit A operand value.

4.9.1 Condition Codes

The ALU supports the following condition codes:

Zero: Set when an ALU operation is performed and the result is zero.

Sign: Set when an ALU operation is performed and bit 31 is set to one.

Carryout: Set when an ALU operation is performed and the carryout bit is set to one.

Only the ALU can generate condition codes (the Shifter does not generate a carryout condition
code during a shift operation). The following instructions set the condition codes. All of these
instructions set the zero and sign condition codes, but only the ALU and ALU_SHF instruction set
the carryout.

ALU BR_BCLR DBL_SHF LOAD_BSET_RESULT1
ALU_SHF BR_BSET LD_FIELD LOAD_BSET_RESULT2

BR=BYTE LD_FIELD_W_CLR
BR!=BYTE

One set of condition codes is provided for each Microengine. In other words, condition codes are
not maintained per context. If a context sets the condition codes, the next context inherits these
condition codes and changes them when it executes an instruction that changes the condition codes.

Figure 4-10. Microengine Shift and Rotate Procedure

A7972-01

Shift direction

Shift in zero
Right Shift = Zeros
Right Rotate = Rotate Value
Left Shift = Shift Value

63 32 31 0

Result

(Shift left by 32 - shift value)
(Shift/rotate right by rotate value)

Right Shift = Shift Value
Right Rotate = Rotate Value
Left Shift = Zeros
Hardware Reference Manual 95

Intel® IXP1200 Network Processor Family
Microengines
4.9.2 Multiply Support

The Microengines do not support a multiply instruction. However, the ALU instruction supports
the +ifsign operator which can be used to accelerate multiply operations. The idea is to shift the
multiplier bit into the sign bit position to set the sign bit condition code. One cycle after this
operation, the +ifsign ALU operation can be applied which will perform an A+B operation if the
sign bit was set, otherwise the B operand is moved into the destination register. A one cycle delay
is present due to internal piping considerations. However, this delay can be hidden in most cases by
performing 2 interleaved operations at a time as illustrated in the sample code below. The sample
code performs a multiply of a 23-bit number (multiplicand) with an 8-bit number (multiplier).

begin#:

; Initialize input registers.

; multiply 8394587 x237= 1989517119

; 0x80175B x 0xED = 0x76959f3f

immed_w0[multiplicand, 0x175B]

immed_w1[multiplicand, 0x80]

immed[multiplier, 237]

; Move the LSB into the sign bit. The Shift and accumulate are interleaved in pairs

; to hide cycle delays associated with the +ifsign operation.

start#:

alu_shf [multiplicand, --, b, multiplicand, <<7]

immed [accum, 0]

alu_shf[--, --, b, multiplier, <<31]

alu_shf[--, --, b, multiplier, <<30]

 alu [accum, multiplicand, +ifsign, accum]

 alu [accum, multiplicand, +ifsign, accum, >>1]

alu_shf[--, --, b, multiplier, <<29]

alu_shf[--, --, b, multiplier, <<28]

 alu [accum, multiplicand, +ifsign, accum, >>1]

 alu [accum, multiplicand, +ifsign, accum, >>1]

alu_shf[--, --, b, multiplier, <<27]

alu_shf[--, --, b, multiplier, <<26]

 alu [accum, multiplicand, +ifsign, accum, >>1]

 alu [accum, multiplicand, +ifsign, accum, >>1]

alu_shf[--, --, b, multiplier, <<25]

alu_shf[--, --, b, multiplier, <<24]

 alu [accum, multiplicand, +ifsign, accum, >>1]

 alu [accum, multiplicand, +ifsign, accum, >>1]

done#:
96 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.10 Changing Contexts

Hardware multithread support allows four separate programs (or threads) to share execution time
on a Microengine. When a program is not executing, each program context is preserved in
hardware through separate program counters, signal event states, and a relatively addressed register
set (General-Purpose Registers (GPRs) and Transfer Registers) for each program. When a program
is put to sleep, a context switch occurs and another program begins executing. The overhead
associated with switching contexts is a maximum of one cycle, however a deferred instruction can
be used to eliminate this overhead. Refer to Section 4.5.5 for more information on deferred
instructions.

As with most high performance microprocessor architectures, a Microengine can execute
numerous instructions in the time required for a reference to a device external to the Microengine
(such as memory or the FBI Unit) to be completed.

The architecture of the IXP1200 Microengines does not require that a Microengine thread wait for
references to complete. Instead, the Microengine threads can to put themselves to sleep (switch
contexts) or continue executing other instructions after issuing a reference. This increases the
processing throughput of the Microengine by allowing it to perform useful work independent of the
reference.

To achieve the best performance from the Microengines, context changes should occur at
appropriate points within a program execution. For example, if a program thread cannot execute
any further instructions without the data supplied by a reference, it should allow another context to
run by switching contexts. To ensure context changes occur when it makes the most sense, the
programmer is given control of context switching through the program instructions. The multi-
threaded architecture of the Microengines can be described as hardware supported, non-preemptive
multithreading.

There are two forms of context change instructions. The first is an explicit context arbitrate
instruction (cxt_arb):

ctx_arb[signal_event], optional_token;optional_token = defer[1]

This instruction indicates the context should be changed and should be awakened when the
specified signal event occurs. All the signal events described in Section 4.10.1 are supported in
addition to two other parameters: voluntary and kill.

The voluntary parameter indicates that a thread is voluntarily allowing the other three threads to
execute if they are ready (not waiting for a signal event to wake them). If the other threads are not
ready to execute, the thread continues to execute the next instruction in its program flow. The
penalty for executing a voluntary context change when no other thread is ready to execute is the
cycle required to execute the ctx_arb[voluntary] instruction.

The kill parameter indicates that a context change should occur and the thread should not be woken
and allowed to execute. This essentially clears a context enable bit in the CTX_ENABLES register.
The StrongARM* core is required to remove a Microengine thread from the kill state by enabling
the context in the CTX_ENABLES register.

The programmer may also use the ctx_swap optional token in the Microengine instructions that
reference the other functional units within the IXP1200. The example below shows how the
ctx_swap optional token is used within an instruction.

sdram[write, $$xfer_reg, addr1, addr2, ref_count], ctx_swap
Hardware Reference Manual 97

Intel® IXP1200 Network Processor Family
Microengines
The instructions that support the ctx_swap instruction are listed in Table 4-10. The use of the
ctx_swap optional token does not affect the time required to execute the instruction. The
Microengines execute all instructions in a single cycle.

4.10.1 Signal Events

Signal events are used to notify a thread when an event occurs elsewhere in the IXP1200. A thread
can test these signals using the br=!signal instruction or it can switch contexts and request that it
be allowed to execute when a signal event occurs. Signal events can be classified into two types:
explicitly requested and involuntarily provided.

Explicitly requested events are requested by the programmer via program instructions. The two
methods of requesting a signal event are summarized in Table 4-11.

Table 4-11. Signal Event Request Methods

Table 4-10. ctx_swap Instructions

hash1_48 hash1_64 sram pci_dma

hash2_48 hash2_64 sdram rfifo_rd

hash3_48 hash3_64 scratch tfifo_wr

csr

Method Description

ctx_swap optional token

Switch context and allow it to execute when the signal event
associated with this instruction occurs and it is this thread’s turn to run.

Example: Read SRAM, switch contexts, and begin executing it when
the reference has completed.

sram [read, $xfer1, temp, 0x15, 4] ctx_swap

sig_done optional token and
ctx_arb instruction

The sig_done optional token indicates that the thread should be
signaled when the reference has completed, but does not switch
contexts.

Additional instructions that follow the reference instruction execute
immediately following the reference instruction.

When the ctx_arb instruction is executed, it indicates that a context
switch should occur and it identifies the signal event that will wake the
thread.

Example: Read SRAM, execute more instructions, then switch
contexts and begin executing when the SRAM signal event occurs.

sram [read, $xfer2, temp, 0x4, 4], sig_done

(more instructions executed here)

ctx_arb[sram]
98 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
These explicitly requested events are listed in Table 4-12.

Events that are involuntarily provided without explicitly requesting the signal event are listed in
Table 4-13.

The seq_num1 and seq_num2 signal events are involuntarily provided to all twenty-four
Microengine threads, even though most applications do not require that all threads get the signal
event. Threads that do not require these signals may ignore them and are not required to clear the
signal events.

The inter_thread, start_receive, and auto_push signal events are provided to specific threads. The
threads that are programmed to receive these signal events must periodically test these signal
events to determine if the event occurred. The signals can be tested using the br!=signal or
ctx_arb instructions.

The signal events are maintained on a per context basis. Each Microengine contains four
CTX_n_SIG_EVENTS (where n=0-3) local CSRs that indicate which signal events have occurred.
These signals can be cleared in three ways:

1. Writing to the CTX_n_SIG_EVENTS CSR. Both the StrongARM* core and the Microengines
can write to this local CSR. This method is typically used during initialization or debugging.

2. Executing a br_!signal instruction. The br_!signal instruction allows the programmer to
specify the specific signal to test. If the signal event is present, the branch is taken and the
signal is automatically cleared.

3. Waking on a signal event. When a thread is woken by a signal event, the signal is
automatically cleared.

Table 4-12. Explicitly Requested Signal Events

Signal Event Condition when signal are issued

fbi When a thread requests the signal in a FBI reference (Scratchpad,
hash, CSR, RFIFO or TFIFO) and the reference completes.

pci When a thread requests the signal in a PCI DMA reference.

sram When a thread requests the signal in an SDRAM reference.

sdram When a thread requests the signal in an SRAM reference.

Table 4-13. Nonexplicit Signal Events

Signal Event Condition when signal are issued

seq_num1 When Fast Port mode is enabled and a thread increments the
enqueue sequence number 1, all threads are signaled.

seq_num2 When Fast Port mode is enabled and a thread increments the
enqueue sequence number 2, all threads are signaled.

inter_thread
When StrongARM* core or another thread writes a thread ID to
the INTER_THD_SIG register, the thread with the specified ID
will be signaled.

start_receive When a Receive Request is completed by the Receive State
Machine, the thread specified in a Receive Request is signaled.

auto_push When Autopush is enabled and the Ready Bus completes an
Autopush operation, the Receive Scheduler thread is signaled.
Hardware Reference Manual 99

Intel® IXP1200 Network Processor Family
Microengines
A thread may request multiple signal events (e.g., SRAM, SDRAM, and FBI). However, only one
instantiation of a specific signal event can be pending at one time. For example, a programmer can
not have two SRAM signal events pending at a time. Also, a program can only be awakened by a
single event. For example, a program can not be awakened by an FBI or an SRAM signal event.

4.10.2 Context Event Arbiter (Waking a Thread)

A Microengine thread can be in one of the following three execution states:

• Executing

• Sleeping (not executing, waiting for a signal event to occur)

• Ready (not executing, has received the signal event that it was waiting to occur, and is waiting
for the context arbiter to grant it permission to execute)

The non-preemptive multithreading architecture allows a program thread to execute until it
executes an instruction that performs a context switch. When a program thread performs a context
switch, the Context Arbiter decides which thread will be allowed to execute next. The Context
Event Arbiter makes this decision based on the following:

• A round-robin arbitration scheme provides each thread an equal chance at executing

• Whether the thread is enabled to run (via the CTX_ENABLES register)

• Whether the thread is in the Ready state

The Context Arbiter uses the signal event and wakeup event status provided for each thread and
maintained in the CTX_n_WAKEUP_EVENTS (where n = 0, 1, 2, or 3) and
CTX_n_SIG_EVENTS local CSRs. The Context Event Arbiter uses a round-robin algorithm to
determine which should be woken next. If a context wakeup event is enabled and the event has
occurred, the context will be enabled to run. Note that only one event at a time can be enabled in
the CTX_n_WAKEUP_EVENTS CSR. This is enforced in the instruction set by allowing only one
wakeup event to be specified in any instruction that will cause a context switch.
100 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.11 Interfacing to Other Functional Units

This section describes how data is transferred between the Microengines and the other functional
units within the IXP1200. The Microengine threads reference the other functional units (FBI, PCI,
SDRAM, and SRAM Units) by issuing a command and then continuing to execute instructions
while the functional unit processes the command independently. This allows the Microengines to
perform useful work while references are pending, increasing the overall performance of the
Microengines.

The Microengine threads can reference the other functional units in two ways: using immediate
data or using Transfer Registers. The fast_wr (fast write) instruction writes immediate data to
specific registers within the FBI Unit. All other accesses use Transfer Registers. Table 4-14 lists the
instructions that use Transfer Registers.

Figure 4-11. Context Arbitration Policy

A7516-02

Current
context went to

sleep
?

no

Is context
enabled
(KILL)

?

Point to
next context

Wake context

yes

yes

yes

no

Wakeup
event signal

occurred
?

no
Hardware Reference Manual 101

Intel® IXP1200 Network Processor Family
Microengines
4.11.1 References Using Transfer Registers

Figure 4-12 shows a simplified Microengine along with another functional unit. The simplification
is that only one set of push/pull buses is shown and only one shared functional unit is illustrated.
This figure will be used to describe how a Microengine issues a reference using Transfer Registers.

The following steps are taken when a Microengine issues a reference:

• Set up the Transfer Registers,

• Issue command,

• Queue command at the functional unit,

• Move data between Microengine and functional unit, and

• Signal completion

These steps are described in the sections that follow.

Table 4-14. Instructions Using Transfer Registers

Instructions Using Transfer Registers

csr hash1_48

scratch hash2_48

pci_dma hash3_48

sram hash1_64

sdram hash2_64

r_fifo_rd hash3_64

t_fifo_wr
102 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.11.1.1 Setting Up the Transfer Registers

Before performing a write operation, the write data should be placed into one or more contiguous
write Transfer Registers. For read operations, the read data is written into one or more contiguous
read Transfer Registers by the functional unit that is referenced.

The reference instruction specifies the register name at the beginning of a set of contiguous
registers and the burst size of the transfer. Since the microcode assembler automatically assigns
registers based on symbolic names, the assembler supports the .xfer_order assembler directive.
This directive informs the assembler that a list of register names must be allocated contiguously. It
also allows the programmer to define the names of the Transfer Registers in which the data is read
from or written to.

4.11.1.2 Issuing a Command

When reference instructions are executed, a Microengine issues a command to the appropriate
functional unit. The command describes the operation that is requested and indicates which
Microengine and thread issued the command. When a command is issued, it is placed into a two-
entry Command FIFO located in the Microengine. All six Microengines contain their own
Command FIFOs, and each FIFO is shared among the four program threads within the

Figure 4-12. Microengine References Using Transfer Registers

A7505-02

Microengine
(one of six)

Read Transfer
Registers

Write Transfer
Registers

64 A-Side
GPRs

64 B-Side
GPRs

Control
Store

cmd_bus

pull[31:0]

push[31:0]

A B

Shifter

ALUCommand
FIFO

data_bus[63:0]

Microengine
Controller

Microengine
Command
Queues

StrongARM®*
or PCI command

SRAM
SDRAM
or FBI

Controller

Completion Signal Event

Command
Bus Arbiter

grant

request

Grant and requests are
provided to each Microengine

* StrongARM is a registered trademark of ARM Limited.

Functional
Unit
Hardware Reference Manual 103

Intel® IXP1200 Network Processor Family
Microengines
Microengine. The six Command FIFOs from the six Microengines are tied to a shared time-
multiplexed Command Bus that operates at the Core clock frequency. When a command is placed
into the Command FIFO, a bus request is submitted to the Command Bus Arbiter.

The Command Bus Arbiter arbitrates between the six Microengines to determine which Command
FIFO will be serviced next. The Command Bus Arbiter uses the following information to
determine which Command FIFO is to be serviced.

• A priority scheme between the types of commands.

• A rotating priority scheme between the Microengines.

• A back-pressure signal from the functional units.

The arbitration scheme is shown in Figure 4-13.

If the Command Bus arbiter serviced a Command FIFO that contains a chained SDRAM
command, the Command Bus Arbiter will only allow SDRAM commands from the Command
FIFO where the chained SDRAM was issued to be granted access to the Command Bus until the
chain is completed.

Note: Note, however, that commands to other units are granted access to the Command Bus.

The priority after chained SDRAM commands is as follows:

• SRAM

• Non-chained SDRAM

• FBI/PCI

Back-to-back accesses to the FBI or PCI are not allowed. They are not considered separate units by
the arbitration. If a command is issued to the FBI on one cycle, the next cycle cannot issue a
command to either the FBI or the PCI. Similarly, if a command is issue to the PCI on one cycle, the
next cycle cannot issue a command to either the FBI or the PCI.

Note: Note that consecutive grants are not allowed for SDRAM (chained or otherwise), FBI, or, PCI.
Consecutive grants are allowed to SRAM, but not allowed to SDRAM or FBI/PCI. FBI and PCI
appear as a single unit to the arbiter.

For grants within a priority, one Microengine is selected as the lowest priority Microengine. The
highest priority Microengine is the next higher indexed Microengine (this wraps around, so if
Microengine 5 is the lowest priority, then highest priority is assigned to Microengine 0). The
Microengines have lower priority as the index increases from highest priority Microengine (again
wrapping from 5 to 0). Microengine commands to a functional unit will not be serviced, until there
are no more commands for higher priority functional unit or to the same functional unit from any
other higher priority Microengine.

If a chained SDRAM, SRAM or normal SDRAM operation is not pending (any one of the three)
and an FBI/PCI command could be issued but for pending commands to higher priority units on a
cycle, the following cycle will not be used to issue a command to the FBI/PCI. FBI/PCI commands
are eligible to be issued on the cycle subsequent to the following cycle, subject to other pending
commands and the priorities of target units and Microengines. When the grant to the FBI/PCI is
suppressed as described above, the following cycle will not be suppressed by those same
conditions. If a different command gets a grant that following cycle, then the FBI/PCI command
may be suppressed on the next cycle.
104 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
The index of the lowest priority Microengine increments to the next higher value when it has no
outstanding commands in its Command FIFO. Thus, the Microengine with lowest priority will
remain as the lowest priority until all its pending requests are serviced, at which point it will
become the second lowest priority. A Microengine could wait indefinitely before it can issue a
command to a functional unit, if the higher priority Microengines are constantly issuing commands
to that functional unit.

If any of the command queues within a functional unit fills to a threshold level typically equal to
six less than the number of commands that queue can hold, the functional unit will apply a back-
pressure mechanism to ensure that the queue does not overflow. This threshold level ensures that
there is room in the queues for any commands currently being sent to the functional unit from the
six Microengines. If the Command Bus Arbiter receives a back-pressure signal, it will not service
any Microengine whose Command FIFO contains a command that is targeted for the functional
unit that applied the back-pressure mechanism.

The Command FIFOs are drained at the Core frequency, and, therefore, are typically drained at a
rate faster than the commands are placed into them. However, if a program executes multiple
consecutive references, the Command FIFO may fill. If the Command FIFO on a Microengine fills
and another reference is issued, that Microengine stops executing instructions (referred to as
stalling) until the command can be placed into the Command FIFO.

Also, the rate at which commands are issued to the functional units is greater than the rate at which
the functional units are capable of processing a command. For example, the SRAM Unit reads data
from the SRAM devices at ½ the Core frequency, however, commands are submitted to the SRAM
Unit every Core clock cycle. This ensures that functional units maybe supplied with commands,
which in turn ensures that the unit has useful work to perform.
Hardware Reference Manual 105

Intel® IXP1200 Network Processor Family
Microengines
4.11.1.3 Command Serviced in Queue

After the command is placed onto the Command Bus, it is deposited into a command queue within
the targeted functional unit. These command queues accept commands from, and hence are shared
between, all of the Microengines. These command queues are shared among the other
Microengines. The functional unit removes the commands from the command queues and performs
the operation in the order that appears in the queue. Several different command queues are
provided at each functional unit, and, these queues are described in more detail in the FBI,
SDRAM, SRAM, and PCI sections.

4.11.1.4 Moving Data to and from Transfer Registers

When the functional unit processes the command, it reads or writes the data to or from the
Microengine Transfer Registers. The data is provided on one of two 64-bit buses: the SRAM Bus
or the SDRAM Bus. These 64-bit buses are divided into a 32-bit push and a 32-bit pull bus. The
bus utilization is described in Table 4-15. Note that the peak bandwidth of each bus is equal to the
peak bandwidth of the external buses.

Figure 4-13. Command Bus Arbitration Policy

A7973-01

Chained SDRAM
in progress

SRAM

SDRAM

FBI/PCI

1 2

345

0

1 2

345

0

HIGHEST PRIORITY

Service SDRAM commands
only from the Microengine
that issued the Chained
SDRAM command.1 2

345

0

Rotating Priority

LOWEST PRIORITY
106 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.11.1.5 Signaling Completion

Reference instructions provide two optional tokens that indicate that a Microengine thread should
be signaled when the transfer completes. The first optional token is sig_done. This token indicates
that the thread should be signaled when the operation is completed. The br_!signal instruction tests
the signal events and the ctx_arb instruction indicates that the thread should be put to sleep and
woken when a signal event occurs.

The second optional token is ctx_swap. It allows a reference instruction to specify that the thread
should be signaled when the operation is completed and the thread should be put to sleep (swapped
out) and woken when the signal event occurs. The ctx_swap optional token is equivalent to using
the sig_done optional token with the reference instruction and a separate ctx_arb instruction.

4.11.2 PCI DMA

The Microengines can initiate DMA transfers across the PCI using either one or both DMA
channels. The StrongARM* core allocates the DMA channels under software control. The
StrongARM* core can dynamically change the allocation of the channels by modifying the
DMA_INTER_MODE register. It is expected that, using interprocessor communications, the
StrongARM* core and the Microengines signal each other when a channel allocation change is
required. After that point, neither should issue any more DMA requests and the StrongARM* core
waits until all pending requests have completed. The StrongARM* core can detect when the DMA
channels are idle by enabling the DMA “Not Busy” interrupt in the IRQ_ENABLE register.

The PCI Unit supports a four-entry DMA request FIFO for requests made by the Microengines.
This provides for five outstanding Microengine DMA requests, one in the allocated DMA Channel,
and four in the DMA FIFO. Since there is no hardware back-pressure mechanism to indicate when
the DMA FIFO is full, Microengine software must maintain status as to the number of pending
Microengine DMA requests to ensure it does not exceed a total of five.

If the Microengines own both DMA channels, the DMA requests can be issued to either the next
available DMA channel or directly to DMA channel 2. When a DMA request is targeted at DMA
channel 2, it ensures that the DMA requests will be completed in the order in which they were
issued.

The procedure for issuing PCI DMA transfers is described in Section 5.2.2.3, “Microengine
Initiated DMA Channel Operation”.

Table 4-15. Bus Utilization

Operation Internal 32-Bit
Data Bus

Transfers Occur
on Core Clock

Cycle
Internal Peak Bandwidth External Peak

Bandwidth

SDRAM read SDRAM Pull bus odd and even
Core freq x 32-bits ½ Core freq x 64-bits

SDRAM write SDRAM Push bus odd and even

SRAM read SRAM Pull bus odd
½ Core freq x 32-bits ½ Core freq x 32-bits

SRAM write SRAM Push bus odd

FBI read SRAM Pull bus even
 ½ Core freq x 32-bits FCLK x 64-bits

FBI write SRAM Push bus even
Hardware Reference Manual 107

Intel® IXP1200 Network Processor Family
Microengines
4.11.3 FAST_WR Instruction

The Microengines support a fast_wr instruction to improve performance when writing to a subset
of FBI registers. The fast_wr instruction supplies 10-bit immediate data in the reference command.
This eliminates the need for the FBI Unit to read the data from a Microengine SRAM Transfer
Register when it processes the command.

The meaning of the 10-bit immediate data is shown in Table 4-16. Some registers do not require
the entire 10-bits. The programmer should ensure that data larger than what is required for the
register is not written since it will extend past the Microengine assigned bit position field.

4.11.4 Indirect References

Indirect references allow the programmer to redefine a reference (a command that is placed onto
the Command Bus) at run time. This is referred to as an indirect reference. As shown in
Figure 4-14, if an instruction specifies an indirect reference, the reference is redefined by the
output generated by the previous ALU instruction.

Table 4-16. Fast_wr 10-Bit Immediate Data

Register 10-Bit Immediate Data

Inter_thd_sig Thread number of the thread that is to be signaled (0 to 23).

Thread_done
A 2-bit message that is shifted into a position relative to the thread that is writing
the message. The shift operation is performed by the FBI Unit. The meaning of the
message is determined through software.

Thread_done_incr1
Thread_done_incr2

Same as thread_done except that either the enqueue_seq1 or enqueue_seq2 is
incremented.

xmit_validate The Transmit FIFO element number (0 to 15) that is marked to indicate that the
data is valid in this element.

incr_enq_num1
incr_enq_num2

Write a one to increment the Enqueue Sequence Number by one (the Sequence
Number is always incremented by one).

self_destruct Specifies the bit position (0-31) that will be set.

ireg

The 10-bit immediate data supplied with the instruction is shifted by the FBI Unit in
two segments. Bits 6 through 0 are shifted left by an amount equal to the thread ID
writing the data. Bits 9 through 7 are always shifted into the BP2 through BP0
positions regardless of the Microengine writing the data.

Figure 4-14. Indirect References

A7522-01

Command FIFO

Field C

Override bit for C

Field BField A

Override bit for B
Override bit for A

From Current Instruction

Output from ALU

Field CField BField A

Indirect Reference
108 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
The output of the ALU is latched after each instruction is executed. If an instruction specifies the
indirect reference using the indirect_ref optional token, the command placed on the Command Bus
is redefined using data provided at the output of the previous ALU instruction. The format of the
data is defined in the IXP1200 Network Processor Programmer’s Reference Manual and depends
on the instruction being modified.

The indirect reference data may modify more than one parameter within in an instruction. An
override bit is provided on a per data field basis to indicate which parameter should be modified.
When the indirect_ref optional token is specified, it enables the data multiplexer that redefines the
command and the override bits enable the specific bit fields.

Example 4-1 shows how two instructions are used to create an indirect reference.

Example 4-1. Indirect Reference

alu_shf[--, --, b, 0x13, <<16]
t_fifo_wr[$xfer0, tfifo_addr, 0, 1], indirect_ref

The first instruction, alu_shf, determines how the second instruction is defined. In this example, bit
field 20 is the override bit and bit fields 16 to 19 indicates the burst count size which is changed to
a burst count of four quadwords (the value specified in bits 19:16 plus one). The indirect_ref
optional token in the second instruction specifies that the ALU output from the first instruction
should be used to redefine the reference.

Table 4-17 shows the instructions that support an indirect reference and the parameters that may be
modified using an indirect reference.

Table 4-17. Indirect Reference Instructions (Sheet 1 of 2)

Instruction Command Indirect Reference Options

fast_wr

• Specify the Microengine and thread ID the FBI Unit uses to specify the
thread that is signaled when the reference is complete, and how the data is
interpreted when the specified FBI register is THREAD_DONE,
THREAD_DONE_INCR1, THREAD_DONE_INCR2, and IREG.

• Specify the immediate data.

scratch

read/write

• Specify the Microengine and thread ID the FBI Unit uses to specify the
thread that is signaled when the reference is complete.

• Specify the number of longwords that should be written to scratchpad
memory (16 max.).

• Specify the Microengine SRAM Transfer Register (0-31).

bit_wr

• Specify the Microengine and thread ID the FBI Unit uses to specify the
thread that is signaled when the reference is complete.

• Specify whether the pre-modified data should be returned.

• Specify whether the operation is set or clear.

• Specify the Microengine SRAM Transfer Register (0-31).
Hardware Reference Manual 109

Intel® IXP1200 Network Processor Family
Microengines
sdram

read/write

• Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

• Specify the Transfer Register (0-31) in the Microengine.

• Specify the number of quadwords that should be written to SDRAM (16
max.).

• Specify a byte mask for read-modify-write operations.

tfifo_wr

• Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete.

• Specify the number of quadwords read from SDRAM and written to the
TFIFO (16 max.).

• Specify the byte alignment.

• Specify the TFIFO quadword address.

rfifo_wr

• Specify the Microengine and thread ID the SDRAM Unit uses to determine
the thread that is signaled when the reference is complete.

• Specify the number of quadwords that should be read from the RFIFO and
written to SDRAM (16 max.).

• Specify the RFIFO quadword address.

sram

read/write

• Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

• Specify the number of longwords moved between the SRAM and the
Microengine (16 max.).

• Specify the SRAM Transfer Register (0-31) in the Microengine.

push/pop

• Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

• Specify the push/pop register.

• Specify the SRAM Transfer Register (0-31) in the Microengine.

bit_wr

• Specify the Microengine and thread ID the SRAM Unit uses to determine
the thread that is signaled when the reference is complete and the
Microengine where the Transfer Registers reside.

• Specify whether the pre-modified data should be returned

• Specify whether the operation is set or clear

• Specify the SRAM Transfer Register (0-31) in the Microengine.

r_fifo_rd

• Specify the Microengine and thread ID the FBI Unit uses to determine the
thread that is signaled when the reference is complete and the Microengine
where the Transfer Registers reside.

• Specify the number of quadwords that should be read from the RFIFO (16
max.).

• Specify the SRAM Transfer Register (0-31) in the Microengine.

t_fifo_wr

• Specify the Microengine and thread ID the FBI Unit uses to determine the
thread that is signaled when the reference is complete and the Microengine
where the Transfer Registers reside.

• Specify the number of quadwords that should be written to the TFIFO (16
max.).

• Specify the SRAM Transfer Register (0-31) in the Microengine.

Table 4-17. Indirect Reference Instructions (Sheet 2 of 2)

Instruction Command Indirect Reference Options
110 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.12 Local CSRs

The local CSRs described in Section 4.2.7 are memory mapped into the StrongARM* core 4-
Gigabyte address space. These registers are used by the StrongARM* core to program the Control
Stores and provide control and status information when debugging. These registers are described in
Table 4-18.

Table 4-18. Local CSRs

The local CSRs are mapped into the StrongARM* core 4-Gbyte address space. A Microengine
thread can access the set of local CSRs within its Microengine, but it can not access the local CSRs
of another Microengine. The Microengines threads have access to all the local CSRs except
USTORE_ADDRESS, USTORE_DATA, and ALU_OUTPUT. The local_csr_rd and
local_csr_wr Microengine instructions are used to access the registers.

Reading a local CSRs requires two instructions, local_csr_rd followed by any instruction that uses
immediate data as a source operand. The local_csr_rd instruction reads the contents of the CSR
and provides the data as immediate data to the very next instruction. The next instruction places the
immediate data into a GPR or write Transfer Register. If the next instruction does not contain an
immediate data source operand field, then the opportunity to read the CSR data from the previous
instruction is lost. Example 4-2 shows how a local CSR is written and then immediately read.

Local CSR Description

USTORE_ADDRESS Microstore Address: Used to load the Control Store1.

1. Specifies the Control Store address being addressed by the StrongARM* core.

USTORE_DATA Microstore Data: Used to load the Control Store2.

2. Specifies the data at the Control Store Address specified in the USTORE_ADDRESS register.

ALU_OUTPUT ALU Output: Used for debugging by the StrongARM* core for
reading the GPRs and Read Transfer Registers.

ACTIVE_CTX_STS Active Context Status: Active context number, whether it is
running, and the current PC.

ENABLE_SRAM_JOURNALING Enable SRAM Journaling: Used for debugging to create journals
in SRAM.

CTX_ARB_CTL Context Arbiter Control: Context number of the last context to run
and the number of the next context ready to run.

CTX_ENABLES Context Enables: Used during debugging to enable a context to
run when arbiter grants permission.

CC_ENABLE Condition Code Enables: The previous and current condition
codes.

CTX_n_STS (n = 0 to 3) Context Status: Status indicating that the context is ready to run,
and the program counter where it will start.

CTX_n_SIG_EVENTS (n = 0 to 3) Context Signal Events: Status of event signals that have occurred
(one register per context).

CTX_n_WAKEUP_EVENTS (n = 0 to 3) Context Wakeup Events: Determines which wakeup event is
enabled to wake the context (one register per context).
Hardware Reference Manual 111

Intel® IXP1200 Network Processor Family
Microengines
Example 4-2. Reading and Writing a Local CSR

alu_shf[reg,temp,b,0x1,<<8] ;write a 1 to bit 8
local_csr_wr[ctx_enables,reg] ;set the bit in the CSR
nop ;required because of pipeline
local_csr_rd[ctx_enables] ;setup the data as immediate
alu_shf[csr_data,--,b,0x1,>>8] ;move data in to LSB of GPR

As shown in the example, a local_csr_rd must not immediately follow a local_csr_wr. This is due
to issues concerning the Microengine instruction execution pipeline. Since the CSR data is written
in P4, and the CSR is read in P2, a 1-cycle latency must be enforced to ensure the correct data is
read.

4.13 Find Bit Set Instructions

The Microengines support six instructions that are used to determine the first bit set within a GPR
or Read Transfer Register. The format of the instructions is as follows:
find_bset [test_operand], optional_token

find_bset [test_operand, shf_cntl], optional_token

find_bset_with_mask [mask_operand, test_operand], optional_token

find_bset_with_mask [mask_operand, test_operand, shf_cntl], optional_token

load_bset_result1 [dest_reg], optional_token

load_bset_result2 [dest_reg], optional_token

The first four instructions return the bit position number of the first set bit in a 16-bit field of a
Microengine register. The search begins at the LSB. A shift control token is provided in the
instruction so that any arbitrary 16-bit field in the register can be evaluated and a mask value can
also be specified so that certain bits are not evaluated.

The result of the operation is deposited into one of two result registers that reside in the
Microengine Controller and can not be directly read by the Microengines like the GPRs or Transfer
Registers. Instead, the Microengines must explicitly move the contents on the Result registers into
one of the Microengine GPRs or Transfer Registers using the load_bset_result1 and
load_bset_result2 instructions.

Figure 4-15. Reading and Writing Local CSRs

A7518-01

local_csr_wr

Other Instruction

Execution
Pipeline
Stage Action

Contents of
Execution Stage

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg

P0

P1

P2

P3

P4

local_csr_rd

Other Instruction

Data is available for reading

Data is read from local CSR.

Other Instruction
112 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
The Result registers contains three bit fields described in Table 4-19.

When a find_bset instruction is executed, the test data and optionally the mask data is moved from
a GPR or Transfer Register through the ALU/Shifter and into the Find Bit Set logic. The
Microengine Controller may also supply the mask data as immediate data (in this case, the data still
passes through the ALU).

After the data is delivered to the Find Bit Set logic, the logic increments a counter to track how
many find_bset instructions have been executed. When a find_bset instruction finds a bit set, it
writes the bit number and the value of the instruction counter, sets the lock bit, and locks the
register so that subsequent find_best instructions do not overwrite the result register. If the first
result register is locked, the second result register will be loaded and locked when the next
find_bset instruction is executed and detects a bit set in its test value. If both result registers are
locked, the result is not reported. When an instruction specifies the clr_result optional token, both
result registers unlocked and cleared and the instruction counter is also reset. This allows a
programmer to use multiple find_bset or find_bset_with_mask instructions to find the first set bit
within up to 16 consecutive 16-bit fields (i.e., up to 8 registers of data). For example, The following
program will find the first bit set in a 32-bit register and the following case examples describe the
result.

Example 4-3. Find First Bit Set Program Example

find_bset [test_operand], clr_result; clear the result registers and test the lower 16 bits
find_bset [test_operand, >>16]; test the upper 16 bits
nop ; required for latency (explained later)
nop ; required for latency
nop ; required for latency
load_bset_result1 [dest_reg]; read the first result

Case 1: If one or more bits were set in the lower 16 bits of the register, the result1 register would
contain data that:

• Set the lock bit indicating that a bit was set in the data provided

• Set the instruction number to 0, indicating that the first bit set instruction discovered a first bit
set (for this example, assume a bit was set in the lower 16 bits)

• Set the bit position number to the value of the bit position number that was set (0 to 15).

Case 2: If one or more bits were also set in the upper 16 bits of the register, the result1 register
would be as in case 1 and the result2 register would contain data that:

• Set the lock bit indicating that a bit was set in the data provided

• Set the instruction number to 1, indicating that the second bit set instruction discovered a bit
set (for this example, a bit was also discovered in the upper 16 bits)

Table 4-19. Result Register Bits

Bit Name Description

31:9 RES Reserved. Read as 0

8 LK Indicates that the register is locked and contains a valid result.

7:4 INST#

Indicates the find_bset instruction that found a set bit.
n = The n + 1 find_bset instruction locked the register. Each time a
find_bset instruction is executed, a 4-bit counter is incremented.
When an instruction finds a bit set, the counter value is placed in
this field.

3:0 BIT POS Indicates the bit position within the 16-bit field in which the first set
bit was found (0 = lsb; 15 = msb).
Hardware Reference Manual 113

Intel® IXP1200 Network Processor Family
Microengines
• Set the bit position number to the value of the bit position number that was set (0 to 15).

Case 3: If a bit is not set in either the upper or lower 16 bits, both result registers are cleared.

Case 4: If a bit is not set in the lower 16 bits but one or more bits are set in the upper 16 bits, the
result1 register contains valid data (as with instruction number set to 1 in case 1) and the result2
register contains zero.

The programmer must explicitly move the data from the Result register to a GPR or Transfer
Register using the load_bset_result1 and load_bset_result2 instructions. These instructions cause
the Microengine Controller to write the Result register data as immediate data that passes through
the ALU and into a GPR or Transfer Register.

The programmer must ensure that there are three instructions between the time that a find_bset and
a load_bset_result instruction are executed. This is due to the combined execution pipelines of the
Microengine and the Find Bit Set logic. As shown in Figure 4-16, with a three instruction latency,
by the time the find_bset instruction gets to the Result register, the load_bset_result1 instruction
will have propagated to the read operands stage and the bit set data will be available to read. The
find bit set operations should be completed before a context change to ensure that another thread
does not clear the result register before the result could be read.

Figure 4-16. Load Bit Set and Find Bit Set Execution

A7507-01

find_bset

load_bset_result1

Other Instruction

Other Instruction

NOPPerform find bit set
operation

Find Bit Set Logic

Result available

Execution
Pipeline Stage

5

6

Microengine
Execution Pipeline

Action
Contents of

Execution Stage

Look up instruction

Initial instruction decode
Form Source reg addr
Read Operands

Perform ALU operation

Write Result to dest reg

P0

P1

P2

P3

P4
114 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.14 Input States

Each Microengine is provided with two status signals (referred to as “input states”) from the FBI
Unit. A brief description of the input states is provided below. A more detailed description of the
FBI Unit is contained in Chapter 6.

The input states represent the current state of the associated logic in the FBI Unit. The
Microengines have access to the input states through the br_inp_state instruction. This instruction
allows a Microengine thread to test the state, and branch if the state is set.

4.15 Inter-Processor Communications

This section describes the three methods of inter-processor communication provided by the
IXP1200.

• Thread-to-StrongARM* Core Communications: Allows any program thread executing on
any Microengine to communicate with the StrongARM* core. This is supported through
interrupts and signal events.

• Thread-to-Thread Communication: Allows any program thread executing on any
Microengine to communicate with another thread executing on any other Microengine in the
same IXP1200. This is supported through signal events.

• Multiple IXP1200 Communications (Thread-to-Thread): Allows any program thread
executing on any Microengine to communicate with another thread executing on any other
Microengine in the different IXP1200s. This is supported through the Ready Bus Get and Send
instructions. Refer to Section 6.6.3.10, “Ready Bus Communications” for information on
Ready Bus communications.

state_name Description

rec_req_avail
This state is set to 1 if there is room for another receive request in the
two-entry REC_REQ FIFO. Refer to Section 6.6.4.1, “Issuing a
Receive Request” for a description of how this state is used.

push_protect

This state is set to 1 if a Ready Bus Autopush instruction is being
executed and the FBI Push engine is currently writing to an SRAM
Read Transfer Register. Refer to Section 6.6.3.7, “Autopush
Operation” and Section 4.8.2.2, “Managing Unsolicited Autopush
Accesses” for a description of how this state is used.
Hardware Reference Manual 115

Intel® IXP1200 Network Processor Family
Microengines
4.15.1 Generating StrongARM* Core Interrupts

Communication between the Microengine threads and the StrongARM* core is supported in
hardware using a signaling mechanism. The individual Microengine threads may interrupt the
StrongARM* core by generating either an FIQ or IRQ interrupt. The interrupt type is selected in
the IREG register. The StrongARM* core can signal the individual Microengine threads by
generating an inter_thd_sig signal event. Refer to Figure 4-17.

The Microengine threads generate an interrupt to the StrongARM* core by setting an interrupt bit
in the IREG register. The IREG register provides one interrupt bit for each Microengine thread (24
total). All of the Microengine threads set the interrupt bit using the fast_wr instruction and to write
a value of 1. The IREG register (which resides in the FBI Unit) will shift the 1 to the appropriate bit
position based on the Microengine thread that issued the fast_wr instruction.

Note: The Microengines should not write values other than 1 to the IREG register since the immediate
data may set other bits within the IREG register.

When the StrongARM* core gets an interrupt, it reads either the FIQ or IRQ registers to determine
if the interrupt was generated by a Microengine and then reads the IREG register to determine
which thread generated the interrupt. From the StrongARM* core perspective, the individual bits
in the IREG register are cleared by writing 1s. This allows the StrongARM* core to clear interrupt
bits that are set by writing back the original value that was read.

Figure 4-17. StrongARM* Interrupts

A7512-01

IREG

Microengine
Thread

023

One interrupt bit per Context
Microengine FIQ Enable
Microengine IRQ enable

31 30

1. A Microengine Thread executes a
fast_wr instruction with immediate
data equal to "1" (fast_wr [1, ireg])

2. The immediate data is shifted
to correct position automatically
by the FBI Unit

031
FIQ or IRQ Register

4

ueng interrupt bit

3. The ueng bit in the
FIQ or IRQ register is set

StrongARM®* Core
4. Interrupt is generated and the
StrongARM Core reads to determine
if interrupt was generated by a Microengine

5. StrongARM Core
Reads to determine
which thread generated
the interrupt

6. StrongARM Core writes
original read data to clear
interrupts (and the ueng
bit in the FIQ or IRQ register)

1

* StrongARM is a registered trademark of ARM Limited.
116 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.15.2 Generating Inter-thread Signal Events

The StrongARM* core or any Microengine thread can generate an inter_thd_sig signal event to
any Microengine thread by writing a thread number (0 to 23) to the INTER_THD_SIG register
(Figure 4-18). The thread number in this register is broadcast to all Microengines. Each
Microengine decodes and the thread address and sets the inter_thd bit in the
CTX_n_SIG_EVENTS local register if the target is a context in the particular Microengine. A
Microengine thread can branch (using the br_!signal instruction) or it can wake up on this signal
event. Writes to the INTER_THD_SIG are not queued, therefore two back-to-back writes to the
same thread ID may result in only one signal.

Figure 4-18. Inter-thread Signal Events

A7514-02

* StrongARM is a registered trademark of ARM Limited.

INTER_THD_SIG

Thread 23

0

Thread Number (0 to 23)

31

1. Microengine and StrongARM®* Core
write the thread ID to the INTER_THD_SIG
register.
The Microengines use the fast_wr
instruction (fast_wr [23, inter_thd_sig])

StrongARM
Core

2. All Microengines get
the thread ID. Each
decodes it and sets an
inter_thd_sig signal
event if the thread ID
matches one of their
thread IDs.

4

Microengine
Thread 0

Thread
Number
Hardware Reference Manual 117

Intel® IXP1200 Network Processor Family
Microengines
4.15.3 Communication Example

A software semantic employing mailboxes can be used in conjunction with the signal mechanisms
described previously to provide communication between Microengine threads and between the
Microengine threads and the StrongARM* core. In the example shown in Figure 4-19, the
StrongARM* core writes a message to one of twenty-four Microengine thread “In Mailboxes” and
signals the Microengine thread using inter-thread signaling. The Microengine periodically
branches on the inter-thread signal and if it detects the signal, it reads its In Mailbox and processes
the message. After it completes its task, it can write a response to its “Out Mailbox” and signal the
StrongARM* core with an interrupt. The StrongARM* core interrupt service routine determines
which thread generated the interrupt and reads that thread’s Out Mailbox.

Figure 4-19. StrongARM* Core and Microengine Communication

A7513-02

IREG

Microengine
Thread

SRAM or Scratchpad
Memory

FIQ/IRQ

Microengine
Thread

IN
Mailboxes

Microengine
Thread
OUT

Mailboxes

0

23

0

23

INTER_THD_SIG

Send
Message

Receive
Message

Receive
Message

Send
Message

StrongARM®*
Core

* StrongARM is a registered trademark of ARM Limited.
118 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4.16 Chained SDRAM References

The Microengine can chain multiple SDRAM references together to ensure each reference will be
processed by the SDRAM Unit immediately after the other. The Command Bus Arbiter gives a
chained reference a higher service priority over all other requests from the other Microengines to
ensure that the commands are delivered successively to the SDRAM Unit. The SDRAM Unit also
gives chained references a higher service priority over other Microengines, StrongARM* core, and
PCI Unit SDRAM references. Chained referenced are initiated using the chain_ref optional token
with the sdram instruction. Chained references are supported between SDRAM Transfer Registers
and the SDRAM Unit, RFIFO and the SDRAM Unit, and the TFIFO and the SDRAM Unit.

Example 4-4. ;Filling Two TFIFO Elements Using Chained References

alu[temp, op1, B, 15, <<16];setup indirect ref - ref_cnt = 16

alu[--, temp, +, elem_0, <<4];setup indirect ref - qword addr

sdram[t_fifo_wr,--,0,sdram_addr,1], indirect_ref, chain_ref

alu[temp, op1, B, 15, <<16];setup indirect ref - ref_cnt = 16

alu[--, temp, +, elem_1, <<4];setup indirect ref - qword addr

sdram[t_fifo_wr, --, 16, addr, 4], indirect_ref ;(no "chain_ref" indicates end of
; chain)

4.17 Debugging Support

Each Microengine provides hardware support for debugging software running on the IXP1200
Network Processor. Intel provides software that takes advantage of these debugging capabilities.
This software includes the IXP Developer Workbench and debug libraries that execute on the
StrongARM* core. The Debug libraries are written in the C language, allowing it to be ported to
different operating systems.

The sections that follow describe the hardware support provided by the IXP1200 and how software
can take advantage of this support to provide the following basic debugging capabilities:

• Determining if a Microengine is executing.

• Stopping, starting, and hopping the Microengines.

• Setting breakpoints.

• Reading the local register set.

• Creating a journal.

4.17.1 Determining If a Microengine is Executing

The ACTIVE_CTX_STS (Active Context Status) local CSR indicates whether or not a context is
currently executing on the Microengine. If so, it provides the context number and the PC of the
instruction it is currently executing. The StrongARM* core can poll this register to determine if the
context is running or whether it is idle.

If the Microengine context is idle, the StrongARM* core can read the CTX_n_SIG_EVENTS and
CTX_n_WAKEUP_EVENTS registers for each context to determine the signal event for which the
current context is waiting and which signal events have occurred.
Hardware Reference Manual 119

Intel® IXP1200 Network Processor Family
Microengines
If none of the Microengine contexts have received a signal event, the StrongARM* core can
determine the next instruction that should be executed by reading the current PC for each of the
contexts from the CTX_n_STS local CSR.

4.17.2 Stopping, Starting, and Hopping the Microengines

The StrongARM* core can place the Microengines into the Running and Paused states, described
in Section 4.6. This allows the Microengine to execute for a period of time and then be placed in a
paused state. Once a Microengine is in a paused state, information about the present state of the
system (GPRs, Transfer Registers, memory, and CSRs) can be read by the StrongARM* core and
transmitted to an I/O debug port (e.g., the serial port, Ethernet interface, etc.).

The user can manually place the Microengines into a paused state or a Microengine can place itself
into the paused state automatically each time an instruction that causes a context switch is
executed.

Since a Microengine can place itself into the paused state automatically, it is possible for the user to
“hop” the execution of the Microengines from one context change point to the next. This allows the
user to monitor the progress of a Microengine program as it executes in hardware. The term “hop”
is used instead of the common term “step” because the execution progress is monitored after a
context switch point rather than each time an instruction is executed.

4.17.3 Breakpoints

Breakpoints are supported by replacing instructions in the program with branch instructions to a
breakpoint routine. The StrongARM* core can dynamically insert and remove breakpoints into the
Control Store during runtime when a Microengine is in the Paused or Stopped state.

Once a Microengine thread enters a breakpoint routine, a Microengine can place itself into the non-
destructive Paused state and interrupt the StrongARM* core. The StrongARM* core can then
perform a breakpoint function such as stopping all other Microengines and then reading the
Microengine’s register set. The StrongARM* core is used to restart the Microengine from the point
at which the breakpoint occurs.

Note that breakpoints in the different Microengines occur asynchronously, so a breakpoint may
pause one Microengine while the others may continue to execute until the StrongARM* core
manually places them into a paused state. Or, they may pause themselves by executing their own
breakpoint routine.

Breakpoints are inserted into a program by replacing the instruction where the breakpoint should
occur with a branch instruction to a breakpoint routine.

The following procedure describes how the StrongARM* core can insert breakpoints into program
while a Microengine is in the paused or stopped state.

1. The StrongARM* core saves the address and the instruction where the breakpoint will occur.

2. The StrongARM* core replaces the instruction where the breakpoint will occur with a branch
instruction to a breakpoint routine placed in unused code space.

3. If the user chooses to break only if a certain context hits the breakpoint, the first instruction of
the breakpoint routine should be a br!=ctx[n] to step 7. This causes the Microengine to
execute the replaced instruction and return to the main program. If the user chooses not to
break only if a certain context hits the breakpoint, this step can be eliminated.
120 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
4. The Microengine disables all its other contexts by writing 0x0 to the CTX_ENABLES register
using the local_csr_wr instruction.

5. The Microengine executes a fast_wr instruction to the IREG register, using the data 0x80 to
generate a breakpoint interrupt.

Note: The StrongARM* interrupt service routine should be programmed to service the interrupt as
desired. For example, the StrongARM* core may stop all the other Microengines and read the
Microengine register set and journal area.

6. The Microengine thread then goes to sleep by executing the ctx_arb[voluntary] instruction.
This allows the Microengine to gracefully stop executing and since all other contexts are
disabled, no other thread will begin executing. Due to pipelining considerations, four
instructions should be executed after the local_csr_wr and before the ctx_arb instruction.

7. The StrongARM* core enables the Microengine to begin executing by writing to the
CTX_ENABLES register to enable the appropriate threads. The Context Arbiter detects the
enabled contexts and allows the program thread specified in the NCTX field of the
CTX_ARB_CNTL local register to execute. When a Microengine thread is woken, it will start
executing at the instruction following step 7. This is where the original instruction removed
from the program in step 1 should be placed.

8. A branch back to the address of the original instruction + 1 enables the Microengine to
continue on the normal execution path.

Example 4-5 shows a pseudo code example of a breakpoint routine.

A breakpoint only applies to the Microengine in which the breakpoint is inserted.

Example 4-5. Breakpoint Routine Example

A7974-01

* Other brands and names are the property of their respective owners.

Control Store
0

1023

BR!=CTX, or BR=CTX

DISABLE_CTX

NOP

INT_CORE

CTX_ARB

NOP

NOP

BR (to break_routine)break_point

break_routine

BR (to break_point +1)

1. Optional: Can be used to distinguish that a breakpoint should
occur for a specific thread.

2. Disable context. It takes 5 cycles (equal to the number of execution
pipeline stages) for this instruction to complete. When it does, no
thread in this Microengine is awakened after this thread executes
an instruction that causes a context switch.

3. Required to ensure DISABLE_CTX is written before a CTX_ARB
is executed.

4. Set a breakpoint interrupt to the Intel® StrongARM Core
(fast_wr[0x80,ireg])

5. Perform a context switch (ctx_arb[voluntary])

6. When Microengine is restarted, it begins here. This instruction
returns execution to normal program flow.
Hardware Reference Manual 121

Intel® IXP1200 Network Processor Family
Microengines
4.17.4 Reading Microengine GPR and Read Transfer Registers

When a Microengine is placed into the Stopped or Paused state, and the ECS bit in the
USTORE_ADDRESS local CSR is set, the Microengine loops on the instruction specified in the
UADDR field in the USTORE_ADDRESS local CSR. The ALU_OUTPUT CSR can be read by
the StrongARM* core to view the ALU output from the instruction currently executing at this
address. This allows the StrongARM* core to read the GPRs and Read Transfer Registers using the
following procedure:

1. The StrongARM* core places the Microengine into either the Stopped or Paused state by
disabling all its other contexts. This is accomplished by writing 0x0 to the CTX_ENABLE
register.

2. The StrongARM* core loads an alu instruction at some unused address in the Control Store.
The format of the alu instruction is as follows:
alu[--,0, B, read_register_address]
where:
"-" = no destination register
read_register_name = address of the register to read, valid registers are GPRs, SRAM Read
registers and SDRAM Read registers.

3. The StrongARM* core reads the ALU_OUTPUT register.

4. The StrongARM* core Repeats steps 2 and 3, changing the alu instruction to output different
GPRs or Read Transfer Registers

4.17.5 Creating a Journal

Journaling allows a Microengine to write debugging data (or other data) to a location in SRAM.
The SRAM Unit assists the Microengines in creating a journal by maintaining the pointers to the
journal area in SRAM. There are three pointers that specify the start (base), end, and current
position of the journal area. These are initialized via the SRAM_AUTO_BASE,
SRAM_AUTO_END, and SRAM_AUTO_PTR SRAM registers.

Once these SRAM registers are initialized, a write to the SRAM_AUTO_PTR register causes the
following data to be written to SRAM at the address in the pointer register:

[31:29] Microengine ID/StrongARM* core ID
[28:27] Thread ID
[26:0] User defined data

The SRAM Unit supplies the Microengine ID and thread ID if the source is a Microengine.
Otherwise, the StrongARM* core should write the entire 32 bits using a Microengine ID of 7 and a
thread ID of 0 (bits [31:27] = 11100). After each write, the current pointer is incremented. When
the current pointer equals the end pointer, the next value of the current pointer will wrap around so
that the current value equals the start pointer. Journaling is enabled on a per Microengine basis via
the ENABLE_SRAM_JOURNALING Microengine CSR. The user can view the journal data by
programming the StrongARM* core to read the journal area in SRAM and dump the data to an
IXP1200 I/O port (UART, PCI, etc).
122 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Microengines
The Journal registers should be initialized in the order shown in Table 4-20 to ensure proper
operation.

Table 4-20. Journal Register Initialization Order

Initiation Order SRAM CSR Reason

1 SRAM_AUTO_BASE Writing this register sets the base address in the
SRAM_AUTO_BASE register.

2 SRAM_AUTO_END
Writing this register resets the SRAM_AUTO_PTR
register to the contents of the SRAM_AUTO_BASE
register.
Hardware Reference Manual 123

Intel® IXP1200 Network Processor Family
PCI Unit
PCI Unit 5

5.1 Overview

This chapter contains information on the IXP1200 Network Processor Family PCI unit. It is
organized as follows:

• Section 5.2, “Hardware Description describes the functional blocks of the PCI unit.

• Section 5.3, “PCI Transactions describes which PCI transactions are supported and how they
are implemented by the PCI unit.

As shown in Figure 5-1, the main functional blocks of the PCI unit are as follows:

• Data Path and Bus Interface Logic

• FIFOs

• SDRAM Interface Logic

• AMBA Bus Translation Interface Logic

• PCI bus arbiter

• DMA channels

• I2O* message unit

• Timers
Hardware Reference Manual 125

Intel® IXP1200 Network Processor Family
PCI Unit
Figure 5-1. PCI Unit Block Diagram

A7975-01

PCI Data Path and Bus Interface Logic

Interrupt Logic

Other CSRs

Doorbell Timer

DMA
Channel

DMA
Channel

SDRAM Interface Logic AMBA Bus Translation
Interface Logic

Address/Command to SDRAM Unit

* Other brands and names are the property of their respective owners.

SDRAM Data
[63:0]

Intel® StrongARM* Core
AMBA Bus

32-Bit PCI Bus @ 33/66 MHz

PCI Unit

Inbound
FIFO

Outbound
FIFO

PCI Read
Data

addr ctrl rd wr

Sideband Control from SDRAM Unit

Microengine
Commands

DMA
Request
Arbiter

PCI Bus
Arbiter

Arbiter Signals
126 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.2 Hardware Description

5.2.1 PCI Bus Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the
IXP1200. To enable the arbiter, the PCI_CFN[1] pin must be hardwired to 1. Figure 5-2 illustrates
how the arbiter is configured via the PCI_CFN[1] pin.

The arbiter uses a simple round-robin priority algorithm. The arbiter asserts the grant signal
corresponding to the next request in the round-robin during the currently executing transaction on
the PCI bus (this is also called hidden arbitration). If the arbiter detects that an initiator has failed to
assert frame_l after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter
deasserts the grant. That master does not receive any more grants until it deasserts its request for at
least one PCI clock cycle.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the
same PCI cycle in which it deasserts another. It deasserts one grant, and then asserts the next grant
after at least one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Figure 5-2. PCI Bus Arbiter

A7976-01

PCI Arbiter

GNT#[0]

PCI Master
State Machine

GNT#[1]

01

REQ#[0]

REQ#[1]

REQ#[0:2] GNT#[0:2]

PCI Unit

REQ

GNT
PCI_CFN[1] = 0 Arbiter Disabled

 = 1 Arbiter Enabled

GNT#[0] PCI Bus Grant Input to IXP1200 PCI Bus Grant Output to Master 1
GNT#[1] Not Used, Tied High PCI Bus Grant Output to Master 2
REQ#[0] PCI Bus Request Output from IXP1200 PCI Bus Request Input from Master 1
REQ#[1] Not Used, Float PCI Bus Request Input from Master 2

 Pin PCI_CFN[1] = 0 PCI_CFN[1] = 1
Hardware Reference Manual 127

Intel® IXP1200 Network Processor Family
PCI Unit
5.2.2 DMA Channels

There are two DMA channels, each of which can move blocks of data from SDRAM to the PCI or
from the PCI to SDRAM. The DMA channels read parameters from a list of descriptors in
memory, perform the data movement, and stop when the list is exhausted. The descriptors are
loaded from predefined SDRAM entries or may be set directly by a configuration write.

Figure 5-3 shows DMA descriptors in local SDRAM. Each descriptor occupies four Dwords and is
aligned on a quadword boundary. The DMA channels read the descriptors from local SDRAM into
the four DMA working registers once the control register has been set to initiate the transaction.
This control register is set automatically for microengine transactions but must be set explicitly for
StrongARM* core transactions. This starts the DMA transfer. The register names for the two
channels are listed in Figure 5-3. After a descriptor is processed, the next descriptor is loaded in the
working registers. This process repeats until the chain of descriptors is terminated (i.e., the End Of
Chain bit is set).

There is no restriction on byte alignment of the source address or the destination address. DMA
reads are always unmasked reads (all byte enables asserted) either from SDRAM or the PCI. For
PCI-to-SDRAM transfers, the PCI command is Memory Read, Memory Read Line, or Memory
Read Multiple according to the PCI read type field bits [6:5] in the CHAN_1_CONTROL or
CHAN_2_CONTROL register. After each read, the byte count is decremented by the number of
bytes read, and the source address is incremented by one Dword.

When moving a block of data, the IXP1200 internal hardware adjusts the byte enables so that the
write data is aligned properly on Dword boundaries and that only the correct bytes are written if the
initial and final data writes require masking.

5.2.2.1 Allocation of the DMA Channels

Both the StrongARM* core and the six microengines can access the two DMA channels. The
channels can function in one of the following modes, as determined by the DMA_INF_MODE
register:

Figure 5-3. DMA Descriptor Reads

A7977-01

Channel 1 Name Channel 2 Name

Local SDRAM

4
3

1 2

Final
Descriptor Table

Next
Descriptor Table

Prior
Descriptor Table

Current
Descriptor Table

Working Registers

Control Register

Byte Count Register CHAN_1_BYTE_COUNT CHAN_2_BYTE_COUNT
PCI Address Register CHAN_1_PCI_BAR CHAN_2_PCI_BAR
SDRAM Address Register CHAN_1_DRAM_ADDR CHAN_2_DRAM_ADDR
Descriptor Pointer Register CHAN_1_DESC_PTR CHAN_2_DESC_PTR

Control Register CHAN_1_CONTROL CHAN_2_CONTROL

Channel 1 NameDMA Channel Register Channel 2 Name
128 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
• The StrongARM* core owns both DMA channels.

• The microengines own both DMA channels.

• The StrongARM* core owns DMA channel 1 and the microengines own DMA channel 2
(default).

The DMA mode (as specified by the DMA_INF_MODE register) can be changed by the
StrongARM* core under software control. The StrongARM* core software should signal the
microengines to suspend DMA transactions and wait until both DMA channels are free before
changing the mode. The StrongARM* core software should determine when both DMA channels
are free either by polling IRQ_RAW_STATUS/FIQ_RAW_STATUS register bits [17:16] or by
reading the equivalent IRQ_STATUS/FIQ_STATUS register after having set the appropriate mask
bits in the IRQ_ENABLE/FIQ_ENABLE register.

5.2.2.2 StrongARM* Core Initiated DMA Channel Operation

The StrongARM* core can either set up the descriptors in SDRAM or it can write the first
descriptor table directly to the DMA channel registers.

When descriptors and the descriptor list are in SDRAM, the procedure is as follows:

1. The StrongARM* core writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (CHAN_1_DESC_PTR or CHAN_2_DESC_PTR).

2. The StrongARM* core writes the DMA Channel Control register (CHAN_1_CONTROL or
CHAN_2_CONTROL) with miscellaneous control information and also sets the channel
enable bit (bit 0). The channel initial descriptor bit (bit 4) in the CHAN_1_CONTROL or
CHAN_2_CONTROL register must also be cleared to indicate that the first descriptor is in
SDRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the
CHAN_1_BYTE_COUNT, CHAN_1_PCI_BAR, CHAN_1_DRAM_ADDR, and
CHAN_1_DESC_PTR registers or the CHAN_2_BYTE_CNT, CHAN_2_PCI_BAR,
CHAN_2_DRAM_ADDR, and CHAN_2_DESC_PTR registers.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done (bit 2) in the CHAN_1_CONTROL or CHAN_2_CONTROL register.

5. If the end of chain bit (bit 31) in the CHAN_1_BYTE_COUNT or CHAN_2_BYTE_COUNT
register is clear, the channel reads the next descriptor and transfers the data (steps 3 and 4
above). If bit 31 is set, the channel sets the channel chain done bit (bit 7) in the
CHAN_1_CONTROL or CHAN_2_CONTROL register and then stops.

6. If enabled via the IRQ_ENABLE or FIQ_ENABLE registers, the DMA channel interrupts the
StrongARM* core when the descriptor list is exhausted.

When single descriptors are written directly into the DMA channel registers, the procedure is as
follows:

1. The StrongARM* core writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the CHAN_1_BYTE_COUNT or CHAN_2_BYTE_COUNT
register must be set, and the value in the CHAN_1_DESC_PTR or CHAN_2_DESC_PTR
register is not used.

2. The StrongARM* core writes the base address of the DMA transfer into the
CHAN_1_PCI_BAR or CHAN_2_PCI_BAR register.
Hardware Reference Manual 129

Intel® IXP1200 Network Processor Family
PCI Unit
3. When the first descriptor is in the CHAN_1_BYTE_COUNT or CHAN_2_BYTE_COUNT
register, the CHAN_1_DRAM_ADDR or CHAN_2_DRAM_ADDR register must be written
with the address of the data to be moved.

4. The StrongARM* core writes the CHAN_1_CONTROL or CHAN_2_CONTROL register
with miscellaneous control information, along with setting the channel enable bit (bit 0). The
channel initial descriptor in register bit (bit 4) in the CHAN_1_CONTROL or
CHAN_2_CONTROL register must also be set to indicate that the first descriptor is already in
the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit (bit 2) in the CHAN_1_CONTROL or CHAN_2_CONTROL
register.

6. Since the end of chain bit (bit 31) in the CHAN_1_BYTE_COUNT or
CHAN_2_BYTE_COUNT register is set, the channel sets the channel chain done bit (bit 7) in
the CHAN_1_CONTROL or CHAN_2_CONTROL register and then stops.

7. If enabled via the IRQ_ENABLE or FIQ_ENABLE registers, the DMA channel interrupts the
StrongARM* core when the descriptor list is exhausted.

5.2.2.3 Microengine Initiated DMA Channel Operation

Microengine initiated DMA channel operations occur as follows:

1. A microengine thread sets up the descriptors in SDRAM. Microengines can not write directly
to the DMA descriptor register in the PCI unit.

2. The microengine thread initiates a DMA operation by writing the pointer to the first descriptor
in SDRAM to the DMA channel using the PCI_DMA instruction.

3. The DMA channel reads the descriptor block into the Channel Control, Channel PCI Address,
Channel SDRAM Address, and Channel Descriptor Pointer registers.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit in the DMA Channel Control Register.

5. If the end of chain bit in the DMA Channel Byte Count register is clear, the channel reads the
next descriptor and transfers the data. If it is set, the channel sets the chain done bit in the
DMA Channel Control Register and then stops.

6. If enabled (via the PCI_DMA instruction), the DMA channel can signal the microengine
thread when the descriptor list is exhausted.

There is an eight entry DMA request FIFO that holds pending microengine DMA descriptor
requests. This provides for nine outstanding microengine DMA requests, one in the allocated DMA
Channel, and eight in the DMA FIFO. There is no hardware back-pressure mechanism to indicate
when the DMA FIFO is full so microengine software must maintain status as to the number of
outstanding microengine DMA requests that are pending, to ensure it does not exceed the total of
nine.

If the microengine owns both DMA channels, DMA requests can be issued to either the next
available DMA channel or directly at DMA channel 2. If the PCI_DMA instruction has the
order_queue flag set, use DMA channel 2. Otherwise, use the next available DMA channel.
Targeting a DMA request at channel 2 ensures that DMA requests complete in the order they were
issued.
130 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
Figure 5-4 illustrates a microengine initiated DMA channel operation.

5.2.2.4 SDRAM-to-PCI Transfer

For a SDRAM-to-PCI transfer, the DMA channel reads data from SDRAM and places it into the
outbound FIFO for transfer to the PCI Bus when the following conditions are met:

• There is enough free space in the FIFO.

• The PCI interburst delay for the DMA channel has elapsed (see bits [9:8] of
CHAN_1_CONTROL or CHAN_2_CONTROL register).

• The SDRAM controller has completed any previous requests and grants access to the PCI unit.

The number of Dwords read from SDRAM is specified by the read length field bits (bits [18:16])
of the CHAN_1_CONTROL or CHAN_2_CONTROL register. At the beginning or end of a
transfer, fewer Dwords may be read depending on alignment and byte count.

5.2.2.5 PCI-to-SDRAM Transfer

For a PCI-to-SDRAM transfer, the DMA channel issues a sequence of PCI read request commands
through the Outbound FIFO. As the data is read, the DMA continues to issue new requests until the
specified number of Dwords has been read. If the target disconnects before that number of Dwords
has been read, the PCI unit waits for the PCI interburst delay before starting another read. The PCI
transaction also terminates if there is insufficient space in the Inbound FIFO to receive the
requested data or if the master latency timer expires. In all cases, all Dwords that were read into the
Inbound FIFO are written into SDRAM.

Figure 5-4. DMA Channel Operations Initiated by Microengine

A7978-01

Microengine
1

Microengine
3

Microengine
5

Microengine
0

Microengine
2

Microengine
4

DMA Requests

Intel® StrongARM*
DMA Requests

Request
Arbiter

PCI Bus

DMA Interface Mode Register

DMA_INF_MODE

Local SDRAM

Descriptors

32

Working
Registers

Control Register

Working
Registers

Control Register

DMA
Channel

2

DMA
Channel

1

* Other brands and names are the property of their respective owners.
Hardware Reference Manual 131

Intel® IXP1200 Network Processor Family
PCI Unit
5.2.3 I2O* Message Unit

This section describes the operation of the PCI unit’s I2O message unit. The I2O message unit
provides a standardized message-passing mechanism between a device on the PCI and the
StrongARM* core. It provides a means for the host processor on the PCI to read and write lists
over the PCI at offsets of 40h and 44h from the first base address.

The message unit supports four logical FIFOs located in local SDRAM:

• Inbound free list FIFO

• Inbound post list FIFO

• Outbound free list FIFO

• Outbound post list FIFO

The FIFOs are used to hold message frame addresses (MFAs). The MFAs are offsets (pointers) to
the message frames. The PCI unit does not interpret the MFA values other than to recognize the
special indicator for an invalid MFA (which is FFFF FFFFh), nor does it access the message
frames.

The I2O Inbound FIFOs are used to manage messages that are I/O requests from the host processor
to the StrongARM* core. The I2O Outbound FIFOs are used to manage messages that are replies
from the StrongARM* core to the host processor. The FIFOs are stored in SDRAM. The size of all
four FIFOs are of equal size as determined by bits [12:10] in the SA_CONTROL register.
Table 5-1 lists the four pointers maintained in the PCI unit and the four pointers that are maintained
by the StrongARM* core as variables in software.

Figure 5-5. I20 Overview Diagram

A7979-01

Inbound
Free
List

Inbound
Post
List

Outbound
Free
List

Outbound
Post
List

Inbound Message Frames Outbound Message Frames

Intel®
StrongARM*

Core

PCI Unit
Host

Processor
PCI Bus

Local SDRAM

32

IXP1200
132 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.2.3.1 I2O Inbound FIFO Operation

The I2O Inbound FIFO operation is as follows:

• Initialization

a. The StrongARM* core allocates memory space for both the inbound free list and inbound
post list FIFOs, and initializes the inbound pointers (both PCI unit registers and software
variables) with the address of the first MFA.

b. The StrongARM* core initializes the inbound free list FIFO by writing valid MFA values
to all entries. For each write to the inbound free list FIFO, the StrongARM* core must
also do a write to the inbound free list count (I2O_INB_FLIST_CNT) register to
increment the number of entries.

• Host posts an inbound message

a. When it needs to send a request message, the host processor removes an MFA from the
head of the inbound free list (via a read over the PCI bus to the PCI unit register offset
40h).

b. The host processor writes the request message to the MFA in IXP1200 SDRAM (via a
target write over the PCI Bus).

c. The host processor places the MFA onto the tail of the inbound post list (via a write over
the PCI bus to offset 40h). The PCI unit internally increments by 1 the inbound post list
count register, which interrupts the StrongARM* core (if not masked by IRQ_ENABLE
or FIQ_ENABLE). This interrupt occurs after the write has completed to ensure that the
message is in SDRAM before the interrupt.

• StrongARM* core accepts inbound message

a. The StrongARM* core removes the MFA from the head of the inbound post list. For each
read of the inbound post list, the StrongARM* core must also do a write to the inbound
post list count register to decrement the number of entries.

b. The StrongARM* core reads the request message from the MFA and performs the
application-specific action based on the message.

c. The StrongARM* core writes the MFA to the tail of the inbound free list so that the
message frame can be reused at a future time. It also writes to the inbound free list count
register to increment the number of entries.

d. It is possible for the host to post more than one message before the StrongARM* core
accepts any posted messages. The interrupt to the StrongARM* core remains asserted as
long as there is at least one message posted.

Table 5-1. FIFO Pointers

Maintained by the PCI Unit Maintained by the StrongARM* Core within
SDRAM

Inbound free list head (I2O_INB_FLIST_HPTR) Inbound free list tail (I2O_INB_FLIST_TPTR)

Inbound post list tail (I2O_INB_PLIST_TPTR) Inbound post list head (I2O_INB_PLIST_HPTR)

Outbound free list tail (I2O_OUTB_FLIST_TPTR) Outbound free list head (I2O_OUTB_FLIST_HPTR)

Outbound post list head (I2O_OUTB_PLIST_HPTR) Outbound post list tail (I2O_OUTB_PLIST_TPTR)
Hardware Reference Manual 133

Intel® IXP1200 Network Processor Family
PCI Unit
5.2.3.2 I2O Outbound FIFO Operation

The I2O Outbound FIFO operation is as follows:

• Initialization

a. The I2O outbound FIFOs are initialized by the StrongARM* core by writing the
appropriate data into SDRAM.

b. The StrongARM* core allocates memory space for both the outbound free list and
outbound post list FIFOs, and initializes the outbound pointers (both PCI unit registers
and software variables) with the address of the first MFA.

c. The host processor initializes the outbound free list FIFO by writing valid MFAs to all
entries.

• StrongARM* core posts an outbound message

a. When it needs to send a reply message, the StrongARM* core removes an MFA from the
head of the outbound free list.

b. The StrongARM* core writes the reply message to the MFA in local SDRAM.

c. The StrongARM* core places the MFA onto the tail of the outbound post list. The
StrongARM* core must also do a write to the outbound post list count register to
increment the number of entries. The PCI unit asserts pci_irq_l when the value in the
outbound post list count register is not zero (if not masked by outbound interrupt mask
register).

• Host accepts outbound message

a. The host processor removes the MFA from the head of the outbound post list (via a read
over the PCI bus to offset 44h). The PCI unit internally decrements the value in the
outbound post list count register.

b. The host processor reads the reply message from the MFA (via reads over the PCI bus)
and performs the application-specific action based on the message.

c. The host processor writes the MFA to the tail of the outbound free list (via a write over the
PCI bus to offset 44h) so that the message frame may be reused at a future time.
134 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
• Circulation of MFAs

Figure 5-6 shows the circulation of MFAs from free lists to post lists and back. Initially all inbound
MFAs are on the inbound free list and all outbound MFAs are on the outbound free list.

5.2.4 Mailbox and Doorbell Registers

Mailbox and Doorbell registers provide hardware support for communication between the
StrongARM* core and a host processor on the PCI bus.

Four mailbox registers (MAILBOX_0, MAILBOX_1, MAILBOX_2, and MAILBOX_3) are
provided so that messages can be passed between the StrongARM* core and a device on the PCI
bus. All four registers are 32 bits and can be read and written with byte resolution from both the
StrongARM* core and PCI. How the registers are used is application dependent and the messages
are not used internally by the PCI Unit in any way. The mailbox registers are often used with the
Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the
purpose of the interrupt. The PCI Unit supports a Doorbell register that is used by a PCI device to
generate a StrongARM* core FIQ or IRQ interrupt and by the StrongARM* core to generate a PCI
interrupt. A source generating the Doorbell interrupt can write a software-defined bitmap to the

Figure 5-6. Circulation of MFAs

A7980-01

Host Inbound
Post
List

Inbound
Free
List

Intel® StrongARM*
Core

Host Request to Intel StrongARM Core Intel StrongARM Core to Local Host
1. Read MFA from inbound free list (40h).
2. Write message to message frame in local

memory (through SDRAM base address).
3. Write MFA to inbound post list (40h). Interrupt

is posted to Intel StrongARM Core.

1. Read MFA from inbound post list (local read).
2. Read message from local memory.
3. Place MFA back on inbound free list (local write).
4. Perform specific message action.

Local Response to Host Processor Host Processor Process Response Message
1. Read MFA from outbound free list (local read).
2. Write message to message frame in local

memory (local write).
3. Write MFA to outbound post list (local write).

Interrupt is posted to host.

Notes:
Local Memory =
Over PCI Bus =

1. Read MFA from outbound post list (44h).
2. Read message from local memory (through PCI

SDRAM base address).
3. Place MFA back on outbound free list (44h).
4. Perform specific message action.

Host

Outbound
Post
List

Outbound
Free
List

Intel StrongARM
Core
Hardware Reference Manual 135

Intel® IXP1200 Network Processor Family
PCI Unit
register to indicate a specific purpose. This bitmap is translated into a single interrupt signal to the
destination (either a PCI interrupt or a StrongARM interrupt). When an interrupt is received, the
Doorbell registers can be read and the bit mask can be interpreted. If a larger bit mask is required
than that provided by the Doorbell register, the Mailbox registers can be used to pass up to four
longwords of data.

The doorbell interrupts are controlled through the four registers shown in Table 5-2.

The StrongARM* core and PCI devices write to the DOORBELL register to generate up to 32
doorbell interrupts. The DBELL_PCI_MASK register and DBELL_SA_MASK register are used
to allocate any of the 32 bits in the DOORBELL register as either generating a StrongARM* core
interrupt or generating a PCI interrupt. The DBELL_SA_MASK and DBELL_PCI_MASK bits
should be assigned so that the individual Doorbell bits in the DOORBELL register are enabled to
interrupt either the PCI device or the StrongARM* core (not both). Normally, the allocation of
doorbells is performed during the design of the application by deciding how many unique causes
for interrupts are required.

Each bit in the DOORBELL register is implemented as an SR flip-flop. The StrongARM* core
writes a 1 to set the flip-flop and the PCI device writes a 1 to clear the flip-flop. Writing a 0 has no
effect on the register. The PCI and StrongARM interrupt signals are gated by the DOORBELL
Register (output of the SR flip-flop) and the state of the DBELL_SA_MASK and
DBELL_PCI_MASK registers.

To summarize, depending on the state of the DBELL_SA_MASK and DBELL_PCI_MASK
registers:

To assert an interrupt (i.e., to “push a doorbell”):

• A write of 1 to the corresponding bit of the DOORBELL Register generates an interrupt. This
is the case for either PCI device or StrongARM* core, since the write of 1 changes the
doorbell bit to the proper asserted state (i.e., 0 for a StrongARM interrupt and 1 for a PCI
interrupt).

To dismiss an interrupt:

• A write of 1 to the corresponding bit of the DOORBELL register bit clears an interrupt. This
is the case for either PCI device or StrongARM* core, since the write of 1 changes the
doorbell bit to the proper deasserted state (i.e., 1 for a StrongARM interrupt and 0 for a PCI
interrupt).

Table 5-2. Doorbell Interrupt Registers

Register Name Description

DOORBELL Used to generate the Doorbell interrupts.

DOORBELL_SETUP Used to initialize the Doorbell register and for diagnostics.

DBELL_PCI_MASK Used to determine which bits in the Doorbell register generate a PCI
interrupt.

DBELL_SA_MASK Used to determine which bits in the Doorbell register generate a StrongARM
interrupt.
136 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
Table 5-3 illustrates the register settings and the corresponding interrupt functions.

Figure 5-7 and Figure 5-8 illustrate how a Doorbell interrupt is asserted and cleared by both the
StrongARM* core and a PCI device.

Table 5-3. Doorbell Interrupt Functions

DBELL_SA_
MASK Bit

DBELL_PCI_
MASK Bit Action DOORBELL

Bit Result

0 0 Don’t care. Don’t care. Doorbell Bit is not used.

0 1

StrongARM* core writes 1 to
DOORBELL. 1 Interrupt to PCI is set.

PCI device writes 1 to
DOORBELL. 0 Interrupt to PCI is cleared.

1 0

PCI device writes 1 to
DOORBELL. 0 Interrupt to StrongARM* core

is set.

StrongARM* core writes 1 to
DOORBELL. 1 Interrupt to StrongARM* core

is cleared.

1 1 Don't care. 1 Illegal.

Figure 5-7. How the StrongARM* Core Generates Doorbell Interrupts to a PCI Device

A7981-01

1. Write 1 to set bit and
generate a PCI interrupt

2. Read to determine
the Mailbox interrupt
(e. g., reads 0x8000 0300)

3. "AND" the read values with
DBELL_PCI_MASK and write
back read value to clear interrupt
(e. g., write 0x8000 0300 & 0xFFFF 0000 =
0x8000 0000)

Determines which bits in the DOORBELL register
generate a PCI interrupt.

PCI_INT#FIQ or IRQ

(e. g., mask = 0xFFFF0000)

DBELL_SA_MASK
Register

DBELL_PCI_MASK
Register

DOORBELL Register
RS Q

D

Hardware Reference Manual 137

Intel® IXP1200 Network Processor Family
PCI Unit
The DOORBELL_SETUP register allows the StrongARM* core and a PCI device to perform two
functions that are not possible using the DOORBELL register. This register is used during setup
and diagnostics and is not used during normal doorbell operations. First, it allows the StrongARM*
core and PCI device to clear an interrupt that it has generated to the other device. For example,
during initialization, the StrongARM* core should clear the PCI Doorbell interrupts by writing to
the DOORBELL_SETUP register. Second, it allows the StrongARM* core and PCI device to
generate a doorbell interrupt to itself. This can be used for diagnostic testing. Each bit in the
DOORBELL_SETUP register is mapped to the D input of the SR flip-flop of the DOORBELL
register so any write operation to the DOORBELL setup register is reflected in the DOORBELL
register.

During system initialization, the doorbell registers must be initialized. This is accomplished by
doing the following (see Figure 5-9):

1. Write a 0 to all bits of the DOORBELL register for doorbells that interrupt the PCI and a 1 to
all bits of DOORBELL register for doorbells that interrupt the StrongARM* core. This is
accomplished by writing to the DOORBELL_SETUP register (which is an alias of the
DOORBELL register).

2. Write a 1 to all bits of the DBELL_ PCI_MASK register for doorbells that interrupt from the
StrongARM* core to the PCI device.

3. Write a 1 to all bits of the DBELL_SA_MASK register for doorbells that interrupt from a PCI
device to the StrongARM* core.

Figure 5-8. How the PCI Device Generates Doorbell Interrupts to the StrongARM* Core

A7982-01

Intel StrongARM Core

PCI_INT#FIQ or IRQ

DBELL_SA_MASK
Register

DBELL_PCI_MASK
Register

DOORBELL Register
RS Q

D

1. PCI device writes 1 to clear bit
and generate a FIQ/IRQ.

Intel® StrongARM* Core determines which bits in the
DOORBELL register generate a StrongARM Core
interrupt. (e. g., mask = 0x0000 FFFF)

2. StrongARM Core reads to determine the Mailbox interrupt.
(e. g., reads 0x030 F2F1)

3. StrongARM Core inverts the read value and ANDs with DBELL_PCI_MASK. Then
writes back the result to clear interrupt.
(e. g., write 0x030 F2F1 & 0x0000 FFFF = 0x0000 0C0E)

* Other brands and names are the property of their respective owners.

PCI_device
138 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
Figure 5-9. How the StrongARM* Core Initializes Doorbell Interrupts

A7983-01

Intel StrongARM Core

PCI_INT#FIQ or IRQ

DBELL_SA_MASK
Register

DBELL_PCI_MASK
Register

DOORBELL Register
RS Q

D

* Other brands and names are the property of their respective owners.

PCI_device

DOORBELL_SETUP
Register

1. Write the DOORBELL_SETUP register such that all bit positions used
for Intel StrongARM Core-to-PCI interrupts are written with 0, and all bit
positions used for PCI-to-StrongARM Core interrupts are written with 1.
Unused bits are "don't cares" and can be written to either value.

2. Write the Doorbell PCI mask register
with a 1 in all bit positions used for
Intel® StrongARM* Core-to-PCI interrupts.

3. Write the Doorbell Intel StongARM Core
mask register with a 1 in all bit positions
used for PCI-to-StrongARM Core interrupts.

Each bit of the DOORBELL
register is an SR Flip-Flop.
Hardware Reference Manual 139

Intel® IXP1200 Network Processor Family
PCI Unit
5.2.5 PCI Interrupt Pin

An external PCI interrupt can be generated in two ways:

1. A Message Frame Address (MFA) is added to the outbound post list (i.e., the outbound post
list is empty, or

2. The StrongARM* core initiates a Doorbell interrupt.

Figure 5-10 shows how PCI interrupts are managed via the PCI and the StrongARM* core.

Figure 5-10. PCI Interrupts

A7984-01

* Other brands and names are the property of their respective owners.

DBELL_PCI_MASK

DBELL_SA_MASK

DOORBELL

Doorbell

Outbound Post List interrupt

Write to enable specific Doorbell bits

Set Doorbell bits to generate
an interrupt to the StrongARM Core

PCI_INT#

Write to enable specific Doorbell bits

IRQ_RAW_STATUS

FIQ_RAW_STATUS

PCI_OUT_INT_STATUS

PCI_OUT_INT_MASK

Tells whether PCI interrupt
was from Doorbell or
Outbound Post List interrupt

Registers Accessible via the Intel StrongARM Core

Read Intel® StrongARM* Core
interrupts to determine PCI
interrupt source

Registers Accessible via the
Intel® StrongARM* Core or PCI

PCI_INT# pin

Enable PCI interrupt from all doorbell
bits and/or Outbound Post List
140 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.3 PCI Transactions

All PCI transactions occur between the StrongARM* core, microengines (via the DMA channels),
PCI unit, and SDRAM unit. A description of the three FIFOs used in performing the transactions
and their respective data follows:

• Outbound FIFO

— StrongARM* core write addresses and data for PCI

— StrongARM* core read addresses for PCI

— DMA write addresses and data for PCI

— DMA read addresses for PCI

• Inbound FIFO

— PCI write addresses and data for SDRAM

— PCI read addresses for SDRAM

— DMA read data from PCI to SDRAM

— StrongARM* core read data from PCI

• PCI Read FIFO

— PCI read data from SDRAM

5.3.1 Generating the Address

This section describes how the internal and PCI addresses are generated.
Hardware Reference Manual 141

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.1.1 Target Transactions - Internal Address Generation

When the IXP1200 is a target, the internal CSR or SDRAM address is generated when the PCI
address matches the appropriate base address register (Figure 5-11). Mask registers are provided to
set the window size into the SDRAM address space.

5.3.1.2 Master Transactions - PCI Address Generation

When the IXP1200 is a master, the PCI address is generated based on the PCI address extension
register (PCI_ADDR_EXT). Refer to Figure 5-12.

Figure 5-11. Target Transactions - Internal Address Generation

A7985-01

b31
b30

o
o
o

bn
bn-1
bn-2

o
o
o

b0

b31
b30
b29
b28
b27
o
o
o
b18
b17

o
o
o

b0

Address (17:0 to 27:0)

b31
b30
b29
b28
b27
o
o
o
b18
b17

o
o
o

b0

CSR Window Mask Encoding
n Addr Size (binary)
18	 17:0	 256MB	 1111 1111 11

19	 18:0	 128MB	 0111 1111 11

20	 19:0	 64MB	 0011 1111 11

21	 20:0	 32MB	 0001 1111 11

22	 21:0	 16MB	 0000 1111 11

23	 22:0	 8MB	 0000 0111 11

24	 23:0	 4MB	 0000 0011 11

25	 24:0	 2MB	 0000 0001 11

26	 25:0	 1MB	 0000 0000 11

27	 26:0	 512KB	 0000 0000 01

28	 27:0	 128B	 0000 0000 00*

*Only applies to memory CSR accesses

PCI Address PCI_IO_BAR
PCI_MEM_BAR

PCI_DRAM_BAR

CSR_BASE_ADDR_MASK

xor

Indicates whether this is addressing a
CSR (memory or I/O) or SDRAM (memory) access

The mask registers determine the window size.
A 0 in a mask position means the base address
register bits are read/write.
A 1 in a mask position means the base address
register bits are read only as 0.

DRAM_BASE_ADDR_MASK
(A mask is not used for CSR I/O)

(n = 18 to 28)

Figure 5-12. Master Transactions - Internal Address Generation

A7986-01

PIOADD PMSA RES

12 013151631

PIOADD
Intel®

StrongARM* Address
[15:2]

1516 031

PMSA Intel StrongARM Address [28:2]

031 292 1 28

PCI Address for PCI I/O Access PCI Address for PCI Memory Access

00

2 1

00

* Other brands and names are the property of their respective owners.
142 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.1.3 Master Configuration Transactions - PCI Address Generation

When the IXP1200 is a master and the StrongARM* core performs a configuration cycle access,
the PCI address is generated based on the StrongARM address as shown in Table 5-4 and
Figure 5-13.

5.3.2 Enabling PCI Bus Transactions

The IXP1200 PCI unit is initialized to an inactive, disabled state. No CSR or other accesses are
accepted by the PCI unit until the StrongARM* core has set the Initialize complete bit (bit 0) in the
SA_CONTROL register. This bit should be set after the StrongARM* core has initialized the
various PCI base address and mask registers..

5.3.3 PCI Target Transactions

This section describes the target response of the PCI unit to various PCI cycles.

5.3.3.1 Unsupported PCI Cycles As Target

The following PCI transactions are not supported by the IXP1200 as a target:

• I/O write to SDRAM

• I/O read to SDRAM

• Type 1 configuration write

• Type 1 configuration read

• Special cycle

• IACK cycle

• Dual-address cycle

The following commands are aliased:

• Memory Write and Invalidate is aliased to a memory write.

Table 5-4. Master Configuration Transactions

Cycle Conditions

Type 1 Configuration Cycle None.

Type 0 Configuration Cycle StrongARM* core address bits [23:22] are NOT equal to 11.

Figure 5-13. Master Configuration Transactions

A7987-01

* Other brands and names are the property of their respective owners.

0000 0000 Intel® StrongARM* Address [23:2]

031 23 2 1

00

24
Hardware Reference Manual 143

Intel® IXP1200 Network Processor Family
PCI Unit
• Memory Read Line and Memory Read Multiple to the CSR address space (not SDRAM space)
are aliased to a memory read.

5.3.3.2 Memory Write to SDRAM (Target Write)

PCI memory write to SDRAM occurs if the PCI address matches the SDRAM base address register
(PCI_DRAM_BAR) or the CSR base address register (PCI_MEM_BAR), and the PCI command is
either a memory write or a memory write and invalidate.

The PCI memory write data is collected in the Inbound FIFO and written to SDRAM when the
SDRAM is available. The PCI unit requests the SDRAM at the end of each eight Dword boundary
of the PCI burst (or at the end of the burst). If PCI address bits [1:0] are not 00 (that is, nonlinear
increment mode), and the master attempts to continue the burst past the first Dword, the PCI unit
signals a target disconnect.

If fewer than 16 free longwords are available in the Inbound FIFO at the start of the write, the PCI
unit signals retry to the PCI master. If the Inbound FIFO fills during the write, the PCI unit signals
target disconnect to the PCI master.

5.3.3.3 Memory Read, Read Line, Read Multiple to SDRAM (Target Read)

A PCI memory read from SDRAM occurs if the PCI address matches the SDRAM base address
register (PCI_DRAM_BAR) or the CSR base address register (PCI_MEM_BAR), and the
command is either a Memory Read, Memory Read Line, or Memory Read Multiple.

The read is completed as a PCI delayed read. That is, on the first occurrence of the read, the PCI
unit signals a retry to the PCI master. If there are no prior reads pending, the PCI unit latches the
address and command and places it into the Inbound FIFO. When the address reaches the head of
the FIFO, the PCI unit reads the SDRAM. If the delayed read latch is full and a new read to a
different address is attempted, that read gets a retry response and no change is made in the delayed
read latch. In other words, the new read does not displace the in-progress read.

When the read data is returned from SDRAM into the PCI Read FIFO, the PCI unit begins
decrementing its discard timer. If the PCI bus master has not repeated the read by the time the
discard timer reaches zero, the PCI unit discards the read data, invalidates the delayed read address,
and sets Discard Timer Expired (bit 8) in the StrongARM* core Control Register
(SA_CONTROL). If enabled, the PCI unit interrupts the StrongARM* core. The discard timer
counts 215 (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple (that is, all
memory read command types are aliased for a match). If there is a match, the response is as
follows:

• If the read data has not yet been read from SDRAM, the response is retry.

• If the read data has been read from SDRAM, assert trdy_l and deliver the data. If the master
attempts to continue the burst past the amount of data read from SDRAM, the PCI unit signals
a target disconnect.

A Memory Read Multiple command initiates a streaming prefetch from SDRAM so that it can
supply read data at the maximum PCI bus data rate. Streaming prefetch works as follows:

• The PCI unit reads 32 Dwords when the read is initially queued.
144 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
• When the PCI master repeats the read, the PCI unit starts to deliver data. When the PCI master
consumes the 17th Dword, the PCI unit reads the next 16 Dwords from SDRAM.

• As long as the PCI master continues to consume the 16th Dword of subsequent blocks, the PCI
unit reads the next 16 Dwords.

The PCI unit never deasserts trdy_l while supplying SDRAM read data. It deasserts trdy_l only
after all prefetched data has been transferred.

Streaming prefetch does not start if a PCI write to SDRAM is queued into the Inbound FIFO
between the delayed read being started and the read data being delivered. This allows the write data
to be written to SDRAM. In this case, only the first 32 Dwords are read. Streaming prefetch stops
when either of the following events occur:

• The PCI master ends the cycle (by deasserting frame_l). In this case, the PCI unit immediately
discards any remaining prefetched data.

• Other bus activity between the StrongARM* core or microengines and SDRAM prevents data
from being available in time. This is the target disconnect case, and the PCI unit never negates
trdy_l for the burst.

5.3.3.4 Type 0 Configuration Write

A PCI configuration write to a configuration register occurs when the following conditions are
satisfied:

• idsel is asserted,

• The PCI command is a configuration write, and

• The PCI address bits [1:0] are 00.

The PCI write data is written to a configuration register selected by PCI address bits [7:2]. The PCI
byte enables determine which bytes are written. If a nonexistent configuration register is selected
within the configuration register address range, the data is discarded and no error action is taken. If
the PCI master attempts to do a burst longer than one Dword, the PCI unit signals a target
disconnect.

5.3.3.5 Type 0 Configuration Read

A PCI configuration read to a configuration register occurs when the following conditions are
satisfied:

• idsel is asserted,

• The PCI command is a configuration read, and

• The PCI address bits [1:0] are 00.

The data from the configuration register selected by PCI address bits [7:2] is returned on ad[31:0].
If a nonexistent configuration register is selected within the configuration register address range,
the data returned are zeros and no error action is taken. If the PCI master attempts to do a burst
longer than one Dword, the PCI unit signals a target disconnect.

5.3.3.6 Write to CSR

A PCI write to a CSR occurs if either of the following conditions are satisfied:
Hardware Reference Manual 145

Intel® IXP1200 Network Processor Family
PCI Unit
• The PCI address matches the CSR memory base address register (PCI_MEM_BAR), and the
PCI command is either a Memory Write or Memory Write and Invalidate.

• The PCI address matches the CSR I/O base address register (PCI_IO_BAR), and the PCI
command is an I/O write.

The data is written to the CSR with offset equal to PCI address bits [7:2]. The I2O Outbound FIFO
and I2O Inbound FIFO are handled differently (see Section 5.3.3.8). The PCI byte enables
determine which bytes are written. If a nonexistent CSR is selected within the CSR address range,
the data is discarded and no error action is taken. If the PCI master attempts to do a burst longer
than one Dword, the PCI unit signals a target disconnect.

5.3.3.7 Read to CSR

A PCI read to a CSR occurs if either of the following conditions are satisfied:

• The PCI address matches the CSR memory base address register (PCI_MEM_BAR), and the
PCI command is either Memory Read, Memory Read Line, or Memory Read Multiple.

• The PCI address matches the CSR I/O base address register (PCI_IO_BAR), and the PCI
command is an I/O read.

The data from the CSR with an offset equal to PCI address [7:2] is returned on ad[31:0]. The I2O
Outbound FIFO and I2O Inbound FIFO (memory write offsets 40h and 44h) are handled differently
(see Section 5.3.3.9). If a nonexistent CSR is selected within the CSR address range, the data
returned is zeros. If the PCI master attempts to do a burst longer than one Dword, the PCI unit
signals a target disconnect.

5.3.3.8 Write to I2O Address

A PCI write to I2O address space occurs when the following conditions are satisfied:

• The PCI address matches the CSR memory base address register (PCI_MEM_BAR),

• The PCI command is either Memory Write or Memory Write and Invalidate, and

• The register offset is either 40h or 44h.

A write address of 40h causes data to be written to SDRAM using the indirect address defined in
I2O_INB_PLIST_TPTR and also increments this register. Similarly, a write address of 44h results
in a data write to the address defined in I2O_OUTB_FLIST_TPTR and also increments this
register. If the PCI master attempts to do a burst longer than one Dword, the PCI unit signals a
target disconnect.

Write data is discarded if the PCI address matches the CSR I/O base address register
PCI_IO_BAR), the PCI command is an I/O write, and the register offset is either 40h or 44h.

5.3.3.9 Read to I2O Address

A PCI read to I2O address space occurs when all three statements are true:

• The PCI address matches the CSR memory base address register (PCI_MEM_BAR),

• The PCI command is either Memory Read, Memory Read Line, or Memory Read Multiple

• The I2O Outbound FIFO (I2O_OUTB_FIFO) or I2O Inbound FIFO (I2O_INB_FIFO) register
is addressed (offset 40h or 44h).
146 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
This read is completed as a delayed read. On the first occurrence of the read, the PCI unit signals a
retry to the PCI master. If the delayed read latch is not full, the PCI unit latches the address and
command, and places it into the Inbound FIFO.

When the read address reaches the head of the FIFO, the PCI unit reads the SDRAM at the address
in the I2O inbound free list head pointer (I2O_INB_FLIST_HPTR) register (offset 40h), or the I2O
outbound post list head pointer (I2O_OUTB_PLIST_HPTR) register (offset 44h). If the list being
read is empty, the value FFFF FFFFh is substituted for the data read from the SDRAM.

When the master repeats the read command, the PCI unit compares the address and checks that the
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple (that is, all
memory read command types are aliased for a match). If there is a match, the response is as
follows:

• If the read data has not yet been read from SDRAM, the response is retry.

• If the read data has been read from SDRAM, assert trdy_l and deliver the data.

If the PCI master attempts to do a burst longer than one data phase, the PCI unit signals a target
disconnect.

If the delayed read latch is full and a new read from a different address is attempted, that read gets
a retry and no change is made in the delayed read latch. In other words, the new read does not
displace the in-progress read.

If the PCI address matches the CSR I/O base address register (PCI_IO_BAR), the PCI command is
an I/O read, and the register offset is either 40h or 44h. The PCI unit returns 0 for the read data.

5.3.4 PCI Master Transactions

The following sections describe the PCI master transactions performed by the PCI unit. All PCI
master transactions performed by the PCI unit are caused by either StrongARM* core loads and
stores that fall into the various PCI address ranges or by DMA channels. PCI write cycles are
caused by StrongARM* core writes (stores) and SDRAM-to-PCI DMAs. PCI read cycles are
caused by StrongARM* core reads (loads) and PCI-to-SDRAM DMAs. The command register
(PCI_COMMAND) bus master bit must be set for the PCI unit to perform any of the transactions
in this section.

5.3.4.1 Unsupported PCI Cycles As Master

PCI dual address cycles (DACs) are not supported by the PCI unit as a master.

5.3.4.2 Memory Write, Memory Write and Invalidate

This section describes Memory Write and Memory Write and Invalidate commands from the DMA
channels. The PCI unit attempts to use a Memory Write and Invalidate command when the
following conditions are met. If any condition is not met, the PCI unit uses the Memory Write
command.

• Memory write and invalidate enable bit in the command register (PCI_COMMAND) is a 1.

• Cache line size is set to a value of 4, 8, or 16 in the CACHE_LNSIZE register. Supported
during DMA transfers only. For master transactions initiated by the StrongARM* core,
StrongARM* core software should limit the burst size to one Dword.
Hardware Reference Manual 147

Intel® IXP1200 Network Processor Family
PCI Unit
• The address of the first Dword in the burst is aligned to a cache line as defined in the cache line
size (CACHE_LNSIZE) register.

• The number of Dwords in the burst is an integer multiple of the cache line size.

• There are no unoccupied bytes in the burst.

The following general rules apply to the memory write command transactions regardless of
whether the command was initiated by the StrongARM* core or the DMA channels:

• If the PCI unit receives either a target retry response or a target disconnect response before all
of the write data has been delivered, it resumes the transaction at the first opportunity, using
the address of the first undelivered Dword.

• If the PCI unit receives a master abort, it discards all of the write data from that transaction and
sets the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts
the StrongARM* core.

• If the PCI unit receives a target abort, it discards all of the remaining write data from that
transaction, if any, and sets the status register (PCI_STATUS) received target abort bit, which,
if enabled, interrupts the StrongARM* core.

• The PCI unit can deassert frame_l prior to delivering all data due to the master latency timer.
If this occurs, it resumes the memory write at the first opportunity, using the address of the first
undelivered Dword.

StrongARM* core CommandsPCI Memory Write or Memory Write and Invalidate commands
occur when the StrongARM* core writes to the PCI memory space.
The PCI address is derived from the StrongARM address and the
PCI address extension register (PCI_ADDR_EXT). The PCI byte
enables for each data phase are generated as appropriate based on
the StrongARM* core store instruction.

DMA Channels CommandsPCI Memory Write and Memory Write and Invalidate commands are
initiated from a DMA channel programmed to perform a SDRAM-
to-PCI transfer. The PCI address is based on the DMA channel PCI
address register (CHAN_1_PCI_BAR, CHAN_2_PCI_BAR). The
PCI byte enables are all asserted with the possible exception of
during the first or last Dword of a DMA transfer. The length of the
burst is normally 8 or 16 Dwords, with the possible exception of the
first or last burst of a DMA transfer.

5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple

This section describes Memory Read, Memory Read Line, and Memory Read Multiple commands
from either the StrongARM* core or DMA channel.

The following general rules apply to the command transactions regardless of whether the command
was initiated by the StrongARM* core or the DMA channels:

• If the PCI unit receives a target retry response, it repeats the same PCI command at the first
opportunity.

• If the PCI unit receives a master abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core

• If the PCI unit receives a target abort, it sets the status register (PCI_STATUS) received target
abort bit, which, if enabled, interrupts the StrongARM.
148 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
From StrongARM* core PCI memory reads are done when the StrongARM* core performs reads
from the PCI memory space. The PCI address is derived from the
StrongARM address and the PCI address extension register
(PCI_ADDR_EXT). For Memory Read, the PCI byte enables are
generated as appropriate based on the StrongARM* core load
instruction. For Memory Read Line and Memory Read Multiple, the PCI
byte enables assert for all data phases.

For Memory Read, one Dword is read.

From DMA The PCI command used is specified by the DMA channel PCI read type
field in the DMA channel control register (CHAN_1_CONTROL,
CHAN_2_CONTROL). The PCI address is based on the DMA channel
PCI address register (CHAN_1_PCI_BAR, CHAN_2_PCI_BAR). The
PCI byte enables assert for all data phases. The maximum number of
Dwords that can be read is specified in the DMA channel control
register.

5.3.4.4 I/O Write

An I/O write occurs when the StrongARM* core address is in the PCI I/O space. The PCI address
is derived from the StrongARM address and the PCI address extension register
(PCI_ADDR_EXT). The PCI byte enables for each data phase are generated as appropriate based
on the StrongARM* core store instruction. One Dword is written.

The following general rules apply to I/O write transactions:

• If the PCI unit receives a target retry response, it repeats the I/O write command at the first
opportunity.

• If the PCI unit receives a master abort, it discards the write data and sets the status register
(PCI_STATUS) received master abort bit, which, if enabled, interrupts the StrongARM* core.

• If the PCI unit receives a target abort, it discards the write data and sets the status register
(PCI_STATUS) received target abort bit, which, if enabled, interrupts the StrongARM* core.

5.3.4.5 I/O Read

An I/O read occurs when the StrongARM* core address is in the PCI I/O space. The PCI address is
derived from the StrongARM address and the PCI address extension register (PCI_ADDR_EXT).
The PCI byte enables for each data phase are generated as appropriate based on the StrongARM*
core load instruction. One Dword is read.

The following general rules apply to the I/O read transactions:

• If the PCI unit receives a target retry response, it repeats the I/O read command at the first
opportunity.

• If the PCI unit receives a master abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

• If the PCI unit receives a target abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.
Hardware Reference Manual 149

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.4.6 Configuration Write

A configuration write occurs when the StrongARM* core address is in the PCI configuration
address range. The PCI address is derived from the StrongARM address and depends on whether
type 0 or type 1 configuration space is addressed.

It is the responsibility of StrongARM* core software to generate an address that is meaningful for
the PCI configuration cycle. For example, typically ad[23:11] bits are used for the idsel of PCI
devices during a type 0 configuration cycle, so only one of those bits is a 1. The PCI byte enables
are generated as appropriate based on the StrongARM* core store instruction. One Dword is
written.

The following general rules apply to configuration write transactions:

• If the PCI unit receives a target retry response, it repeats the configuration write command at
the first opportunity.

• If the PCI unit receives a master abort, it discards the write data and sets the status register
(PCI_STATUS) received master abort bit, which, if enabled, interrupts the StrongARM* core.

• If the PCI unit receives a target abort, it discards the write data and sets the status register
(PCI_STATUS) received target abort bit, which, if enabled, interrupts the StrongARM* core.

5.3.4.7 Configuration Read

A configuration read occurs when the StrongARM* core address is in the PCI configuration space.
The PCI address is derived from the StrongARM address and depends on whether the type 0 or
type 1 configuration space is addressed. The PCI byte enables are generated as appropriate based
on the StrongARM* core load instruction. One Dword is read.

The following general rules apply to configuration read transactions:

• If the PCI unit receives a target retry response, it repeats the configuration read command at
the first opportunity.

• If the PCI unit receives a master abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

• If the PCI unit receives a target abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.

5.3.4.8 Special Cycle

A special cycle occurs when the StrongARM* core address is in the PCI IACK/Special space. The
special cycle is caused by a StrongARM* core write. The PCI address is undefined. The PCI byte
enables are generated as appropriate based on the StrongARM* core store instruction. One Dword
is written. Special cycles are broadcast to all PCI agents, so devsel_l is not asserted and no errors
can be received.
150 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.4.9 IACK Read

An IACK read occurs when the StrongARM* core address is in the PCI IACK/Special space. An
IACK read is caused by a StrongARM* core read. The PCI address is undefined. The PCI byte
enables are generated as appropriate based on the StrongARM* core load instruction. One Dword
is read.

The following general rules apply to IACK read transactions:

• If the PCI unit receives a target retry response, it repeats the IACK read at the first opportunity.

• If the PCI unit receives a master abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the
StrongARM* core.

• If the PCI unit receives a target abort, it substitutes FFFF FFFFh for the read data and sets the
status register (PCI_STATUS) received target abort bit, which, if enabled, interrupts the
StrongARM* core.

5.3.4.10 PCI Request Operation

The PCI unit asserts req_l[0] to act as bus master on the PCI for StrongARM* core and DMA
originated transactions. It deasserts req_l[0] for two cycles when it receives a retry or disconnect
response from the target.

However, if gnt_l[0] is asserted, the PCI unit can start a PCI transaction regardless of the state of
req_l[0].

When the PCI unit requests the PCI bus, it performs a PCI transaction when gnt_l[0] is received.
Once req_l[0] is asserted, the PCI unit never deasserts it prior to receiving gnt_l[0] (nor deasserts
it after receiving gnt_l[0] without doing a transaction).

5.3.4.11 Master Latency Timer

When the PCI unit begins a PCI transaction as master, asserting frame_l, it begins decrementing its
master latency timer. When the timer value reaches zero, the PCI unit checks the value of gnt_l[0].
If gnt_l[0] is deasserted, the PCI unit deasserts frame_l (if it is still asserted) at the earliest
opportunity. This is normally the next data phase for all transactions except for the memory write
and invalidate command (MWI). For MWI, it is the data phase at the top of a cache line. When the
command is MWI and the latency timer expires while the last Dword of a cache line is being
delivered, and frame_l is still asserted, the master delivers the entire next cache line before
stopping the transaction.
Hardware Reference Manual 151

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.5 Errors As PCI Target

PCI target errors are listed as follows:

• Address parity error

• Write data parity error

• Read data parity error

5.3.5.1 Address Parity Error

An address parity error is detected when the par signal driven by the PCI master does not match
the expected parity for the address and command. This causes the following actions to occur:

• The status register (PCI_STATUS) detected parity error bit is set.

• If the (potentially corrupted) address or command matches any of the PCI unit base address
registers, then the PCI unit claims the cycle and proceeds as though the address was correct.

• If the command register (PCI_COMMAND) parity error response bit is a 1, command register
SERR enable bit is a 1, and pci_cfn[0] is a 0, then serr_l is asserted for one cycle and the
status register (PCI_STATUS) signaled system error bit is set.

5.3.5.2 Write Data Parity Error

A write data parity error is detected when the par signal received by the PCI unit does not match
the expected parity for data and byte enables. This causes the following to occur:

• The status register (PCI_STATUS) detected parity error bit is set.

• If the command register parity error response bit is a 1, then:

— perr_l is asserted.

— If the data destination is SDRAM, and SDRAM parity is enabled, incorrect parity is
written to the SDRAM. The write is completed to the intended destination (that is, CSR,
SDRAM, or ROM) despite the detection of a parity error.

5.3.5.3 Read Data Parity Error

A read data parity error is detected when the PCI master asserts perr_l in response to read data
driven by the PCI unit. No action is taken by the PCI unit.

5.3.6 Errors As PCI Master

PCI master errors are listed as follows:

• Master abort

• Write data parity error

• Target abort on write

• Read data parity error

• Target abort on read
152 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.6.1 Master Abort

A master abort occurs when devsel_l is not asserted within five cycles after the PCI unit asserts
frame_l. This causes the following actions to occur:

• Status register (PCI_STATUS) received master abort bit is set (except if the transaction is a
special cycle).

• If the transaction was a write from StrongARM* core or DMA, all write data for the
transaction is discarded.

• If the transaction was a StrongARM* core read, FFFF FFFFh is inserted for read data.

• If the transaction was a DMA read or write, the channel error bit in the channel control register
(CHAN_1_CONTROL, CHAN_2_CONTROL) is set, stopping the channel.

5.3.6.2 Write Data Parity Error

A write data parity error occurs when the PCI target asserts perr_l in response to write data driven
by the PCI unit. This causes the following actions to occur:

• If the command register (PCI_COMMAND) parity error response bit is a 1, then:

— The status register (PCI_STATUS) detected parity error data bit is set.

— If the transaction was a DMA, the channel error bit in the channel control register
(CHAN_1_CONTROL, CHAN_2_CONTROL) is set, stopping the channel.

5.3.6.3 Target Abort on Write

When the PCI target signals a target abort, the following actions occur:

• Status register (PCI_STATUS) received target abort bit is set.

• Any remaining write data is discarded.

• If the transaction was a DMA, the channel error bit in the channel control register
(CHAN_1_CONTROL, CHAN_2_CONTROL) is set, stopping the channel.

5.3.6.4 Read Data Parity Error

A read data parity error is detected when the par signal that is received by the PCI unit does not
match the expected parity for data and byte enables. This causes the following actions to occur:

• The status register (PCI_STATUS) detected parity error bit is set. If the command register
(PCI_COMMAND) parity error response bit is set, then the status register (PCI_STATUS)
data parity error detected bit is set and the PCI unit asserts perr_l.

• Dwords with bad parity are marked as such in the Inbound FIFO.

— For DMA operations, if SDRAM parity is enabled, incorrect parity is written to SDRAM.
The channel error bit in the channel control register (CHAN_1_CONTROL,
CHAN_2_CONTROL) is set, stopping the channel.
Hardware Reference Manual 153

Intel® IXP1200 Network Processor Family
PCI Unit
5.3.6.5 Target Abort on Read

When the PCI target signals a target abort, the following actions occur:

• If the read is a demand read for the StrongARM* core, it substitutes FFFF FFFFh for the read
data.

• If the transaction was a DMA, the channel error bit in the channel control register
(CHAN_1_CONTROL, CHAN_2_CONTROL) is set, stopping the channel.
154 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
FBI Unit 6

This section describes the FBI Unit.

Section 6.1, “FBI Architecture” on page 6-156: Describes the architecture of the FBI Unit.

Section 6.2, “Push/Pull Engine Interface” on page 6-158: Describes how data is moved between
the FBI Unit and the other functional units.

Section 6.3, “Scratchpad Memory” on page 6-162: Describes the internal Scratchpad memory.

Section 6.4, “Hash Unit” on page 6-165: Describes the Hash Unit.

Section 6.5, “FBI CSRs” on page 6-168: Describes the FBI CSRs.

Section 6.6, “IX Bus Interface” on page 6-174: Describes the IX Bus and Ready Bus interfaces.
Hardware Reference Manual 155

Intel® IXP1200 Network Processor Family
FBI Unit
6.1 FBI Architecture

The FBI Unit provides on-chip Scratchpad memory, hash index generation hardware, an interface
to the IX Bus, and functions accessible through the FBI CSRs. The StrongARM* core and the
Microengines access these resources through the FBI Push/Pull Engine interface. Figure 6-1 is a
block diagram of the FBI Unit. A description of FBI resources appears in Table 6-1.

Figure 6-1. FBI Unit Block Diagram

Table 6-1. FBI Resources

FBI Resource Purpose Accessed By

Hash Unit Used to generate hash indexes for 48-bit or 64-bit data. Microengines

Scratchpad
Memory

4 Kbytes of internal memory (1 K x 4 byte). Operations
supported:

Read and Write operations.

Bit test/set, Bit test/clear, and Increment operations.

StrongARM* core/Microengines

Microengines

FBI CSRs

Registers are used for:

• FBI Unit configuration.

• Accessing IX Bus Interface (IX Bus and Ready
Bus).

• Inter-thread signaling.

• 64-bit counter.

• Clear-on-read register (SELF_DESTRUCT).

StrongARM* core1/
Microengines

IX Bus Transmitting and receiving data on the IX Bus. The IX
Bus is accessed through the FBI CSRs. Microengines

A7068-02

StrongARM Read
or Write (AMBA

Command from ATU)

TFIFO
16 elements

(10 quadwords
each)

FBI CSRs

Scratchpad
Memory

1024 x 32-bit

Hash
Unit

RFIFO
16 elements

(10 quadwords
 each)

Microengine Command
(Command Bus)

SRAM Data Bus
(To/From

Microengine SRAM
Transfer registers)

FBI Resouces

SDRAM Data Bus
(From SDRAM

Push/Pull Engines)

FBI
Push/Pull
Engine
Interface

IX Bus
Interface

IX Bus

Ready
Bus

IX Bus

Ready Bus

Operands

Hash Result
156 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
Ready Bus

8-bit data bus that is used:

• To read MAC FIFO Ready Flags.

• To assert flow control to a MAC device.

• As a communication channel to another IXP1200.

The Ready Bus is accessed through the FBI CSRs.

Microengines

RFIFO Data buffers that hold data received from the IX Bus. Microengines (read)

TFIFO Data buffers that hold data to be transmitted to the IX
Bus. Microengines (write)

1. The StrongARM* core does not have access to the fast_wr function supported by some FBI registers, the
CYCLE_CNT register, or the Hash Unit.

Table 6-1. FBI Resources (Continued)

FBI Resource Purpose Accessed By
Hardware Reference Manual 157

Intel® IXP1200 Network Processor Family
FBI Unit
6.2 Push/Pull Engine Interface

The StrongARM* core and the Microengines issue commands to the Push/Pull Engine Interface
when accessing an FBI resource. The Push/Pull Engine Interface places the commands into queues,
arbitrates which commands to service, and moves data between the FBI resources, the
StrongARM* core, and Microengines.

Figure 6-2. Push/Pull Engine Interface Block Diagram

A7059-01

8-Entry
Pull

8-Entry
Hash

8-Entry
Push

AMBA
Command
(from ATU)

TFIFO

CSR/Scratchpad

Hash

Pull Cmd

FBI Pull Engine

Push Cmd

CSR/Scratchpad

Hash Ret

RFIFO

Pull Data

Push Data

FBI Push Engine

Pull Engine Task Arbiter

Push Engine Task Arbiter

TFIFO

CSRs

Scratch-
pad

Hash
Unit

RFIFO

Task Requests

Micro-
engine
Command
Bus

fast_wr path

Internal Bus (To/From
Microengine SRAM
Transfer registers)

FBI ResoucesTask Requests
158 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.2.1 Push and Pull Engines

The Push/Pull Engine Interface contains a Push Engine and a Pull Engine for moving data to and
from an FBI Resource and the StrongARM* core and Microengines. The Push and Pull Engines
operate independently and in parallel with each other. This provides improved performance for
moving data through the FBI Unit.

The terms Push and Pull are used relative to the FBI Unit. The Push Engine pushes data out of the
FBI Unit to a Microengine SRAM Transfer Register or the StrongARM* core, and the Pull Engine
pulls data out of a Microengine SRAM Transfer Register or the StrongARM* core and places it
into an FBI resource.

In addition to servicing requests from the StrongARM* core and Microengines, the FBI Push and
Pull Engines also service requests from the Ready Bus for performing an autopush operation to a
Microengine SRAM Transfer Register. The FBI Push and Pull each contain a task arbiter that
determines which task it performs next. Table 6-2 defines the priorities for the task arbiters.

6.2.2 Microengine Initiated FBI References

When a thread issues a request to an FBI resource, a command is driven onto the internal command
bus and placed into command queues within the FBI Unit. Table 6-3 shows which queues are used
for each instruction type.

The fast_wr instruction does not use the FBI Push or Pull Engines. It uses logic that services the
instruction as soon as the write request is issued to the FBI CSR.

The sdram instruction, when used with the t_fifo_rd or r_fifo_wr command, relies on the SDRAM
Unit Push/Pull Engine to move data between SDRAM and the RFIFO and TFIFO.

Table 6-2. FBI Push and Pull Task Priorities

Priority Pull Engine Push Engine

1 StrongARM (AMBA) StrongARM (AMBA)

2 Hash (in progress) Scratchpad (test&set/clear return)

3 Hash (new operation) Rx Autopush

4 Pull Queue Tx Autopush

5 Hash (return data)

6 Push Queue

Table 6-3. Instructions Assigned to FBI Command Queues

Hash Queue Pull Queue Push Queue

hash1_48 csr (write) csr (read)

hash2_48 t_fifo_wr r_fifo_rd

hash3_48 scratch (write) scratch (read)

hash1_64 scratch (increment)

hash2_64 scratch (test & set/clear)

hash3_64
Hardware Reference Manual 159

Intel® IXP1200 Network Processor Family
FBI Unit
6.2.3 StrongARM* Core Initiated FBI References

The AMBA Translation Unit (ATU) translates StrongARM* core AMBA bus transactions to FBI
read and write operations. StrongARM* core reads and writes bypass the Microengine queues and
are temporarily latched until either the Push or Pull Engine is free to service the request. The Push
and Pull task arbiters give StrongARM* core requests the highest priority to minimize
StrongARM* core read stalls.

6.2.4 FBI Signal Events (to Microengines)

The FBI Unit provides a signal event to each Microengine thread to indicate when a reference to an
FBI resource is completed. A Microengine thread must explicitly request the sig_done or ctx_swap
optional tokens in the following instructions: t_fifo_wr, r_fifo_rd, csr, hash, and scratch.

6.2.5 Command Ordering

Since the FBI Unit contains multiple command queues, two references destined for different FBI
queues may not complete in the order in which they were issued.

A single thread may overload the FBI signal (SIG_DONE) with multiple references if the
references are to the same FBI queue. For example, if a Microengine thread executes the following
instructions, the execution order is maintained since both commands are placed into the read
command queue. In this case, when the FBI signal is asserted, this indicates both references have
completed.
r_fifo_rd[$xfer1, 0, rfifo_addr, 2]

scratch[read, $xfer0, 0, addr, 1], sig_done ; Or sig_swap

If multiple references are not issued to the same FBI queue, a separate FBI signal must be
requested for each reference to maintain ordering. For example, if a Microengine thread executes
the instructions below, the execution order may not be maintained since one command is placed
into the read queue and the other into the write queue. In this case, the first instruction requests the
FBI signal and waits until it is received. After the FBI signal is returned, the next instruction may
request another FBI signal.
r_fifo_rd[$xfer1, 0, rfifo_addr, 2], ctx_swap ;Doing FIFO read, moving data.

scratch[write, $xfer0, 0, addr, 1], sig_done (or ctx_swap);Write scratchpad RAM.

6.2.6 FBI Command Bus Arbiter Signaling

The Microengine Command Bus Arbiter determines which commands (from the Microengines and
StrongARM* core) are placed onto the internal Command bus. The FBI Unit provides a signal to
the Command Bus Arbiter to indicate when the FBI Unit can not accept any more commands
because one or more of the three FBI command queues are full. This allows the StrongARM* core
and Microengines to issue references to the FBI without managing a back pressure mechanism in
software. Even if the FBI Unit is not accepting any more commands, the Command Bus Arbiter
can continue to issue commands to other Units.
160 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.2.7 Scratchpad Test and Set/Clear Instructions

If a scratch instruction specifies a test_and_set_bits or a test_and_clear_bits operation, a
Microengine submits a command to the FBI Pull Engine queue to request that the bit mask
supplied in an SRAM Transfer Register can be read into the FBI Unit. Once the bit mask is read,
data is read from Scratchpad and a request is made to the Push Engine to write the original data
back to the SRAM Transfer Register. The Scratchpad memory data is modified per the mask data
and written back to Scratchpad memory. If specified in the instruction, the Microengine thread is
signaled after the data is returned to the Microengine.

Example 6-1. Scratchpad Test and Set Bits

scratch[bit_wr, $sram_xfer_reg, op1, op2, test_and_set_bits]

Where:

$sram_xfer_reg The beginning of a contiguous set of registers that supply the scratchpad
data on write operation or contain the read data after a read operation.

op1 and op2 These operands are added together to specify the scratchpad address

6.2.8 Scratchpad Increment Instruction

If a scratch instruction specifies an increment operation, the Microengine submits a command to
the FBI Pull Engine queue even though a pull operation is not performed. When the increment
command is serviced, data is read from Scratchpad memory, incremented by one, and written back
to Scratchpad memory.

Example 6-2. Scratchpad Increment

scratch[incr, --, op1, op2, 1], optional_token

Where:

-- Indicates an SRAM Transfer Register is not used for this command.

op1 and op2 These operands are added together to specify the scratchpad address.

1 Specifies a burst size of one.

optional_token sig_done, ctx_swap, defer [1], indirect_ref.

6.2.9 Hash Instruction

The hash instructions require the service of the FBI Pull and Push Engines. The Microengines
submit a hash command to the FBI Pull Engine queue to request that the data used to generate the
hash index be read from the SRAM Transfer Registers into the Hash Unit. Once the hash operation
is complete, a request is made to the Push Engine to write the hash index data back to the SRAM
Transfer Register. If specified in the instruction, the Microengine thread is signaled after the hash
index data is returned to the Microengine.

One to three hash operations can be performed with a single Microengine hash instruction. As
described in Section 6.4.1, the Hash Unit has two input buffers which may or may not be full.
Therefore, when multiple hashes are initiated by a single hash instruction, the FBI Pull Engine
feeds the data read from the SRAM Transfer registers into the Hash Unit one at a time. This
Hardware Reference Manual 161

Intel® IXP1200 Network Processor Family
FBI Unit
translates into a separate Pull Engine service request for each piece of data used to generate the
hash index. The Pull Engine Task Arbiter gives a higher priority to a hash operation in progress
than a new hash operation request.

6.3 Scratchpad Memory

The FBI unit contains 1024 x 32-bit of Scratchpad memory that is accessible by the StrongARM*
core and Microengines. The Scratchpad memory performs three basic operations: read and write
operations, bit operations and an increment operation. The Microengines support all operations
while the StrongARM* core only supports the read and write operations.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and SDRAM)
that is shared by the Microengines and the StrongARM* core. The Microengines and the
StrongARM* core can distribute memory accesses between these three memory resources to
provide a greater number of memory accesses occurring in parallel.

6.3.1 Read and Write Operations

Read and write operations to Scratchpad memory are supported by both the Microengines and the
StrongARM* core.

The Microengine scratchpad read and write instructions have the following formats:
scratch[read, $sram_xfer_reg, op1, op2, cnt], optional_token

scratch[write, $sram_xfer_reg, op1, op2, cnt], optional_token

Where:

$sram_xfer_reg The beginning of a contiguous set of registers which supply the
scratchpad data on write operation or contain the read data after a read
operation.

op1 and op2 These operands are added together to specify the scratchpad address

cnt A burst count of one to eight.

optional_token sig_done, ctx_swap, defer [1], indirect_ref

A Microengine initiates a write operation by first writing one to eight 32-bit data elements into an
SRAM Transfer Register, and then executing the scratch[write...] instruction. The reference is
placed into the FBI Pull command queue. When the command is serviced, the FBI Unit reads the
data from the SRAM Transfer Registers, performs a write operation to Scratchpad memory, and, if
specified, signals the Microengine thread when the operation is complete.

A Microengine initiates a read operation by executing the scratch[read...] instruction. The
reference is placed into the FBI Push command queue. When the command is serviced, the FBI
Unit performs a read operation to Scratchpad memory, pushes the data into the specified SRAM
Transfer Registers, and, if specified, signals the Microengine thread when the operation is
complete.

The Scratchpad memory is mapped into the StrongARM memory space at addresses 0xB004 4000
to 0xB004 4FFF (4 Kbytes of addresses). The StrongARM* core reads and writes Scratchpad
memory on longword address boundaries (byte and halfword are not supported).
162 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.3.2 Bit Write Operations

A bit write operation is one in which the specified bits at a 32-bit Scratchpad location are set or
cleared using a single Microengine instruction.

Note: The FBI Unit does not support bit operations for the StrongARM* core.

A Microengine initiates a bit write operation by first writing a 32-bit bit mask into an SRAM
Transfer Register, and then executing the scratch instruction using the bit_wr scratch command.
The instruction has the following format:
scratch[bit_wr, $sram_xfer_reg, op1, op2, bit_op], optional_token

Where:

$sram_xfer_reg The register that contains the bit mask and original data for test
operations

op1 and op2 These operands are added together to specify the Scratchpad address

bit_op Specifies one of the following bit operations:

• set_bits

• clear_bits

• test_and_set_bits

• test_and_clear_bits

optional_token sig_done, ctx_swap, defer [1], indirect_ref

The reference is placed into the FBI Pull command queue. When the command is serviced, the FBI
Unit reads the bit mask from the SRAM Transfer Register, performs a read-modify-write operation
on the Scratchpad data, and, if specified, signals the Microengine thread when the operation is
complete.

Figure 6-3. Scratchpad Memory Mapping

A7074-01

0xB004 4000

0xB004 4FFC

0x000

0x3FF

Microengine
Address

Intel® StrongARM®* Core
Address

* StrongARM is a registered trademark of ARM Limited.

0x0010xB004 4004
Hardware Reference Manual 163

Intel® IXP1200 Network Processor Family
FBI Unit
If the instruction specifies a test_and_set_bits or a test_and_clear_bits operation, the FBI Unit
submits a command to the FBI Pull engine to deliver the original data back to the SRAM Transfer
Register prior to signaling the Microengine thread. A Microengine thread should always perform a
context swap on a test_and_set_bits or a test_and_clear_bits operation if it is immediately
followed by a read operation.

6.3.3 Auto Increment Operations

An auto increment operation is one in which the data at a specified 32-bit Scratchpad location is
incremented by one.

A Microengine initiates an auto increment operation by executing the scratch[incr,...] instruction:
scratch[incr, --, op1, op2, 1], optional_token

Where:

-- Indicates an SRAM Transfer Register is not used for this command.

op1 and op2 These operands are added together to specify the scratchpad address.

1 Specifies a burst size of one.

optional_token sig_done, ctx_swap, defer [1], indirect_ref.

The reference is placed into the FBI Pull command queue. When the command is serviced, the FBI
Unit reads the data from Scratchpad memory, performs a read-increment-write operation on the
Scratchpad data, and, if specified, signals the Microengine thread when the operation is complete.
164 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.4 Hash Unit

The FBI Unit contains a Hash Unit that can take 48-bit or 64-bit data and produce a 48-bit or a 64-
bit hash index, respectively. The Hash Unit is accessible by the Microengines only.

6.4.1 Hashing Operation

Up to three hash indexes can be created using a single Microengine instruction. The Microengine
hash instructions have the following format:
hash1_48[$sram_xfer_reg], optional_token

hash2_48[$sram_xfer_reg], optional_token

hash3_48[$sram_xfer_reg], optional_token

hash1_64[$sram_xfer_reg], optional_token

hash2_64[$sram_xfer_reg], optional_token

hash3_64[$sram_xfer_reg], optional_token

Where:

$sram_xfer_reg The beginning of a contiguous set of registers that supply the data used
to create the hash index and contain the hash index upon completion of
the hash operation.

optional_token sig_done, ctx_swap, defer [1]

A Microengine initiates a hash operation by writing a contiguous set of SRAM Transfer Registers
with the data to be used to generate the hash index and then executing the hash instruction. Two
SRAM Transfer Registers are required to create each hash index. In the case of the 48-bit hash, the
Hash Unit ignores the upper two bytes of the first Transfer Register.

The reference is placed into the FBI Hash command queue. The FBI Pull Engine arbitrates between
the AMBA, Hash, and Pull command queues and services the Hash queue according to the priority
shown in Section 6.2.1. When the command is serviced, the FBI Pull Engine reads the data from
the SRAM Transfer Registers and deposits the data into a 64-bit two-stage buffer. The two-stage
buffer allows the data for up to three hash operations to be read into the Hash Unit in a single burst.
The first data to be hashed enters the hash array while the next two wait in the two-stage buffer.

Figure 6-4. How SRAM Transfer Registers are Used

A7071-02

$xfer n+5

$xfer n+4

$xfer n+3

$xfer n+2

$xfer n+1

$xfer n

hash 3 [31:0]

hash 2 [31:0]

don't care

hash 1 [31:0]

48-Bit Hash Operations

hash 3 [63:32]

hash 3 [31:0]

hash 2 [63:32]

hash 2 [31:0]

hash 1 [63:32]

hash 1 [31:0]

64-Bit Hash Operations

hash 1 [47:32]

$xfer n+5

$xfer n+4

$xfer n+3

$xfer n+2

$xfer n+1

$xfer n

don't care hash 2 [47:32]

don't care hash 3 [47:32]

31 0
Hardware Reference Manual 165

Intel® IXP1200 Network Processor Family
FBI Unit
The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indexes. Two separate multipliers are supported, one for 48-bit hash operations and one
for 64-bit hash operations. The multiplier is programmed through FBI registers
(HASH_MULTIPLIER_64_LO, HASH_MULTIPLIER_64_HI, HASH_MULTIPLIER_48_LO,
HASH_MULTIPLIER_48_HI).

The multiplicand is shifted into the hash array eight bits at a time. The hash array performs a ones-
complement multiply and polynomial divide, calculated using the multiplier and 8 bits of the
multiplicand. The result is placed into an output register and also feeds back into the array. This
process is repeated 6 times for a 48-bit hash (8 bits x 6 = 48) and 8 times for a 64-bit hash (8 bits x
8 = 64). After an entire multiplicand has been passed through the hash array, the resulting hash
index is placed into a two-stage output buffer. After each hash index is completed, the Hash Unit
requests service from the FBI Push Engine so that the hash index can be returned to the
Microengines SRAM Transfer Registers. If specified by the instruction, the FBI Push engine
signals the Microengine after all the hashes specified in the instruction have been completed.

The number of Core clock cycles required to perform a single hash operation equals: two cycles
through the input buffers, six or eight cycles through the hash array, and two cycles through the
output buffers. Because of the pipeline characteristics of the Hash Unit, performance is improved if
multiple hash operations are initiated with a single instruction rather than separate hash instructions
for each hash operation.

Figure 6-5. Hash Operation Flow

A7078-01

Multiplicand 2

Data Used to Create Hash Index
from SRAM Write Transfer Registers

Multiplicand 3

HASH_MULTIPLIER_48
Hash Array

Multiplicand 1

shift8

Hashed Multiplicand 1
Hashed Multiplicand 2

Hashed Multiplicand 3

Hash Unit

64

64

Hash Indexes to
SRAM Read Transfer Registers

48-Bit or 64-Bit Hash Select

64 HASH_MULTIPLIER_64

2-Stage Output Buffer

2-Stage Input Buffer
166 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.4.2 Hash Algorithm

The hashing algorithm used by the IXP1200 allows flexibility and uniqueness since it can be
programmed to provide different results for a given input. The algorithm uses binary polynomial
multiplication and division under modulo-2 addition. The input to the algorithm is a 48-bit or 64-
bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47
polynomial in x. The input polynomial (designated as A(x)) has the form:

A(x) = a47 * x47 + a46 * x46 + + a2 * x2 + a1 * x + a0 (48-bit hash operation)

A(x) = a63 * x63 + a62 * x62 + + a2 * x2 + a1 * x + a0 (64-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The
hash multiplier, M(x) is stored in FBI CSRs and represents the polynomial

M(x) = m47 * x47 + m46 * x46 + + m2 * x2 + m1 * x + m0 (48-bit hash operation)

M(x) = m63 * x63 + m62 * x62 + + m2 * x2 + m1 * x + m0 (64-bit hash operation)

Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial or
an order-126 polynomial with coefficients that are also 1 or 0. This product is divided by a fixed
generator polynomial given by:

G(x) = x48 + x36 + x25 + x10 + 1 (48-bit hash operation)

G(x) = x64 + x54 + x35 + x17 + 1 (64-bit hash operation)

The division results in a quotient Q(x), a polynomial of order-46 or order-62, and a remainder R(x),
a polynomial of order-47 or order-63. The operands are related by the equation:

A(x) * M(x) / G(x) = R(x) + Q(x)

The generator polynomial has the property of irreducibility. As a result, for a fixed multiplier M(x),
there is a unique remainder R(x) for every input A(x). The quotient Q(x), can then be then
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given
bounded set of input values A(x) (say 8 K or 16 K table entries), with bit weights of an arbitrary
density function can be mapped one-to-one into a set of remainders R(x) such that the bit weights
of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all about equal.
In other words, there is a high likelihood that the low order set of bits from the Hash Arguments are
unique, so they can be used to build an index into the table. If the hash algorithm does not provide
a uniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may
be modified to provide better results.
Hardware Reference Manual 167

Intel® IXP1200 Network Processor Family
FBI Unit
6.5 FBI CSRs

The FBI CSR registers are accessible by the StrongARM* core and Microengines and are used to:

• Configure and control the IX Bus Interface.

• Configure the Hash Unit.

• Generate inter-thread signaling.

• Generate Microengine initiated StrongARM* core interrupts.

• Read a 64-bit cycle count register (Microengine only access).

6.5.1 CSR Reads and Writes

The Microengines can read or write any FBI CSR using the csr instruction. One FBI CSR is read
per csr instruction except when GET_CMD and CYCLE_CNT registers are read. The GET_CMD
is mapped to an 8-entry x 32-bit FIFO and up to four entries can be read in a single instruction.
Reading the CYCLE_CNT register returns a 64-bit count value into two SRAM Transfer Registers.

The StrongARM* core can read or write any of the FBI registers except the 64-bit CYCLE_CNT
register. The FBI registers are mapped into the StrongARM address space.

6.5.2 FAST_WR Support

The Microengine support a fast_wr instruction that bypasses the Push and Pull queues to improve
performance when writing to a subset of FBI registers. The fast_wr instruction is not supported for
the StrongARM* core. The fast_wr instruction supplies 10-bit immediate data in the reference
command. This eliminates the need for the FBI Pull engine to read data from a Microengine
Transfer Register when it processes the command.

The meaning of the 10-bit immediate data is shown in Table 6-4. Some registers do not require the
entire 10 bits. The programmer should ensure that data larger than what is specified for the register
is not written, since it extends past the Microengine assigned bit field into another Microengine
assigned bit field.

Table 6-4. 10-Bit Immediate Data (Sheet 1 of 2)

Register 10-Bit immediate data

INTER_THD_SIG Thread number of the thread that is to be signaled.

THREAD_DONE A 2-bit message that is shifted into a position relative to the thread that is writing
the message. The message is determined through software.

THREAD_DONE_INCR1

THREAD_DONE_INCR2
Same as thread_done except that either the enqueue_seq1 or enqueue_seq2 is
also incremented.

XMIT_VALIDATE The Transmit FIFO element number (0 to 15) that is to marked to indicate that the
data is valid in this element.
168 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.5.3 FBI CSR Description Summary

The FBI CSRs are listed by function and briefly described in the following sections. Refer to the
IXP1200 Network Processor Programmer’s Reference Manual for more information on the FBI
CSRs.

6.5.3.1 IX Bus Receive Registers

The purpose of the Receive Request Registers is described in detail in Section 6.6.4.

The purpose of the Sequence Numbers Registers is described in detail in Section 6.6.8.

INCR_ENQ_NUM1

INCR_ENQ_NUM2
Write a one to increment the Enqueue Sequence Number by one (The Sequence
Number is always incremented by one).

SELF_DESTRUCT Specifies the bit position (0-31) that is set.

IREG

The 10-bit immediate data supplied with the instruction is shifted in two segments
to the appropriate fields. Bits 6 through 0 are shifted left by an amount equal to the
thread number writing the data. Bits 9 through 7 are always shifted into the BP2
through BP0 positions regardless of the Microengine writing the data.

Table 6-4. 10-Bit Immediate Data (Sheet 2 of 2)

Register 10-Bit immediate data

Table 6-5. Receive Request Registers

Register Description

RCV_REQ Receive Request Register. Written by a Microengine thread to issue a Receive
Request to the Receive State Machine. (Implemented as a 2-entry FIFO).

RCV_CNTL Receive Control Register. Written by the Receive State Machine to provide control
information about the data in an RFIFO. (Implemented as a 4-entry FIFO).

Table 6-6. Sequence Numbers Registers

Register Description

SOP_SEQ1

SOP_SEQ2
SOP sequence number incremented by the Receive State Machine for Fast Ports 1
and 2.

ENQUEUE_SEQ1

ENQUEUE_SEQ2
Enqueue SOP sequence number incremented by the Microengine threads for Fast
Ports 1 and 2.
Hardware Reference Manual 169

Intel® IXP1200 Network Processor Family
FBI Unit
6.5.3.2 IX Bus Transmit Registers

The purpose of these registers is described in detail in Section 6.6.5.

6.5.3.3 IX Bus and Ready Bus Configuration Registers

The purpose of these registers is described in detail in Section 6.6.1 and Section 6.6.3.

Table 6-7. IX Bus Transmit Registers

Register Description

XMIT_VALIDATE Transmit Validate Register. Written by a Microengine thread (using the fast_wr
instruction) to indicate the data and control information in a TFIFO element is valid.

XMIT_PTR Transmit Pointer Register. Read by a Microengine thread to determine which
TFIFO element is transmitted next by the Transmit State Machine.

Table 6-8. IX Bus and Ready Bus Configuration Registers

Register Description

RDYBUS_TEMPLATE_CTL

Ready Bus/IX Bus Configuration Register. Used to:

• Enable the Ready Bus Sequencer.

• Select 1-2 MAC or 3+ MAC mode.

• Select 32-bit unidirectional or 64-bit bidirectional IX Bus mode.

• Specify the Ready Bus as a master or slave.

• Select Shared IX Bus mode.

• Select IX Bus Status mode.

• Select IX Bus little or big endian mode.

RCV_RDY_CTL

Ready Bus/IX Bus Configuration Register. Used to:

• Select the Fast Port mode.

• Configure the Ready Bus for Rx autopush operation.

XMIT_RDY_CTL

Ready Bus/IX Bus Configuration Register. Used to:

• Keep a copy of the current TFIFO Valid flags.

• Configure the Ready Bus for Tx autopush operation.

RDYBUS_TEMPLATE_PROG3

RDYBUS_TEMPLATE_PROG2

RDYBUS_TEMPLATE_PROG1

Ready Bus Program Register. Contains the Ready Bus Sequencer
program.

RDYBUS_SYNCH_COUNT_DEFAULT
Ready Bus Synchronize Counter Register. Contains the count
value used to determine the minimum rate at which the Ready Bus
Sequencer repeats the program.

FP_READY_WAIT

Fast Port Mode Configuration Register. Specifies how many IX Bus
clock cycles the Receive State Machine waits before returning to
the same Fast Port between the time it reads the last data transfer
on the IX Bus and the time the Receive State Machine samples the
receive ready pins (FAST_RX1 and FAST_RX2) to start the next
receive.

REC_FASTPORT_CTL Fast Port Status Register. Provides the current status of the header
and body thread assignments for the two Fast Ports.
170 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.5.3.4 Ready Bus Control Registers

The purpose of these registers is described in detail in Section 6.6.3. Table 6-9 provides a summary.

6.5.3.5 Hash Unit Configurations Registers

The purpose of these registers is described in detail in Section 6.4.1. Table 6-10 provides a
summary.

6.5.3.6 FBI Interrupt/Signal Registers

Table 6-9. Ready Bus Control Registers

Register Description

FLOWCTL_MASK MAC Flow Control Mask Register. Written by the Microengines to specify the MAC
and the 8-bit mask that determine which port asserts flow control.

RCV_RDY_CNT

Status register that provides the following:

• Receive Ready Count.

• Receive Request Count.

• Fast Receive Ready flags for ports 1 and 2.

• FLOWCTL_MASK register valid data status.

• Initial IX Bus owner/Ready Bus Master.

RCV_RDY_HI

RCV_RDY_LO
Receive Ready Flags. Status registers that indicate which MAC Ports Rx FIFOs
have data available.

XMIT_RDY_LO

XMIT_RDY_HI
Transmit Ready Flags. Status registers that indicate which MAC Ports Tx FIFOs
have room for data.

GET_CMD

SEND_CMD
Get and Send registers. Typically used to send data to another IXP1200. These
registers are each mapped to eight-entry FIFOs.

Table 6-10. Hash Unit Configurations Registers

Register Description

HASH_MULTIPLIER_64_HI

HASH_MULTIPLIER_64_LO
64-bit Hash Multiplier. These registers contain the programmable hash
multiplier for generating 64-bit hash indexes.

HASH_MULTIPLIER_48_HI

HASH_MULTIPLIER_48_LO
48-bit Hash Multiplier. These registers contain the programmable hash
multiplier for generating 48-bit hash indexes.

Table 6-11. FBI Interrupt/Signal Registers

Register Description

IREG
StrongARM* core FBI Interrupt Register. Used to enable CINT and Microengine
thread interrupts to the StrongARM* core. Microengines threads write this register
to generate a StrongARM interrupt.

INTER_THD_SIG Inter-thread Signaling Register. Any thread or the StrongARM* core can write a
Microengine thread number to this register to signal an inter-thread signal event.
Hardware Reference Manual 171

Intel® IXP1200 Network Processor Family
FBI Unit
6.5.3.7 Thread Status Registers

6.5.3.8 Miscellaneous Registers

The purpose of these registers is described in detail in Section 6.5.4 and Section 6.5.5. Table 6-13
provides a summary.

6.5.4 Cycle Count Register

The IX Bus Interface contains a free running 64-bit counter that provides an ~3000-year modulo
count that is incremented once each Core clock cycle (Fcore). This counter is read by accessing the
CYCLE_CNT register. This is the only register read by the Microengine as a single 64-bit register
into two SRAM Transfer Registers using the csr instruction. The StrongARM* core can not read
this register.

The use of the Cycle Counter is defined by the programmer. The Microengine threads can read this
register to perform time-sensitive tasks such as regulating transmit bandwidth.

6.5.5 Self Destruct Register

The SELF_DESTRUCT register is written using a fast_wr instruction. Writing this register sets a
bit that corresponds to the data written. For example, writing a value of 3 sets bit 3. Multiple writes
can be performed to set additional bits without changing the state of the other bits in the register.
The register is read using the csr instruction. When the register is read, all bits are cleared to 0 after
the original data is read.

When a Microengine executes a fast_wr instruction, the data bypasses the FBI command queues to
the Push and Pull engines. Since a CSR read of this register places a csr read command into the
Push queue, the order may not be preserved if a CSR read is followed by a fast_wr instruction.

Table 6-12. Thread Status Registers

Register Description

THREAD_DONE
Thread Processing Status (write). All 24 Microengine threads can write 2-bit
messages to this register using the fast_wr instruction to indicate current
processing status.

THREAD_DONE_REG0

THREAD_DONE_REG1
Thread Processing Status (read). Each of the 24 Microengine threads can read
the 2-bit messages that were written using the fast_wr instruction.

THREAD_DONE_INCR1

THREAD_DONE_INCR2

Thread Processing Status (write). These registers are the same as
THREAD_DONE except that they also increment Fast Port enqueue sequence
numbers (in ENQUEUE_SEQ1 and ENQUEUE_SEQ2) when written.

Table 6-13. Miscellaneous Registers

Register Description

CYCLE_CNT Cycle Count Register. A 64-bit counter that can be read by any Microengine thread
(can not be read by the StrongARM* core).

SELF_DESTRUCT

Self Destruct Register. This register is written during a fast_wr instruction with data
in the range of 0 through 31 (decimal). Writing this register sets a bit that
corresponds to the data written. When the register is read, all bits are cleared to 0
after the original data is read.
172 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
The use of the SELF_DESTRUCT register is defined by the programmer. One possible use is as a
fast method of communication between threads.

6.5.6 Thread Status Registers (THREAD_DONE)

The THREAD_DONE registers are provided so that the Microengines can quickly report their
current processing status. Other Microengine threads or the StrongARM* core can read the register
to get the processing status of the Microengine threads. These registers contain twenty-four 2-bit
status fields, one for each Microengine thread.

The Microengines write a 2-bit message to the THREAD_DONE register using a fast_wr
instruction.

Each Microengine thread can be programmed to write a 2-bit message that represents their current
processing status to one of these fields using the fast_wr instruction. The fast_wr immediate data
is shifted into the correct bit position within the register based on the thread ID of the Microengine
thread that issued the fast_wr command.The data should be constrained to values 0, 1, 2, or 3,
otherwise the 10-bit immediate data overwrites the bit fields for other threads. The thread
processing status of the Microengine threads are read using the csr read instruction. Since the
number of bits required to support 24 2-bit messages exceeds 32 bits, two registers
(THREAD_DONE_REG0 and THREAD_DONE_REG1) must be read to read the status for all the
Microengine threads.

The definition of the 2-bit status field is determined through software. An example of the 2-bit
encoding is shown in the following example:

Example 6-3. 2-bit Encoding Example

Message Description

00 Thread is still active

01 Thread task is complete but it has not seen an EOP

10 Thread task is complete and the EOP was seen

11 Not used
Hardware Reference Manual 173

Intel® IXP1200 Network Processor Family
FBI Unit
6.6 IX Bus Interface

The IX Bus Interface consists of two buses: The Ready Bus and the IX Bus.

The Ready Bus is controlled by a programmable sequencer and is used for:

• Retrieving the MAC Receive and Transmit FIFO Ready flags from MAC devices.

• Asserting Flow Control to MAC devices.

• Inter-IXP1200 communications.

The IX Bus is used to transfer data to and from slave devices (i.e., MACs). It is controlled by a
Transmit State Machine and a Receive State Machine. An IX Bus Arbiter is provided for selecting
which state machine owns the IX Bus. These components are described in the following sections.

6.6.1 Configuring the IX Bus and Ready Bus

This IX Bus is configured by software through a series of registers and through a hardware
configuration pin. The figures that follow provide a summary of the FBI registers that are used to
configure the IX Bus and the Ready Bus. These registers are described in more detail in
theIXP1200 Network Processor Programmer’s Reference Manual.

The TK_IN pin (which is used as a token input pin) has a secondary function used at power-up to
configure the IX Bus. It determines whether an IXP1200 powers up as a Ready Bus master or
slave and whether an IXP1200 initially owns the IX Bus upon power-up. This is important since it
defines which IXP1200 should drive the IX Bus and Ready Bus to a known state prior to
configuring the IX Bus through software. If TK_IN is pulled high during reset, an IXP1200 will
initially own the IX Bus, is configured as the Ready Bus master, and drives both of these buses. If
TK_IN in pulled low during reset, an IXP1200 will not drive these buses. In a single IXP1200
system, the TK_IN pin should be pulled high. System designs that use the Shared IX Bus mode
should have only one IXP1200 pulling this pin high.

Figure 6-6. IX Bus Interface

A7069-02

TFIFO
16 elements

(10 quadwords
each)

FBI CSRs

RFIFO
16 elements

(10 quadwords
 each)

IX Bus
Interface

Logic

Ready Bus
Sequencer

Receive State
 Machine

Transmit State
 Machine

IX BusIX Bus Arbiter

IX Bus Interface

Ready Bus
174 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
Figure 6-7. RCV_RDY_CTL Register

Figure 6-8. XMIT_RDY_CTL Register

A7050-01

Rx
Schd

ID
RES

Sig
Rx

Schd

Auto
Push
Regs

Auto
Push
Prev

Fast
Port

Mode

4:057:6812:1014:1331:15

RES

Specify the Thread ID of the
Receive Scheduler (where
RxAutopush will write the
registers autopushed).

Specify whether the Receive
Scheduler should be signaled
after an RxAutopush operations.

Sets the
RxAutopush/TxAutopush
Prevent Window

If the RCV_REQ specifies Fast
Ports, this selects the Fast Port
Mode that is used.

Specify which registers should
be RxAutopushed

Auto
Push

Enable

9

Specify if the registers should be
RxAutopushed to the
Receive Scheduler

Rr

Rr

Rr

Rt/Rr

IX

Rr

Note:
Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

A7051-01

Tx
Schd

ID
Tx Valid Flags

Sig
Tx

Schd

Auto
Push
Regs

4:057:6815:1031:15

DVBRES Specify the Thread ID of the
Receive Scheduler (where
TxAutopush will write the
registers autopushed).

Specify whether the Transmit
Scheduler should be signaled
after an RxAutopush operations.

Status of the transmit valid flags.
(Read only)

Specify which registers should
be TxAutopushed.

Auto
Push

Enable

9

Specify that the registers should
be TxAutopushed to the
Transmit Scheduler.

Rt

Rt

Rt

Note:
Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

Rt

Selects the Dual Valid Bit Mode
for TFIFO writes.
Hardware Reference Manual 175

Intel® IXP1200 Network Processor Family
FBI Unit
Figure 6-9. RDYBUS_TEMPLATE_CTL Register

Figure 6-10. RDYBUS_SYNCH_COUNT_DEFAULT Register

A7052-01

RESRES FBI
Endian

4:056781131:12

Specify whether the FBI
interprets the FBE# signals
in Big Endian or Little Endian.

Specify whether the Receive
State Machine should read
status after it detects an EOP

Specify whether the IX Bus is
in 32-bit unidirectional mode
or 64 bit bidirectional mode.

Specify whether the IX Bus
Arbiter is enabled to pass the
IX Bus token to another IXP1200
on the same IX Bus. The IX Bus
must be placed into 64-bit
bidirectional mode.

910

Specify if this IXP1200 is a
Ready Bus Master or Slave.

IX

Specify whether the IX Bus and
Ready Bus are in 1-2 MAC
mode or 3-4/3-7 MAC mode.

IX/Rt/Rr

Enable the Ready Bus
Sequencer.

R

IX

IX

IX

Note:
Rt -Ready Bus configuration (transmit)
Rr -Ready Bus configuration (receive)
IX - IX Bus configuration

IX

Status
Mode

Shared
IX Bus
Mode

Rdybus
Master
Slave

32/64
bit

Mode

MAC
Mode

Enable
Rdybus

A7053-01

15:031:16

Ready Bus TimerRES

Ready Bus Sequencer
Program Cycle Rate

R

176 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.2 IX Bus and Ready Bus Modes

This section describes the different modes of operation supported by the IX Bus and Ready Bus.

6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes

64-bit bidirectional IX Bus mode or 32-bit unidirectional IX Bus mode is selected via the
RDYBUS_TEMPLATE_CTL register. In 64-bit bidirectional IX Bus mode, the IX Bus is a single
64-bit data bus used for transmitting as well as receiving data on the IX Bus. The IX Bus Arbiter
switches between granting ownership to the Transmit State Machine, the Receive State Machine,
or another IXP1200.

In 32-bit unidirectional IX Bus mode, the IX Bus becomes two 32-bit data buses. One is used for
transmitting and the other is used for receiving data on the IX Bus. The IX Bus Arbiter is not used
in this mode since the Receive State Machine always owns the Receive IX Bus and the Transmit
State Machine always owns the Transmit IX Bus.

From a programming perspective, there is no difference in how microcode issues receive and
transmit requests to the State Machines.

6.6.2.2 1-2 MAC Mode and 3+ MAC Mode

These modes are selected via the RDYBUS_TEMPLATE_CTL register. The 1-2 MAC mode
eliminates the need for external decode logic for the PORTCTL# and RDYCTL# signals. All the
signals required for selecting the IX Bus and Ready Bus functions are provided directly by the
IXP1200 for up to two MAC devices.

3+ MAC mode requires external decode logic for the PORTCTL# and RDYCTL# signals. If this
mode is selected in 32-bit unidirectional mode, the port control signals support up to 4 MAC
devices. If this mode is selected in 64-bit bidirectional mode, the port control signals support up to
7 MAC devices. From a programming perspective, there is no difference in how microcode issues
receive and transmit requests to the State Machines. Refer to Section 6.6.3 for more information on
these modes.

Figure 6-11. RDYBUS_TEMPLATE_PROGx Registers

A7054-01

instr 8
7:015:823:1631:24

instr 9instr 10instr 11

instr 4instr 5instr 6instr 7

instr 0instr1instr 2instr 3

Ready Bus
Sequencer
instructions

R

Hardware Reference Manual 177

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.2.3 Shared IX Bus Mode

The IXP1200 supports multiple IXP1200s on the IX Bus in the 64-bit bidirectional mode. Bus
ownership is established by passing a token between the IXP1200s.

The Shared IX Bus mode affects how the IX Bus Arbiter makes arbitration decisions. When the
Shared IX Bus mode is not selected, the IX Bus arbitration scheme switches between granting IX
Bus ownership to the Receive and Transmit State Machines in a single IXP1200. If the IXP1200 is
placed into the Shared IX Bus mode, the IX Bus arbitration scheme switches between granting IX
Bus ownership to the Receive State Machine, Transmit State Machine, and another IXP1200. IX
Bus ownership is passed between IXP1200s using a token scheme.

The token passing scheme uses four pins on the IXP1200: two token request pins (TK_REQ_OUT,
TK_REQ_IN) and two token pins (TK_OUT, TK_IN). Refer to Figure 6-12. An IXP1200 requests
the token by asserting the TK_REQ_OUT pin whenever it has a Receive Request or Transmit
Request pending. The TK_REQ_OUT pin should be tied to the TK_REQ_IN pin of another
IXP1200. The current IX Bus owner passes ownership of the IX Bus by asserting the TK_OUT pin
low. The TK_OUT pin should be tied to the TK_IN pin of another IXP1200. The falling edge at a
TK_IN pin indicates that bus ownership has been relinquished and the IXP1200 should take
ownership of the bus.

Figure 6-12. TK_OUT Output

A7195-01

0 1
TK_OUT Output

The IXP1200 Network Processor owns the IX Bus.

The IXP1200 Network Processor relinquishes IX Bus ownership.

The SA-1200 does not own the IX Bus.
178 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
Cascading the connections of the token pins allows the token to be passed to multiple IXP1200s.
Figure 6-13 shows the pin connections for two IXP1200s in a shared IX Bus configuration.

The IXP1200s are placed into Shared IX Bus mode via the RDYBUS_TEMPLATE_CTL register.
The following settings are required:

• 64-bit bidirectional mode

• Shared IX Bus mode

• One IXP1200 designated as an initial Ready Bus master and the others as Ready Bus slaves.

The TK_IN pin is also used as a configuration pin after as reset. (This is in addition to the token in
function). The TK_IN pin must be either pulled high or low to indicate which IXP1200 is
designated as a Ready Bus Master/initial IX Bus owner. An IXP1200 designated as a Ready Bus
Master/initial IX Bus owner drives these buses after a reset. Only one IXP1200 should be
designated as the Ready Bus Master/initial IX Bus owner since only one IXP1200 should drive the
IX Bus and Ready Bus at any one time.

If the TK_IN pin is pulled high, an IXP1200 becomes the initial IX Bus Owner, the Ready Bus
master, and it drives both buses. After a reset, the FBI Unit reads the TK_IN pin to determine if it is
the Ready Bus master. The Receive State Machine looks for a valid Receive Request, and the
Transmit State Machine looks to see if the first TFIFO element contains valid data and then checks
to see if another IXP1200 is requesting IX Bus ownership by reading the state of the TK_REQ_IN.
If none of these cases are true, the IX Bus is driven to a known state (no bus operations are
performed) and the IX Bus arbiter waits for one of the cases to occur.

Figure 6-13. Dual IXP1200 System Using Dynamic Token Passing

A7198-01

IXP1200 Network
Processor A

TK_IN TK_OUT TK_IN TK_OUT

RA

3.3V

RB

Notes: Resistor Description
RA - Indicates IX Bus Owner and Ready Bus Master after a reset.
RB - Indicates NOT Fbus Bus Owner and Ready Bus Master after a reset.

Initial IX Bus Owner
and Ready Bus Master

TK_REQ_IN

TK_REQ_OUT
TK_REQ_OUT

TK_REQ_IN

IXP1200 Network
Processor B
Hardware Reference Manual 179

Intel® IXP1200 Network Processor Family
FBI Unit
System designs using more than two IXP1200s can use the token request pins in two
configurations. The first configuration (shown in Figure 6-14) uses a fixed token passing scheme
where all the TK_REQ_IN pins are pulled high to indicate that the token should always be passed
regardless of whether or not another IXP1200 needs access to the bus.

Figure 6-14. Shared IXP1200 System Using Fixed Token Passing

A7197-01

IXP1200
Network

Processor A

TK_IN TK_OUT TK_IN TK_OUT TK_IN TK_OUT

RA

3.3V

RB

NC

Notes: Resistor Description
RA - Indicates Initial IX Bus Owner and Ready Bus Master.
RB - Indicates NOT the Initial IX Bus Owner and Ready Bus Master.
RC - Indicates always pass token.

Initial IX Bus Owner
and Ready Bus Master

TK_REQ_IN

TK_REQ_OUT NCTK_REQ_OUT

RC

VDD

TK_REQ_IN

RC

VDD

NCTK_REQ_OUT

TK_REQ_IN

RC

VDDRB

IXP1200
Network

Processor B

IXP1200
Network

Processor C
180 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
The second configuration (shown in Figure 6-15) uses a dynamic token passing scheme where all
the TK_REQ_OUT pins are logically “ORed” to indicate when any one of the IXP1200s need
ownership of the IX Bus. If any one of the IXP1200s need ownership of the IX Bus, the token is
passed in round-robin order to the next IXP1200.

Figure 6-15. Shared IXP1200 System Using Dynamic Token Passing

A7196-01

IXP1200
Network

Processor A

TK_IN TK_OUT TK_IN TK_OUT TK_IN TK_OUT

RA

3.3V

RB

Notes: Resistor Description
RA - Indicates Initial IX Bus Owner and Ready Bus Master.
RB - Indicates NOT the Initial IX Bus Owner and Ready Bus Master.

Initial IX Bus Owner
and Ready Bus Master

TK_REQ_IN

TK_REQ_OUT

TK_REQ_IN

TK_REQ_OUT

TK_REQ_IN

TK_REQ_OUT

RB

IXP1200
Network

Processor B

IXP1200
Network

Processor A
Hardware Reference Manual 181

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.2.4 Status Mode

Status mode is selected when bit 6 in the RDYBUS_TEMPLATE_CTL register is 0. In Status
mode, the Receive State Machine expects status to be provided on the IX Bus during the next data
transfer on the same port following EOP. The Receive State Machine automatically reads the status
and places the data into the status field of the RFIFO element. The only thing the IXP1200 does
with this status field is to copy the inverted state of bit 8 to the Receive Error bit (bit 18) in the
RCV_CNTL register.

For 64-bit bidirectional IX Bus mode, one quadword is always read and placed into this RFIFO
status field. For 32-bit unidirectional IX Bus mode, REC_REQ[26] specifies whether the status
length is one longword or one quadword. The one quadword option in 32-bit unidirectional mode
requires that the Receive State Machine access the IX Bus twice. The extended data option (see
Section 6.6.4.6) is not supported if the one quadword status option selected.

Based on the Receive Request, the Receive State Machine always attempts to read a maximum
number of quadwords based on the request parameters (see Section 6.6.4.3). Due to pipelining
issues, the Receive State Machine begins processing the next Receive Request before the current
request is complete. Therefore, if an EOP is detected on the last IX Bus data cycle for request 1, the
Receive State Machine allows request 2 to finish before going back for the status for request 1.

Figure 6-16. Receive State Machine Behavior when EOP Occurs on the Last IX Bus Data Cycle

A7048-01

4

RFIFO Register

Data from request 1Status 1

Data from request 2

Signal thread for request 1

Signal thread for request 2

0

15

Data FieldStatus
Field

2

3 1

5

182 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.3 Ready Bus

The Ready Bus is a separate bus from the IX Bus, and is used for the following purposes:

• Retrieving the MAC Receive and Transmit FIFO Ready flags from MAC devices.

• Asserting Flow Control to MAC devices.

• Inter-IXP1200 communications.

The Ready Bus is controlled by a programmable sequencer and is comprised of an 8-bit data bus
(RDYBUS[7:0])and five control pins (RDYCTL#[4:0]). The control pins select which of the three
functions is being performed on the bus. In 1-2 MAC mode, separate control signals are provided
by the IXP1200 for each function. In this mode, the GPIO[0] pin is also used by the Ready Bus as
a control signal, and Inter-IXP1200 communications are not supported. 3+ MAC mode requires an
external decode of the RDYCTL#[4:0] signals to provide the individual select signals for each
function. All of the Ready Bus functions are supported in 3+ MAC mode.

Figure 6-17 is a block diagram of the Ready Bus and the relevant FBI CSRs used to program and
control the Ready Bus. The purpose of each of these components is described in this section.

Figure 6-17. Ready Bus Block Diagram

A7076-02

Ready Bus Signals

RDYBUS_TEMPLATE_PROG3

RDYBUS_TEMPLATE_PROG2

RDYBUS_TEMPLATE_PROG1

RDYBUS_SYNCH_COUNT_DEFAULT

RDBUS_TEMPLATE_CTL

RCV_RDY_CTL

RCV_RDY_LO

RCV_RDY_HI

XMIT_RDY_CTL

XMIT_RDY_LO

XMIT_RDY_HI

FLOWCTL_MASK

SEND_CMD
(8-entry FIFO)

GET_CMD
(8-entry FIFO)

Ready Bus
Sequencer

IX Bus Interface

Sequencer Programming
and Configuration Registers

MAC Receive
FIFO Status

MAC Transmit
FIFO Status

Inter-Processor
Communications MAC Flow Control
Hardware Reference Manual 183

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.3.1 Ready Bus Sequencer

The Ready Bus is controlled by a programmable sequencer. The sequencer is configured and
programmed using FBI registers. The sequencer is configured and enabled after reset and then runs
freely.

The Ready Bus Sequencer instructions are loaded into the three RDYBUS_TEMPLATE_PROGx
registers. These registers hold a total of twelve 8-bit instructions. A sequence rate count can be
programmed into the RDYBUS_SYNC_COUNT_DEFAULT register to determine the maximum
rate at which the program repeats the instructions. The Ready Bus Sequencer is enabled via the
RDYBUS_TEMPLATE_CTL register. When it is enabled, the sequence rate counter is started.
Instruction execution begins with instr_0 and completes after instr_11. The sequencer then waits
until the Ready Bus sequence rate timer expires and repeats execution of instructions 0 through 11.
The sequence rate count has no effect if it is less than the time required to execute the instructions.

The RDYBUS_TEMPLATE_PROG registers can be programmed by both the Microengines (using
the csr instruction) and the StrongARM* core. In typical applications, the StrongARM* core
programs the sequencer once as part of the power-up initialization sequence.

The steps required to set up the Ready Bus Sequencer are as follows:

1. Load the Sequencer program into the three RDYBUS_TEMPLATE_PROGx registers.

2. Load the cycle rate into the RDYBUS_SYNCH_COUNT_DEFAULT register.

3. Configure the Transmit Autopush settings via the XMIT_RDY_CTL register.

4. Configure the Receive Autopush settings via the RCV_RDY_CTL register.

5. Configure the pin signaling, Inter-IXP1200 modes, and enable the Ready Bus Sequencer via
the RDY TEMPLATE_CTL register.

Figure 6-18. Ready Bus Instruction Sequence

A7075-01

Instr_7 Instr_5Instr_6 Instr_4

Instr_3 Instr_1Instr_2 Instr_0

RDYBUS_TEMPLATE_PROG2

RDYBUS_TEMPLATE_PROG1

Instr_11 Instr_9Instr_10 Instr_8

RDYBUS_TEMPLATE_PROG3

081624

Load
Default Ready Bus

Cycle Rate Time and
Start

Wait Until
Ready Bus

Cycle Rate Timer
Expires
184 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.3.2 Ready Bus Master and Slave Modes

The Ready Bus supports a Master-Slave mode for systems that require multiple IXP1200s to share
a common Ready Bus. Only one IXP1200 is configured as a Ready Bus master; the others are
configured as Ready Bus slaves. A Ready Bus master executes a Ready Bus program while the
other IXP1200s snoop the Ready Bus to determine what action they should perform.

The TK_IN pin is used as a configuration pin to determine which IXP1200 powers up as a Ready
Bus master and which powers up as slaves. This pin defines which IXP1200 should drive the
Ready Bus to a known state prior to configuring the Ready Bus through software. If TK_IN is
pulled high during reset, an IXP1200 becomes the Ready Bus master. All other IXP1200s should
be designated as slaves by pulling TK_IN low. In a single IXP1200 system, this pin should be
configured to set the IXP1200 as the Ready Bus master.

After power-up, software can determine if it is configured as the Ready Bus master by reading a
status bit within the RCV_RDY_CNT register. Software can then program the Ready Bus
accordingly. If the IXP1200 is the Ready Bus master, the Ready Bus should be configured as if it
were a single IXP1200. If the IXP1200 is a Ready Bus slave, the program and sequence count does
not need to be loaded into the FBI registers, but the RDYBUS_TEMPLATE_CTL register must be
configured to select 3+ MAC mode and Slave mode as well as enable the Ready Bus Sequencer.

6.6.3.3 Ready Bus Instructions

The Ready Bus supports the following instructions:

Table 6-14 through Table 6-22 provide descriptions of these instructions, the 8-bit opcodes for each
variation of the instruction, and the number of IX Bus clock cycles required to perform each
instruction.

NOP Perform no operation on the Ready Bus. In Master-Slave mode, the slave also
performs no operation.

• NOP • flwctl

• rxrdy • txrdy

• RxAutopush • TxAutopush

• get1 • get2

• send

Table 6-14. NOP Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

NOP1 1F 3

NOP2 3F 6

NOP3 5F 9

NOP4 7F 12

NOP5 9F 15

NOP6 BF 18

NOP7 DF 21

NOP8 FF 24
Hardware Reference Manual 185

Intel® IXP1200 Network Processor Family
FBI Unit
rxrdy Collect the Receive Ready flags from the specified MAC ports and place them into
the RCV_RDY_LO and RCV_RDY_HI registers. In Master-Slave mode, the slave
snoops the Ready Bus and reads the Receive Ready flags into its RCV_RDY_LO and
RCV_RDY_HI registers.

Table 6-15. rxrdy Instruction Variations

MAC Range Opcode (Hex) #IX Bus
Clock Cycles MAC Range Opcode (Hex) #IX Bus

Clock Cycles

rxrdy MAC 0 FB 3 rxrdy MAC 3 98 3

rxrdy MAC 0 to 1 DB 6 rxrdy MAC 3 to 4 78 6

rxrdy MAC 0 to 2 BB 9 rxrdy MAC 3 to 5 58 9

rxrdy MAC 0 to 3 9B 12 rxrdy MAC 3 to 6 38 12

rxrdy MAC 0 to 4 7B 15

rxrdy MAC 0 to 5 5B 18 rxrdy MAC 4 6B 3

rxrdy MAC 0 to 6 3B 21 rxrdy MAC 4 to 5 4B 6

rxrdy MAC 4 to 6 2B 9

rxrdy MAC 1 DA 3

rxrdy MAC 1 to 2 BA 6 rxrdy MAC 5 4A 3

rxrdy MAC 1 to 3 9A 9 rxrdy MAC 5 to 6 2A 6

rxrdy MAC 1 to 4 7A 12

rxrdy MAC 1 to 5 5A 15 rxrdy MAC 6 29 3

rxrdy MAC 1 to 6 3A 18

rxrdy MAC 2 B9 3

rxrdy MAC 2 to 3 99 6

rxrdy MAC 2 to 4 79 9

rxrdy MAC 2 to 5 59 12

rxrdy MAC 2 to 6 39 15
186 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
txrdy Collect the Transmit Ready flags from the specified MAC ports and place them into
the XMIT_RDY_LO and XMIT_RDY_HI registers. In Master-Slave mode, the
slave snoops the Ready Bus and reads the Transmit Ready flags into its
XMIT_RDY_LO and XMIT_RDY_HI registers.

Table 6-16. txrdy Instruction Variations

MAC Range Opcode (Hex) # IX Bus
Clock Cycles MAC Range Opcode (Hex) # IX Bus

Clock Cycles

txrdy MAC 0 F7 3 txrdy MAC 3 94 3

txrdy MAC 0 to 1 D7 6 txrdy MAC 3 to 4 74 6

txrdy MAC 0 to 2 B7 9 txrdy MAC 3 to 5 54 9

txrdy MAC 0 to 3 97 12 txrdy MAC 3 to 6 34 12

txrdy MAC 0 to 4 77 15

txrdy MAC 0 to 5 57 18 txrdy MAC 4 67 3

txrdy MAC 0 to 6 37 21 txrdy MAC 4 to 5 47 6

txrdy MAC 4 to 6 27 9

txrdy MAC 1 D6 3

txrdy MAC 1 to 2 B6 6 txrdy MAC 5 46 3

txrdy MAC 1 to 3 96 9 txrdy MAC 5 to 6 26 6

txrdy MAC 1 to 4 76 12

txrdy MAC 1 to 5 56 15 txrdy MAC 6 25 3

txrdy MAC 1 to 6 36 18

txrdy MAC 2 B5 3

txrdy MAC 2 to 3 95 6

txrdy MAC 2 to 4 75 9

txrdy MAC 2 to 5 55 12

txrdy MAC 2 to 6 35 15
Hardware Reference Manual 187

Intel® IXP1200 Network Processor Family
FBI Unit
RxAutopush Perform RxAutopush operation. The RxAutopush operation does the following:

• Increments the Receive Ready Count in the RCV_RDY_CNT register.

• If enabled via the RCV_RDY_CTL, it automatically writes the
RCV_RDY_CNT, RCV_RDY_LO, and RCV_RDY_HI registers to the Receive
Scheduler SRAM Transfer Registers.

• If enabled via the RCV_RDY_CTL register, the Receive Scheduler thread is
signaled via the AUTO_PUSH_SIG context event signal when the RxAutopush
operation is complete.

In Master-Slave mode, Ready Bus signaling is generated by the Ready Bus master. The slave
snoops the Ready Bus, and, if it detects autopush signaling, it also performs an RxAutopush.

TxAutopush Perform TxAutopush operation. The TxAutopush operation does the following:

• If enabled via the XMIT_RDY_CTL, it automatically writes the XMIT_PTR,
XMIT_RDY_LO, and XMIT_RDY_HI registers to the Transmit Scheduler
SRAM Transfer Registers.

• If enabled via the XMIT_RDY_CTL register, the Transmit Scheduler thread is
signaled via the AUTO_PUSH_SIG context event signal when the TxAutopush
operation is complete.

In Master-Slave mode, Ready Bus signaling is generated by the Ready Bus master. The slave
snoops the Ready Bus, and, if it detects autopush signaling, it also performs a TxAutopush.

flwctl Writes the 8-bit data from the FLOWCTL_MASK register to the device also
specified in the FLOWCTL_MASK register. In Master-Slave mode, only the master
executes the flwctl instruction. When a slave detects a flow control operation, it does
not perform any action. If the FLOWCTL_MASK register contains invalid data, a
single cycle nop operation is performed.

Table 6-17. RxAutopush Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

RxAutopush 0C 3

Table 6-18. TxAutopush Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

TxAutopush 9C 3

Table 6-19. flwctl Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

flwctl 00
6 - flowctl_mask contains valid data

1 - flowctl_mask contains invalid data
188 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
get1 Used for Ready Bus communications between multiple IXP1200s. When this
instruction is executed, data is read from a Ready Bus slave SEND_CMD FIFO into
the master GET_CMD FIFO. The get1 instruction is supported only in 3+ MAC
bidirectional mode and 3+ MAC unidirectional mode. One IXP1200 is designated as
the Ready Bus master that sends data to other devices on the Ready Bus. The other
device can be another IXP1200 in Slave mode. When the slave detects a get1, it
drives the data onto RDYBUS[7:0]. Up to eight longwords can be read from a slave
in a single get1 instruction.

get2 Same as get1 except it is used to get a message from another Ready Bus master in a
chain configuration (i.e., two IXP1200 Ready Buses separated by an external FIFO).
The IXP1200 is able to decode get1 but cannot decode get2. get2 can be decoded by
external hardware.

Table 6-20. Get1 Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

get1_1lw 1E 9

get1_2lw 3E 17

get1_3lw 5E 25

get1_4lw 7E 33

get1_5lw 9E 41

get1_6lw BE 49

get1_7lw DE 57

get1_8lw FE 65

Table 6-21. Get2 Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

get2_1lw 0E 9

get2_2lw 2E 17

get2_3lw 4E 25

get2_4lw 6E 33

get2_5lw 8E 41

get2_6lw AE 49

get2_7lw CE 57

get2_8lw EE 65
Hardware Reference Manual 189

Intel® IXP1200 Network Processor Family
FBI Unit
send Used for Ready Bus communications between multiple IXP1200s. When this
instruction is executed, data is sent from the master SEND_CMD FIFO to the Ready
Bus. The send instruction is supported only in 3+ MAC bidirectional mode and 3+
MAC unidirectional mode. One IXP1200 is designated as the Ready Bus master that
sends data to other devices on the Ready Bus. The other devices can be another
IXP1200 in Slave mode or another IXP1200 in a chained configuration. Refer to
Section 6.6.3.2 for more information on Master-Slave modes.

6.6.3.4 Reading the MAC FIFO Ready Flags

A typical MAC device (such as the Intel® 21440 Octal 10/100 Mbps Ethernet Controller) provides
transmit and receive Ready flags that indicate whether the amount of data in a FIFO has reached a
certain threshold level. The Ready Bus Sequencer (Figure 6-19) periodically polls the Receive and
Transmit FIFO Ready Flags and places them into FBI registers if the Ready Bus Sequencer is
programmed with the rxrdy and txrdy instructions.

Table 6-22. send Instruction Variations

Description Opcode (Hex) # IX Bus Clock Cycles

send_1lw 0D 9

send_2lw 2D 17

send_3lw 4D 25

send_4lw 6D 33

send_5lw 8D 41

send_6lw AD 49

send_7lw CD 57

send_8lw ED 65

Figure 6-19. MAC Device Sequencer Flow

A7080-01

TFIFO TFIFO TFIFO TFIFORFIFO Status Flags

TFIFO Status Flags

Threshold Level
(one per FIFO)

RDYBUS[7:0]

8 Port MAC Device

FDAT[63:0]

RDYCTL#
(FIFO Status
Flag Select)

Ready Bus
Sequencer

Ready Bus

IX Bus Control
Signals

IX Bus Interface

RCV_RDY_HI
RCV_RDY_LO

XMIT_RDY_LO
XMIT_RDY_HI

RFIFO RFIFO RFIFO RFIFO

IXP1200
190 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.3.5 Receive Ready Flags

When the Ready Bus Sequencer is programmed with a rxrdy instruction, it reads the Receive
Ready flags from the MAC device(s) specified in the instruction and places the flags into the
RCV_RDY_HI and RCV_RDY_LO registers. Each bit in these registers corresponds to a MAC
port on the IX Bus and up to fifty-six ports total from up to seven MAC devices are supported. A
single rxrdy instruction allows the Ready flags to be read from multiple MAC devices.

The IXP1200 also supports two Fast Port Receive Ready Flags. These flags are discussed in more
detail in Section 6.6.8. The Fast Port Receive Ready flags are placed into the RCV_RDY_CNT
register. All three registers can be autopushed to a Receive Scheduler SRAM Transfer Registers if
the Ready Bus Sequencer executes the RxAutopush instruction, and the Autopush operation is
enabled via the RDYBUS_TEMPLATE_CTL register.

If an IXP1200 is configured as a Ready Bus slave, it snoops the Ready Bus control signals. When it
detects that a master is performing a read of the Receive Ready flags, it also latches the data into its
RCV_RDY_LO and RCV_RDY_HI registers.

6.6.3.6 Transmit Ready Flags

When the Ready Bus Sequencer is programmed with a txrdy instruction, it reads the Transmit
Ready flags from the MAC device(s) specified in the instruction and places them into the
XMIT_RDY_LO and XMIT_RDY_HI registers. Each bit in these registers corresponds to a MAC
port on the IX Bus and up to fifty-six ports total from up to seven MAC devices are supported. A
single txrdy instruction allows the Ready flags to be read from multiple ports. These registers can
be autopushed to the Transmit Scheduler SRAM Transfer Registers if the Ready Bus Sequencer
executes the TxAutopush instruction and the Autopush operation in enabled via the
XMIT_RDY_CTL register.

If an IXP1200 is configured as a Ready Bus slave, it snoops the Ready Bus control signals. When it
detects that a master is performing a read of the Transmit Ready flags, it also latches the data into
its XMIT_RDY_LO and XMIT_RDY_HI registers.

6.6.3.7 Autopush Operation

The Ready Bus Sequencer supports two Autopush instructions: RxAutopush and TxAutopush.

The RxAutopush operation performs the following functions:

• Increments the Receive Ready Count in the RCV_RDY_CNT register

• If enabled via the RCV_RDY_CTL register, it automatically writes the RCV_RDY_CNT,
RCV_RDY_LO, and RCV_RDY_HI registers to the Receive Scheduler SRAM Transfer
Registers.

• If enabled via the RCV_RDY_CTL register, the Receive Scheduler thread is signaled via the
AUTO_PUSH_SIG context event signal when the RxAutopush operation is complete.

The TxAutopush operation performs the following functions:

• If enabled via the XMIT_RDY_CTL register, it automatically writes the XMIT_PTR,
XMIT_RDY_LO, and XMIT_RDY_HI registers to the Transmit Scheduler SRAM Transfer
Registers.

• If enabled via the XMIT_RDY_CTL register, the Transmit Scheduler thread is signaled via the
AUTO_PUSH_SIG context event signal when the TxAutopush operation is complete.
Hardware Reference Manual 191

Intel® IXP1200 Network Processor Family
FBI Unit
In Master-Slave mode, the Ready Bus master generates the Ready Bus signaling and the slave snoops
the Ready Bus. When it detects autopush signaling, it also performs an autopush operation.

Autopush Versus Polling
There are two methods for reading the Ready Bus registers: polling and autopush.

The advantages to autopush are the following:

— The latest data is available to a Microengine thread without having to explicitly read it.

— Lower latency associated with reading the registers compared to polling.

— Since lower latency is achieved, a Microengine thread may spend more time performing
other tasks rather than waiting for the read operations to complete.

Polling requires that a Microengine thread periodically issue read references to the FBI Unit.
One example of a polling algorithm uses two Microengine threads to poll and process the
Ready Bus registers. The main Microengine thread performs the typical Receive or Transmit
Scheduler function, and a secondary Microengine thread running on the same Microengines
performs the simple task of reading the registers periodically into an absolute addressed
SRAM Transfer Registers. When the main scheduler thread is ready for the new data, it reads
the SRAM Transfer Register. The advantage of this method is that the secondary scheduler
thread would read the registers while the main scheduler thread is waiting for references to
complete. This allows the register read operations to be hidden.

Tx Autopush and Rx Autopush Sequence
Although 3+ MAC mode supports unique Rx and Tx autopush signaling, RDYCTL#[4] is
always ignored by a Ready Bus slave. A slave always cycles between transmit and receive
autopush if it detects the generic autopush signaling on the bus. The first autopush after the
sequencer is enabled is always interpreted by the slave as a Tx Autopush. When programming
the sequence of instructions in Master-Slave mode, the programmer should ensure that the
sequencer pushes the Transmit Ready flags first. The tables that follow show three examples
of the sequence of instruction for an autopush operation.

Example 6-4. Autopush Method 1

Instruction
Sequence Action Comment

txrdy MAC 0-1 Master asserts signaling, slave snoops Tx Ready flags

Flags are pushed in order and
there is more time between the
two instances when the Autopush
prevent state is asserted.

TxAutopush Master asserts signaling and pushes Tx Ready flags,
slave pushes Tx Ready flags

rxrdy MAC 0-1 Master asserts signaling, slave snoops Rx Ready
flags

RxAutopush Master asserts signaling and pushes Rx Ready flags,
slave pushes Rx Ready flags
192 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
Autopush Protection
The Microengine SRAM Transfer Registers and the GPRs are implemented as register files so
multiple registers can be read at one time. This allows a Microengine to read an operand for
one instruction and write the result from another in a single cycle. However, only one source
can access a particular register at any one time. Access contention can occur when the SRAM
Transfer Registers are accessed by both the Microengines and the autopush write operation at
the same time.

To prevent contention, the FBI Unit provides the PUSH_PROTECT state. All Microengine
threads can read this state using the br_inp_state instruction, although in most applications
only the Transmit and Receive Scheduler threads use it. When the FBI Unit is ready to
autopush to the Transfer Register, it asserts the PUSH_PROTECT state and waits for a time
specified in Autopush Prevent Window field of the RCV_RDY_CTL before writing to the
Transfer Registers.

Whenever a Microengine thread reads the SRAM Transfer Registers, it should check the
PUSH_PROTECT state (using the br_inp_state instruction). If it is set, it should wait until it
is cleared employing a tight loop structure. Otherwise, it should immediately read the registers
and move them to GPRs. The order in which the Autopush operation occurs is: transfer
register 0, transfer register 1, and transfer register 2. The Microengine should also move the
data from the SRAM Transfer Registers to GPRs in this order.

6.6.3.8 Interpreting The Receive Ready Flags

The Ready Bus polls the MAC FIFO Status Flags periodically and asynchronously to other events
occurring in the IXP1200. Ideally, the rate at which the MAC FIFO Ready flags are polled is
greater than the maximum rate at which the data is arriving at the MAC ports. This presents the

Example 6-5. Autopush Method 2

Instruction
Sequence Action Comment

txrdy MAC 0-1 Master asserts signaling, slave snoops Tx Ready flags

There may be a minor impact on
performance since the Scheduler
is not able to access the Transfer
Registers for two consecutive
Autopush Prevent Window time
periods.

rxrdy MAC 0-1 Master asserts signaling, slave snoops Rx Ready
flags

TxAutopush Master asserts signaling and pushes Tx Ready flags,
slave pushes Tx Ready flags

RxAutopush Master asserts signaling and pushes Rx Ready flags,
slave pushes Rx Ready flags

Example 6-6. Autopush Method 3

Instruction
Sequence Action Comment

rxrdy MAC 0-1 Master asserts signaling, slave snoops Rx Ready
flags

Incorrect method: Flags are
pushed out of order.

RxAutopush Master asserts signaling and pushes Rx Ready flags,
slave pushes Rx Ready flags

txrdy MAC 0-1 Master asserts signaling, slave snoops Tx Ready flags

TxAutopush Master asserts signaling and pushes Tx Ready flags,
slave pushes Tx Ready flags
Hardware Reference Manual 193

Intel® IXP1200 Network Processor Family
FBI Unit
issue of determining whether the MAC FIFO Ready flags read by the Ready Bus are new or
whether they have already been read. The IXP1200 provides two methods that can be used to
determine which flags are new and which are old.

Receive Ready Count
Each time the RxAutopush instruction is executed, it increments the Receive Ready Count in
the RCV_RDY_CNT register. The Receive Ready Count can be used by the Receive
Scheduler to determine whether the state of specific flags have to be evaluated or whether they
can be ignored because Receive Requests have been issued and the port is currently being
serviced. For example, if the FIFO threshold for a Fast Ethernet port is set so that the Receive
Ready flags are asserted when 64 bytes of data are in the MAC RFIFO, it can be said that the
flags do not change until the next 64 bytes arrive, 5120 ns later. If the Sequencer is
programmed to collect the Receive Ready flags four times each 5120 ns period, the next three
sets of Ready flags that are collected can be ignored.

This method of tracking the freshness of the Ready flags is relatively simple to implement in
microcode. However, there is a chance that the Ready flags are ignored when they are actually
reporting new data in the FIFO. For most applications, this inaccuracy does not have any
negative repercussion for the receive process since it is reported when the next Ready flags are
collected. If greater accuracy is required, the Receive Request Count can be used.

Receive Request Count
Each time a Receive Request is completed and the receive control information is pushed onto
the RCV_CNTL FIFO, the FBI Unit increments the Receive Request Count. This counter is
recorded in the RCV_RDY_CNT register the first time the Ready Bus Sequencer executes
either an rxrdy or txrdy instruction for each program execution loop. The Receive Scheduler
can use this count to track which how many requests the Receive State machine has
completed. As the Receive Scheduler thread issues commands, it can maintain a list in
chronological order of the Receive Requests that it submits and the ports associated with each
request. The Receive Request count (RCV_RDY_CNT[15:8]) can be used to determine which
requests it can retire from the list:

a. Receive Scheduler reads the RCV_RDY_CNT register:

Receive Request Count read is 4 (no Receive Requests outstanding).

MAC Receive FIFO Ready Flags set for MAC 1/port 3, MAC 1/port 7, and MAC 2/port2.

b. Receive Scheduler issues Receive Requests to MAC 1/port 3, MAC 1/port 7, and MAC 2/
port2.

c. Request for MAC 1/port 3 is serviced by the hardware.

d. Receive Scheduler reads the RCV_RDY_CNT register again:

Receive Request Count read is 5.

MAC Receive FIFO Ready Flags set for MAC 1/port 3, MAC 1/port 7, and MAC 2/port2.

e. Interpretation:

Ready flags for MAC 1/port 7 and MAC 2/port 2 are old, since those requests have not
been processed.

Ready flag for MAC 1/port 3 is new, since the Receive State Machine has processed that
request and there is data available.
194 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.3.9 Flow Control

The flow control function allows the Ready Bus Sequencer to place a single byte of data onto the
Ready Bus to be used as flow control for the MACs. Device select signals are provided for up to
seven separate devices allowing the data to be targeted to multiple devices (the number of MAC
devices depends on the MAC mode).

A Microengine thread writes the 8-bit data and a MAC number to the FLOWCTL_MASK register.
A Valid flag (the FCMA bit in the RCV_RDY_CNT register) is set each time new data is written to
the FLOWCTL_MASK register. A Microengine thread can determine if valid data has been written
to the FLOWCTL_MASK register by reading the Valid flag. When the flwctl instruction is
executed and there is valid data in the FLOWCTL_MASK register, the Ready Bus Sequencer
places the data onto the Ready Bus. If the Valid flag is not set, the sequencer executes a NOP for a
single IX Bus cycle and it proceeds to the next instruction.

In the Master-Slave mode, only the master can assert flow control to the MAC devices. When a
slave detects a flow control operation, it does not perform any action.

MAC devices (such as the Intel 21440 Octal 10/100 Mbps Ethernet Controller) use the 8-bit data as
a flow control signal to indicate that back pressure should be applied to data arriving on the
network. A Microengine thread can also send status information using the flow control function
during hardware debugging.

6.6.3.10 Ready Bus Communications

The Ready Bus provides a communications channel between the Microengines in different
IXP1200s. The StrongARM* core does not have access to Ready Bus Communications. The
communications channel has a deterministic latency that is dependent on the Ready Bus sequencer
programming. Ready Bus Communications is only supported in 3+ MAC mode.

Ready Bus communications support two modes: Master-to-Slave and Chained Master-to-Master.
These modes can be used separately or together. The Master-to-Slave mode provides
communication between a single master and single slave and does not require any interface logic
between the two IXP1200s. System designs with more than two IXP1200s can use the Master-to-
Master mode to pass messages to the next IXP1200 in a chained configuration. The Master-to-
Master mode requires external interface logic. The figure below shows multiple IXP1200s in both
the Master-to-Slave and Master-to-Master mode configurations.
Hardware Reference Manual 195

Intel® IXP1200 Network Processor Family
FBI Unit
The Ready Bus Sequencer supports two get instructions (get1 and get 2) and one send instruction
(send). The get1 and send instructions are used to communicate in the Master-to-Slave mode, and
the get2 and send instructions are used in the Master-to-Master mode. Unique signaling is
provided on the RDYCTL#[4:0] pins whenever the Ready Bus Sequencer executes these
instructions. A Ready Bus slave snoops the RDYCTL#[4:0] signals and responds to the get1 or
send signaling. In the Master-to-Master mode, a Ready Bus master communicates with another
Ready Bus Master though external FIFOs. The RDYCTL# signals must be externally decoded to
control access to the FIFOs. Since the send instruction is shared by the Master-to-Slave and
Master-to-Master modes, whenever the send instruction is executed, the send data is written to
both the Ready Bus slave and the chained Send FIFO. A Microengine thread in the receiving
IXP1200 must determine if it is the target for the send data.

The Ready Bus Master Sends and Gets messages each time the Get or Send instruction is executed
by the Ready Bus Sequencer. The data is transferred across the Ready Bus at a deterministic rate
since the time required to loop through a Ready Bus program loop execution is deterministic (and
so is the rate at which the get and send instructions are executed). A message is defined as 16 bits.
However the get and send instructions specify the size of a transfer across the Ready Bus in
increments of longwords. For reasons explained later in this section, it is expected that most
applications will implement a single Microengine thread to manage Ready Bus communications
between IXP1200s.

Figure 6-20. Master-to-Slave and Master-to-Master Chained Ready Bus Configuration

A7199-01

master slave master slave

send get2get2 send

send
get1

send
get1

send
get1

master slave

get2send

Chained Interface Circuit

IXP1200
Network

Processor

IXP1200
Network

Processor

IXP1200
Network

Processor

IXP1200
Network

Processor

IXP1200
Network

Processor

IXP1200
Network

Processor

RDYCTL#[4:0] 5 1> 32
decoder

[15:0]

RDYBUS[7:0]

WRRD

From
Previous
IXP
Network
Processor

To
Next
IXP

Network
Processor

RDWR

Chained Interface Circuit

Master

RDYBUS[7:0]

RDYCTL#[4:0]

IXP1200 Network
Processor

IXP1200
Network

Processor

Snoops RDYCTL#
and responds
to Get1 and
Send commands

Slave

TK_IN

Initial
Ready

Bus
Master

TK_IN

Initial
Ready
Bus
Slave

VCC

Decodes the Get2
and Send command
and generates select signals.

Get2 [15] Send [13]
data

select select

data

FIFO FIFO

Figure below shows more detail
196 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
The paragraphs that follow describe the get and send Ready Bus instructions. Refer to Figure 6-21
while reading the descriptions for information on how the data flows during instruction execution.

Send

A Ready Bus master sends data to another IXP1200 by writing 16-bit messages to the
SEND_CMD register using the csr instruction. Two 16-bit messages must be written to the
SEND_CMD register before the messages are placed onto the Send_Cmd memory array
within the FBI Unit.

If the Send_Cmd memory array contains more than 4 longwords, and a Microengine thread
issues another write request to the SEND_CMD register, a back-pressure mechanism will
prevent the FBI Pull Engine from processing the request (and any other requests behind it in
the FBI Pull queue) until data is removed from the memory array and driven onto the Ready
Bus. When there are at least 4 entries available to service the next write request, the Pull
engine is allowed to complete the write request. This mechanism allows up to four longwords

Figure 6-21. Data Flow for Get and Send Instructions

A7200-01

31 0

Internal SRAM Pull Bus

16 15
Message

insert
pointer

remove
pointer

Message

[31:0]

[15:0][31:16]

select

Message 1Message 2

0
1
2
3
4
5
6
7

Send Command FIFO
Full Status Signal
(to the FBI Pull Engine)

bit bucket

select

byte
1

byte
3

byte
2

byte
4

Internal SRAM Push Bus

RDYBUS[7:0]

Message 1

insert
pointer

remove
pointerMessage 2

[31:0]

0
1
2
3
4
5
6
7

byte 4byte 2 byte 3byte 1
select

RDYCTL#[4:0]

Ready Bus Master

Ready Bus Slave

Ready Bus
Sequencer

RDYBUS_TEMPLATE_PROG1

RDYBUS_TEMPLATE_PROG3

RDYBUS_TEMPLATE_PROG2

master/slave

instruction
decoder

Ready Bus
Sequencer

RDYBUS_TEMPLATE_PROG1

RDYBUS_TEMPLATE_PROG2

master/slave

instruction
decoder

RDYBUS_TEMPLATE_PROG3

Send_Cmd
Memory Array

Get_Cmd
Memory Array

31 0

Internal SRAM Pull Bus

16 15

MessageMessage

[31:0]

[15:0][31:16]

select

0
1
2
3
4
5
6
7

bit bucket

byte
1

byte
3

byte
2

byte
4

Internal SRAM Pull Bus

insert
pointer

remove
pointer

[31:0]

0
1
2
3
4
5
6
7

byte 4byte 2 byte 3byte 1

Send_Cmd
Memory Array

Get_Cmd
Memory Array

select
Hardware Reference Manual 197

Intel® IXP1200 Network Processor Family
FBI Unit
to be written in a single instruction and ensure proper operation of the back-pressure
mechanism.

The send instruction supports writes to the SEND_CMD register of up to eight longwords in a
single instruction. If the programmer chooses to manage the rate at which the data is written to
the SEND_CMD register in software so that the FBI Pull engine does not stall, bursts greater
than four can be used. One way to manage the rate at which data is written to the SEND_CMD
register is to have a single Microengine thread write to the SEND_CMD register. This
Microengine thread writes data to the SEND_CMD register and waits until the data is sent
before writing more data. A Microengine thread can determine if messages have been sent by
placing an autopush instruction in the Ready Bus program. When this instruction is executed,
the RCV_RDY_CNT field in the RCV_RDY_CNT register is incremented and, if enabled in
the RCV_RDY_CTL register, the autopush signal event will occur. A Microengine Thread
can either wait for the autopush signal event or it can poll the RCV_RDY_CNT register to
determine if the RCV_RDY_CNT field has incremented.

When the Ready Bus Sequencer executes the send instruction, it always sends the amount of
data specified in the send instruction regardless of whether there is valid data in the memory
array. If there is no valid data, zeroes are sent.

The Ready Bus Slave snoops the RDYCTL# signals, and when it detects the send signaling, it
reads the data, one byte at a time, on the Ready Bus data pins (RDYBUS[7:0]), latches the data
internally, and places the data into the GET_CMD memory array after a longword is
assembled.

A Microengine thread in the Ready Bus Slave reads the messages from the GET_CMD
register. A dedicated signaling mechanism is not provided for the Microengine thread to
determine when data has been written to the GET_CMD memory array. However, the
RCV_RDY_CNT field in the RCV_RDY_CNT register or the Autopush signal event can be
used as described earlier in this section. For this reason, it is expected that most applications
will have a single Microengine thread manage Ready Bus communications so that only one
source is reading from the GET_CMD Register.

The Microengine thread must determine if the data it reads from the GET_CMD register is
valid. If the Ready Bus master does not send valid data to the slave, the 32-bit data contains all
zeros.

For applications where the Ready Bus Master sends messages to both a Ready Bus Slave and
to another Ready Bus Master in the chained configuration, both devices respond to the send
signaling. In this case, the Microengine thread must distinguish if it is the target for the data. A
software semantic that can be implemented to distinguish if it is the target for the data is to
have the sending Microengine thread set the MSB of a message to a zero for a slave IXP1200
and a one for a chained IXP1200.

Get

The Ready Bus Sequencer in the Ready Bus Master gets data from another IXP1200 each time
the get1 or get2 instruction is executed. An IXP1200 configured as a Ready Bus Slave
recognizes the signaling on the RDYCTL# pins when a get1 instruction is executed and drives
data from its Send_Cmd memory array onto the Ready Bus pins (RDYBUS[7:0]). A Ready
Bus Slave always ignores the signaling presented during the get2 instruction. The get2
signaling should be decoded by external logic and used to enable a FIFO in the chained
configuration.

Each get instruction specifies a read size of 1 to 8 longwords. The Sequencer reads the data in
byte increments across the 8-bit data bus, assembles them into a 32-bit value, and writes the
value into the GET_CMD memory array. The GET_CMD memory array is 8 entries by 32 bits
and is mapped to the GET_CMD register. Each time the GET_CMD register is read by a
Microengine thread, a memory array entry is read, the entry is cleared to zero, and a remove
pointer is incremented to point at the next item in the array. A Microengine thread reads the
198 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
GET_CMD register using the csr instruction and can read up to eight entries in a single
instruction.

The Ready Bus Slave always drives data onto the Ready Bus data pins (RDYBUS) whenever
the RDYCTL# signal specifies a get1 instruction whether valid data is present in the
Send_Cmd memory array or not. Invalid data is defined as any read of the GET_CMD register
that returns all zeroes (32 bits) It is up to the Microengine thread in the Ready Bus Master to
read the data in the GET_CMD register, detect, and discard invalid data.

When a Ready Bus Slave detects the get signaling on the Ready Bus control signals, it drives
the data from its SEND_CMD memory array onto the Ready Bus. After data is sent from the
Slave SEND_CMD memory array, the memory array entries are cleared to zero. A dedicated
signaling mechanism is not provided to the Microengines for determining when the Sequencer
gets data from the Ready Bus. However, the RCV_RDY_CNT field in the RCV_RDY_CNT
register or the Autopush signal event can be used as described earlier in this section.

The get2 instruction is used for enabling the external Get FIFO from another Master device in
the chained configuration. The get2 signaling is decoded to enable an external FIFO to drive
data onto the Ready Bus. Data is written into this FIFO by a Master IXP1200 on another
Ready Bus and read by the Master IXP1200 on the next Ready Bus into its GET_CMD FIFO.

6.6.3.11 Example Ready Bus Sequencer Programs

The following Ready Bus Sequencer example programs show how the instructions are used as well
as the number of Ready Bus cycles required for execution.

Example 6-7. Ready Bus Program for a Simple 2 MAC (16, 10/100 Mbps Ports) Single IXP1200
System

Instruction
Address

Instruction
Code Instruction Description IX Bus Clock

Cycles

instr_0 0xD7 txrdy MAC 0-1 Fetch the Transmit Ready Bits for
MACs 0 through 1. 6

instr_1 0x9C TxAutopush 3

instr_2 0xDB rxrdy MAC 0-1 Fetch the Receive Ready Bits for
MACs 0 through 1. 6

instr_3 0x0C RxAutopush 3

instr_4 0x00 flwctl
Write flow control MAC mask to the
MAC. MAC and mask are specified in
the FLW_CTL_MASK register.

6 (valid flow
control mask) or
1 (invalid flow
control mask).

instr_5, instr_11 0x1F NOP1 Perform no operations. 7 nops x 3 = 21

Total Instruction Cycles (@ 66 MHz). 40 or 45

Desired cycle rate (four times per minimum sized Fast Ethernet packet - 5120 ns). 84 cycles

RDYBUS_SYNC_COUNT_DEFAULT [RDYBUS_TIMER] (Minimum cycles = 83 + 1). 84
Hardware Reference Manual 199

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4 Receive State Machine and RFIFO - Receiving Data From IX
Bus

The Microengines initiate transfers across the IX Bus, but it is the Receive State Machine that
performs the actual read transfer on the IX Bus. The interface to the Receive State Machine is
through two FBI registers: RCV_REQ and RCV_CNTL. The steps involved with initiating IX Bus
receive transfers are listed below and shown in Figure 6-22. They are described in more detail in
later sections.

1. A Microengine thread ensures that any previous Receive Requests have been received into the
RCV_REQ FIFO.

2. The Microengine thread determines if there is room in the RCV_REQ FIFO for another
Receive Request.

3. Write a Receive Request and signal back when the FBI Unit completes the request.

4. The Receive State Machine processes the request, moves data into the RFIFO, and writes
control information to the RCV_CNTL FIFO.

5. The Receive State Machine generates a start_receive signal event to the Microengine thread
specified in the Receive Request.

6. The Microengine thread responds to the signal event and reads the control information from
the RCV_CNTL register to determine, among other things, where the data is in the RFIFO.

7. The Microengine thread reads the data from the RFIFO on quadword boundaries into its
SRAM Transfer Registers or it moves the data directly into SDRAM.

Example 6-8. Ready Bus Program for a 4 MAC (32, 10/100Mbps Ports) Dual IXP1200 System

Instruction
Address

Instruction
Code Instruction Description IX Bus Clock

Cycles

instr_0 0x97 txrdy MAC 0-3 Fetch the Transmit Ready Bits for
MACs 0 through 3. 12

instr_1 0x9C TxAutopush 3

instr_2 0x9B rxrdy MAC 0-3 Fetch the Receive Ready Bits for
MACs 0 through 3. 12

instr_3 0x0C RxAutopush 3

instr_4 0x00 flwctl
Write flow control MAC mask to the
MAC. MAC and mask are specified in
the FLW_CTL_MASK register.

6 (valid flow
control mask) or
1 (invalid flow
control mask).

instr_5 0x3E get1_2lw Get 4 messages (16 bytes) from
device 1. 17

instr_6 0x3D send_2lw Put 4 messages (16 bytes) out to
device 1. 17

instr_7, instr_11 0x1F NOP1 Perform no operations 4 nops x 3 = 12

Total Instruction Cycles (@66Mhz) 77 or 82

Desired cycle rate (4 times per minimum sized Fast Ethernet packet - 5120ns) 84

RDYBUS_SYNC_COUNT_DEFAULT [RDYBUS_TIMER] (Minimum cycles = 83 + 1). 84
200 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4.1 Issuing a Receive Request

The RCV_REQ register is used to initiate a receive transfer on the IX Bus. This is mapped to a
two-entry FIFO that can be written by the Microengines.

The rate at which Receive Requests are issued to the Receive State Machine must be managed in
microcode. To assist in managing the rate at which Receive Requests are issued, the FBI Unit
provides status indicating that the RCV_REQ FIFO has room available for another Receive
Request. This status is provided via the rec_req_avail state. The rec_req_avail state is a single
signal provided to each Microengine that indicates whether there is room in the RCV_REQ
register. A Microengine thread can test this state using the br_inp_state instruction.

The rec_req_avail state does not indicate whether a Receive Request has been issued and is
currently being delivered to the RCV_REQ register. Therefore a Microengine should specify a
sig_done or ctx_swap after issuing each Receive Request and then wait for the signal to be returned
before testing the rec_req_avail state. The following figure illustrates this point.

Figure 6-22. Receive State Machine and RFIFO - Receiving Data From IX Bus

A7088-02

Receive State Machine

RFIFO

RCV_REQ Register RCV_CNTL Register
start_receive
(Signal Event)

4-Entry FIFO 2-Entry FIFO

rec_req_avail
(Input State)

IX Bus data bus:
FDAT[63:0]

Notes: 1. Used only by the Transmit State Machine
2. Receive State Machine uses these pins in Fast Port mode

IX Bus Control Signals: PORTCTL#[4:0] SOP
FPS[3:0] EOP
FBE#[7:0] TXASIS/TXERR
RXFAIL FAST_RX1

FAST_RX2

1

2
2

IX Bus Pin Logic

fbi
(Signal Event)

From FBI
Push and Pull Engines

4 5321 7
6

Hardware Reference Manual 201

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4.2 Receive Request Format (RCV_REQ Register)

The RCV_REQ register instructs the Receive State Machine on how to receive data from the IX
Bus. This register is mapped to a two-entry FIFO that is written by a Microengine thread and is
read by the Receive State Machine. Figure 6-24 shows the format of the RCV_REQ register.

Figure 6-23. Issuing a Receive Request Flow

A7055-0

Is
this the first

request
issued

?

Prepare a
Receive Request

Receive
sig_done
from last
request

?

Issue a
Receive Request

When the Receive Request is issued,
the csr instruction should indicate
that the FBI Unit should signal when
the request is received.

Branch on the CSR signal or ctx swap
and wake when the signal is returned.

Branch on rec_req_avail state using the
br_inp_state instruction.

No

Yes

No

Is
rec_req_avail

set
?

Yes

Yes

No
202 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
FA Maximum IX Bus Accesses. Indicates the number of times the Receive
State Machine should attempt to access the IX Bus. The options are as
follows:

• For 64-bit bidirectional IX Bus mode:
0: Fetch 8 quadwords from IX Bus
1: Fetch 9 quadwords from IX Bus

• For 32-bit unidirectional IX Bus mode:
0: Fetch 16 longwords from IX Bus
1: Fetch 18 longwords from IX Bus

When FA = 1, the last quadword of data is placed into the extended data
field of the specified RFIFO element. Cannot be set if the NFE field is
set.

TMSG Thread MeSsaGe. The Microengine thread that issues the Receive
Request may pass a 2-bit message through the FBI Unit via this field to
the Microengine thread specified in the TID field. The FBI copies the
value of this field to a similar 2-bit field in the RCV_CNTL register
(RCV_CNTL[31:30]). In Fast Port mode, the value 3 (i.e., both bits set)
is reserved.

SL Status Length. This field is only relevant in 32-bit unidirectional mode
and is ignored in 64-bit bidirectional mode. It specifies the size of the IX
Bus status information read after an EOP is detected, and therefore
specifies how many times the Receive State Machine needs to access the
IX Bus to get the status. If this bit is 0, status is 32 bits and only requires
one access. If this bit is 1, status is 64 bits and requires two IX Bus
accesses.

Note: In 64-bit bidirectional mode, one access is always
performed if status is enabled.

Figure 6-24. RCV_REQ Register Format

A7081-02

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

T
H

S
G

RM RPFSE1E2

S
IG

R
S

R
E

S

R
E

S
IG

F
R

N
F

E

S
L

F
A

Read data
from this

port

Read data from
this MAC

Signal receive scheduler thread select

Ignore Fast Ready flags
Assign 1 or 2 FIFO elements select

Fast / Slow port mode select

Receive FIFO element assigned to the first 64 bytes.

Receive FIFO element assigned to the second 64 bytes

The length of the Packet Status data expected after an EOP is detected

Software defined message that can be passed to the thread assigned to process the packet

Specifies the maximum number of IX Bus accesses made for this request

Thread ID to signal when
request is complete

TIDRES
Hardware Reference Manual 203

Intel® IXP1200 Network Processor Family
FBI Unit
E2 Element 2. If the Receive State Machine is instructed to fill two RFIFO
elements (see NFE field), the second 64 bytes of data are placed in this
element.

E1 Element 1. Specifies the Receive FIFO element where the IX Bus data is
placed. If the Receive State Machine is instructed to read two elements
of data (see NFE field), the first 64 bytes of data are placed in this
element.

FS Fast or Slow port mode. Specifies whether the Receive State Machine
should treat the request as a Fast Port or a Slow port. If Fast Port is
specified, this field also specifies which sequence numbers are
incremented and assigned to the request, and that the Receive State
Machine should perform speculative requests.

NFE Number of FIFO Elements. Specifies whether the Receive State
Machine should attempt to fill one or two RFIFO elements. If status is
enabled and two RFIFO elements are specified, the status is always
placed in the status field of the first RFIFO element. Cannot be set if the
FA field is set.

IGFR IGnore Fast Ready Flag. If Fast Port mode is selected (see FS), the
Receive State Machine ignores the Fast Ready Flag pins (FAST_RX1,
FAST_RX2) and processes the request regardless of the state of these
pins. Should only be used if it can be guaranteed that there is data
available in the MAC port Receive FIFO.

SIGRS SIGnal Receive Scheduler. If set, the Receive Scheduler thread specified
in the RCV_RDY_CTL register, in addition to the thread specified in the
TID field, is signaled after the Receive Request is completed. As a result,
the data in the RCV_CNTL register must be read twice before the
Receive Request data is retired from the RCV_CNTL FIFO.

TID Thread ID. This field determines which Microengine thread is signaled
after the Receive Request is processed.

RM Receive MAC. During a receive, this field determines which MAC is
selected.

RP Receive Port. During a receive, this field determines which port of the
MAC is selected.

6.6.4.3 Processing Receive Requests

The Receive State Machine reads the RCV_REQ register to determine how it should receive data
from the IX Bus. This includes how the signaling should be performed on the IX Bus, where the
data should be placed into the RFIFO, and which Microengine should be signaled once the data is
received.

The Receive State Machine looks for a valid Receive Request in the RCV_REQ FIFO. In 32-bit
unidirectional mode, the Receive State Machine processes the Receive Request immediately since
it always owns the 32-bit receive IX Bus. In 64-bit bidirectional mode, the Receive State Machine
requests ownership of the IX Bus from the IX Bus Arbiter. The IX Bus Arbiter grants access to the
IX Bus based on a round robin algorithm between the following resources.

• Receive State Machine (process one Receive Request)

• Transmit State Machine (transmit one valid TFIFO element)
204 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
• Another IXP1200 (Shared IX Bus mode only)

When the Receive State Machine is granted access to the IX Bus, it selects the MAC device by
asserting the appropriate PORTCTL# signals and it selects the specified port within the MAC by
asserting the FPS signals. It then begins receiving data from the MAC device on the FDAT data
bus. The Receive State Machine always attempts to read either eight or nine quadwords of data
from the MAC device on the IX Bus as specified in the Receive Request. If the MAC device asserts
the EOP signal, the Receive State Machine terminates the receive early (before the eight or nine
accesses are made).

The Receive State Machine calculates the total bytes received for each Receive Request and
reports the value in the RCV_CNTL register. If EOP is received, the Receive State Machine reads
the byte enable signals (FBE#) to determine the number of valid bytes in the last receive data cycle.

Note: The FBE# signals are ignored if the EOP signal is not asserted during a receive data cycle.

If status is enabled, the Receive State Machine expects the status data to be provided on the next
data cycle following the asserted EOP signal. The status data is placed into the RFIFO status field
associated with the RFIFO element.

If the Receive State Machine sees the RXFAIL signal asserted during a receive data cycle, it aborts
the receive, and, if the status option is enabled, it does not go back for status. It also indicates in the
RCV_CNTL register that RXFAIL was asserted during the receive. The IX Bus data cycles
terminate as if EOP were seen (see Section 6.7).

After the FIFO element(s) are filled, the Receive State Machine creates control information about
the data in the RFIFO and places it into the Receive Control register (RCV_CNTL). The assigned
Microengine thread uses the control information to process the data.

The RCV_CNTL register is mapped to a four-entry FIFO that is written by the Receive State
Machine and read by a Microengine thread. The FBI Unit signals the assigned thread when a valid
entry reaches the top of the FIFO. When a Microengine thread reads the RCV_CNTL register, the
data is popped off the FIFO. If the SIGRS field is set in the RCV_REQ register, the Receive
Scheduler thread specified in the RCV_RDY_CTL register is signaled in addition to the thread
specified in TID field. In this case, the data in the RCV_CNTL register must be read twice before
the Receive Request data is retired from the RCV_CNTL FIFO and the next thread is signaled.

The Receive State Machine writes to the RCV_CNTL register as long as the FIFO is not full. If the
RCV_CNTL FIFO is full, the Receive State Machine stalls and stops accepting any more Receive
Requests.
Hardware Reference Manual 205

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4.4 Receive Data Control Information Format (RCV_CNTL Register)

The RCV_CNTL register provides instruction to the signaled Microengine thread to process the
data. This register is mapped to a four-entry FIFO that is written by the Receive State Machine and
read by a Microengine thread. Figure 6-25 shows the format of the RCV_CNTL register.

THMSG THread MeSsaGe. A 2-bit message may be passed from the thread that
issues the Receive Request to the thread that reads the RCV_CNTL
register. The thread that issues the Receive Request writes a 2-bit
message to RCV_REQ[28:27]. The Receive State Machine copies the
message into this field.

Note: If the port serviced is a Fast Port, the Receive State
Machine overwrites any message with the value 3 if the
speculative Receive Request is cancelled.

MACPORT/THD MAC Port Number/Header Thread ID.

• If the Fast Port mode specified in RCV_RDY_CNTL[14:13] = 00
(single thread mode), and if the SOP field is cleared, then this field
is the thread ID of the receive processing thread that was not used.
Or, if the SOP field is set, this field is the MAC port ID.

• If the Fast Port mode specified in RCV_RDY_CNTL[14:13] = 01
(header/body thread mode), and if the SOP bit is cleared, then this

Figure 6-25. RCV_CNTL Register Format

A7079-01

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

MACPORT
THD

SOP
SEQ

VLD BytesFESER
 F

R
E

R
R

S
N

E
O

P
S

O
P

E
F

SOP
Status

EOP
Status

Number of valid bytes
 in the RFIFO element

Specifies whether SOP sequence
 number is for Fast Port 1 or 2

Number of RFIFO elements
that contain valid data

Receive FIFO element assigned
to the first 64 bytes

Receive FIFO element assigned
to the second 64 bytes

An inverted copy of RCV_STATUS_FIFO[8]
[Receive OK for Intel MAC devices]

Receive Fail (RXFAIL) pin status

SOP sequence number for Fast Port mode

MAC port number, header thread ID or unused thread ID (depends on mode)

Software defined message copied from RCV_REQ[28:27]

T
H

M
S

G

206 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
field is the header thread ID. Or, if the SOP field is set, this field is
the MAC port ID.

• If the Fast Port mode specified in RCV_RDY_CNTL[14:13] = 10
(Explicit Thread mode), this field specifies the MAC port ID.

SOP SEQ Start of Packet Sequence Number. Relevant for Fast Ports. If the SOP
field is set, specifies the sequence number assigned to this request. The
SN field specifies whether the sequence number is for Fast Port 1 or 2.
If the SOP field is cleared, specifies the MAC packet (MPKT) sequence
number assigned to this request.

RF Receive Fail. If set, the RXFAIL pin was asserted during receive,
indicating a packet was received with errors, the Receive Request was
aborted, and status is not transferred.

RERR Receive ERRor. Relevant if status is enabled. Provides an inverted copy
of bit 8 of the RFIFO element status field. The Intel 21440 Multiport 10/
100 Mbps Ethernet Controller MAC provides Receive OK status in this
bit position that indicates no error occurred while receiving this data.

Note: If the RF field is set or status is not enabled, status is not
received and this field is irrelevant.

SE Second Element. A copy of the E2 field in the RCV_REQ register. If the
EF field is set, this specifies the RFIFO element that contains the second
64 bytes of data.

FE First Element. Specifies the RFIFO element that contains the first 64
bytes of data.

EF Elements filled. Specifies whether one or two RFIFO elements were
filled during the Receive Request.

SN Sequence Number. Only relevant for Fast Port modes. Specifies whether
the sequence number assigned in the SOP_SEQ field is for Fast Port 1 or
Fast Port 2.

VLD BYTES Valid Bytes. If EOP is set, specifies the number of valid bytes in the
RFIFO element. Valid bytes are contiguous beginning at the first byte in
the RFIFO element. (Actual Valid Bytes = Valid bytes + 1). If EOP is not
set, this field should be ignored.

EOP End Of Packet. If set, the EOP signal was asserted during an IX Bus
receive cycle.

SOP Start Of Packet. If set, the SOP signal was asserted during a receive data
cycle. If the Receive Request indicated that the port was a Fast Port and
this field is set, the following additional functions are performed.

The sequence number for the specified Fast Port is incremented.

• Header Body Mode:
If this field is asserted, the Receive State Machine signals the
thread specified in the RCV_REQ TID field (header thread). If this
field was asserted on the previous Receive Request, the Receive
State Machine signals the thread specified in the RCV_REQ TID
field (body thread), latches this TID internally and uses the latched
Hardware Reference Manual 207

Intel® IXP1200 Network Processor Family
FBI Unit
TID for all future Receive Requests to this port until the SOP pin is
asserted once again.

• Single Thread Mode:
If SOP is asserted during this Receive Request, the Receive State
Machine uses the TID field in the RCV_REQ register and latches it
internally. If SOP is not asserted during a Receive Request, the
Receive State Machine uses the latched TID.
208 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4.5 Interpreting the Byte Enable Pins (FBE#[7:0])

Eight byte enable signals are provided to indicate which bytes are valid on the IX Bus.

The Receive State Machine uses the FBE#[7:0] signals to calculate the number of bytes received
for each Receive Request. The Receive State Machine reports the byte count in the REC_CNTL
register. The number of bytes read for each receive data cycle is assumed to be eight unless the
EOP signal is asserted during the data cycle. In this case, the Receive State Machine reads the byte
enable signals (FBE#) to determine the number in the last receive data cycle. The FBE# signals are
ignored if the EOP signal is not asserted during a receive data cycle.

The Transmit State Machine asserts the FBE# signals to indicate which bytes are valid during an
IX Bus transmit cycle. A Microengine thread writes the number of valid quadwords and the
number of valid bytes in the last quadword to the control field of the TFIFO. The Transmit State
Machine always asserts the correct byte enable signals regardless of whether the EOP signal is
asserted.

For bidirectional IX Bus mode, FBE#[7:0] is a single 8-bit bus. For unidirectional mode,
FBE#[7:0] is partitioned into two 4-bit buses where bits [3:0] are used for receive and bits [7:4] are
used for transmit.

The IX Bus Endian bit in the RDYBUS_TEMPLATE_CTL register determines how the Transmit
and Receive State Machines interpret the byte enable signals based on either big endian or little
endian data. The IXP1200 interprets endian format based on longword boundaries as shown below.

Table 6-23. 64-bit Mode Endian Format

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

FDAT
[63:56]

FDAT
[55:48]

FDAT
[47:40]

FDAT
[39:32]

FDAT
[31:24]

FDAT
[23:16]

FDAT
[15:8] FDAT [7:0]

Big Endian

Byte 5 Byte 6 Byte 7 Byte 8 Byte 1 Byte 2 Byte 3 Byte 4

Little Endian

Byte 8 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1

Table 6-24. Byte Enable Signaling Based On Endian Format

Valid Bytes
FBE#[7:0]

Big Endian Mode Little Endian Mode

1 0xF7 0xFE

2 0xF3 0xFC

3 0xF1 0xF8

4 0xF0 0xF0

5 0x70 0xE0

6 0x30 0xC0

7 0x10 0x80

8 0x00 0x00
Hardware Reference Manual 209

Intel® IXP1200 Network Processor Family
FBI Unit
Table 6-25. 32-bit Mode Endian Format

63 56 55 48 47 40 39 32

FDAT [63:56] FDAT [55:48] FDAT [47:40] FDAT [39:32] Transmit

FDAT [31:24] FDAT [23:16] FDAT [15:8] FDAT [7:0] Receive

Big Endian

Byte 1 Byte 2 Byte 3 Byte 4

Little Endian

Byte 4 Byte 3 Byte 2 Byte 1

Table 6-26. Byte Enable Signaling Based On Endian Format

Valid Bytes Big Endian Mode Little Endian Mode

1 0x7 0xE

2 0x3 0xC

3 0x1 0x8

4 0x0 0x0
210 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.4.6 Reading the RFIFO

The Receive FIFO (RFIFO) is implemented as a memory array that can be written on quadword
boundaries. Each element of the RFIFO consists of ten quadwords and contains both Receive Data
and Extended Data/Status fields.

The RFIFO is always read on quadword boundaries and can be read by the Microengines into the
SRAM Transfer Registers using the r_fifo_rd instruction. Or, the Microengines can instruct the
SDRAM Unit to move data from the RFIFO into SDRAM using the sdram instruction.
Figure 6-26 shows the quadword addresses for the RFIFO.

• RFIFO Data Field

The data field contains the data that is read from the IX Bus by the Receive State Machine.
The number of valid bytes in the data field is reported in the RCV_CNTL register.

• RFIFO Extended Data and Receive Status Field

A Receive Request can instruct the Receive State Machine to gather nine quadwords of data -
one more than the data element can hold. It can also be programmed via the

Figure 6-26. Quadword Addresses for RFIFO

A7072-02

129 128 7 6 5 4 3 2 1 0

131 130 15 14 13 12 11 10 9 8

133 132 23 22 21 20 19 18 17 16

135 134 31 30 29 28 27 26 25 24

137 136 39 38 37 36 35 34 33 32

139 138 47 46 45 44 43 42 41 40

1

2

3

4

5

6

141 140 55 54 53 52 51 50 49 48

143 142 63 62 61 60 59 58 57 56

145 144 71 70 69 68 67 66 65 64

147 146 79 78 77 76 75 74 73 72

149 148 87 86 85 84 83 82 81 80

151 150 95 94 93 92 91 90 89 88

153 152 103 102 101 100 99 98 97 96

155 154 111 110 109 108 107 106 105 104

157 156 119 118 117 116 115 114 113 112

159 158 127 126 125 124 123 122 121 120

7

8

9

10

11

12

13

14

15

16

ElementReceive Data Fields

Extended Data Field
Status Field
Hardware Reference Manual 211

Intel® IXP1200 Network Processor Family
FBI Unit
RDYBUS_TEMPLATE_CTL register to gather one or two quadwords of reception status
information after an EOP is detected. In both cases, the data is placed into the Extended Data/
Status field associated with the data.

The extended data option is supported in all modes except in 32-bit unidirectional IX Bus
mode when 64-bit status is specified. The data placed into the extended data/status field is
presented in two formats based on the mode. See Figure 6-27 and Figure 6-28.

Figure 6-27. Format For 32-bit Unidirectional IX Bus Mode with 64-bit Status

Figure 6-28. Format for All Other Modes

The extended data option is enabled on a per-Receive-Request basis by setting the FA bit in the
RCV_REQ register. The Microengine threads that read the RFIFO know extended data is available
based on the number of quadwords reported in the RCV_CNTL register.

Some Intel IX Bus MAC devices provide status on the IX Bus on the next read after an EOP is
asserted. The Receive State Machine can be enabled to automatically read this status and place it
into the RFIFO status field when it detects an EOP. For 64-bit bidirectional IX Bus mode, one
quadword is always read and placed into this field. For 32-bit unidirectional IX Bus mode, the
Receive Request can specify whether the status length is one longword or one quadword. The
format of the status is dependent on the MAC device. The only thing the IXP1200 does with the
status is to copy bit 8 to the Receive OK bit in the RCV_CNTL register. This eliminates the need to
read the status field from the RFIFO.

Status
63 32 31 0

RESERVED STATUS (LONGWORD 2)

Extended Data
63 32 31 0

RESERVED STATUS (LONGWORD 1)

Status
63 32 31 0

STATUS (LONGWORD 2) STATUS (LONGWORD 1)

Extended Data
63 32 31 0

EXTENDED DATA (LONGWORD 2) EXTENDED DATA (LONGWORD 1)
212 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
The Intel 21440 Multiport 10/100 Mbps Ethernet Controller is an example of a device that provides
32 bits of status on the IX Bus. Figure 6-29 shows its status format.

Figure 6-29. Intel 21440 Multiport 10/100 Mbps Ethernet Controller Status Format

6.6.4.7 Receive Scheduler Thread

In general, it is preferable to have a single Microengine thread issue Receive Requests than to have
them issued by multiple Microengine threads. If a single thread issues Receive Requests, the
following advantages are achieved:

• It is easier to manage RCV_REQ FIFO overflows.

• It is easier to maintain which RFIFO elements are available.

• It is easier to determine which Microengine threads are available.

A single Microengine thread that issues Receive Requests is referred to as the Receive Scheduler
thread. The microcode developer can implement the Receive Scheduler to meet specific
application requirements, but, in general, the Receive Scheduler performs the following functions:

• Determines which MAC receive ports need to be serviced.

• Determines which Microengine thread to assign to a Receive Request.

• Determines which RFIFO elements to assign to a Receive Request.

• Issues Receive Requests to the FBI Receive State Machine.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LEN RES MLT BRD ROK FLW RES MER RTL RNT DRB CRC OVF

Bits Field Description

31:16 LEN Packet length

15:11 RES RESERVED

10 MLT Multicast packet

9 BRD Broadcast packet

8 ROK Receive OK

7 FLW Flow-control packet

6 RES RESERVED

5 MER MII error

4 RTL Too long packet

3 RNT Runt packet

2 DRB Alignment error

1 CRC CRC error

0 OVF Receive FIFO overflow (if set, LEN field is not valid)
Hardware Reference Manual 213

Intel® IXP1200 Network Processor Family
FBI Unit
To maintain full utilization of the IX Bus, the Receive Scheduler must perform its tasks as quickly
as possible to ensure that the Receive State Machine is always busy. The Receive Scheduler thread
must have real-time execution properties and is typically the only thread running on a Microengine
since it can not allow another thread to block its ability to perform its task. The tasks required of a
Receive Scheduler thread include:

1. Determining which ports need to be serviced by reading the RCV_RDY_HI, RCV_RDY_LO,
and RCV_RDY_CNT registers. The Receive Scheduler must also determine which Receive
Ready flags are new and which are old using either the Receive Request Count or the Receive
Ready Count in the RCV_RDY_CNT register.

2. Tracking the thread processing status of the other Microengine threads by reading the
THD_DONE_REG0 and THD_DONE_REG1 registers.

3. Determining which RFIFO elements are not in use. Since it is the Receive Scheduler that
assigns Receive threads to process the data in the RFIFO elements, and it also knows the
thread processing status from the THREAD_DONE_REG0 and THREAD_DONE_REG1
registers, it can determine which RFIFO elements are currently available. This is because a
Receive FIFO element assigned to a thread is not available as long as the thread is busy. If the
thread has finished processing, the element is free to be used again.

4. Issuing Receive Requests to the IX Bus Receive State Machine by writing to the RCV_REQ
register.

Timing Considerations When Issuing Receive Requests

To utilize the peak bandwidth of the IX Bus, the Receive Scheduler must issue Receive Requests to
the Receive State Machine fast enough such that a Receive Request is always available for it to
process. Figure 6-30 shows the rate at which Receive Requests must be issued in order to take
advantage of the complete bandwidth of the IX Bus. The time period of the decision loop is in the
range of 42 to 47 Core clock cycles.

Figure 6-30. Receive Scheduler Decision Time

A7082-02

2 8 cyc 8 cyc1

19 cyc (288 ns @ 66 MHz)

FBI UnitREC_REQ REC_CTL

Receive
State Machine

Rx Scheduler
Thread

<288 ns

Execution loop

<47 cyc

Receive
Thread

Execution loop

<765 cyc

RFIFO

2

1

15
16

Rx (64 bytes) Tx (64 bytes)

Must be serviced
every 288 ns

Each element must
be serviced every 4.6 us
(288 ns x 16)

64-Bit Bidirectional Mode

IX Bus Pins IX Bus Pins

1

17 cyc (257 ns @ 66 MHz)

Rx Scheduler
Thread

<257 ns

Execution loop

<42 cyc

Receive
Thread

Execution loop

<680 cyc

Must be serviced
every 257 ns

Each element must
be serviced every 4.1us
(257 ns x 16)

32-Bit Unidirectional Mode

Receive (64 Bytes)

FBI UnitREC_REQ REC_CTL

Receive
State Machine RFIFO

2

1

15
16
214 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.5 Transmit State Machine and TFIFO - Transmitting Data on
the IX Bus

Microengines initiate transfers across the IX Bus while the Transmit State Machine actually
performs the data transfers on the IX Bus. The Microengine interface to the Transmit State
Machine is through the TFIFO elements and the XMIT_VALIDATE FBI register. The steps
involved with IX Bus transmit transfers are listed below. These steps are described in more detail
throughout this section.

The steps involved with initiating an IX Bus transmit transfers are the following:

1. The Microengine must manage which TFIFO elements have been written with valid data and
which elements the Transmit State Machine has transmitted. A Microengine reads the remove
pointer from the XMIT_PTR register to determine which elements have been sent and updates
the TFIFO element status maintained in microcode.

2. The Microengine writes the data to the data field of the next TFIFO element.

3. The Microengine writes the control information to the control field.

4. The Microengine sets the Valid flag for the element using the fast_wr instruction to the
XMIT_VALIDATE register and updates the TFIFO element status maintained in microcode.

Figure 6-31. IX Bus Transmit Transfer Steps

A7049-02

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

64-Byte Data ElementsControl

transmit_ptr

Valid
Flags

Set

XMIT_VALIDATE Register

031

Read & Clear

sdram or t_fifo_wr instructions

fast_wr instruction
XMIT_PTR Register

031 3

3

csr read instruction or Autopush

Prepend

IX Bus Pin Logic

Transmit
State Machine

IX Bus Data BusIX Bus Control Signals

PORTCTL#
FBE#
EOP

XMIT_RDY_CTL Register

31 16

Copy of valid flags - status only
(Not required for transmit)

FPS[2:0]
TXASIS/TXERR
Hardware Reference Manual 215

Intel® IXP1200 Network Processor Family
FBI Unit
In the default mode, the Microengine should set the valid flag once the SDRAM reference is
complete and the data is in the TFIFO data element. This ensures that the Transmit State Machine
will not attempt to transmit that TFIFO element until the data is present.

In Dual Valid Bit mode, an additional flag is used for each TFIFO element. The first valid flag is
set by the Microengine thread and the second is set by the SDRAM Unit once the memory
reference is complete. In this case, the Microengine does not need to wait for the data to be in the
TFIFO before setting its valid bit. Instead, it sets the first valid bit once the control information is
written and then issues an sdram[t_fifo_wr,...], sigdone instruction. When the SDRAM Unit
completes that data write to the TFIFO, it will signal the Microengine as well as set the second
valid bit. (Note that the sig_done token must be used for this to occur.)

The steps involved with transmitting data onto the IX Bus are the following:

1. The Transmit State Machine checks the Valid flag(s) of the current element specified in
XMIT_PTR register.

2. If the Valid flag(s) is set, the Transmit State Machine reads the Control field and transmits first
the data in the Prepend field (if enabled by bit [16] of the Control field) and then transmits the
data in the Data field. If the Valid flag(s) is cleared, the Transmit State Machine waits at that
element until it is set.

3. At the beginning of the transfer of the TFIFO element across the IX Bus, the transmit pointer
is incremented by one and the process is repeated.

6.6.5.1 Initiating a Transmit Request (TFIFO Format)

From a Microengine perspective, the Transmit FIFO (TFIFO) is implemented as a memory array
that can be written on quadword boundaries. From the Transmit State Machine perspective, the
elements are implemented as a circular buffer of 16 elements.

Each element of the TFIFO consists of ten quadwords and contains four fields: Transmit Data,
Prepend, Control, and Valid.

• The Transmit Data field is a 64-byte TFIFO that holds the Transmit data.

• The Prepend field is 8 bytes and holds data that is sent before the Data field when the Prepend
option is enabled in the Control field.

• The Control field is 8 bytes and instructs the Transmit State Machine on how to transmit the
data.

• The Valid flag(s) indicates to the Transmit State Machine that the Data, Prepend, and Control
fields are valid and the element can be transmitted over the IX Bus.

Data is written to the TFIFO on quadword boundaries. A Microengine writes data from its SRAM
Transfer Register using the t_fifo_wr instruction. The sdram instruction can also be used to
instruct the SDRAM Unit to move data directly from SDRAM into the TFIFO. A Microengine can
write to the TFIFO elements in any order, however, the Transmit State Machine always services the
elements contiguously. If the Transmit State Machine does not detect a Valid flag set for an
element, it stops transmitting until the Valid flag for that element is set.

The Valid flag should only be set after the data, control, and prepend fields are written. A
Microengine sets the Valid flag by writing to the XMIT_VALIDATE register using the fast_wr
instruction. Since the fast_wr instruction requires immediate data to be specified when the
microcode is assembled, the indirect reference is typically used to specify a 4-bit element number
216 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
(0-15). The FBI Unit reads the element number and automatically sets the Valid flag for the
appropriate TFIFO element. The current state of the Valid flags for each of the elements can be
read through the XMIT_RDYCTL register.

The format of the TFIFO elements as well as the quadword addresses are shown in Figure 6-32.

Transmit Data Field The 64-byte transmit data fields contain the data that is sent onto the IX
Bus. The data is placed on the bus beginning at the lower quadword
address.

Control Field The 8-byte control field instructs the Transmit State Machine how to
transmit the data. The format of the control field is as follows:

Figure 6-32. TFIFO Format and Quadword Word Address

A7073-02

129 128 7 6 5 4 3 2 1 0

131 130 15 14 13 12 11 10 9 8

133 132 23 22 21 20 19 18 17 16

135 134 31 30 29 28 27 26 25 24

137 136 39 38 37 36 35 34 33 32

139 138 47 46 45 44 43 42 41 40

0

1

2

3

4

5

141 140 55 54 53 52 51 50 49 48

143 142 63 62 61 60 59 58 57 56

145 144 71 70 69 68 67 66 65 64

147 146 79 78 77 76 75 74 73 72

149 148 87 86 85 84 83 82 81 80

151 150 95 94 93 92 91 90 89 88

153 152 103 102 101 100 99 98 97 96

155 154 111 110 109 108 107 106 105 104

157 156 119 118 117 116 115 114 113 112

159 158 127 126 125 124 123 122 121 120

6

7

8

9

10

11

12

13

14

15

ElementTransmit Data Fields

Control Field
Prepend Field

63:19 18 17 16 15:13 12:10 9 8 7 6 5:3 2:0

RES TXERR TXASIS PREPEND VLD
QWORDS

VLD
BYTES EOP SOP ERR RES MAC

_NO
PORT
_NO
Hardware Reference Manual 217

Intel® IXP1200 Network Processor Family
FBI Unit
TXERR TX Error. If set, the TXASIS/TXERR pin is asserted during the last cycle
of the data transfer.

TXASIS TX As Is. If set, the TXASIS/TXERR pin is asserted during the first
cycle of the data transfer.

PREPEND If set, the data in the prepend field is transmitted on the IX Bus before
the data field.

VLD QWORDS Valid Quadwords. Specifies the number of valid quadwords of data in the
TFIFO element. Valid quadwords are contiguous beginning at the first
quadword in the TFIFO element. The number of valid quadwords
transmitted equals VLD QWORDS + 1.

VLD BYTES Valid Bytes. Specifies the number of valid bytes using the FBE# signals
in the last valid quadword of data. The number of valid bytes transmitted
equals VLD BYTES + 1.

EOP End Of Packet. If set, the EOP pin is asserted during the last transmit data
cycle that contains valid data.

SOP Start Of Packet. If set, the SOP pin is asserted during the first transmit
data cycle. Note that if the prepend option is enabled, SOP is asserted
coincident with the prepend data and not the packet data.

ERR Error. If set, the Transmit State Machine does not send this element and
skips to the next element. The valid bit for the element must be set for
the ERR bit to take effect.

MAC_NO MAC Number. This field, along with the fact that this is associated with
an IX Bus transmit, determines how the PORTCTL# signals are asserted.

PORT_NO Port Number. Determines how the FPS signals are asserted during the IX
Bus transfer.

Prepend Field The 8-byte Prepend field is transmitted when the prepend bit in the
control field is set. The pupose of the prepend data is defined by the user.
It can, for example, be used as control information to a switching fabric.

6.6.5.2 Transmitting TFIFO Data

The Transmit State Machine checks the Valid flags for the TFIFO element associated with the
transmit pointer. If the Valid flag is set, it reads the control information from the control field and
transmits the data in the Data field and (if enabled) the data in the Prepend field. After the data is
transmitted, the Valid flag is cleared, the remove pointer is incremented and the Transmit State
Machine looks at the next Valid flag. The Transmit State Machine services the TFIFO elements
sequentially, wrapping around to element 0 after it services element 15. If the remove pointer
points to an element that does not have a Valid flag set, it stalls the Transmit State Machine which
waits for the flag to be set.

6.6.6 Transmit Scheduler Thread

The tasks involved with determining when and how to issue transmit requests indicate that it would
be best to have a single Microengine thread perform these functions. This thread is referred to as
the Transmit Scheduler thread. The microcode developer can implement the Transmit Scheduler to
meet specific application requirements, but fundamentally it performs the following functions:
218 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
• Manages which transmit queues or the MAC ports have data available to transmit.

• Manages which MAC transmit ports can accept data.

• Manages which TFIFO elements are currently being used and which are available.

• Manages which Microengine thread to assign to issue the transmit request.

• Assigns a Microengine thread to transmit data to a specified port using a specified TFIFO
element.

The concept of a Transmit Scheduler thread is extended to the hardware from the point of view of
the TxAutopush operation. The TxAutopush operation enables the XMIT_RDY_LO,
XMIT_RDY_HI, and XMIT_PTR registers to be autopushed to a Microengine thread specified in
the XMIT_RDY_CTL register. It is expected that this thread perform the Transmit Scheduler
functions described above.

6.6.6.1 Assigning a Transmit Thread - Examples

Once the Transmit Scheduler decides which port to service and which Transmit thread to assign to
that port, it issues a Transmit Request to a Transmit thread. The transmit algorithm is
programmable. This section provides two examples.

Example 6-9. Assignment Using Inter-Thread Communications

This example illustrates the assignment of a Transmit Request to a Transmit thread using inter-
thread communications. Inter-thread communications may be implemented by allocating memory
as mailboxes and having the Transmit Scheduler write the Transmit Requests to a mailbox. Once
the request is written to the mailbox, the Transmit Scheduler signals the assigned Transmit thread
by writing to the Transmit Thread ID to the INTER_THD_SIG register. This generates a signal
event to the specified Microengine thread. The Transmit thread responds to the Interthread signal
event by reading the mailbox and processing the Transmit Request.

Example 6-10. Assignment Using Messages

This example takes a different approach. It is based on the premise that all the Transmit threads
reside on a single Microengine. The idea is for the Transmit Scheduler to issue Transmit Requests
in the form of a message that is written to a circular buffer kept within Scratchpad memory. The
Transmit Scheduler maintains an insert pointer into the circular buffer and the Transmit threads
maintain a remove pointer. A typical message format is shown below.

The Transmit threads use absolute addressing to share a common general-purpose register (GPR)
that contains the remove pointer. When each Transmit thread wakes up, it uses the remove pointer
to read the task assignment message and checks the valid bit. If the message is valid, it increments

31 30 16 15 12 11 8 7 0

VLD Unused Element
count

Element
number Transmit Queue

VLD Indicates whether the message is valid (1 = message is valid)

Element count Indicates number of TFIFO elements assigned (0 = no assignment)

Element number Identifies the TFIFO element number

Transmit Queue Identifies the transmit queue
Hardware Reference Manual 219

Intel® IXP1200 Network Processor Family
FBI Unit
the task assignment pointer in the global GPR and processes the request. The Transmit threads can
calculate the packet location based on the port, queue, and the base address of the transmit
descriptor queue base address. When the task is complete, the thread task is repeated.

6.6.7 IX Bus Arbiter

The IX Bus Arbiter is used only in 64-bit bidirectional mode. It selects whether the IX Bus
Interface Logic is owned by either the Receive State Machine, Transmit State Machine, or, if
enabled, another IXP1200 on a shared IX Bus. The shared IX Bus mode bit in the
RDYBUS_TEMPLATE_CTL register determines whether the IXP1200 is configured for single
IXP1200 mode or shared IX Bus mode.

For single IXP1200 systems, the IX Bus arbitration policy is to switch between granting ownership
to either the Receive State Machine or the Transmit State Machine. When the Receive State
Machine is granted ownership, it completes one Receive Request and then the arbitration moves to
the Transmit State Machine. When the Transmit State Machine is granted ownership it may
transmit one TFIFO element. If one of the state machines does not require access to the bus, the
other state machine is granted another turn.

For shared IX Bus configurations, the IX Bus arbitration policy is to switch between granting
ownership to the Receive State Machine, the Transmit State Machine, and another IXP1200. When
the Receive State Machine is granted ownership, it may complete one Receive Request. When the
Transmit State Machine is granted ownership, it transmits one TFIFO element. The IX Bus Arbiter
then looks at the EOP32 pin (which has the alternative function of IX Bus Request Input) to
determine if another IXP1200 is requesting ownership of the IX Bus. If so, the IX Bus Arbiter
deasserts the TK_OUT pin, relinquishing IX Bus ownership. Otherwise IX Bus ownership is
retained in the current IXP1200 for another set of transmits and receives. Whenever a Receive
Request is available or the next TFIFO element is validated, the IX Bus Arbiter requests IX Bus
ownership by asserting the SOP32 pin (which has the alternative function of IX Bus Request
Output). The IX Bus Arbiter then waits for its TK_IN pin to be deasserted, indicating that IX Bus
ownership has been granted.

Figure 6-33. IX Bus Arbiter Flow

A7056-02

IX Bus Data Bus:
FDAT[63:0]

Shared IX Bus Mode Signals:
TK_IN
TK_OUT
SOP32 (FBUS_REQ_OUT)
EOP32 (FBUS_REQ_IN)

Control

Valid
Flags

IX Bus
Arbiter

Receive
State Machine

Transmit
State Machine DataData/

Status

IX Bus Control Signals:
PORTCTL#[4:0] SOP
FPS[3:0] EOP
FBE#[7:0] FAST_RX1
RXFAIL FAST_RX2
TXASIS/TXERR

RFIFO TFIFO
220 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.8 Slow Ports and Fast Ports

The concept of Slow Ports and Fast Ports is relevant only to how packets are received on the IX
Bus. The type of port used is defined by software on a per-port basis every time a request is issued.
One factor that could determine which type of port to use is bandwidth. Figure 6-34 illustrates the
differences between Fast and Slow Ports. Both examples show a total IX Bus bandwidth of 1 Gbps
for 64-bit bidirectional IX Bus mode. The first example shows ten 100 Mbps ports, while the
second shows a single 1 Gbps port. Even though they require the same bandwidth, the data on the
Fast Port must be read ten times as fast as the Slow Port. Because of this, the IXP1200 addresses
two issues:

1. How to maintain the order in which packets are received from MAC ports.

2. How to issue Receive Requests such that a MAC port Receive FIFO does not overflow.

The following sections describe how this is done.
Hardware Reference Manual 221

Intel® IXP1200 Network Processor Family
FBI Unit
Figure 6-34. Slow Ports vs. Fast Ports

A7057-02

MAC 1

IX Bus
1Gb

One Fast Port

Example 2: Fast Port Packet Arrival Rate

Network
1Gb

Ten Slow Ports

Example 1: Slow Port Packet Arrival Rate IX Bus
1Gb

100 Mb 100 Mb 100 Mb 100 Mb

port 10
port 9
port 8
port 7
port 6
port 5
port 4
port 3
port 2
port 1

Transfer time across the IX Bus for 64 Bytes
(approximately 10 cycles) @ 66 MHz = 150 ns

1 us 2 us 3 us 4 us 5 us

time

Receive period on the IX Bus

Transmit period on the IX Bus

MPKT arrival rate per port

MPKT arrival rate per port

Notes:

6 us 7 us 8 us 9 us 10 us

1 us 2 us 3 us 4 us 5 us
time

6 us 7 us 8 us 9 us 10 us

port 1

Receive data present on the IX Bus

Network

MPKT = Network data fragment. The size of the
 data field of a single
 RFIFO element (64 Bytes)

MAC 1 MAC 10MAC 2 MAC 9
222 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.6.8.1 Maintaining Packet Order

Slow Ports and Fast Ports handle packet ordering differently due to the rate at which data arrives at
the port and the rate at which a Microengine thread can process the data. The Receive State
Machine reads packets from the MAC ports in fragments equal in size to one or two IXP1200
RFIFO elements. This document refers to the data in a single RFIFO element as a MAC Packet
(MPKT). The amount of processing required for an MPKT may include header processing (header
modification, forward lookup, etc.) or simply moving a packet body fragment to memory.

Port Blocking - Slow Ports
Port blocking maintains packet order ensuring that each MPKT is processed serially. In other
words, each Receive Request is processed by a Microengine thread and placed into a buffer in
memory before another Receive Request is issued to the same port. The following steps
outline the tasks required for port blocking:

1. The Receive Scheduler thread determines which ports need to be serviced (via the Receive
ready Flags) and which Microengine threads are available to process a Receive Request (via
thread done or self destruct registers).

2. The Receive Scheduler thread maintains a record of thread to port assignments.

3. The Receive Scheduler thread issues a Receive Request and does not issue any more Receive
Requests to that port until the Receive Request has completed (i.e. the port is blocked).

4. Receive State Machine processes the Receive Request and wakes the assigned Microengine
thread

5. Assigned Microengine thread processes data, places data in memory, and signals the Receive
Scheduler that the Receive Request is complete.

6. Repeat these steps for subsequent MPKTs.

Port Blocking requires the Receive Scheduler Thread maintain a record of which threads it
assigns to which ports. After the Microengine threads assigned to the port completes the
Receive Request, it must notify the Receive Scheduler Thread that the Receive Request is
complete so that the port can be unblocked.

The IXP1200 provides two mechanisms that allow the assigned Microengine thread to indicate
when the Receive Request has been completed: thread done and self destruct. Both methods
require that the assigned Microengine thread signal the Receive Scheduler by writing a
message to an FBI CSR (THD_DONE or SELF_DESTRUCT) and that the Receive Scheduler
poll the CSR periodically to determine the status.

The THREAD_DONE and SELF_DESTRUCT registers are described in Section 6.5.6.

The SELF_DESTRUCT CSR support a one-bit message. The assigned Microengine Thread
may set a bit within the SELF_DESTRUCT register (using the fast_wr instruction) to indicate
that the Receive Request is complete. For example, Thread 12 may set bit 12 in the
SELF_DESTRUCT register. When the Receive Scheduler reads the SELF_DESTRUCT
register, the register value is returned and all the bits in the SELF_DESTRUCT register are
automatically cleared. The Receive Scheduler can then look at the returned value to determine
which threads have completed their assignments and then update its thread/port assignment
list.

The THREAD_DONE CSRs supports a two-bit message for each Microengine thread. The
assigned Microengine Thread may write a two-bit message to the THREAD_DONE register
(using the fast_wr instruction) to indicate when it has completed its task. Each time a message
is written to the THREAD_DONE register, the current message is logically ORed with the
new message. The bit values in the THREAD_DONE registers are cleared by writing a “1” so
Hardware Reference Manual 223

Intel® IXP1200 Network Processor Family
FBI Unit
the Scheduler thread may clear the messages in the THREAD_DONE register by writing the
data read back to the THREAD_DONE register. An example of four message types is shown
below.

The assigned threads write their status to the THREAD_DONE register whenever it changes.
For example, a Microengine thread may immediately write 00 to THREAD_DONE after the
Receive State Machine signals the assigned thread. When the Receive Scheduler reads the
THREAD_DONE register, it can look at the returned value to determine the status of each
thread and then update its thread/port assignment list.

Sequence Numbers - Fast Ports
The packet rate of a Fast Port is such that the rate at which the Receive State Machine reads
MPKTs from a single MAC port is so fast that a Microengine thread may NOT be able to
process an MPKT before the Receive State Machine brings in another MPKT from the same
port. A Fast Port assumes that the data arriving at a single MAC port is placed into multiple
RFIFO elements and multiple Microengine threads are assigned to process the data in the
RFIFO elements. For example, a single Fast Port may require eight RFIFO elements and six
Microengine threads to maintain full line rate.

Fast Ports preclude the use of port blocking since MPKTs are processed in parallel and by
different threads. The IXP1200 uses sequence numbers to ensure packet ordering for Fast
Ports. Two sets of sequence numbers are supported, one per Fast Port. Each set provides a
packet sequence number, an MPKT sequence number, and an enqueue sequence number.
These sequence numbers are maintained as 4-bit counters within the FBI Unit and both
automatically roll over to zero after a count of fifteen. The sequence numbers can only be
incremented and can not be assigned any specific value.

A packet sequence number is incremented by the Receive State Machine once per Fast Port
Receive Request and placed into the RCV_CNTL register. A copy of the sequence number
field is also maintained in the SOP_SEQ1 (for Fast Port 1) or SOP_SEQ2 (for Fast Port 2)
register. The Receive State Machine increments the packet sequence numbers in a manner that
allows the microcode to track not only the sequence of packets, but also the sequence of the
individual MPKTs. If the SOP signal is detected during a Receive Request, the packet
sequence number provides a sequence number based on a packet (hereafter referred to as an
SOP sequence number). If the SOP signal is not detected during a Receive Request, the packet
sequence number is based on an MPKT packet (hereafter referred to as an MPKT sequence
number). The Receive threads can determine the type of packet sequence number since the
RCV_CNTL register contains both the packet sequence number and SOP status.

Both packet sequence numbers are implemented as two separate 4-bit counters. An SOP
sequence number counter is incremented each time an SOP is detected. An MPKT sequence
number counter inherits the SOP sequence number whenever the SOP signal is asserted, and is

Example 6-11. Four Message Types

Message Meaning Description

00 Thread is busy. The thread is not available for another assignment.

01 Thread is idle - MPKT assignment complete. The thread has completed its assigned Receive
Request, but it did not see an EOP.

10 Thread is idle - MPKT assignment complete
and the last packet contained an EOP.

The thread has completed its assigned Receive
Request and an EOP was detected.

11 RFIFO Element is free.

The thread has removed all the data from the
RFIFO so it can be assigned to another Receive
Request. However, the Thread can still be busy
working on a Receive Request.
224 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
incremented once per Receive Request when the SOP signal is not detected. The figure below
shows an example of how the sequence numbers are incremented.

The enqueue sequence numbers are used by the Receive threads to determine whether it is
their turn to place a packet onto a transmit queue. When an entire network packet has been
received, the Receive thread reads the enqueue sequence number from the appropriate
ENQUEUE_SEQ register. If the enqueue sequence number matches the SOP sequence
number assigned to the packet, the Receive thread can place the packet onto a transmit queue.
If the enqueue sequence number does not match, the Receive thread goes to sleep and waits for
a “sequence number change” signal event to occur. When the event occurs, the Microengine
thread reads the enqueue sequence number again and checks for a match. If a match occurs,
the packet may be placed onto a transmit queue.

After a packet is placed on a transmit queue, the Receive thread increments the enqueue
sequence number. The enqueue sequence numbers are incremented by writing to either the
ENQUEUE_SEQ1 or ENQUEUE_SEQ2 register using the fast_wr[incr_enq_num1] or
fast_wr[incr_enq_num2] instruction, respectively. A Microengine thread may choose to
write its processing status to the THREAD_DONE register as well as incrementing the
enqueue sequence number. This is accomplished with a single fast_wr instruction to the
THREAD_DONE_INCR1 register or the THREAD_DONE_INCR2 register.

6.6.8.2 Issuing Receive Requests

A Microengine thread must manage the rate at which it issues Receive Requests to ensure that it
does not issue more Receive Requests to a port than is required, but that it also issues enough
Receive Requests so that the MAC port Receive FIFO does not overflow.

Slow Ports - Guaranteed Availability
When using Slow Ports, a Microengine thread reads the MAC receive FIFO Ready Flags for
multiple ports, determines which ports have data available, and always issues Receive
Requests based on the knowledge that data is available in the MAC Receive FIFO. Since it
reads multiple Receive FIFO Ready flags each time, it can issue multiple Receive Requests
before it has to read the flags again.

The fundamental rule for Slow Ports is that each Receive Request is issued based on the
knowledge that there is data waiting in the MAC receive FIFO. In other words, the Receive
State Machine is provided a guarantee that data is available at the MAC device when it starts
processing the Receive Request.

Figure 6-35. Sequence Number Assignment for One Fast Port

A7070-01

Notes:
= Packet Sequence Numbers (SOP at the start of the MPKT)
= MPKT Sequence Number

1

SOP

2 3 2

SOP

3 3

SOP

4 5

1

SOP

MPKT1 MPKT2 MPKT3 MPKT4 MPKT5 MPKT6 MPKT7 MPKT8

Packets arriving over time

1

Hardware Reference Manual 225

Intel® IXP1200 Network Processor Family
FBI Unit
Fast Ports - Speculative Requests
Since Fast Ports operate at a much higher data rate than Slow Ports, the rate at which a single
MAC port is required to be serviced precludes the concept of issuing Receive Requests only
when data is known to be available in a MAC port Receive FIFO. The reason guaranteed
availability can not be supported for Fast Ports is because the latencies associated with the
following tasks may be greater than that packet arrival rate:

— Reading the Receive FIFO Ready flags from a MAC device.

— Reading the Receive FIFO Ready flags into a Microengine thread.

— Microengine thread making a decision on whether to issue a Receive Request.

— Writing the Receive Request to the FBI Unit.

— Receive State Machine Processing the Receive Request.

Fast Ports support these higher data rates by supporting speculative requests. Speculative
requests allow a Microengine thread to issue multiple Receive Requests to a port based on the
speculation that there is data available in the MAC receive FIFO. At the time the Receive State
Machine processes each Receive Request, the Receive State Machine determines if data is
available at the MAC port and either processes the request or it is canceled.

The Receive State Machine determines whether there is data available at either of the two Fast
Ports by reading the IXP1200s fast receive ready pins (FAST_RX1 and FAST_RX2). These
pins provide a direct connection to the MAC ports Receive FIFO Ready flags. The MAC ports
should assert these signals when the receive FIFO threshold level is reached. The Receive
State Machine will sample the fast ready pins immediately before processing a Receive
Request (RCV_REQ) from a Fast Port. Therefore, the fast ready pins need to be valid at that
point in time.

If a fast ready pin is not asserted, the Receive State Machine cancels a request and writes a
cancel message (binary 11) into the RCV_CNTL register’s message field. It then signals the
assigned Receive thread. The Receive thread should be programmed to read the RCV_CNTL
register, interpret the cancel message correctly and indicate to the Receive Scheduler thread
that it is available for other tasks.

The state of the two fast ready pins is reflected in the RCV_RDY_CNT register. A Receive
Scheduler can read this register to determine whether it should issue a Receive Request to a
Fast Port. There are two methods for issuing Speculative Requests: Blind Speculative
Requests and Smart Speculative Requests.

The IXP1200 supports two Fast Ports. The following is required to support Fast Ports.

a. The MAC port must support a fast ready pin, and it must be tied to one of the IXP1200s
fast ready pins (FAST_RX1 and FAST_RX2).

b. One of three Fast Port modes must be selected in the RCV_RDY_CTL register.

c. The Receive Request must have the Fast Port bits set to indicate to the Receive State
Machine that the port is a Fast Port and which sequence number is assigned. Sequence
numbers are described in Figure 6.6.8.1.

Blind Speculative Requests
A Receive Scheduler can blindly issue Receive Requests to the Receive State Machine without
knowledge of whether there is data available. Because of the time it takes for the Receive State
Machine to cancel a request, Blind Speculative Requests affect IX Bus performance by
introducing a three IX Bus cycle penalty for each cancelled request.
226 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
Smart Speculative Request
Smart Speculative Requests have the advantage of incurring less cancel penalties than the
blind Speculative Requests. For Smart Speculative Requests, the Receive Scheduler thread
reads the fast Ready flags from the RCV_RDY_CNT register on a periodic basis to determine
when it should issue Receive Requests. Then it issues enough Receive Requests to cover the
data that might have arrived in the MAC port since the last time it read the Fast Ready flags.

6.6.8.3 Fast Port Modes

The Receive State Machine supports three Fast Port modes that determine how Receive threads are
assigned to process packet data in the RFIFO. A packet is defined as beginning with the assertion
of SOP and ending with the assertion of EOP. These Fast Port modes are referred as Single Thread,
Header/Body Thread and Explicit Thread modes. When selecting modes, consider the following:

— The Receive Scheduler thread needs to know which threads are available to assign threads
to process each Receive Request.

— Order must be maintained by using a SOP sequence number. An MPKT sequence number
may also be needed depending on the mode selected.

— The execution time for the Receive thread is variable. For example, the processing of a
header would take longer than the processing of subsequent data pieces.

Single Thread Mode
The single thread mode assigns a single thread to each packet when using Speculative
Requests.

The Receive State Machine supports the single thread assignments in the following manner.
When the Receive State Machine detects an SOP, it signals the thread specified in the
RCV_REQ register and saves the thread number in the header field of the
REC_FASTPORT_CTL register. If it does not detect an SOP, the Receive State Machine
ignores the thread ID presented in the RCV_REQ register and signals the thread specified in
the REC_FASTPORT_CTL register. The Receive State Machine writes the unused thread ID
to the RCV_CNTL register MACPORT/THD field. The unused thread ID must be returned to
the Receive Scheduler thread so it knows that the thread as available for processing. There are
several methods for returning the unused thread ID. Here are three possible methods:

— The Receive State Machine signals the Receive thread when the Receive Request is
complete and the Receive thread passes the unused thread ID to the Receive Scheduler
thread using inter-thread communications.

— The Receive Scheduler can request that it be signaled as well as the Receive thread after
the Receive State Machine completes the Receive Request. In this case RCV_CNTL must
be read twice before data is removed from the 4-entry RCV_REQ FIFO. In most cases,
the Receive thread reads it once and the Receive Scheduler thread also reads it once. If
two reads are not performed to the RCV_CNTL FIFO, it becomes blocked and the
Receive State Machine stalls.

— The Receive State Machine signals the Receive thread when the Receive Request is
complete, and the Receive thread sets the bit corresponding to the unused thread ID in the
SELF_DESTRUCT register. The Receive Scheduler thread periodically reads the self
destruct register to determine which threads are available.

Header/Body Threads Mode
The Header/Body thread mode assigns two threads per packet when using Speculative
Requests. The idea behind the Header/Body threads is as follows. The first thread is the
Hardware Reference Manual 227

Intel® IXP1200 Network Processor Family
FBI Unit
Header thread and it is responsible for processing the header to determine how to forward the
packet. The second thread is the Body thread. It’s responsible for moving the remainder of the
packet to memory. When the Body threads completes its task, it can use inter-thread signaling
to notify the header thread where the body of the packet is located. The header thread can then
place the packet onto a transmit queue.

The Receive State Machine supports header and body threads in the following manner. When
the Receive State Machine detects an SOP, it signals the thread specified in the RCV_REQ
register and saves the thread number in the header field of the REC_FASTPORT_CTL
register. When the Receive State Machine processes the next request, it signals the thread
specified in the RCV_REQ register and saves the thread number in the body field of the
REC_FASTPORT_CTL register.

From this point forward, the Receive State Machine ignores the thread ID presented in the
RCV_REQ register and signals the body thread specified in the REC_FASTPORT_CTL
register. The Receive State Machine writes the unused thread ID to the RCV_CNTL register’s
MACPORT/THD field. As with the single thread mode, the unused thread ID must be returned
to the Receive Scheduler thread so it knows that the thread is available for processing.

Explicit Thread Mode
The Explicit thread mode is identical to the Slow Port mode in the way thread assignments are
made. In other words, the Receive State Machine always uses the thread assignment in the
Receive Request. In this mode, the MPKT sequence number is provided to ensure that MPKTs
are queued in the correct order.

6.6.8.4 Timing Considerations for Back-to-Back Reads

The timing considerations outlined below are relative only when the Receive State Machine
performs two consecutive requests to the same port. This occurs for Fast Port mode where
Speculative Requests are issued to the same port and not for Slow Ports. As mentioned earlier,
Receive Requests should only be issued to Slow Ports only when there is data available in the
Receive FIFO of the MAC port. This implies that two consecutive requests to the same port never
occurs. Unpredictable results occur if two consecutive Receive Requests are made in Slow Port
mode.

• Waiting for EOP

A 4-cycle delay on the IX Bus is introduced for back-to-back requests to the same port since
the Receive State Machine must wait to determine if an EOP is present in the data for the
current Receive. If an EOP is present, it automatically reads the status for the port, if enabled,
before it begins the next Receive Request.

• Programmable FP_READY_WAIT Delay

The FP_READY_WAIT (Fast Port Ready Wait) FBI register specifies two 4-bit count values
(one for each Fast Port) that determine how many IX Bus clock cycles the Receive State
Machine waits between the time a Receive Request is complete, and the time the Receive State
Machine samples the Fast Receive Ready pins (FAST_RX1 and FAST_RX2) to begin the next
receive. A Receive Request is complete based on the following:

— If MAC status is not enabled: After the data cycle where the EOP signal is asserted.

— If MAC status is enabled: When status is requested.

— If Rxfail is asserted: After the data cycle when the Rxfail signal is asserted.

The FP_READY_WAIT delay is provided for the flexibility to support MAC devices that
provide the fast ready flag at different times. This delay is programmable and has a reset value
of 6 IX Bus clock cycles.
228 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.7 FBI Error Specifications

The sections that follow summarize the FBI states following a cancel , a receive fail, or a receive
error.

6.7.1 Cancel

A cancel occurs when a Fast Port speculative request is cancelled.

Table 6-27. Cancel States

State Value

rec_ctl<msg> 3

rec_ctl<macport/thd> rec_req<recport> (note - no thread stuffing)

rec_ctl<sopseq#> Undefined

rec_ctl<rxfail> 0

rec_ctl<erroroccur> 0

rec_ctl<elem2> rec_req<elem2>

rec_ctl<elem1> rec_req<elem1>

rec_ctl<elems_filled> Undefined

rec_ctl<seqnum> Undefined

rec_ctl<validbytes> Undefined

rec_ctl<eop> Undefined

rec_ctl<sop> 0

thread signaled rec_req<thread_id> (Note - no header/body, etc.)

sched signaled As specified by rcv_rdy_ctl<5> (sig_sched)

SOP seq num Not incremented

collection count Increment
Hardware Reference Manual 229

Intel® IXP1200 Network Processor Family
FBI Unit
6.7.2 Receive Fail

A receive fail occurs when the RXFAIL pin is asserted.

Table 6-28. Receive Fail States

State Value

rec_ctl<msg> rec_req<msg>

rec_ctl<macport/thd> Based on rcv_rdy_ctl<14:13>:

00 (many_threads_mode) - rec_req<recport>

01 (2_threads_mode) - rec_req<recport>

10 (1_thread_mode) -
rec_req<recport> if rec_ctl<sop>
rec_req<thread_id> if !rec_ctl<sop> (thread_stuffing)

rec_ctl<sopseq#> If rec_ctl<sop>, then SOP seq num

rec_ctl<rxfail> 1

rec_ctl<erroroccur> 0

rec_ctl<elem2> rec_req<elem2>

rec_ctl<elem1> rec_req<elem1>

rec_ctl<elems_filled> Undefined

rec_ctl<seqnum> rec_req<17> (Fast Port sel)

rec_ctl<validbytes> Undefined

rec_ctl<eop> IX Bus<eop>

rec_ctl<sop> IX Bus<sop>

thread signaled Based on rcv_rdy_ctl<14:13>:

00(many_threads_mode) - rec_req<thread_id>

01(2_threads_mode) - header/body

10(1_thread_mode) -
rec_req<thread_id> if rec_ctl<sop>

header_thread if !rec_ctl<sop>

sched signaled As specified by rcv_rdy_ctl<5> (sig_sched)

SOP seq num Incremented if rec_ctl<sop> = 1

collection count Increment
230 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
FBI Unit
6.7.3 Receive Error

A receive error occurs when status is enabled and bit 8 of the status signals that an error has
occurred.

Table 6-29. Receive Error States

State Value

rec_ctl<thmsg> rec_req<msg>

rec_ctl<macport/thd> Based on rcv_rdy_ctl<14:13>:

00(many_threads_mode) - rec_req<recport>

01(2_threads_mode) - rec_req<recport>

10(1_thread_mode) -
rec_req<recport> if rec_ctl<sop>
rec_req<thread_id> if !rec_ctl<sop> (thread_stuffing)

rec_ctl<sopseq#> If rec_ctl<sop>, then SOP seq num

rec_ctl<rxfail> 0

rec_ctl<erroroccur> 1

rec_ctl<elem2> rec_req<elem2>

rec_ctl<elem1> rec_req<elem1>

rec_ctl<elems_filled> IX Bus

rec_ctl<seqnum> rec_req<17> (fast port sel)

rec_ctl<validbytes> IX Bus

rec_ctl<eop> IX Bus<eop>

rec_ctl<sop> IX Bus<sop>

thread signaled Based on rcv_rdy_ctl<14:13>:

00(many_threads_mode) - rec_req<thread_id>

01(2_threads_mode) - header/body

10(1_thread_mode) -
rec_req<thread_id> if rec_ctl<sop>
header_thread if !rec_ctl<sop>

sched signaled As specified by rcv_rdy_ctl<5> (sig_sched)

SOP seq num Incremented if rec_ctl<sop> = 1

collection count Increment
Hardware Reference Manual 231

Intel® IXP1200 Network Processor Family
SDRAM Unit
SDRAM Unit 7

7.1 Overview

The SDRAM Unit provides an interface to up to 256 Mbytes of synchronous DRAM (SDRAM),
with excellent burst performance. The external SDRAM Bus operates at ½ the Core frequency and
contains a 64-bit data bus, a 14-bit address bus, and control signals. An active memory
optimization feature allows the SDRAM controller to obtain high memory performance from
standard SDRAM devices by eliminating bank precharge latencies whenever possible.

Read and write operations to SDRAM can be performed by the Microengines, StrongARM* core,
PCI bus masters (including I2O accesses), and the PCI DMA channels. Configuration registers in
the SDRAM Unit allow the user to set the timing characteristics of the SDRAM Bus.

Recommended (but not required) use of SDRAM would be to:

1. Store large data structures such as packet/cell/frame data and forwarding table information.

2. Hold StrongARM* core instruction code during runtime.

7.2 SDRAM Bus Configurations

Figure 7-1 shows typical connections between an IXP1200 and SDRAM. The StrongARM* core
must be programmed to configure the SDRAM Unit with the SDRAM CSRs before the SDRAM
devices can be accessed. This programmability allows the SDRAM Unit to support a wide variety
of SDRAM devices. Refer to Section 4.5 in the IXP1200 Network Processor Programmer’s
Reference for a summary of the SDRAM CSRs.

The number of row address pins (from 11 to 13) and column address pins (from 8 to 10) are
programmable through the use of the SDRAM_MEMCTL0 register. Two bank bits, supporting up
to four banks, are provided and are automatically assigned by the SDRAM Unit to the address pins
immediately following the row address bits. The SDRAM MDATA[63:0] pins are designed to
drive a single load. The SDRAM clock is generated by the IXP1200 and an external clock driver is
typically required to drive the SDRAM devices to minimize clock skew. Figure 7-1 shows an
example of a 64 Mbyte SDRAM configuration using 1 Mbit x 16-bit x 4 bank devices.
Hardware Reference Manual 233

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.2.1 Bank, Row, and Column Pin Assignments

Bank, row, and column address pin assignments are based on an internal SDRAM address. The
StrongARM* core generates a byte address while the Microengines generate a quadword address.
The number of external address pins used for the row and column addresses are programmed
through the SDRAM_CSR register. Table 7-1 shows the configurations supported by the SDRAM
Unit and Figure 7-2 shows the relationship between the internal address and the external addresses
for a 32 Mbyte SDRAM configuration that uses 1 Mbit x 16 bit x 4 bank devices (i.e., the
configuration example illustrated in Figure 7-1).

Figure 7-1. SDRAM Interface External Connections

A8103-01

MDATA[63:0]

MADR[14:0]

RAS#

CAS#

WE#

DQM

SDCLK

DQ[15:0]

ADDR[11:0]

BANK[1:0]

CS#

RAS#

CAS#

WE#

DQMH/DQML

CKE#

CLK

DQ[15:0]

ADDR[11:0]

BANK[1:0]

CS#

RAS#

CAS#

WE#

DQMH/DQML

CKE#

CLK

DQ[15:0]

ADDR[11:0]

BANK[1:0]

CS#

RAS#

CAS#

WE#

DQMH/DQML

CKE#

CLK

DQ[15:0]

ADDR[11:0]

BANK[1:0]

CS#

RAS#

CAS#

WE#

DQMH/DQML

CKE#

CLK

MADR[13:12]

MADR[11:0]

VDD VDD VDD VDD

MDATA[15:0]MDATA[31:16]MDATA[47:32]MDATA[63:48]

IXP1200

SDRAM
Interface

64 Mbytes of SDRAM

Least Significant Longword

SDRAM
1M x 16 x 4

SDRAM
1M x 16 x 4

SDRAM
1M x 16 x 4

Most Significant Longword

Column Address = MADR[7:0]
Row Address = MADR[11:0]
Bank Address = MADR[13:12]

Zero Skew
Clock driver

SDRAM
1M x 16 x 4

Table 7-1. SDRAM Configurations

Total
Memory

of
SDRAM
Devices

Size of
SDRAM
Devices

Configuration
(per bank)

Internal
Banks Bank Bits RAS Bits CAS Bits

8 Mbytes 4 16 Mbit 512 K x 16-bit 2 MADR[11] MADR[10:0] MADR[7:0]

16 Mbytes 8 16 Mbit 1 M x 8-bit 2 MADR[11] MADR[10:0] MADR[8:0]

32 Mbytes 4 64 Mbit 2 M x 16-bit 2 MADR[13] MADR[12:0] MADR[7:0]

64 Mbytes 8 64 Mbit 4 M x 8-bit 2 MADR[13] MADR[12:0] MADR[8:0]

32 Mbytes 4 64 Mbit 1 M x 16-bit 4 MADR[13:12] MADR[11:0] MADR[7:0]

64 Mbytes 8 64 Mbit 2 M x 8-bit 4 MADR[13:12] MADR[11:0] MADR[8:0]

64 Mbytes 4 128 Mbit 2 M x 16-bit 4 MADR[13:12] MADR[11:0] MADR[8:0]

128 Mbytes 8 128 Mbit 4 M x 8-bit 4 MADR[13:12] MADR[11:0] MADR[9:0]

128 Mbytes 4 256 Mbit 4 M x 16-bit 4 MADR[14:13] MADR[12:0] MADR[8:0]

256 Mbytes 8 256 Mbit 8 M x 8-bit 4 MADR[14:13] MADR[12:0] MADR[9:0]
234 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.2.2 Initializing the SDRAM Interface

Before accessing the SDRAM devices after a system reset, the StrongARM* core must initialize
the SDRAM Unit and the SDRAM devices. The SDRAM Unit is configured by the StrongARM*
core through the use of four SDRAM CSRs: SDRAM_CSR, SDRAM_MEMCTL0,
SDRAM_MEMCTL1, and SDRAM_MEMINIT. The use of these registers allows the SDRAM
Unit to support a wide variety of SDRAM devices. The parameters that are programmable are
listed in Table 7-2.

Figure 7-2. SDRAM Addressing

A8110-01

Column Address (Programmable) - MADR[7:0]
Row Address (Programmable) - MADR[11:0]

Intel® StrongARM* Byte Address
02222324 3

SDRAM Memory Address

Bank Selects - Two address pins higher than
the row address. In this case, MADR[13:12]

11 10

Notes:
* Other brands and names are the property of their respective owners.

Upper StrongARM address bits are not used
in this configuration

Table 7-2. Programmable SDRAM Registers

Programmable Values Description

Refresh Count The rate at which SDRAM refresh cycles are generated.

BURST Length The maximum number of SDRAM accesses between CAS cycles.

CAS Latency Expressed as a number of SDRAM clock cycles.

Row Address Width Specifies the number of address pins used for the row address.

Column Address Width Specifies the number of address pins used for the column address.

tRWT Read/Write Turnaround Time.

tDPL Data In to Precharge Time.

tDQZ DQM Data Out Disable Latency.

tRC Bank Cycle Time.

tRRD Bank-to-Bank Delay Time.

tRCD RAS-to-CAS Delay.

tRASmin Active Command Period.

tRP Precharge Time.
Hardware Reference Manual 235

Intel® IXP1200 Network Processor Family
SDRAM Unit
The SDRAM initialization sequence begins by programming the SDRAM CSRs to specify the
timing and configuration parameters for the specific SDRAM devices in the system.

Note: The last register to be programmed must be the SDRAM_CSR since it contains the INIT bit that
causes the other register settings to be loaded to the SDRAM Controller. Setting the INIT bit also
causes the SDRAM Unit to initialize the SDRAM devices by writing to their Mode Register.

Some SDRAM devices require that the SDRAM Unit wait for a given number of clock cycles after
the power supply and SDRAM clocks have stabilized before they can be accessed for data. This
timing delay value is programmable via the INIT_DLY parameter in the SDRAM_MEMINIT
register. After the initialization delay has completed, the SDRAM Unit issues a Precharge All
command, which puts all of the devices into the “all banks idle” state. This is the only time that the
Precharge All command is used. All other precharge operations are performed exclusively on a
bank-by-bank basis.

After the banks have been put into an idle state, the Load Mode Register command is executed.
The Load Mode Register command programs the burst length, burst type, CAS latency, operating
mode and write burst mode into the SDRAM devices.

After the Load Mode Register command is complete, the SDRAM devices require a series of Auto
Refresh commands to be executed by the SDRAM Unit. The number of Auto Refresh commands
performed is determined by the INIT_REFRSH field in the SDRAM_MEMINIT register. After the
specified number of Auto Refresh commands have been executed, the SDRAM devices are ready
to accept other commands.

During initialization, the Command Service Priority Logic holds off all accesses to SDRAM
memory space. The arbiter is under control of this logic.

7.2.2.1 Configuration Registers (SDRAM_MEMCTL0)

The IXP1200 supports a sequential burst type and programmed write burst lengths. The burst
length and CAS latency for the SDRAM device is selected by programming the appropriate values
into the SDRAM_MEMCTL0 CSR register. Table 7-3 provides more details on sequential bursts.

tRSC

A new command may be issued following the mode register set
command once a delay equal to tRSC has elapsed. tRSC =
(calculated time - 1), where the minimum number of clock cycles is
calculated by dividing the minimum time specified by the SDRAM
manufacturer by the SDRAM clock cycle time (1/2 the IXP1200
Core clock frequency) and then rounding off to the next higher
integer.

INIT_RFRSH Initialization Refresh. Specifies the number of times to issue a
refresh during initialization.

INIT_DLY Initialization Delay. Specifies the number of SDRAM cycles to wait
after an INIT before accessing SDRAM.

Table 7-2. Programmable SDRAM Registers (Continued)

Programmable Values Description
236 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
Whenever a boundary of the block is reached within a given sequence above, the following access
wraps within the block.

The SDRAM_MEMCTL0 burst length field (bits [15:12]) must be written to the value that
corresponds to the desired burst size. Interleaved memory is not supported.

Memory reads and writes are done in bursts of one quadword (64 bits). Transfers can be from one
quadword up to the programmed burst length. For a read that requires less than one quadword (e.g.,
a memory read from PCI), the PCI Unit discards the unused data. For a write that requires less than
one quadword, the PCI uses the DQM (DQ Mask) pins to inhibit writing to some bytes. The DQM
pins also inhibit writing to unoccupied bytes. The row/column multiplexer mode is the value
programmed into the SDRAM address and size register (see Section 5.4.3 of the IXP1200 Network
Processor Datasheet).

Descriptions of the SDRAM_CSR, SDRAM_MEMCTL0, SDRAM_MEMCTL1 and
SDRAM_MEMINIT registers can be found in the IXP1200 Network Processor Programmer’s
Reference.

7.2.3 SDRAM Bus Commands

The IXP1200 connects to the SDRAM devices via two buses - a control bus and a data bus. The
signals on these buses are sampled synchronously on the rising edge of a master controlled clock
source (SDCLK) provided by the IXP1200.

Data returned from the SDRAM devices is sampled with a gated version of the Core clock. This
signal is nearly synchronous to SDCLK. Because the two clocks are pseudo-synchronous, the zero
delay clock buffer is a necessity.

The control bus consists of the RAS#, CAS#, WE# and DQM signals. In general, RAS# (Row
Address Strobe) is used to indicate that the address being driven is a row address, CAS# (Column
Address Strobe) indicates a column address, and WE# (Write Enable) indicates the direction (i.e.,
write/read) of the transfer request. The DQM signal masks a data write when asserted on a write
access, and forces the SDRAM devices off the data (DQ) bus when asserted during a read access.
Different combinations of the above signals are used to indicate other SDRAM commands such as
Load Mode Register, Precharge, and Self Refresh.

Table 7-3. Sequential Bursts

Burst
Length

Starting
Column
Address

Order of access
within a burst
(Sequential)

Burst
Length

Starting
Column
Address

Order of access within
a burst (Sequential)

2 A0 8 A2 A1 A0

0 0-1 0 0 0 0-1-2-3-4-5-6-7

1 1-0 0 0 1 1-2-3-4-5-6-7-0

4 A1 A0 0 1 0 2-3-4-5-6-7-0-1

0 0 0-1-2-3 0 1 1 3-4-5-6-7-0-1-2

0 1 1-2-3-0 1 0 0 4-5-6-7-0-1-2-3

1 0 2-3-1-0 1 0 1 5-6-7-0-1-2-3-4

1 1 3-0-1-2 1 1 0 6-7-0-1-2-3-4-5

1 1 1 7-0-1-2-3-4-5-6
Hardware Reference Manual 237

Intel® IXP1200 Network Processor Family
SDRAM Unit
When the control bus does not contain a valid command, it is driven with a NOP command, in
which all of its pins are in the inactive state. The IXP1200 does not support Chip Select pins, so the
commands are always valid. Table 7-4 lists the SDRAM commands and the state of the pins for
each command.

Note: H= high, L= Low, X=Don’t Care

7.2.3.1 No Operation (NOP)

The No Operation (NOP) command is used to perform a NOP to an SDRAM device that is selected
(CS# is LOW). This prevents unwanted commands from being registered during idle or wait states.
Other commands already in progress within the SDRAM devices are not affected by a NOP.

7.2.3.2 Load Mode Register

The mode register data is loaded through the MADR[11:0] address pins. The Load Mode Register
command is performed automatically by the SDRAM Unit when the StrongARM* core sets the
INIT bit in the SDRAM_CSR. Figure 7-3 shows the format of the data on the address pins during a
Load Mode Register command.

Table 7-4. SDRAM Commands and Pin States

NAME (FUNCTION) RAS# CAS# WE# DQM ADDR DQ[15:0]

NO OPERATION (NOP) H H H X X X

ACTIVE (Select bank and activate row) L H H X Bank/Row X

READ (Select bank and column, and start Read
burst) H L H L/H Bank/Col X

WRITE (Select bank and column, and start Write
burst) H L L L/H Bank/Col Valid

BURST TERMINATE H H L X X Active

PRECHARGE (Deactivate row in bank or banks) L H L X Code X

AUTO REFRESH L L H H X X

LOAD MODE REGISTER L L L X Opcode X

Figure 7-3. Load Mode Register Command

A8111-01

Burst Length

MADR[2:0]
MADR[3]

MADR[6:4]MADR[8:7]
MADR[9]

MADR[11:10]

Reserved BTCAS Latency Op ModeWB

(Burst Type) Fixed for Sequential Bursts
Programmable via SDRAM_MEMCTL0 for 2,4, or 8

Programmable via SDRAM_MEMCTL0 for 2 or 3

Fixed at Standard Mode

(Write Burst Mode) Fixed indicating that the
Programmed burst length applies to reads and writes
Fixed at 0
238 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.2.3.3 Active

The Active command is used to open (or activate) a row in a particular bank for a subsequent
access. The value on the highest two address pins selects the bank, and the remaining address pins
select the row. This row remains active (or open) for accesses until a Precharge command is issued
to that bank.

A Precharge command is issued automatically by the SDRAM Unit before opening a different row
in the same bank.

7.2.3.4 Read

The Read command is used to initiate a burst read access to an active row. The value on the highest
two address pins select the bank. Depending on the number of column address bits that are
programmed into the SDRAM_CSR register, the starting column location may be MADR[9:0],
MADR[8:0], or MADR[7:0]. Read data appears on the DQ pins based on the logic level of the
DQM pins two clocks earlier. If any DQM pin is registered high, its corresponding DQ will be in
the high impedance state two clocks later. If the DQM pin is registered LOW, the DQ pins will
provide valid data after two clocks.

7.2.3.5 Write

The Write command is used to initiate a burst write access to an active row. The value on the
highest two address pins selects the bank. Depending on the number of column address bits that are
programmed into the SDRAM_CSR register, the starting column location may be MADR[9:0],
MADR[8:0], or MADR[7:0]. Data appearing on the DQ pins is written to the memory array based
on the logic level of the DQM pins coincident with the data. If a given DQM signal is registered
low, the corresponding data will be written to memory; if the DQM signal is registered high, the
corresponding data inputs will be ignored, and a Write will not be executed to that byte/column
location.

7.2.3.6 Burst Terminate

The Burst Terminate command is used to truncate fixed-length bursts. The Burst Terminate
command is issued X cycles before the clock edge at which the last desired data element is valid,
where X equals the programmable CAS latency minus one.

Note: CAS latency is specified by the SDRAM device manufacturer.

7.2.3.7 Self Refresh

The SDRAM Unit supports the Self Refresh function.

7.2.3.8 Precharge

The Precharge command is used to deactivate the open row in a particular bank or the open row in
all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the
Precharge command is issued. The SDRAM Unit indicates via MADR[10] whether one or all
banks are to be precharged, and in the case where only one bank is to be precharged, inputs
MADR[13:12] select the bank. Once a bank has been precharged, it is in the idle state and must be
activated prior to any Read or Write commands being issued to that bank.
Hardware Reference Manual 239

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.2.3.9 Unsupported SDRAM Commands

The Command Inhibit, Auto Precharge, and Auto Refresh SDRAM commands are not supported
by the IXP1200 SDRAM Unit.

7.3 Interfacing to the SDRAM Unit

Figure 7-4 illustrates the internal components of the SDRAM Unit. This section describes how the
StrongARM* core, PCI Unit, IX Bus Unit and the Microengines interface to the SDRAM Unit and
its internal components.

7.3.1 SDRAM Command Service Priority Logic

The SDRAM Unit handles memory references from six sources:

• StrongARM* core

• PCI Unit

• Four Microengine Command Queues: (Odd Bank, Even Bank, Order, and Priority)

The SDRAM Unit contains Command Service Priority Logic that determines when each of the
references to memory from the sources gains access to the SDRAM Bus. The arbitration policy
exists at two levels: major units (Microengines, StrongARM* core, PCI Unit, and SDRAM
Refresh) and among the different types of Microengine commands. The arbitration policy used by
the Command Service Priority Logic is shown in Figure 7-5.

Figure 7-4. SDRAM Interfacing

A8106-01

SDRAM Pin
Interface

addr

AMBA Bus
MDATA[63:0]

MADR[13:0]

RAS#SDRAM

Up to 256MB
Command
Decoder

and
Address

Generator

32

 Command
Service Priority

Logic

AMBA
Bus

Interface
Logic

AMBA Address
Rd/Wr Latch

32

High Priority (8)

Even Bank(16)

Odd bank (16)

Order (24)

Microengine
SDRAM Push Pull Engine

Microengine
Command Bus

sdram_bus
(32bit pulldata /32bit pushdata)
Push Pull Control

SDRAM Unit

32

command

32

data

control
control

sdram signal event

SDRAM
CSRs

External Devices

Command Queues

TFIFO
RFIFO

uEng

AMBA

PCI

Byte
Aligner
(TFIFO

WR Only)

Data
Latch

PCI Command
Data Queue (8)

(AMBA Access Only)

PCI Interface Bus
(data(32-bit rd/32-bit wr),
 address, and control)

CAS#
WE#
DQM

SDCLK
(1/2 core freq)

refresh

chained

Programmable
Refresh Timer

Control

Data Buffer
16 x 32 bits

Points to
either
read path or
write path

read

writeread

write
240 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
Figure 7-5. Command Service Priority Logic Arbitration Policy

A8105-01

After reset, AMBA
has highest priority
in round robin loop

Chained
reference
in progress

Refresh

Microengine
High Priority

Microengine
Opposite Bank

Microengine
Order

Microengine
Same Bank

PCI

AMBA

Priority 0 (Highest)

Priority 5 (Lowest)

Priority 2 (Round Robin loop)

Priority 1

Priority 3

Priority 4
Hardware Reference Manual 241

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.3.1.1 Priority 0: Chained Referenced

The highest priority is given to chained references that are currently in progress. A chained
reference enters a command queue and is serviced at a priority level equal to the command queue
in which it is placed. When the chained reference is serviced, the command queue from which it
was taken will have the highest priority until the chain is terminated. The command bus arbiter will
not service any more commands from the other Microengine Command Queues until the chain is
complete.

Note: Executing an abnormally long sequence of chained requests might affect the rate at which SDRAM
refreshes occur. The Refresh Controller is designed to generate requests such that the average
refresh rate is maintained, but chained accesses may have some bearing on the actual timing of the
execution of the Refresh commands.

7.3.1.2 Priority 1: Refresh Requests

Requests for SDRAM refresh cycles have the next priority after chained references, so that
SDRAM refreshes occur as close as possible to the rate at which they were programmed.

7.3.1.3 Priority 2: Round Robin Requests

The next three requests are grouped together in a Round Robin prioritization scheme. These
requests are granted accesses in a rotating priority fashion depending upon which interface last
received a grant.

At reset, an AMBA request will have the highest priority of the group, followed by PCI requests
and then the Microengines High Priority Queue, until a grant is generated to one of these three
units. After a grant is generated to one of the three units, the granted interface will have the lowest
priority of the three, while the remaining two interfaces move up in priority. This enables each unit
to have fair access to the SDRAM Bus. The Round Robin priority of the three units changes only
after a grant has been generated to one of the units and is static otherwise.

7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests

The remaining priorities are based on the Order, Odd bank, and Even Bank Microengine command
queues. While the Microengine Order Queue request is static, the Odd and Even Bank command
queues are dynamic, depending upon the bank of the last grant that was generated.

When the Command Service Priority Logic services a command queue, the bank of the beginning
quadword address is noted and registered by the Command Service Priority Logic. The next
command queue that is serviced is based on this bank information. If the bank of the previous
access was to the Even bank, the Command Service Priority Logic will assign priority 3 to the
Microengine Odd Bank command queue (the opposite bank), and priority 5 to the Microengine
Even Bank command queue (same bank). If the previous SDRAM access was to an odd bank, the
Even Bank command queue is assigned to priority 3 while the Odd Bank Queue (opposite bank) is
assigned priority 5. This allows the SDRAM Unit to optimize the performance of the SDRAM bus.
Refer to Section 7.3.4 for more information on active memory optimization.
242 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.3.2 Read-Modify-Write

The Read-Modify-Write function allows individual bytes to be written to the SDRAM devices. To
accomplish this, the SDRAM Unit firsts reads the data from a quadword address, modifies the
specified bytes, and then writes the modified quadword back to the SDRAM device. These three
steps are performed atomically. The SDRAM Unit supports Read-Modify-Write operations from
the Microengines, StrongARM* core, and PCI Unit.

The PCI requires byte write capability for byte lane support and single longword write operations.
The StrongARM* core requires byte write capability to support load and store byte and word
instructions. The Read-Modify-Write operations are transparent to the StrongARM* core and the
PCI Unit

The Microengines can explicitly request that a Read-Modify-Write operation be performed at an
SDRAM quadword address using the indirect reference option. The reference count must be a
value of 1 and the data that is written is specified in an SDRAM write transfer register. A mask in
the indirect_ref specifies which bytes are to be modified.

7.3.3 Chained References

Chained references allow a source to issue multiple commands and be assured that the SDRAM
Unit will execute the commands as long as the source keeps the chain going.

The SDRAM Unit will automatically set the chained bit if it receives two or more consecutive
commands from the PCI Unit that request access to consecutive SDRAM longword addresses.

The Microengines issue chained references by specifying the chain_ref within the sdram
instruction. As long as the Microengine issues sdram instructions specifying the chain_ref
optional token, the chain is kept alive. From a Microengine perspective, the chained references
have three implications. First, the Command Bus Arbiter will not allow any other Microengine to
issue SDRAM commands until the chain has been completed. A chained request is considered
complete when all of the commands associated with the request have been entered into the
SDRAM Unit queuing structure, not when the actual memory access is complete.

Secondly, it indicates that the SDRAM Unit should process the SDRAM command from the same
command queue from which the chained reference was serviced and continue to service this
command queue until the chain is complete.

The third implication only occurs if the sdram instruction specifies both the t_fifo_wr command
and the chain_ref optional token. In this case it also causes the byte aligner to hold data left over
from the preceding non-aligned access in a residue latch within the SDRAM Unit, so that the data
can be used on the next t_fifo_wr command that is part of the chain. This improves bandwidth
during chained t_fifo_wr operations.

The chained references can only be submitted to the Priority or Order command queues. The
chain_ref optional token can not be used with the optimize_mem optional token.

Note: When using a chained reference, if an interface generates a chained request and fails to follow it up
immediately with another request, it will cause the Arbiter to stop until a following request is
Hardware Reference Manual 243

Intel® IXP1200 Network Processor Family
SDRAM Unit
generated. It is precisely this function which allows the SDRAM interface to hold off requests from
all interfaces until the SDRAM initialization sequence has been completed.

7.3.4 Active Memory Optimization

SDRAMs are burst-based memories requiring only a single address to be specified to transfer data
from several addresses. This means that the control bus is unused in many cases when burst
transfers are being performed. SDRAMs also have multiple banks, but data can only be transferred
from a single bank at a time. However, the other banks may be addressed via the control bus in
preparation for the next data transfer. Each time SDRAM accesses cross a bank boundary, the
current bank must be closed and precharged. This requires use of the control bus and can introduce
latencies associated with reading data from a different bank.

The SDRAM Unit can eliminate the latencies associated with bank switching by taking advantage
of the multi-bank nature of SDRAM devices, and the unused control bus cycles to optimize
SDRAM data transfers. It accomplishes this in two ways:

1. By making use of cycles on the control bus that would otherwise be NOPs to prepare and have
waiting an access to another bank.

2. By making use of cycles on the control bus that would otherwise be NOPs to precharge the
bank that was closed while an access to another bank is in progress.

This allows the IXP1200 to eliminate precharge latency and increase the effective bandwidth of the
SDRAM Bus. Figure 7-6 illustrates how bank switching improves performance.

The SDRAM Unit in the IXP1200 provides an additional advanced feature that increases the
ability of the SDRAM Unit to exploit bank switching. This feature is implemented as separate
command queues for references to the Odd Banks and the Even Banks. The SDRAM Unit can then
alternate between servicing commands from these queues.

The programmer decides whether a Microengine SDRAM reference should be sorted into the Odd
Bank or Even Bank Command Queue by specifying the optimize_mem optional token within the
sdram instruction. The SDRAM Unit automatically sorts the command based on the SDRAM
address. The commands submitted to the Odd and Even Bank Command Queues are not
guaranteed to be completed in the order in which they where issued. If order is important, the
optimize_mem option should not be used (in which case the command goes into the Order
command queue).

Figure 7-6. Bank Switching

A8108-01

odd bank data burst

precharge odd bankSDRAM Control Bus

SDRAM Address/Data Bus

Consecutive Access to Opposite Banks Not Using Optimization

unused

odd bank addrSDRAM Address Bus

addr cmds r/w cmd

even bank addr

addr cmds

even bank data burst

Consecutive Access to Opposite Banks Using Optimization

odd bank data burst

precharge odd bankSDRAM Control Bus

SDRAM Address/Data Bus

odd bank addrSDRAM Address Bus

addr cmds r/w cmd

even bank addr

addr cmds

even bank data burst

Time

Time
244 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
Note: It is assumed that a majority of memory accesses will use the optimize_mem token. Continual
assignment of memory references to the Order or High Priority Queues defeats the purpose of the
memory optimization performance gain, and in some instances leads to less than desired
performance.

7.4 Microengine SDRAM Transactions

7.4.1 Microengines Command Queues

The Microengines issue commands to the SDRAM Unit which in turn places them into one of four
Command Queues within the SDRAM Unit. An optional token within the instruction specifies into
which of the four queues a command is submitted. The four Command Queues, the queue sizes and
the optional tokens are listed in Table 7-5.

The Command Queues are sized so that in typical operation, the queues should not fill completely.
A back-pressure mechanism will signal the Microengines Command Bus arbiter to cease allowing
SDRAM commands to be sent to the SDRAM Unit when any of the queues have only six entries
available. This ensures there is room for any SDRAM commands that have already been granted
access to the SDRAM Unit by the Microengine Command Bus arbiter.

When the SDRAM Unit processes an sdram instruction, the SDRAM Push-Pull Engine moves the
data between the SDRAM Unit and the Microengine SDRAM write/read transfer registers via an
internal 64-bit SDRAM data bus. The SDRAM bus is divided into a 32-bit pull and 32-bit push bus
and data is moved across these buses at the Core frequency.

If a Microengine thread chooses to be signaled upon completion of a command, the sig_done or
ctx_swap optional token should be specified in instruction.

7.4.2 SDRAM Byte Aligner

The SDRAM Byte Aligner allows data to be read from SDRAM memory on non-quadword
aligned addresses, align the data and present it to the TFIFO (in the IX Bus Interface Unit) on
aligned quadword boundaries.

Note: The Byte Aligner can only be used by the Microengines using the sdram instruction with the
t_fifo_wr command.

The SDRAM Unit aligns and merges data that is read from two consecutive quadword addresses to
create the non-aligned quadword. The four-bit byte alignment value specified in the indirect
reference data defines the alignment.

Table 7-5. Command Queues

Microengine
Command Queue Queue Size Instruction optional token

Odd Bank 16 optimize _mem

Even Bank 16 optimize _mem

Order (default) 16 order (or no optional token)

High Priority Queue 16 priority
Hardware Reference Manual 245

Intel® IXP1200 Network Processor Family
SDRAM Unit
The alignment value can range from 0 to 7 and indicates the byte offset into the first quadword of
data. The remaining data comes from the next consecutive address. When more than one quadword
is specified in the sdram instruction, the unused data from the second address will be merged with
the data from the next address. Depending on burst size, memory accesses from SDRAM which
occur on non-byte aligned boundaries, the chain_ref optional token can be used to eliminate the
need for specifying the byte alignment between consecutive sdram instructions.

How the SDRAM Unit will perform the alignment is based on the Endian bit in the SDRAM_CSR
register. The endian format is based on bytes that are on longword boundaries (Little Endian
format: 8765 4321, Big Endian format: 5678 1234). The following example shows the results of
different alignment values for both Big and Little Endian modes. N is the address specified in the
sdram[t_fifo_wr] instruction or the last data read from the previous read in a chained reference.

The data at quadword addresses N and N+1 are as follows:

The data at these two consecutive SDRAM quadword addresses are aligned and merged and
written to the TFIFO on quadword boundaries according to the different align values and the
endian mode specified. Table 7-7 shows the different possible alignment results.

7.5 PCI SDRAM Transactions

Since the PCI Unit operates with longword (32 bit) data while the SDRAM interface to the
physical memory is quadword (64 bit), there must be a coalescing of data from the PCI Unit before
presenting it to the SDRAM devices. The SDRAM Unit performs this function.

The PCI Unit presents a command and the data (if a write is to take place) to the SDRAM Unit for
each PCI bus transfer. When performing a burst of consecutive commands that will address
contiguous memory locations in SDRAM, the SDRAM Unit merges the commands into a single
chained command if the read or write are to adjacent memory addresses. The merging of the
commands result in a single 64-bit access.

Table 7-6. Data at Quadword Address N and N+1

SDRAM Address Data

N+1 1234 5678

N ABCD EFGH

Table 7-7. Alignment Results

Align value Little Endian Mode Big Endian Mode

0 ABCD EFGH ABCD EFGH

1 8ABC DEFG BCD5 FGHA

2 78AB CDEF CD56 GHAB

3 678A BCDE D567 HABC

4 5678 ABCD 5678 ABCD

5 4567 8ABC 6781 BCD5

6 3456 78AB 7812 CD56

7 2345 678A 8123 D567
246 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
The SDRAM-to-PCI and PCI-to-SDRAM transfer operations are described in Chapter 5 (PCI
Unit) of the IXP1200 Network Processor Hardware Reference Manual.

Note: It is possible that the SDRAM Unit will prefetch more data than was requested by a PCI host
device. If so, this data is buffered in the PCI Unit but will not persist past the deassertion of
FRAME#.

7.6 StrongARM* Core SDRAM Transactions

The StrongARM* core issues references to the SDRAM Unit via the AMBA Bus. These requests
can be generated directly by the StrongARM* core Processor or by Icache, Dcache (main and
mini), StrongARM* core Read Buffer, or StrongARM* core Write Buffer.

StrongARM* core references to non-cached areas cause the StrongARM* core to stall until the
SDRAM Unit provides data at the AMBA Data Buffer. For write operations, the StrongARM* core
will stall until it gains access to the AMBA Bus, which is shared by the caches and buffers. Once
access is granted, the StrongARM* core will write data to the AMBA Bus Logic which translates
the AMBA bus signaling into a Microengine-like command and the data is written into the AMBA
Data Buffer so that the StrongARM* core may continue to execute. When the SDRAM command
arbiter grants access to the AMBA Bus interface, the AMBA Bus command is completed and the
data is read from the AMBA Data Buffer. The SDRAM Unit does not queue AMBA transactions
and therefore only one AMBA transaction can be in progress at a time: a read (that can prefetch) or
two writes. The AMBA Write Buffer can hold 16 longwords, up to two cache lines at a time. The
AMBA Data buffer is a FIFO, which is used for one type of transaction at a time, reading or
writing. For example, after reading data from SDRAM the buffer must be emptied before a write to
SDRAM can utilize the buffer for the write data.

7.6.1 StrongARM* Core and Microengine SDRAM Address Space

Table 7-8 shows the Memory Map for the SDRAM address space. Notice that the StrongARM*
core addresses this space using byte addressing while the Microengines access this space using the
sdram instruction and longword addressing.

Table 7-8. Memory Map for SDRAM Address Space

Memory Area Description StrongARM Address Space
(Byte Addressing)

Microengine sdram
Instruction command

(Longword addressing)

SDRAM Control Registers FF00 0000 - FF00 0014 Not supported

SDRAM Prefetch Memory (256 Mbytes) D000 0000 - DFFF FFFF Not supported

SDRAM non-Prefetch Memory (256
Mbytes) C000 0000 - CFFF FFFF read and write

0x000 0000 - 0x1FF FFFF

Cache Flush Area (16 Kbytes) A000 0000 - A000 4000 Not supported
Hardware Reference Manual 247

Intel® IXP1200 Network Processor Family
SDRAM Unit
7.6.1.1 SDRAM CSRs

The SDRAM Unit must be configured before it can be used. Only the StrongARM* core has access
to the four SDRAM CSRs (the SDRAM_CSR, SDRAM_MEMCTL0, SDRAM_MEMCTL1 and
SDRAM_MEMINIT registers). The SDRAM CSRs allow the bus timing and row and column
address pin assignments to be configured for a variety of SDRAM devices. The last register to be
programmed must be the SDRAM_CSR since it contains the INIT bit that causes the other register
settings to be loaded by the SDRAM Controller.

7.6.1.2 SDRAM non-Prefetch Memory (256 Mbytes)

Located in the C000 0000 - CFFF FFFF address space, access to memory at these addresses will
not cause an automatic fetch of the next eight longwords from memory.

7.6.1.3 SDRAM Prefetch Memory (256 Mbytes)

Located in the D000 0000 - DFFF FFFF Address Space, access to memory at these addresses will
automatically fetch the next 8 longwords from memory to reduce SDRAM latency to the
StrongARM* core. Only StrongARM* core accesses support prefetch. Microengine access to this
area will not activate the prefetch logic.

7.6.1.4 Cache Flush Area (16 Kbytes)

The cache flush area is accessible only from the StrongARM* core. This area returns zeros when
read and is intended to facilitate rapid cache flushing by returning zero data without requiring an
external memory access. This space is used for read and write bursts. Non-bursted writes to this
space have no effect. Refer to Section 3.2.4.5 for more information.

Note: If the cache is disabled then the StrongARM* core will not perform a burst.

7.7 SDRAM and the IX Bus Interface

The transfer of data between the IX Bus Interface Unit and the SDRAM interface is an important
part of the IXP1200. Data from external devices attached to the IX Bus is stored in a 16-element
receive FIFO (RFIFO) located in the IX Bus Interface Unit. Data that is to be transmitted to devices
connected to the IX Bus is stored in a separate 16-element transmit FIFO (TFIFO) also located in
the IX Bus Interface Unit. A separate datapath exists in the IXP1200 for transfer of data between
SDRAM and these FIFOs.

7.7.1 SDRAM to TFIFO Operation

Moving data from SDRAM to the TFIFO is done by the Microengines using the sdram[t_fifo_wr,
...] instruction with the indirect_ref token.

Note: The indirect_ref token must be used with this command.

With this command, up to 16 quadwords (128 bytes) of data can be moved from SDRAM to the
specified TFIFO element(s). Each TFIFO element holds up to eight quadwords of data (64 bytes),
so a 16 quadword reference will span multiple TFIFO elements. When issued by a Microengine,
this command is placed in the Order queue. Once the SDRAM Service Priority logic services the
248 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SDRAM Unit
command, a data “push” to the IX Bus Interface Unit will result. Byte alignment is possible and is
specified in the indirect_ref portion of the command. The IX Bus Interface Unit can be optionally
signaled by the SDRAM Unit when the data transfer is complete.

7.7.2 Receive FIFO to SDRAM Operation

Moving data from RFIFO to SDRAM is done by the Microengines using the sdram[r_fifo_rd, ...]
instruction with the indirect_ref token.

Note: The indirect_ref token must be used with this command.

With this command, up to 16 quadwords (128 bytes) can be moved from the RFIFO element(s) to
SDRAM. Each RFIFO element can hold up to eight quadwords of data (64 bytes), so a 16
quadword reference will empty two RFIFO elements. When issued by a Microengine, this
command is placed in the Order queue. Once the SDRAM Service Priority logic services the
command, a data “pull” from the IX Bus Interface Unit will result. Byte alignment is not possible
when moving data from the RFIFO to SDRAM.

7.7.3 SDRAM and IX Bus Data Path Operation

While the datapath is separate for transferring data to and from the IX Bus FIFOs, it should be
noted that the command path and thereby the Order queue is shared with the Microengines. The
internal datapath to and from the RFIFO and TFIFO elements is 32 bits wide. Therefore, half the
data (32 bits) will be held for one cycle before sending it on the bus.

Transfers of data from the SDRAM Unit to the TFIFO out of the area marked as prefetchable will
not cause a prefetch operation to occur as this is only for the StrongARM* core.
Hardware Reference Manual 249

Intel® IXP1200 Network Processor Family
SRAM Unit
SRAM Unit 8

8.1 Overview

The SRAM Unit provides access to three types of devices through a common bus interface:

• SSRAM. Up to 8 Mbytes of either Flow Thru or Pipelined Synchronous SRAM devices.

• BootROM. Flash or EPROM. This is where the StrongARM* core begins executing
instruction from after a reset.

• SlowPort. Other devices such as Lookup CAMs, encryption devices, and control and status
interfaces to MAC/PHY devices can be placed onto the SRAM Bus.

Each of the three types of devices are mapped to different address spaces and each address space
provides unique timing that is programmed via SRAM configuration registers. The devices on the
SRAM Bus can be accessed by the Microengines and the StrongARM* core. The external interface
consists of a 32-bit data bus, 19-bit address bus, and control signals. The bus is clocked at half the
core frequency.

The SSRAM address space supports advanced functionality beyond simple reads and writes. These
functions are designed to offload the StrongARM* core and Microengines of common operations
that might otherwise require additional instructions that perform multiple memory operations.
These commands provide the following functionality.

• Eight Push-pop Registers for buffer management

• Bit Test, Set, and Clear commands for atomic bit operations

• Eight-entry Content-Addressable Memory (CAM) for locking eight separate memory areas

• Journal pointer management support.

The StrongARM* core addresses the four address spaces in the SRAM Unit using byte addressing
while the Microengines use longword addressing.

8.2 SRAM Bus Configurations

The SRAM Bus supports a 32-bit data bus, 19-bit address bus, and control signals. The bus is
clocked at half the core frequency and three different address spaces support three different bus
timings. Figure 8-1 illustrates an example of external connections on the SRAM interface. The
sections that follow provide additional information about these address spaces.
Hardware Reference Manual 251

Intel® IXP1200 Network Processor Family
SRAM Unit
8.3 SSRAM Address Space

The SSRAM provides a memory source with lower access latency than the SDRAM interface. The
SSRAM is intended to contain lookup tables and buffer free-lists used by the processors when
moving data through the IXP1200.

The SRAM Unit provides a 32-bit interface to 8 Mbytes of Synchronous SRAM (SSRAM). Both
Flow Thru devices and Pipelined Burst SSRAM devices are supported. Internally, the
Microengines always addresses the SRAM Unit using longword addressing while the
StrongARM* core uses byte addressing. However, the external physical memory is always
addressed using longword addresses.

The internal address is used to generate the external: longword address (A[18:0] - maximum of 2
Mbytes), chip selects (CE#[3:0] - maximum 4 devices), and two additional chip selects which are
optional (HIGH_EN# and LOW_EN#). The external address pins A[18:0] always reflect the state
of the low 19-bits of the internal longword address. The primary chip selects (CE#[3:0]), and the

Figure 8-1. SRAM External Connections

A7988-01

A[18:0]

SP_CE#

SLOW_RD#

DQ[31:0]

SLOW_EN#

SLOW_WE#

SWE#

Decode
Logic

CE[n]#

CE[0]#

SOE#

ce#

we#
oe#

addr
data

SSRAM
256Kx32

ce#
ce1#
ce2

we#

oe#

addr[17:0]
d[31:0]

CE#[0:3]

Tranceiver

dir
en b[31:0]

a[31:0]

Buffer

Slow Port
Device

SLOW_EN#

SSRAM

Memory Mapped
Slow Port Devices

Slow Interface
Logic

IXP1200
SRAM Unit

SP_DIR/LOW_EN#

ce#
ce#

ce#

CE#[3:0]
SLOW_EN#

ce#

ce#

we#
oe#

addr[18:0]
d[15:0]

ce#

ce#
ce#

A[18:0]
DQ[31:16]

A[18:0]

Shown: 4 Mbyte = 256 Kbyte devices by
4 bytes/device x 4 devices

BootROM

Flash
512x16

addr[18:0]
d[15:0]

ce#

we#
oe#

DQ[15:0]

HIGH_EN#/RDY#
rdy

Flash
512x16

(Optional) Upper 16 data bits for
the 32-bit BootROM interface

Shown: Maximum BootROM configuration
8M Byte =512K byte devices by
2 bytes/device x 8 devices

Minimum BootROM configuration (not shown)
512K Byte = 128K byte devices x 2
bytes/device

GPIO[3] at reset
low = 32-bit interface
high = 16-bit interface

clkSCLK
SCLKIN Required for Flow Thru devices)
252 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
two additional chip selects (HIGH_EN# and LOW_EN#) pins are also based on the internal
address and can be configured via the SRAM CSRs to support the four memory configurations
illustrated in Figure 8-2.

The CE#[3:0] chip select signals allow up to four physical devices to be selected without external
decode of the address pins. If required, the CE#[3:0] chip select signals can be qualified with the
HIGH_EN# and LOW_EN# pins to allow a total of eight banks to be selected without external
decode logic.

The SSRAM interface also allows a wait state to be inserted whenever the address switches
between the physical devices on the bus. This is set via the SRAM CSRs and must be set when
using SSRAM devices that have a slower output disable time than output enable time. The wait
state is asserted whenever an access crosses a chip selects (CE#) or bank select (HIGH_EN# or
LOW_EN#) boundary.

8.3.1 Pipelined vs. Flow Thru SRAM Devices

The SSRAM Interface can be configured via the SRAM_CSR to support either Flow Thru devices,
which have a pipeline delay of 2 clock cycles, or Pipelined Burst devices that support Dual Cycle
Deselect, which have a pipeline delay of 3 clock cycles. Other types of SSRAM devices, including

Figure 8-2. Memory Configurations

A7989-01

20 0

Internal address

15

External address A[x:0]
 A[15:0] = wo/device select 256K byte/64K LW address
 A[14:0] = w/device select 128K byte/32K LW address

16171819

Chip Enable LOW_EN#, HIGH_EN# (Optional)
 0: LOW_EN# = 0, HIGH_EN# = 1
 1: LOW_EN# = 1, HIGH_EN# = 0

14

1M Byte Maximum Configuration
(256K bytes address x 4 devices)
(128K bytes address x 2 banks x 4 devices)

20 0

Internal address

1516171819

2M Byte Maximum Configuration
(512K bytes x 4 devices)
(256K bytes x 2 banks x 4 devices)

20 0

Internal address

171819

4M Byte Maximum Configuration
(1M byte address x 4 devices)
(512K byte address x 2 banks x 4 devices)

20 0

Internal address

171819

8M Byte Maximum Configuration
(2M byte address x 4 devices)
(1M byte address x 2 banks x 4 devices)

16

Chip Enable CE#[3:0]
 00 CE#[3:0] = 1110
 01 CE#[3:0] = 1101
 10 CE#[3:0] = 1011
 11 CE#[3:0] = 0111

Intel® StrongARM*
Byte Address20 016171819 122 21

Longword
Address

Intel StrongARM
Byte Address20 01819 122 21

Longword
Address

Intel StrongARM
Byte Address20 019 122 21

Longword
Address

Intel StrongARM
Byte Address20 016171819 122 21

Longword
Address

Chip Enable LOW_EN#, HIGH_EN# (Optional)
 0: LOW_EN# = 0, HIGH_EN# = 1
 1: LOW_EN# = 1, HIGH_EN# = 0

Chip Enable LOW_EN#, HIGH_EN# (Optional)
 0: LOW_EN# = 0, HIGH_EN# = 1
 1: LOW_EN# = 1, HIGH_EN# = 0

Chip Enable LOW_EN#, HIGH_EN# (Optional)
 A[18] = 0: LOW_EN# = 0, HIGH_EN# = 1
 A[18] = 1: LOW_EN# = 1, HIGH_EN# = 0

Chip Enable CE#[3:0]
 00 CE#[3:0] = 1110
 01 CE#[3:0] = 1101
 10 CE#[3:0] = 1011
 11 CE#[3:0] = 0111

Chip Enable CE#[3:0]
 00 CE#[3:0] = 1110
 01 CE#[3:0] = 1101
 10 CE#[3:0] = 1011
 11 CE#[3:0] = 0111

Chip Enable CE#[3:0]
 00 CE#[3:0] = 1110
 01 CE#[3:0] = 1101
 10 CE#[3:0] = 1011
 11 CE#[3:0] = 0111

External address A[x:0]
 A[16:0] = wo/device select 512K byte/128K LW address
 A[15:0] = w/device select 256K byte/64K LW address

External address A[x:0]
 A[17:0] = wo/device select 1M byte/256K LW address
 A[16:0] = w/device select 512K byte/128K LW address

External address A[x:0]
 A[18:0] = wo/device select 2M byte/512K LW address
 A[17:0] = w/device select 1M byte/256K LW address

* Other brands and names are the property of their respective owners.
Hardware Reference Manual 253

Intel® IXP1200 Network Processor Family
SRAM Unit
single cycle deselect, are not supported. Figure 8-3 shows the IXP1200 internal logic associated
with the Pipelined and Flow Thru SSRAM devices and the internal logic of the IXP1200 SRAM
Unit.

The Pipelined SRAM devices include an internal output buffer that latches the data while Flow
Thru devices do not. The IXP1200 supports the timing differences between the two types of SRAM
devices by adding an internal buffer that adds an extra clock cycle delay for the Flow Thru device.
This extra delay assures that the SRAM data arrives on the same clock cycle whether it comes from
Pipelined or Flow Thru devices.

The internal output buffer of the Pipelined SRAM is clocked by the IXP1200 SCLK signal. This
signal enters the SRAM device at the end of the trace resulting in a skew between the SCLK at the
IXP1200 and the SCLK at the SRAM device where the output buffer is actually clocked. This skew
is compensated for in the IXP1200 Flow Thru configuration by clocking the delay buffer in the
IXP1200 with an SCLK signal that traverses the board with an etch length equal to that of the
forward and return path to the SRAM device. The SCLKIN pin is used as the input pin for the
return path signal that clocks the IXP1200 delay buffer.

The Flow Thru devices provide better performance than Pipelined devices for the case when a read
operation is followed by a write operation, since the IXP1200 can begin the write operation one
cycle earlier. Figure 8-4 illustrates the performance advantage by showing the timing for a write-
read-write operation for both Flow Thru and Pipelined devices.

Figure 8-3. Pipelined vs. Flow Thru SSRAM Device

A7990-01

RAM Array

Output
Buffer

D Q D Q
D Q

SACLK

Flow Thru SSRAM Device

0

SRAM_CSR

1

Pipeline Burst= 0

RAM Array

D Q
D Q

SACLK

Pipeline SSRAM Device

0

SRAM_CSR

1

Flow Thru = 1

IXP1200

IXP1200

Read Data

Read Data

SCLK

SCLK

Return
Path

Forward
Path

Delay
Buffer

Delay
Buffer

Delay
Buffer
254 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
8.4 BootROM Address Space

The BootROM address space supports up to 8 Mbytes of Flash or EPROM. This address space can
be accessed by the StrongARM* core and the Microengines. The BootROM is mapped to the
StrongARM* core physical address 0. After a reset, the StrongARM* core begins fetching
instructions from this address space.

Note: The StrongARM* core must boot from address 0000 0000h, which is mapped to the BootROM. It
cannot boot from PCI or any other devices in its address map.

BootROM address space can be configured to support either a 16-bit or 32-bit data bus. The bus
size is determined at reset and is based on the state of the GPIO[3] pin (GPIO[3] pulled high = 16-
bit bus and GPIO[3] is pulled low = 32-bit bus).

The BootROM address space shares the four external chip select pins (CE#[3:0]) with the SSRAM
interface. These signals are asserted based on a 21-bit internal longword address. Three CE#
configurations are supported and are configured via the SRAM CSRs (Figure 8-5). As shown in
Figure 8-1, CE# signals should be gated with the SLOW_EN# signal to ensure that the BootROM
devices are not selected when the SSRAM asserts the CE# signals.

Figure 8-4. Flow Thru Device

A7991-01

Address write
addr idleread

addr idle

Data

write
addr

Flow-Through Devices

Pipeline Burst Devices

write
data idle read

data idle write
data

Address write
addr idleread

addr idle idle

Data

write
addr

write
data idle read

dataidle idle write
data
Hardware Reference Manual 255

Intel® IXP1200 Network Processor Family
SRAM Unit
Figure 8-6 shows the timing characteristic for the BootROM interface. The programmable timing
values are listed in the figure (T1 to T5). All the time values are based on an internal counter that is
decremented each Core clock cycle. The BootROM timing parameters are programmed via the
SRAM_SLOW_CONFIG and SRAM_BOOT_CONFIG SRAM CSRs.

For applications where a small amount of BootROM is required, a 16-bit data bus mode may be
selected. This mode is intended to allow the StrongARM* core to Boot from 16-bit BootROM
devices. When this mode is selected, whenever the StrongARM* core reads data from the
BootROM address space, the SRAM Unit reads the data pins DQ[15:0], merges them into a single

Figure 8-5. BootROM Addressing

A7992-01

20 0

Internal longword address

16171819

22 218192021 1 0
Intel® StrongARM*
Byte Address

Longword
Address

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

External address A[x:0]
A[16:0] = 512K byte/128K LW address

2 Mbyte Maximum Configuration

20 0

Internal longword address

171819

22 2192021 1 0
Intel StrongARM
Byte Address

Longword
Address

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

External address A[x:0]
A[17:0] = 1M byte/256K LW address

4 Mbyte Maximum Configuration

20 0

Internal longword address

1819

22 22021 1 0
Intel StrongARM
Byte Address

Longword
Address

Chip Enable CE#[3:0]
00 CE#[3:0] = 1110
01 CE#[3:0] = 1101
10 CE#[3:0] = 1011
11 CE#[3:0] = 0111

External address A[x:0]
A[17:0] = 2M byte/512K LW address

8 Mbyte Maximum Configuration

* Other brands and names are the
property of their respective owners.

Figure 8-6. BootROM Timing

A7993-01

SLOW_WE#
SLOW_RD#

T5 (Total cycle time)

4 cycles min
(required)

T1

T2

T3

T4

LOW_EN#/DIRW#
SLOW_EN#

SP_CE#(SlowPort)

CE#[3:0](BootROM)

Internal Counter
256 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
32-bit longword and delivers them to the StrongARM* core. This only occurs during read
operations by the StrongARM* core. When the StrongARM* core performs a write operation, it
must specify a longword address and place valid data only on the lower 16 bits.

The 16-bit data bus mode is not supported for the Microengines. When the 16-bit data bus mode is
selected, the Microengines always read and write 32-bit data and software must recognize that
valid data only resides in the lower 16 bits.

BootROM address space can be configured to support a 16-bit data bus or a 32-bit bus. The bus
size is determined at reset and is based on the state of the GPIO[3] pin (GPIO[3] pulled high = 16-
bit bus and GPIO[3] is pulled low = 32-bit bus).

8.5 SlowPort Address Space

The SRAM Unit provides a 2 Mbyte address space (512K longword addresses) to access SlowPort
devices. The SlowPort address space allows peripheral devices to be placed onto the SRAM
interface. The SRAM SlowPort memory space has timing characteristics similar to the BootROM
memory space, although these two address spaces have their own programmable timing values that
are set via the SRAM CSRs. Both the StrongARM* core and the Microengines have access to the
SRAM SlowPort.

The CE# signals are not supported when the SlowPort address space is accessed. Instead, the
SlowPort interface supports one chip select signal (SP_CE#) that is asserted whenever the
SlowPort address space is accessed. The SP_CE# signal can be qualified with the address pins to
derive more chip select signals.

The SlowPort interface supports a Ready indication (RDY#) which can be asserted by a SlowPort
device to indicate that either data is stable on the data bus during read access or that data was
latched by the SlowPort device during write access. This allows IXP1200 to dynamically vary the
bus timing to provide higher performance when devices with different timing characteristics are
placed on SlowPort interface. The SlowPort interface should be programmed to meet the timing
requirements of the slowest device on the bus that does not support a RDY# pin. If all the SlowPort
devices support a RDY# pin, the SlowPort interface timing should be programmed to support the
fastest device on the bus.

Figure 8-7 shows the timing characteristic for the SlowPort interface. The programmable timing
values are listed in the figure (T1 to T6). All the time values are based on an internal counter that is
decremented each Core clock cycle. If the HIGH_EN#/RDY# pin is configured as a RDY# pin (via
the SRAM_CSR) the internal counter is paused at T6 until the RDY# signal is asserted by the
SlowPort device. Once the RDY# signal is asserted, a two cycle synchronization delay occurs
before the counter resumes decrementing. The SlowPort timing parameters are programmed via the
SRAM_SLOW_CONFIG and SRAM_SLOWPORT_CONFIG SRAM CSRs.
Hardware Reference Manual 257

Intel® IXP1200 Network Processor Family
SRAM Unit
8.6 Slow Interface Logic

The BootROM and SlowPort devices are isolated from the SSRAM devices by the Slow Interface
Logic shown in Figure 8-1. The isolation allows the buses to meet the electrical loading
requirements specified in the IXP1200 datasheet and reduce etch run lengths thereby reducing
transmission line effects on the bus.

8.7 SRAM CSRs

The SRAM Control and Status Registers (CSRs) reside in the SRAM Unit and can be accessed by
both the Microengines and the StrongARM* core. These registers are described in detail in the
IXP1200 Network Processor Programmer’s Reference and are used for the following purposes:

• Configure the SSRAM timing and banks

• Configure the BootROM timing and banks

• Configure the Slow Port timing

• Configure and write to the SRAM Journal Area

When changing the SlowPort and BootROM timing, the following sequence should be followed to
ensure proper operation.

• To shorten a timing parameter change the assert and deassert times specified in the
SRAM_BOOT_CONFIG/SRAM_SLOWPORT_CONFIG registers before changing the total
cycle time specified in the SRAM_SLOW_CONFIG register.

Figure 8-7. SlowPort Timing

A7994-01

Note: Total cycle time is decremented each core clock frequency

SLOW_WE#
SLOW_RD#

T5 (Total cycle time)

Internal Counter

4 cycles min
(required)

T1

T2

Wait

T4

T3

LOW_EN#/DIRW#
SLOW_EN#

SP_CE#

Internal counter is paused
until RDY# is asserted

n n-2

RDY#
(Asserted by

SlowPort device

Two cycle
synchronization delay

n-1 n-1 n-1 n-1 n-1 n-1
258 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
• To lengthen a timing parameter, change the total cycle time specified in the
SRAM_SLOW_CONFIG register before changing the assert and deassert times specified in
the SRAM_BOOT_CONFIG/SRAM_SLOWPORT_CONFIG registers.

8.8 Advanced SRAM Commands

The SRAM Unit supports advanced functionality beyond simple read and write operations to the
SSRAM space. These commands are designed to offload the StrongARM* core and Microengines
of managing common operations that might otherwise be managed in software requiring multiple
memory operations. These commands provide the following functionality.

• Eight Push-Pop Registers for buffer management

• Bit Test, Set, and Clear commands for atomic bit operations

• Eight entry CAM for locking eight separate memory areas

• Journal pointer management support.

Figure 8-8 is a block diagram of the SRAM Unit.

Figure 8-8. SRAM Unit Block Diagram

A7995-02

SRAM Pin
Interface

address

AMBA Bus

data[31:0]

address

control

SSRAM

Pipeline or
Flowthrough
1/2 core freq
Up to 8 MB

StrongARM
BootROM

Up to 8 MB

Command
Decoder

and
Address

Generator

32

Service Priority
Machine

AMBA Write
Data Buffer

(8 longwords)

AMBA
Bus

Interface
Logic

AMBA Address
Rd/Wr Latch

32

High Priority (8)

Read (16)

Order (16)

Read_lock Fail (23)

Microengine
SRAM Push Pull Engine

Microengine
Command Bus

Slow Port

Memory
mapped

I/O devices
Up to 8 MB

sram_bus

Push Pull Control

SRAM Unit

Note: Other brands and names are the property of their respective owners.

AMBA Read
Data Latch

32

Push-Pop
Registers

lock 1
lock 2
lock 3
lock 4
lock 5
lock 6
lock 7
lock 8

failed read_lock commands

Lock
CAM

list 1
list 2
list 3
list 4
list 5
list 6
list 7
list 8

command

32

AMBA

uEng

data

control
control

sram signal event

SRAM
CSRs

To FIQ and IRQ
RegistersIntel® StrongARM* Interrupt

External Devices

Command Queues

64

data

Slow
Interface

Logic
Hardware Reference Manual 259

Intel® IXP1200 Network Processor Family
SRAM Unit
8.8.1 Push Pop Registers

Much of the activity that the SSRAM is intended to support is accessing linked lists. Each packet
that is received results in one or more free (or empty) data buffers and/or buffer descriptors being
pushed and/or popped from linked lists. To assist in this operation, the SRAM Unit has eight Push-
Pop registers.

Each Push-pop register can be programmed to contain a pointer to the head of a linked list. When
the register is read, the pointer is returned (popped) and SRAM Unit updates the register with the
new pointer to the head of the list. When the register is written with a pointer (pushed), and SRAM
Unit updates the register and the linked list in SSRAM. The Push-Pop Registers takes what would
normally be three separate memory references (push = read-write-write, pop = read-read-write) and
translate it into a single operation for the StrongARM* core and Microengines. These registers can
be read and written by the StrongARM* core and any of the Microengines.

A system software architecture can be designed such that an application program executing on the
StrongARM* core builds up to eight linked lists in memory that may be used as buffers and
descriptors. The elements within the linked list must be at least one longword and the first
longword must contain a pointer to the next element in the linked list. The linked list must be built
such that the last item in the linked list contains a pointer to itself rather than a next item. The Push-
Pop hardware will then pop the same pointer each time a pop operation is performed when the list
is empty. Software must distinguish when there are no items on the linked list. One method might
be to force the last item on the list (i.e the first item popped) to a value of 0 and then write a value
of 0 to address 0. Then whenever a buffer is popped off the list, a simple compare of the immediate
data equal to 0 would indicate if the buffer list has been exhausted.

The Pop operation is described below and shown in Figure 8-10.

1. A Microengine thread or the StrongARM* core reads the Push-Pop Register value (m). A pop
operation appears to the Microengines and the StrongARM* core as a single read operation to
the register. The Microengines explicitly indicate one of eight Push-Pop registers in the

Figure 8-9. Push-Pop Operations

A7996-01

m
Push-Pop Register

SRAM

End of the list

n p

p q

q q

m n
260 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
sram[pop] instruction. The StrongARM* core specifies the Push-Pop register by reading from
one of eight unique addresses. The SRAM Unit returns the “popped” pointer to the
Microengine SRAM read transfer register or on the AMBA bus as data.

2. The SRAM Unit reads the value at address m (n) and writes it to the Push-Pop Register.

The Push operation is described below and illustrated in Figure 8-11.

1. Microengine or StrongARM* core writes the new pointer to the Push-Pop Register value (m).
A Microengine specifies the pointer in the address fields of the sram[push] instruction. The
StrongARM* core specifies both the Push-Pop register and the pointer in the address (rather
than the data). The eight Push-Pop registers are located at unique base addresses. The
StrongARM* core adds the pointer and the base address to form the write address, and
executes a longword write instruction. The data written is discarded by the SRAM Unit. A
push operation appears to the Microengines and the StrongARM* core as a single write
operation to the register.

2. The SRAM Unit writes the address in the Push-Pop register (n) to the address being pushed
(m).

Figure 8-10. Pop Operation

A7997-01

SRAM

End of the list

m

Before Pop
Push-Pop Register

n p

p q

q q

m n

SRAM

n p

p q

q q

m

n

After Pop
Push-Pop Register

packet descriptor
Hardware Reference Manual 261

Intel® IXP1200 Network Processor Family
SRAM Unit
As noted in the procedures above, the StrongARM* core address is used to specify both the push or
pop operation. Pop operations read a unique address for each queue. Push operations write to an
address equal to the base address of the Push-Pop list plus the pointer to be popped onto the Push-
Pop list. Figure 8-12 shows how the address is formed for Push and Pop operations.

From the StrongARM* core perspective, the Push-Pop Registers should not be marked as a
cacheable area. A pop operation may be performed using the Read Buffer, however the data should
be invalidated once it is read from the Read Buffer. Push operations may be performed through the
write buffer.

Figure 8-11. Push Operation

A7998-01

SRAM

End of the listEnd of the list

m

After Push
Push-Pop Register

n p

p q

q q

m n

SRAM

n p

p q

q q

m

n

Before Push
Push-Pop Register

packet descriptor

Figure 8-12. Push-Pop Addressing

A7999-01

048121620242831

0x2

Specifies the Push-Pop Register (0-7)

Specifies Push operation (0)
or Pop operations (1)

0

Specifies Push-Pop address space

For Push operations this specifies the pointer
For Pop operations this is ignored

Note: SRAM Push-Pop Address for Intel® StrongARM* Core

Note: SRAM Push-Pop Address for Intel® StrongARM* Core

Push-Pop Push Base Pop Address
Register Address
0 2000 0000 2400 0000
1 2080 0000 2480 0000
2 2100 0000 2500 0000
3 2180 0000 2580 0000
4 2200 0000 2600 0000
5 2280 0000 2680 0000
6 2300 0000 2700 0000
7 2380 0000 2780 0000

Note: For Push operations the address written
equals the Push Base Address + pointer
262 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
8.8.2 SRAM Lock CAM

The SRAM controller maintains an 8-entry CAM. This CAM is used to protect an area in SRAM
from being accessed by two or more processes (StrongARM* core and Microengine threads) at the
same time. If a process wishes to protect against write access to an area in memory, it can take out
a lock on the memory area. The Microengines access the Lock CAM function using the sram
instruction while the StrongARM* core maps these command into an 8 Mbyte address space
within the SRAM Unit address space (Figure 3-1).

The read_lock command performs two operations. First, it reads the address specified in the
command and second, it locks the memory location. The memory location is unlocked using either
the unlock command or the write_unlock command. The write_unlock command performs two
operations. First is write data to the address specified in the command and second it unlocks the
memory location.

When the SRAM Unit processes a read_lock command, it checks its eight entry CAM to determine
if a lock has already been taken on the address specified in the command. If not, the SRAM Unit
places the address into one of the eight CAM entries, read the data at the address, and returns the
data to the requestor.

A read_lock command can fail under two conditions:

• A lock has already been taken on the address specified in the command

• All eight Lock CAM entries are occupied

If the read_lock command fails, the command is placed into the Read_lock Fail queue.

When an unlock or write_unlock command is serviced by the SRAM Unit, the address specified in
the command is removed from the Lock CAM. In the case of the write_unlock command, the data
specified by the command is also written to SSRAM. After the unlock or write_unlock command is
completed, the next command serviced by the SRAM Unit is taken from the head of the Read_lock
Fail queue. If the first entry in the Read_lock fail queue specifies an address that is no longer in the
Lock CAM, the command is serviced. Commands continue to be taken from the Read_lock fail
queue until a head of the Read_lock fail queue specifies an address that is currently in the CAM or
the queue is empty. If the head of the queue specifies an address that is currently in the Lock CAM,
the SRAM Unit will discontinue processing the Read_lock Fail queue and return to servicing the
other command queues. Since only the first entry in the Read_lock queue is checked when an
unlock occurs, a locked entry may block unlocked entries in the Read_lock Fail queue from
completing (see Section 8.8.2.3).

8.8.2.1 ReadLock and Microengines

The Microengines access the Read_lock CAM using the sram instruction and can read multiple
longwords using a single read_lock command. Each thread can only have one read_lock request
pending at a time. To enforce this hardware requirement, the Microengine Assembler requires the
user to perform a context swap when issuing a read_lock. If the SRAM controller places a
read_lock command in the Read_lock Fail queue, the thread remains swapped out until the
read_lock is removed from the Read_lock fail queue and placed into the CAM. Thus, a thread is
swapped in only when a read_lock is achieved.
Hardware Reference Manual 263

Intel® IXP1200 Network Processor Family
SRAM Unit
8.8.2.2 ReadLock and StrongARM* Core

The StrongARM* core maps the read_lock, unlock, and write_unlock commands into three
separate 8 Mbyte address spaces (refer to Figure 3-1). If a read_lock operation fails, the SRAM
Unit always returns the read data, and a status bit is set in the SRAM_CSR to indicate that the
read_lock has failed. If enabled, an interrupt can be generated when a read_lock fails, or the
StrongARM* core may read the status bit immediately after reading from the read_lock address
space. Data is always returned to the StrongARM* core so that the StrongARM* core can continue
processing while the failed read_lock command is in the Read_lock Fail queue. When the SRAM
Unit retries a failed read_lock command from the Read_lock Fail queue and the lock is achieved,
another status bit is set in the SRAM_CSR register indicating that the lock was achieved. The
StrongARM* core may poll this status bit or, if enabled, an interrupt can be generated when the bit
is set. Once a re-tried read_lock is achieved, the StrongARM* core must read (not read_lock) the
lock location once more to get the data. Figure 8-13 illustrates the logic.

From the StrongARM* core perspective, the read_lock, write_unlock, and unlock address spaces
should not be marked as a cacheable area. A read_lock operation may be performed using the Read
Buffer, however the StrongARM* core must read the read_lock achieved bit and the data should be
invalidated once it is read from the Read Buffer. Write_unlock and unlock operations may be
performed through the Write Buffer.

A CAM entry holds a single address and does not hold any information on the size of the memory
that is being locked. If a range of memory is to be locked, software needs to manage and enforce
this semantic.

8.8.2.3 Maintaining Read_lock Order

The SRAM_CSR register contains a read_lock order bit (RLK) that ensures that read_locks are
completed in the order in which they where issued. If this bit is set, whenever a Read_lock fails, the
command is placed into the Read_lock Fail queue and all subsequent Read_lock commands are
also placed into the Read_lock Fail queue regardless of whether or not the address resides in the
CAM.

Figure 8-13. Read_Lock Logic

A8000-01

Read_lock status (failed vs. achieved)

Command in the Read_lock fail queue
was retried and lock was achieved

Read lock achieved interrupt enable

* Other brands and names are the property of their respective owners.

Read_lock achieved interrupt type IRQ
Read_lock achieved interrupt type FIQ

Intel® StrongARM* Core Read Lock
Control and Status

SRAM_CSR

Other control and status bits
014 3 2

FIQ

IRQ

531
264 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
There is no hardware protection preventing any of the processes from writing to a locked area, so
vigilance must be maintained in software to ensure a Read_lock is performed on memory areas
designated as protected via the Lock CAM before the memory area is accessed.

8.8.2.4 Filling the Read_Lock Fail Queue

The SRAM Read_lock Fail queue holds up to a maximum of 23 failed read_lock requests that are
processed as described in Section 8.8.2. If a read_lock command is issued, either from the
Microengines or the StrongARM* core, and the Read_lock Fail queue is full, the commmand is
placed in the first entry of the Read_lock Fail queue, overwriting any address that is currently
there.

In order to prevent the wrapping of the Read_lock Fail queue, software must be written so that it
monitors and controls the number of read_locks commands outstanding at any point in time.

8.8.2.5 Application Example: Read_lock

The following example describes how the read_lock and write_unlock commands can be used in a
practical application. The example describes how a designer might implement a transmit queue for
each physical network port. These transmit queues are maintained within SRAM and each transmit
queue is defined by a queue descriptor. The queue descriptor contains a pointer to the first packet
on the queue, a pointer to the last packet on the queue, and the number of packets on the queue. The
packets themselves are maintained as a linked list of packet descriptors. Any of the Microengine
threads and the StrongARM* core must first lock the transmit queue before modifying the linked
list. This ensures two or more processes do not make changes to the list at the same time and
possibly corrupt the integrity of the transmit queue. The Read_lock command can be used to read
the queue descriptor data and lock the transmit queue in a single instruction. After the linked list is
modified, the Write_unlock command can be used to update the queue descriptor and unlock the
queue in a single instruction.

8.8.3 Bit Test & Set / Bit Test & Clear

The SRAM Unit supports an SRAM bit write command that allows individual bits to be set or
cleared and may also return the state of the bits prior to setting or clearing. The SRAM Unit
accomplishes this by performing a Read-Modify-Write operation at the address specified based on
the bit mask provided as write data.

When a Microengine thread issues a SRAM bit write operation reference, the command is placed
into the write/order command queue and the bit mask is provided in an SRAM write transfer
register as write data. If the test operation is also specified, the same transfer register is used to
deliver the pre-modified test value back to the Microengine thread for test operations.

Figure 8-14. Read_Lock Application

A8001-01

Queue Descriptor

head and tail pointer
number of items in list

q_desc_base

q_desc_base+1

Pkt descriptor1 Pkt descriptor 2 Pkt descriptor nooo
ooo

Linked list of packet descriptors

Software Semantic: Locking q_desc_base implies that the Queue Descriptor and all the items on
the Packet list are locked and should not be accessed by the another process.
Hardware Reference Manual 265

Intel® IXP1200 Network Processor Family
SRAM Unit
When the StrongARM* core issues a bit operation reference, a write operation is performed on the
AMBA bus and the write data contains the bit mask. The SRAM Unit performs the Read-Modify-
Write operation and writes the test value to the SRAM_TEST_MOD SRAM CSR. The
StrongARM* core can read this register immediately after performing the Read-Modify-Write
operation since the SRAM Unit stalls the StrongARM* core until the Read-Modify-Write
operation is complete. Since it is the SRAM Unit that performs bit operations, bit operations should
only be performed on memory areas that are non-cacheable. To avoid coherency problems, test
operations should not be performed on memory areas marked as bufferable. The reasoning is that
the StrongARM* core software would not know when it can read the test value since it does not
know when a write operation is completed by the write buffer.

8.8.4 SRAM Journaling

The SRAM Unit provides hardware support for maintaining a journal within SRAM. This allows
the Microengines and StrongARM* core to write debug or other data to a fixed location (the
SRAM_AUTO_BASE register). The SRAM Unit places the data in SRAM in a user-defined
journal area. The SRAM Unit assists the Microengines in creating a journal by maintaining the
pointers to the journal area in SRAM. There are three pointers that specify the start (base), end, and
current position of the journal area. These are initialized via the SRAM_AUTO_BASE,
SRAM_AUTO_END, and SRAM_AUTO_PTR SRAM registers. The SRAM registers are
accessible by the StrongARM* core and the Microengines. When specifying the pointers, the
entire address space from SRAM_AUTO_BASE to SRAM_AUTO_END must fall within the
physical SSRAM address space. Unpredictable results will occur if any of this address range falls
within the BootROM, Slowport, or SRAM register address spaces.

Figure 8-15. SRAM Journaling Address Space

A8002-01

Journal Area

SSRAM Address
Space

8M
SRAM_AUTO_END

SRAM_AUTO_PTR (current pointer)

0

SRAM_AUTO_BASE
266 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
The Journal registers should be initialized in the following order to ensure proper operation.

Once these SRAM registers are initialized, a write to the SRAM_AUTO_PTR register will cause
the following data to be written to SRAM at the address in the pointer register:

[31:29] Microengine ID/StrongARM* core ID
[28:27] Thread ID
[26:0] User defined data

The SRAM Unit will supply the Microengine ID and thread ID if the source is a Microengine.
Otherwise, the StrongARM* core should write the entire 32 bits using an ID of 7 and a thread ID of
0 (bits [31:27] = 11100). After each write, the current pointer (SRAM_AUTO_PTR) is
incremented. The SRAM Unit will automatically wrap around to the base address when the pointer
reaches the end of the journal area. There is no hardware support to determine when the journal has
filled and wrapped around to the beginning.

Software can determine the current pointer by reading the SRAM_AUTO_PTR register. However,
each time the register is read, the current pointer is incremented.

8.9 Interfacing to the SRAM Unit

This section describes how the StrongARM* core and Microengines interface to the SRAM Unit.

8.9.1 SRAM Map

Table 8-1 shows the memory map for the SRAM address space. Notice that the StrongARM* core
addresses this space using byte addressing while the Microengines access this space using the
sram instruction and longword addressing.

SRAM_AUTO_END Writing this register clears the sram_auto_ptr register

SRAM_AUTO_BASE Writing this also writes base address to the sram_auto_ptr
register

Table 8-1. Memory Map for SRAM Address Space

Physical
Device
Space

Function StrongARM Address
Space (Byte Addressing)

Microengine sram
Instruction
Command

Microengine
Address Space

(Longword
Addressing)

SlowPort SlowPort 3840 0000 - 385F FFFF read/write 70 0000 - 7F FFFF

SRAM CSRS SRAM CSRs 3800 0000 - 3800 0013 read/write 60 0000 - 60 0080

SRAM Pop Command 2400 0000 - (see Figure 8-4) pop 00 0000 - 1F FFFF

SRAM Push Command 2000 0000 - (see Figure 8-4) push 00 0000 - 1F FFFF

SRAM Bit Test & Set 1980 0000 - 19FF FFFF bit_wr
(test_and_set_bits) 00 0000 - 1F FFFF

SRAM Bit Test & Clear 1900 0000 - 197F FFFF bit_wr
(test_and_clear_bits) 00 0000 - 1F FFFF

SRAM Bit Set 1880 0000 - 18FF FFFF bit_wr (set_bits) 00 0000 - 1F FFFF

SRAM Bit Clear 1800 0000 - 187F FFFF bit_wr (clear_bits) 00 0000 - 1F FFFF
Hardware Reference Manual 267

Intel® IXP1200 Network Processor Family
SRAM Unit
8.9.2 Microengine SRAM Transactions

The SRAM Unit provides three command queues: Priority, Write/Order, and Read. There are three
optional tokens specified by the Microengine sram instruction which determine the command
queue in which the commands are submitted. The three optional tokens are priority,
optimize_mem, and ordered.

The Priority Queue has a higher priority than the Read and Write/Order queues. The Write/Order
queue is the default queue when an optional token is not specified. It can also be explicitly
specified using the ordered optional token. Both read and write commands are placed into the
Write/Order queue where they are assured to be serviced in the order in which they were issued.

The optimize_mem token causes an sram command to be placed into either the Read or Write/
Order Queue based on the type of reference. The reason commands are grouped into the Read and
Order/Write queues is to improve performance by reducing the number of read-to-write bus
turnaround cycles on the SRAM bus. This is accomplished by servicing multiple commands in the
Read queue before switching to the Order/Write queue and visa versa. The following table shows
which commands queues the sram commands are delivered to when the optimize_mem optional
token is used in the instruction.

The optimize_mem token cause an SRAM command to be place into either the Read or Write/
Order queue based on the type of reference. The reason commands are grouped into the Read and
Order/Write queues is to improve performance by reducing the number of read-to-write bus
turnaround cycles on the SRAM bus. This is accomplished by servicing multiple commands in the
Read queue before switching to the Order/Write queue and visa versa. The only commands that are
segregated into the Read queue are the SRAM[Read], SRAM[Read_Lock], and SRAM[Pop]
commands. All other commands are explicitly placed into the Write/Order queue.

The three command queues, the queue sizes and the optional token are listed in the Table 8-2.

SRAM Unlock 1600 0000 - 167F FFFF unlock 00 0000 - 1F FFFF

SRAM Write Unlock 1400 0000 - 147F FFFF write_unlock 00 0000 - 1F FFFF

SRAM Read Lock 1200 0000 - 127F 7777 read_lock 00 0000 - 1F FFFF

SRAM Read/Write 1000 0000 - 107F FFFF read/write 00 0000 - 1F FFFF

BootROM BootROM 0000 0000 - 007F FFFF read/write 20 0000 - 3F FFFF

Table 8-1. Memory Map for SRAM Address Space

Physical
Device
Space

Function StrongARM Address
Space (Byte Addressing)

Microengine sram
Instruction
Command

Microengine
Address Space

(Longword
Addressing)

Table 8-2. SRAM Command Queue Sizes

Microengine Command
Queue

Queue
Size Instruction Optional Token

Read only Queue 16 optimize _mem

Order and Write Queue 24 optimize _mem or no optional token

High Priority Queue 8 priority
268 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
The command queues are sized so that in typical operation, the queues should not fill. If any of the
command queues fill, a back-pressure signal notifies the Command Bus Arbiter to cease allowing
SRAM commands to be sent to the SRAM Unit. Backpressure is applied when any of the queues
have only six entries available. This ensures there is room in the queues for any SRAM commands
that have already been granted access to the command bus by the command bus arbiter.

When the SRAM Unit processes an SRAM instruction, the SRAM Push-Pull Engine moves the
data between the SRAM Unit and the SRAM transfer registers via an internal 64-bit SRAM bus.
The 64-bit bus is divided in half so that 32 bits connect to SRAM Read transfer registers and 32
bits connect to SRAM Write transfer registers. If a Microengine thread chooses to be signaled upon
completion of a command, the sig_done or ctx_swap optional token should be specified in the
instruction.

8.9.3 StrongARM* Core SRAM Transactions

The StrongARM* core issues references to the SRAM Unit via the AMBA Bus. These requests can
be generated directly by StrongARM* core Processor or the Icache, Dcache (main and mini),
StrongARM* core Read Buffer , StrongARM* core Write buffer (Note that in most cases the
Icache would fetch instructions from the SDRAM Unit).

The programmer should be aware that StrongARM* core references to non-cached areas will cause
the StrongARM* core to stall until the SRAM Unit provides data at the AMBA read data latch.

For write operations, the StrongARM* core will stall until is gains access to the AMBA Bus which
is shared by the caches and buffers. Once access is granted, the StrongARM* core will write data to
the AMBA Bus Logic which translates the AMBA bus signaling into a Microengine-like command
and the data is written into the AMBA Write Data Buffer so that the StrongARM* core may
continue to execute. When the SRAM Command Arbiter grants access to the AMBA Bus interface,
the AMBA Bus command is completed and the data is read from the AMBA Write Data Buffer.
The SRAM Unit does not queue AMBA transaction and therefore only one AMBA transaction can
be in progress at a time. The AMBA Write Data Buffer can hold 8 longwords, allowing it to hold
up to one cache line at a time.

For the best performance, it is recommended that the programmer take advantage of the Dcaches,
Read Buffer and Write Buffer. Table 8-3 lists the address spaces and the recommendations for
marking these areas as cacheable or bufferable.

Table 8-3. Cacheable and Bufferable Address Spaces

Physical Device
Space Function Dcache Read

Buffer Write Buffer

SlowPort SlowPort Yes1 Yes1 Yes

SRAM CSRS SRAM CSRs No Yes2 Yes

SRAM Pop Command No Yes2 --

SRAM Push Command No -- Yes

SRAM Bit Test & Set No -- No

SRAM Bit Test & Clear No -- No

SRAM Bit Set No -- Yes

SRAM Bit Clear No -- Yes

SRAM Unlock No -- Yes

SRAM Write Unlock No -- Yes
Hardware Reference Manual 269

Intel® IXP1200 Network Processor Family
SRAM Unit
SRAM Read Lock No Yes2 --

SRAM Read/Write Yes Yes Yes

BootROM BootROM Yes

1The designer should evaluate the ramifications based on the specific SlowPort
device.
2Data should be invalidated immediately after the StrongARM* core reads the data
from the read buffer.

Table 8-3. Cacheable and Bufferable Address Spaces

Physical Device
Space Function Dcache Read

Buffer Write Buffer
270 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
SRAM Unit
8.9.4 SRAM Burst Count

A burst count is provided to the SRAM Unit by the following IXP1200 components:

• Microengines

• StrongARM* core

• StrongARM* core Icache and Dcache (main and mini)

• StrongARM* core Read Buffer

• StrongARM* core Write buffer

The Microengines specify the burst count in the instruction. Burst counts generated by the
StrongARM* core are accepted by the AMBA Bus Logic which generates a single Microengine-
like command that includes the burst count. Table 8-4 lists the burst sizes generated by the
Microengines and StrongARM* core.

8.9.5 SRAM Command Service Priority

The SRAM Unit services SRAM reference commands from five sources:

• StrongARM* core

• Three Microengine Queues (Read, Write/Order, Priority)

• Read_lock Failed Queue

Table 8-4. Burst Sizes

Source Operation Longword
Burst Size Comments

Microengines
read or write 1 to 8 sram instruction

read or write 1 to 16 sram instruction using indirect_ref

StrongARM* core read or write 1
A burst size of 1 that specifies byte or word writes
requires the SRAM Unit to perform a Read-Modify-
Write operation

Dcache
read 8 Line fills

write 4 or 8 Line and half line evictions

Icache read 8 Line fills (Icache fills are typically from SDRAM)

Read Buffer read 1,4,8 Controlled via the Coprocessor 15
READ_BUFFER_OPERATIONS register (Register 9)

Write Buffer write 1,2,3,4,8

A burst size of 1 that specifies byte or word writes
requires the SRAM Unit to perform a Read-Modify-
Write operation

Write buffer performs burst counts greater than 1 only
for the StrongARM store multiple instructions
Hardware Reference Manual 271

Intel® IXP1200 Network Processor Family
SRAM Unit
The Service Priority Machine decides from which source to get the next command. The decision
policy is based on the table below. The priority is dependent on the command that was previously
serviced.

If the previous command was a write_unlock or unlock command, the Read_lock Fail queue has
the highest priority. This queue holds the highest priority until a lock cannot be granted or until the
queue is drained. Note that the Service Priority Machine only checks the head of the queue for a
locked entry.

A timeslot exists between two consecutive AMBA bus transactions such that a pending
Microengine command may be serviced between two consecutive AMBA Bus commands. Note
that StrongARM* core commands that generate burst counts are treated single commands. Refer to
Section 8.9.4 for more on StrongARM* core burst counts.

8.9.6 Read-Modify-Write

The Read-Modify-Write function allows individual bytes to be written to SRAM devices. To
accomplish this, the SRAM Unit firsts reads data from a longword address, modifies the specified
bytes, and then writes the modified longword back to the SRAM device. These three steps are
performed atomically. The SRAM Unit supports Read-Modify-Write operations for the
Microengines and the StrongARM* core.

The StrongARM* core performs Read-Modify-Write operations for bit write operations (bit test,
set, and clear) and byte and word writes to non-cached memory. Read-Modify-Write operations are
performed automatically by the SRAM Unit.

The Microengines perform Read-Modify-Write operations on the SRAM longword addresses
using the indirect reference option. The reference count specified in the instruction must be a value
of 1 and the data to be written is specified in an SRAM write transfer register. A mask specified by
the indirect reference determines which bytes are modified at the longword address.

Table 8-5. SRAM Command Service Priority

Priority Previous Requested SRAM Instruction

Write-Unlock or Unlock Read, Read-Lock, or Pop Write, Bit_Set, Bit_Clr, or
Push

1 Read Lock Fail queue AMBA requests (StrongARM*
core)

AMBA requests (StrongARM*
core)

2 AMBA requests (StrongARM*
core) High priority High priority

3 High priority Read queue1 Write/Order queue1

4 Write/Order queue1 Write/Order queue1 Read queue2

5 Read queue2

1Services four commands from the Write/Order queue regardless of whether it is a read or a write. After four
order commands are serviced, continue to service commands in the Write/Order queue until either a read
command is serviced (in which case it switches to the Read queue) or a maximum of eight commands are
serviced from the Write/Order queue (in which case it switches to the Read queue regardless of the last
command serviced).
2Services eight commands from the Read queue then it switches to the Write/Order queue
272 Hardware Reference Manual

	Intel® IXP1200 Network Processor Family
	Introduction 1
	1.1 About this Document
	1.2 Related Documentation
	1.3 Conventions
	1.3.1 Data Terminology
	1.3.2 Definitions

	Technical Introduction 2
	2.1 Overview
	2.2 IXP1200 Functional Units
	2.3 Key Architectural Features
	2.4 Some Architectural Concepts
	2.4.1 References
	2.4.2 Signals and Synchronization
	2.4.3 Context Swapping and Threads
	2.4.4 Some Examples
	2.4.5 Local Data Storage and Block Transfers
	2.4.6 Concurrency

	2.5 Typical Packet Data Flow
	2.6 External Interfaces
	2.7 Internal Architecture
	2.7.1 StrongARM* Core
	2.7.2 Microengines
	2.7.2.1 Microengine Data Bandwidth to SRAM Unit and IX Bus Unit

	2.7.3 SRAM Unit
	2.7.4 SDRAM Unit
	2.7.4.1 Internal SDRAM Bandwidth and Internal Data Busses
	2.7.4.2 Chained References

	2.7.5 PCI Unit
	2.7.6 IX Bus Unit
	2.7.6.1 Ready Bus
	2.7.6.2 IX Data Bus Modes
	2.7.6.3 Scratchpad RAM
	2.7.6.4 Hashing Unit
	2.7.6.5 IXB3208 Bus Scaling Fabric

	2.8 Software Development Tools

	StrongARM* Core 3
	3.1 Overview
	3.2 ARM* Architecture
	3.2.1 Coprocessors
	3.2.2 Memory Management Unit (MMU)
	3.2.2.1 MMU Faults and CPU Aborts
	3.2.2.2 Data Aborts
	3.2.2.3 Interaction of the MMU, Icache, Dcache, and Write Buffer
	3.2.2.4 MMU Enable/Disable

	3.2.3 Instruction Cache (Icache)
	3.2.3.1 Icache Operation
	3.2.3.2 Icache Validity
	3.2.3.3 Icache Enable/Disable and Reset

	3.2.4 Data Caches (Dcaches)
	3.2.4.1 Main Data Cache
	3.2.4.2 Mini Cache
	3.2.4.3 Dcaches Enable/Disable and Reset
	3.2.4.4 Dcache Operation
	3.2.4.5 Software Dcache Flush

	3.2.5 Write Buffer
	3.2.5.1 Write Buffer Operation
	3.2.5.2 Enabling and Disabling the Write Buffer

	3.2.6 Read Buffer
	3.2.6.1 Read Buffer Operation

	3.2.7 ARM* Instruction Set and Timing
	3.2.8 Exceptions
	3.2.8.1 Exception Priorities
	3.2.8.2 Exception Vector Table
	3.2.8.3 Hard Reset
	3.2.8.4 Abort
	3.2.8.5 Undefined Instruction

	3.2.9 StrongARM* Core Debug Support
	3.2.9.1 Instruction Breakpoint
	3.2.9.2 Data Breakpoint

	3.3 Memory Map
	3.4 FIQ and IRQ Interrupts
	3.5 Internal Peripheral Units
	3.5.1 UART
	3.5.1.1 Receive Procedure
	3.5.1.2 Transmit Procedure

	3.5.2 Timers
	3.5.3 Real-Time Clock (RTC)
	3.5.3.1 RTC Setup Procedures
	3.5.3.2 Using the RTC Alarm
	3.5.3.3 Determining the Trim Values

	3.5.4 General Purpose I/O (GPIO)

	3.6 Boot Sequence

	Microengines 4
	4.1 Overview
	4.2 Microengine Block Diagram
	4.2.1 Multithread Support
	4.2.2 Control Store
	4.2.3 128 General-Purpose Registers (GPRs)
	4.2.4 128 Transfer Registers
	4.2.5 ALU and Shifter
	4.2.6 Command Bus Arbiter
	4.2.7 Local CSRs

	4.3 Microengine Instruction Set
	4.4 Execution Pipeline
	4.5 Branch Decisions
	4.5.1 Class 3 Instructions
	4.5.2 Class 2 Instructions
	4.5.3 Class 1 Instructions
	4.5.4 Postponed Branch Decision
	4.5.5 Deferred Branch
	4.5.6 Setting Condition Codes Early
	4.5.7 Guess Branch

	4.6 Execution States
	4.6.1 Reset State
	4.6.2 Stopped State
	4.6.3 Running State
	4.6.4 Paused State

	4.7 Programming the Microengines
	4.7.1 Starting Point of Program Execution

	4.8 Microengine Registers
	4.8.1 General-Purpose Registers
	4.8.2 Transfer Registers
	4.8.2.1 Managing Solicited Accesses
	4.8.2.2 Managing Unsolicited Autopush Accesses

	4.9 ALU and Shifter
	4.9.1 Condition Codes
	4.9.2 Multiply Support

	4.10 Changing Contexts
	4.10.1 Signal Events
	4.10.2 Context Event Arbiter (Waking a Thread)

	4.11 Interfacing to Other Functional Units
	4.11.1 References Using Transfer Registers
	4.11.1.1 Setting Up the Transfer Registers
	4.11.1.2 Issuing a Command
	4.11.1.3 Command Serviced in Queue
	4.11.1.4 Moving Data to and from Transfer Registers
	4.11.1.5 Signaling Completion

	4.11.2 PCI DMA
	4.11.3 FAST_WR Instruction
	4.11.4 Indirect References

	4.12 Local CSRs
	4.13 Find Bit Set Instructions
	4.14 Input States
	4.15 Inter-Processor Communications
	4.15.1 Generating StrongARM* Core Interrupts
	4.15.2 Generating Inter-thread Signal Events
	4.15.3 Communication Example

	4.16 Chained SDRAM References
	4.17 Debugging Support
	4.17.1 Determining If a Microengine is Executing
	4.17.2 Stopping, Starting, and Hopping the Microengines
	4.17.3 Breakpoints
	4.17.4 Reading Microengine GPR and Read Transfer Registers
	4.17.5 Creating a Journal

	PCI Unit 5
	5.1 Overview
	5.2 Hardware Description
	5.2.1 PCI Bus Arbiter
	5.2.2 DMA Channels
	5.2.2.1 Allocation of the DMA Channels
	5.2.2.2 StrongARM* Core Initiated DMA Channel Operation
	5.2.2.3 Microengine Initiated DMA Channel Operation
	5.2.2.4 SDRAM-to-PCI Transfer
	5.2.2.5 PCI-to-SDRAM Transfer

	5.2.3 I2O* Message Unit
	5.2.3.1 I2O Inbound FIFO Operation
	5.2.3.2 I2O Outbound FIFO Operation

	5.2.4 Mailbox and Doorbell Registers
	5.2.5 PCI Interrupt Pin

	5.3 PCI Transactions
	5.3.1 Generating the Address
	5.3.1.1 Target Transactions - Internal Address Generation
	5.3.1.2 Master Transactions - PCI Address Generation
	5.3.1.3 Master Configuration Transactions - PCI Address Generation

	5.3.2 Enabling PCI Bus Transactions
	5.3.3 PCI Target Transactions
	5.3.3.1 Unsupported PCI Cycles As Target
	5.3.3.2 Memory Write to SDRAM (Target Write)
	5.3.3.3 Memory Read, Read Line, Read Multiple to SDRAM (Target Read)
	5.3.3.4 Type 0 Configuration Write
	5.3.3.5 Type 0 Configuration Read
	5.3.3.6 Write to CSR
	5.3.3.7 Read to CSR
	5.3.3.8 Write to I2O Address
	5.3.3.9 Read to I2O Address

	5.3.4 PCI Master Transactions
	5.3.4.1 Unsupported PCI Cycles As Master
	5.3.4.2 Memory Write, Memory Write and Invalidate
	5.3.4.3 Memory Read, Memory Read Line, Memory Read Multiple
	5.3.4.4 I/O Write
	5.3.4.5 I/O Read
	5.3.4.6 Configuration Write
	5.3.4.7 Configuration Read
	5.3.4.8 Special Cycle
	5.3.4.9 IACK Read
	5.3.4.10 PCI Request Operation
	5.3.4.11 Master Latency Timer

	5.3.5 Errors As PCI Target
	5.3.5.1 Address Parity Error
	5.3.5.2 Write Data Parity Error
	5.3.5.3 Read Data Parity Error

	5.3.6 Errors As PCI Master
	5.3.6.1 Master Abort
	5.3.6.2 Write Data Parity Error
	5.3.6.3 Target Abort on Write
	5.3.6.4 Read Data Parity Error
	5.3.6.5 Target Abort on Read

	FBI Unit 6
	6.1 FBI Architecture
	6.2 Push/Pull Engine Interface
	6.2.1 Push and Pull Engines
	6.2.2 Microengine Initiated FBI References
	6.2.3 StrongARM* Core Initiated FBI References
	6.2.4 FBI Signal Events (to Microengines)
	6.2.5 Command Ordering
	6.2.6 FBI Command Bus Arbiter Signaling
	6.2.7 Scratchpad Test and Set/Clear Instructions
	6.2.8 Scratchpad Increment Instruction
	6.2.9 Hash Instruction

	6.3 Scratchpad Memory
	6.3.1 Read and Write Operations
	6.3.2 Bit Write Operations
	6.3.3 Auto Increment Operations

	6.4 Hash Unit
	6.4.1 Hashing Operation
	6.4.2 Hash Algorithm

	6.5 FBI CSRs
	6.5.1 CSR Reads and Writes
	6.5.2 FAST_WR Support
	6.5.3 FBI CSR Description Summary
	6.5.3.1 IX Bus Receive Registers
	6.5.3.2 IX Bus Transmit Registers
	6.5.3.3 IX Bus and Ready Bus Configuration Registers
	6.5.3.4 Ready Bus Control Registers
	6.5.3.5 Hash Unit Configurations Registers
	6.5.3.6 FBI Interrupt/Signal Registers
	6.5.3.7 Thread Status Registers
	6.5.3.8 Miscellaneous Registers

	6.5.4 Cycle Count Register
	6.5.5 Self Destruct Register
	6.5.6 Thread Status Registers (THREAD_DONE)

	6.6 IX Bus Interface
	6.6.1 Configuring the IX Bus and Ready Bus
	6.6.2 IX Bus and Ready Bus Modes
	6.6.2.1 64-bit Bidirectional and 32-bit Unidirectional IX Bus Modes
	6.6.2.2 1-2 MAC Mode and 3+ MAC Mode
	6.6.2.3 Shared IX Bus Mode
	6.6.2.4 Status Mode

	6.6.3 Ready Bus
	6.6.3.1 Ready Bus Sequencer
	6.6.3.2 Ready Bus Master and Slave Modes
	6.6.3.3 Ready Bus Instructions
	6.6.3.4 Reading the MAC FIFO Ready Flags
	6.6.3.5 Receive Ready Flags
	6.6.3.6 Transmit Ready Flags
	6.6.3.7 Autopush Operation
	6.6.3.8 Interpreting The Receive Ready Flags
	6.6.3.9 Flow Control
	6.6.3.10 Ready Bus Communications
	6.6.3.11 Example Ready Bus Sequencer Programs

	6.6.4 Receive State Machine and RFIFO - Receiving Data From IX Bus
	6.6.4.1 Issuing a Receive Request
	6.6.4.2 Receive Request Format (RCV_REQ Register)
	6.6.4.3 Processing Receive Requests
	6.6.4.4 Receive Data Control Information Format (RCV_CNTL Register)
	6.6.4.5 Interpreting the Byte Enable Pins (FBE#[7:0])
	6.6.4.6 Reading the RFIFO
	6.6.4.7 Receive Scheduler Thread

	6.6.5 Transmit State Machine and TFIFO - Transmitting Data on the IX Bus
	6.6.5.1 Initiating a Transmit Request (TFIFO Format)
	6.6.5.2 Transmitting TFIFO Data

	6.6.6 Transmit Scheduler Thread
	6.6.6.1 Assigning a Transmit Thread - Examples

	6.6.7 IX Bus Arbiter
	6.6.8 Slow Ports and Fast Ports
	6.6.8.1 Maintaining Packet Order
	6.6.8.2 Issuing Receive Requests
	6.6.8.3 Fast Port Modes
	6.6.8.4 Timing Considerations for Back-to-Back Reads

	6.7 FBI Error Specifications
	6.7.1 Cancel
	6.7.2 Receive Fail
	6.7.3 Receive Error

	SDRAM Unit 7
	7.1 Overview
	7.2 SDRAM Bus Configurations
	7.2.1 Bank, Row, and Column Pin Assignments
	7.2.2 Initializing the SDRAM Interface
	7.2.2.1 Configuration Registers (SDRAM_MEMCTL0)

	7.2.3 SDRAM Bus Commands
	7.2.3.1 No Operation (NOP)
	7.2.3.2 Load Mode Register
	7.2.3.3 Active
	7.2.3.4 Read
	7.2.3.5 Write
	7.2.3.6 Burst Terminate
	7.2.3.7 Self Refresh
	7.2.3.8 Precharge
	7.2.3.9 Unsupported SDRAM Commands

	7.3 Interfacing to the SDRAM Unit
	7.3.1 SDRAM Command Service Priority Logic
	7.3.1.1 Priority 0: Chained Referenced
	7.3.1.2 Priority 1: Refresh Requests
	7.3.1.3 Priority 2: Round Robin Requests
	7.3.1.4 Priority 3 through 5: The Remaining Microengine Requests

	7.3.2 Read-Modify-Write
	7.3.3 Chained References
	7.3.4 Active Memory Optimization

	7.4 Microengine SDRAM Transactions
	7.4.1 Microengines Command Queues
	7.4.2 SDRAM Byte Aligner

	7.5 PCI SDRAM Transactions
	7.6 StrongARM* Core SDRAM Transactions
	7.6.1 StrongARM* Core and Microengine SDRAM Address Space
	7.6.1.1 SDRAM CSRs
	7.6.1.2 SDRAM non-Prefetch Memory (256 Mbytes)
	7.6.1.3 SDRAM Prefetch Memory (256 Mbytes)
	7.6.1.4 Cache Flush Area (16 Kbytes)

	7.7 SDRAM and the IX Bus Interface
	7.7.1 SDRAM to TFIFO Operation
	7.7.2 Receive FIFO to SDRAM Operation
	7.7.3 SDRAM and IX Bus Data Path Operation

	SRAM Unit 8
	8.1 Overview
	8.2 SRAM Bus Configurations
	8.3 SSRAM Address Space
	8.3.1 Pipelined vs. Flow Thru SRAM Devices

	8.4 BootROM Address Space
	8.5 SlowPort Address Space
	8.6 Slow Interface Logic
	8.7 SRAM CSRs
	8.8 Advanced SRAM Commands
	8.8.1 Push Pop Registers
	8.8.2 SRAM Lock CAM
	8.8.2.1 ReadLock and Microengines
	8.8.2.2 ReadLock and StrongARM* Core
	8.8.2.3 Maintaining Read_lock Order
	8.8.2.4 Filling the Read_Lock Fail Queue
	8.8.2.5 Application Example: Read_lock

	8.8.3 Bit Test & Set / Bit Test & Clear
	8.8.4 SRAM Journaling

	8.9 Interfacing to the SRAM Unit
	8.9.1 SRAM Map
	8.9.2 Microengine SRAM Transactions
	8.9.3 StrongARM* Core SRAM Transactions
	8.9.4 SRAM Burst Count
	8.9.5 SRAM Command Service Priority
	8.9.6 Read-Modify-Write

