
Intel® IXP1200 Network
Processor Family
Development Tools User’s Guide

December, 2001

Order Number: 278302-009

Development Tools User’s Guide

Intel® IXP1200 Network Processor Family

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The name of product may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s Web site at http://www.intel.com.

Copyright © Intel Corporation, 2001

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries

*Other names and brands may be claimed as the property of others.

Revision History

Revision Date Revision Description

7/30/99 .5 Beta 1 release.

8/30/99 001 Beta 2 release.

11/5/99 002 Beta 3 release.

3/3/00 003 Beta 4 release.

6/2/00 004 Version 1.0 release.

10/2/00 005 Version 1.1 release.

12/20/00 006 Version 1.2 release.

5/21/01 007c Version 1.3 SDK release. (includes C Compiler)

6/1/01 007 Version 1.3 release.

8/10/01 008 Version 2.0 SDK

12/5/01 009 Version 2.01 SDK

Intel® IXP1200 Network Processor Family
Contents
1 Introduction.. 1-1

1.1 About this Document ... 1-1
1.2 Related Documents ... 1-1

2 Developer Workbench... 2-1
2.1 Overview.. 2-1
2.2 Getting Help... 2-2
2.3 About the Graphical User Interface (GUI) ... 2-2

2.3.1 About Windows, Toolbars, and Menus .. 2-3
2.3.2 Hiding and Showing Windows and Toolbars .. 2-4
2.3.3 Customizing Toolbars and Menus.. 2-5

2.3.3.1 Creating Toolbars ... 2-5
2.3.3.2 Renaming Toolbars .. 2-5
2.3.3.3 Deleting Toolbars.. 2-6
2.3.3.4 Adding and Removing Toolbar Buttons and Controls... 2-6
2.3.3.5 Customizing Menus .. 2-6
2.3.3.6 Returning to Default Toolbar Settings... 2-7

2.3.4 GUI Toolbar Configurations.. 2-7
2.4 About Projects ... 2-8

2.4.1 Creating a New Project .. 2-8
2.4.2 Opening a Project .. 2-9
2.4.3 Saving a Project ... 2-9
2.4.4 Closing a Project .. 2-9

2.5 Configuring the System ... 2-10
2.5.1 Modifying the Chip Configuration ... 2-10

2.5.1.1 Selecting Chip Type.. 2-10
2.5.1.2 Selecting Clock Frequencies .. 2-11

2.5.2 Modifying the Memory Configuration ... 2-11
2.5.2.1 Changing the SDRAM Configuration .. 2-12
2.5.2.2 Changing the SRAM Configuration... 2-13
2.5.2.3 Changing the Boot ROM Configuration .. 2-13
2.5.2.4 Changing the Slow Port Configuration.. 2-14

2.5.3 Modifying the IX Bus Interface Configuration... 2-15
2.5.3.1 Programming the Ready Bus Sequencer ... 2-16
2.5.3.2 Configuring Autopush ... 2-18

2.5.4 Modifying the PCI Interface Configuration ... 2-18
2.5.4.1 About PCI Configuration ... 2-19
2.5.4.2 About PCI Configuration Space.. 2-19

2.5.5 Modifying the IX Bus Configuration.. 2-20
2.5.5.1 Customizing Buses for Multichip Configuration .. 2-20

2.6 About the Project Workspace.. 2-21
2.6.1 About FileView ... 2-21
2.6.2 About ThreadView.. 2-22

2.6.2.1 Expanding and Collapsing Thread Trees ... 2-22
2.6.2.2 Renaming a Thread.. 2-22

2.6.3 About InfoView ... 2-22
2.7 Working with Files ... 2-23

2.7.1 Creating New Files... 2-23
Development Tools User’s Guide iii

Intel® IXP1200 Network Processor Family
2.7.2 Opening Files ... 2-23
2.7.3 Closing Files... 2-24
2.7.4 Saving Files.. 2-24
2.7.5 Saving Copies of Files ... 2-25
2.7.6 Saving All Files at Once ... 2-25
2.7.7 Working With File Windows ... 2-25
2.7.8 Printing Files .. 2-26

2.7.8.1 Setting Up the Printer ... 2-26
2.7.8.2 Previewing the Printed File... 2-26
2.7.8.3 Printing the File... 2-26

2.7.9 Inserting Into and Removing Files from a Project .. 2-27
2.7.9.1 Inserting Files Into a Project ... 2-27
2.7.9.2 Removing Files From a Project .. 2-27

2.7.10 Editing Files.. 2-27
2.7.11 Bookmarks and Errors/Tags... 2-28
2.7.12 About Find In Files ... 2-28
2.7.13 About Fonts and Syntax Coloring .. 2-29
2.7.14 About Macros ... 2-30

2.8 About the Assembler ... 2-30
2.8.1 About Root Files and Dependencies.. 2-31
2.8.2 Selecting Assembler Build Settings ... 2-31

2.8.2.1 Specifying Additional Include Directories ... 2-32
2.8.2.2 Specifying Processor Revision Range ... 2-32
2.8.2.3 Specifying Assembler Options.. 2-33

2.8.3 Invoking the Assembler.. 2-34
2.8.4 About Assembly Errors .. 2-35

2.9 About the Microengine C Compiler ... 2-36
2.9.1 Adding C Source Files to Your Project ... 2-36
2.9.2 Selecting Compiler Build Settings .. 2-36

2.9.2.1 Selecting the Compiler Include Paths... 2-37
2.9.2.2 Selecting the target .list file... 2-37
2.9.2.3 Deleting a Target .list File ... 2-37
2.9.2.4 Selecting C Source Files to Compile .. 2-38
2.9.2.5 Removing C Source Files to Compile... 2-38
2.9.2.6 Selecting Compile Options ... 2-38
2.9.2.7 Edit/Override... 2-40
2.9.2.8 Saving Build Settings.. 2-40

2.9.3 Invoking the Compiler .. 2-40
2.9.4 Compilation Errors ... 2-40

2.10 About the Linker .. 2-41
2.10.1 Customizing a Build Configuration ... 2-41
2.10.2 Changing Linker Settings ... 2-42

2.11 Debugging ... 2-45
2.11.1 Starting and Stopping the Debugger.. 2-46
2.11.2 Changing Simulation Options... 2-46

2.11.2.1 Marking Instructions ... 2-46
2.11.2.2 Changing the Colors for Execution State ... 2-47
2.11.2.3 Initializing Simulation Startup Options .. 2-48
2.11.2.4 Setting the Simulation Step Unit... 2-49
2.11.2.5 Tagging Memory... 2-50
2.11.2.6 Enabling StrongARM* Core Model ... 2-50
2.11.2.7 Enabling the PCI Interface.. 2-50
iv Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
2.11.2.8 Enabling the PCI Transactor... 2-51
2.11.2.9 Enabling IX Bus Device Simulation .. 2-51

2.11.3 Exporting the Startup Script ... 2-51
2.11.4 About Hardware Options.. 2-52

2.11.4.1 Specifying Hardware Startup Options... 2-52
2.11.4.2 Specifying MAC Port Control .. 2-52

2.11.5 About the Command Line Interface ... 2-53
2.11.6 About Command Scripts .. 2-53
2.11.7 About Thread Windows.. 2-54

2.11.7.1 Controlling Thread Window Activation.. 2-55
2.11.7.2 About Thread Window Controls.. 2-56
2.11.7.3 Tracking the Active Thread... 2-59
2.11.7.4 Toggling Views (compiled threads only) ... 2-59
2.11.7.5 Running to Cursor... 2-59
2.11.7.6 Activating Thread Windows .. 2-60
2.11.7.7 Displaying, Expanding, and Collapsing Macros

(assembled threads only)2-61
2.11.7.8 Displaying and Hiding Instruction Addresses ... 2-62
2.11.7.9 About Instruction Markers... 2-62
2.11.7.10 Viewing Instruction Execution in the Thread Window... 2-63

2.11.8 About Run Control—Simulation Mode ... 2-64
2.11.8.1 Single Stepping... 2-64
2.11.8.2 Stepping Microengines ... 2-64
2.11.8.3 Stepping Over... 2-65
2.11.8.4 Stepping Into (compiled threads only) .. 2-65
2.11.8.5 Stepping Out (compiled threads only) .. 2-65
2.11.8.6 Executing Multiple Cycles... 2-66
2.11.8.7 Running to a Specific Cycle.. 2-66
2.11.8.8 Running to a Label or Microword Address.. 2-66
2.11.8.9 Running Indefinitely .. 2-67
2.11.8.10 Stopping Execution... 2-67
2.11.8.11 Resetting the Simulation... 2-67

2.11.9 About Run Control—Hardware Mode .. 2-67
2.11.9.1 About Hopping.. 2-68
2.11.9.2 Running Indefinitely .. 2-68
2.11.9.3 Stopping Execution... 2-69
2.11.9.4 Resetting the Hardware.. 2-69

2.11.10 About Breakpoints.. 2-69
2.11.10.1 Setting Breakpoints in Hardware Mode .. 2-70
2.11.10.2 About Breakpoint Markers .. 2-70
2.11.10.3 Inserting and Removing Breakpoints.. 2-71
2.11.10.4 Enabling and Disabling Breakpoints... 2-72
2.11.10.5 Changing Breakpoint Properties... 2-72

2.11.11 Displaying Register Contents... 2-73
2.11.12 About Data Watch .. 2-73

2.11.12.1 Data Watches in C Thread Windows.. 2-74
2.11.12.2 Entering a New Data Watch ... 2-74
2.11.12.3 Watching Control and Status Registers and Pins... 2-75
2.11.12.4 Watching General Purpose and Transfer Registers ... 2-76
2.11.12.5 Deleting a Data Watch.. 2-76
2.11.12.6 Changing a Data Watch.. 2-77
2.11.12.7 Changing the Data Watch Radix .. 2-77
2.11.12.8 Depositing Data .. 2-77
Development Tools User’s Guide v

Intel® IXP1200 Network Processor Family
2.11.12.9 Breaking on Data Changes .. 2-77
2.11.13 About Memory Watch... 2-78

2.11.13.1 Entering a New Memory Watch.. 2-79
2.11.13.2 Adding a Memory Watch .. 2-79
2.11.13.3 Deleting a Memory Watch .. 2-80
2.11.13.4 Changing a Memory Watch .. 2-80
2.11.13.5 Changing the Memory Watch Address Radix... 2-80
2.11.13.6 Changing the Memory Watch Value Radix... 2-80
2.11.13.7 Depositing Memory Data .. 2-81

2.11.14 About Execution Coverage .. 2-81
2.11.14.1 Changing Execution Count Ranges and Colors ... 2-83
2.11.14.2 Displaying and Hiding Instruction Addresses ... 2-83
2.11.14.3 About Instruction Markers... 2-83
2.11.14.4 Miscellaneous Controls .. 2-84
2.11.14.5 Scaling the Bar Graph .. 2-84
2.11.14.6 Resetting Execution Counts ... 2-84

2.11.15 About Performance Statistics... 2-84
2.11.15.1 Displaying Statistics.. 2-84
2.11.15.2 Resetting Statistics ... 2-85

2.11.16 About Thread and Queue History .. 2-85
2.11.16.1 Displaying the History Window ... 2-86
2.11.16.2 Scaling the Display ... 2-86
2.11.16.3 Displaying Thread History Lines... 2-86
2.11.16.4 Displaying Code Labels.. 2-86
2.11.16.5 About Reference History .. 2-88
2.11.16.6 Displaying References.. 2-88
2.11.16.7 Changing Thread History Colors .. 2-89
2.11.16.8 Displaying the History Legend.. 2-89
2.11.16.9 Tracing Instruction Execution ... 2-90
2.11.16.10About Queue History .. 2-90
2.11.16.11About History Collecting ... 2-91

2.11.17 About Queue Status... 2-92
2.11.17.1 About Queue Status History ... 2-93
2.11.17.2 Setting Queue Breakpoints... 2-93

2.11.18 About Thread Status .. 2-94
2.11.19 About IX Bus Device Simulation .. 2-96

2.11.19.1 Configuring IX Bus Devices.. 2-96
2.11.20 About Data Streams... 2-99

2.11.20.1 Creating and Editing a Data Stream... 2-99
2.11.20.2 Deleting a Data Stream .. 2-99
2.11.20.3 Importing a Data Stream .. 2-99
2.11.20.4 Copying a Data Stream .. 2-100
2.11.20.5 Assigning an IX Bus Device Port.. 2-100

2.11.21 Creating and Editing Different Data Streams Types .. 2-100
2.11.21.1 Creating and Editing an ATM Data Stream .. 2-101
2.11.21.2 Creating and Editing a Custom Ethernet IP Data Stream 2-102
2.11.21.3 Creating and Editing an Ethernet IP Data Stream.. 2-103
2.11.21.4 Creating and Editing an Ethernet TCP/IP Data Stream.................................... 2-105
2.11.21.5 Creating and Editing a PPP TCP/IP Data Stream .. 2-106
2.11.21.6 Creating an IP Packet Pool .. 2-107
2.11.21.7 Specifying a Custom Header.. 2-108
2.11.21.8 Specifying an Ethernet Header... 2-109
2.11.21.9 Specifying an IP Header... 2-109
vi Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
2.11.21.10Specifying a TCP Header ... 2-110
2.11.21.11Specifying a PPP Header ... 2-110
2.11.21.12Specifying a Data Payload.. 2-111
2.11.21.13Specifying Frame Size.. 2-111
2.11.21.14Assigning I/O to Device Ports ... 2-111

2.11.22 About Network Traffic Simulation DLLs.. 2-115
2.11.23 About IX Bus Device Simulation Options ... 2-116

2.11.23.1 About Miscellaneous Options ... 2-116
2.11.23.2 About Logging... 2-117
2.11.23.3 About Stop Control ... 2-118
2.11.23.4 About the IX Bus Device Status Window.. 2-119

2.11.24 About Debug Configuration.. 2-120
2.11.24.1 Setting Up Local Simulation with No Foreign Model... 2-120
2.11.24.2 Setting Up Local Simulation with Local Foreign Model..................................... 2-121
2.11.24.3 Setting Up Local Simulation with Remote Foreign Model................................. 2-121
2.11.24.4 Installing PortMapper.. 2-122
2.11.24.5 Setting up Hardware Debug ... 2-122

2.12 Running in Batch Mode ... 2-122
2.13 An Exercise in Using the Workbench .. 2-123

3 Assembler.. 3-1
3.1 Assembly Process... 3-1

3.1.1 Command Line Arguments .. 3-1
3.1.2 Assembler Steps .. 3-2
3.1.3 Case Sensitivity.. 3-3
3.1.4 Assembler Optimizations ... 3-4
3.1.5 Processor Revision .. 3-4

4 Microengine C Compiler .. 4-1
4.1 The Command Line... 4-1
4.2 Supported Compilations .. 4-1
4.3 Supported Option Switches... 4-2
4.4 Compiler Steps.. 4-3
4.5 Case Sensitivity ... 4-3

5 Linker... 5-1
5.1 About the Linker .. 5-1

5.1.1 Configuration and Data Accessed by the Linker .. 5-1
5.1.2 Shared Address Update (Flow).. 5-2

5.2 Microengine Image Linker (UCLD).. 5-2
5.3 Generating a Microengine Application... 5-3
5.4 Syntax Definitions.. 5-3

5.4.1 Image Name Definition... 5-3
5.4.2 Import Variable Definition... 5-3
5.4.3 Microengine Assignment .. 5-4
5.4.4 Thread Type Definition... 5-4
5.4.5 Code Entry Point Definition .. 5-4
5.4.6 Export Function Definition .. 5-5

5.5 Examples... 5-5
5.5.1 Uca Source File (*.uc) Example ... 5-5
5.5.2 Uca Output File (*.list) Example ... 5-6

5.6 Microcode Object File (UOF) Format .. 5-6
Development Tools User’s Guide vii

Intel® IXP1200 Network Processor Family
5.6.1 FileChunkId Type: UOF_OBJS .. 5-7
5.6.2 UOF ObjId Types: UOF_STRT, UOF_GTID, and UOF_IMAG 5-7
5.6.3 FileChunkId Type: DBG_OBJS.. 5-9
5.6.4 DBG ChunkId Types: DBG_STRT, DBG_IMAG .. 5-9

6 Transactor ..6-1
6.1 Overview ... 6-1
6.2 Invoking the Transactor... 6-1
6.3 Command Interface... 6-2
6.4 IXP1200 Transactor Commands ... 6-3

6.4.1 @.. 6-5
6.4.2 bank_analysis .. 6-5
6.4.3 chip... 6-6
6.4.4 close... 6-6
6.4.5 config.. 6-6
6.4.6 connect... 6-7
6.4.7 debug ... 6-7
6.4.8 #define ... 6-8
6.4.9 deposit.. 6-9
6.4.10 #elifdef.. 6-10
6.4.11 #else... 6-10
6.4.12 #endif ... 6-10
6.4.13 examine.. 6-10
6.4.14 exit.. 6-11
6.4.15 fbox .. 6-11
6.4.16 go_clk_domain ... 6-12
6.4.17 go ... 6-12
6.4.18 goto .. 6-13
6.4.19 help .. 6-14
6.4.20 #ifdef .. 6-15
6.4.21 #ifndef .. 6-15
6.4.22 init... 6-15
6.4.23 load_bin_file ... 6-15
6.4.24 load_list_file ... 6-16
6.4.25 load_uc... 6-16
6.4.26 load_uof_file... 6-16
6.4.27 log .. 6-17
6.4.28 mem_init... 6-17
6.4.29 path .. 6-17
6.4.30 restore .. 6-18
6.4.31 return.. 6-18
6.4.32 save.. 6-18
6.4.33 set_clk_freq.. 6-18
6.4.34 sim_reset.. 6-19
6.4.35 statistics ... 6-19
6.4.36 time .. 6-19
6.4.37 trace ... 6-19
6.4.38 ubreak .. 6-20
6.4.39 uca ... 6-21
6.4.40 #undef .. 6-21
viii Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
6.4.41 version.. 6-21
6.4.42 watch.. 6-22

6.5 C Interpreter .. 6-22
6.5.1 Macros ... 6-23
6.5.2 Predefined C Functions.. 6-24

6.5.2.1 add_bus_client(bus_name, client_name)... 6-24
6.5.2.2 alloc_array(array_state_name, struct_name, array_length) 6-24
6.5.2.3 alloc_list(array_state_name, struct_name, list_length, flink_spec, blink_spec).........

.. 6-25
6.5.2.4 amba_add_req(chip_name, write, addr, size, burst_size, num_prior_blank_cycles [,

data...]) .. 6-25
6.5.2.5 cmd(quoted_cmd_string) .. 6-26
6.5.2.6 env_var(char *environment_variable)... 6-26
6.5.2.7 field(state_name, field_msb, field_lsb) ... 6-26
6.5.2.8 field_insert(state_name, insertion_data, field_msb, field_lsb) 6-26
6.5.2.9 fprintf(file_name, fmt, ...)... 6-26
6.5.2.10 gui()... 6-26
6.5.2.11 pcit_add_req(slave_nbr, cmd, address, byte, burst, delay, data...) 6-26
6.5.2.12 pcit_set_slave_addr(slave_nbr, start, len) ... 6-26
6.5.2.13 pcit_slave_read(slave_nbr, io_space, address) .. 6-27
6.5.2.14 pcit_slave_write(slave_nbr, io_space, address, data, byte_en) 6-27
6.5.2.15 printf(const char *format, ...) ... 6-27
6.5.2.16 rand(bound1, bound2) .. 6-27
6.5.2.17 rec_error(fmt, ...)... 6-27
6.5.2.18 seed().. 6-27
6.5.2.19 set_bus_validity_checks(bus, min_dead_cyc_wrn_thrsh, min_dead_cyc_err_thrsh

max_dead_cyc_wrn_thrsh, max_dead_cyc_err_thrsh)
.. 6-27

6.5.2.20 srand(number) .. 6-28
6.5.2.21 state_type(var_name)... 6-28
6.5.2.22 system(char *shell_cmd) .. 6-28
6.5.2.23 uaddr(control_store_state, label_name)... 6-29
6.5.2.24 uninitialized()... 6-29
6.5.2.25 valid_elements(array_state_name) .. 6-30

6.6 Debugging ... 6-30
6.6.1 Reporting of Debugging Information .. 6-30
6.6.2 Common Execution Pipeline Stage Format ... 6-31

6.6.2.1 Execution Pipeline Stage 4 - Write the Result .. 6-32
6.6.2.2 Execution Pipeline Stage 3 - Perform ALU Shift, Decode Instruction................. 6-32
6.6.2.3 Execution Pipeline Stage 2 - Look Up Operands ... 6-33
6.6.2.4 Execution Pipeline Stage 1 - Decode Instruction.. 6-33
6.6.2.5 Execution Pipeline Stage 0 - Read Instruction ... 6-33

6.6.3 Memory Tagging .. 6-33
6.6.4 Watch ... 6-33
6.6.5 Breakpoints .. 6-34
6.6.6 Save and Restore .. 6-34
6.6.7 Logging A Simulation Session ... 6-34

6.7 Transactor Command Script Files ... 6-34
6.7.1 Example Command Script File... 6-35

6.8 Enabling the StrongARM Core .. 6-37
6.9 Simulation Switches .. 6-39

6.9.1 sim.error_count .. 6-39
6.9.2 sim.error_handle_mode ... 6-39
Development Tools User’s Guide ix

Intel® IXP1200 Network Processor Family
6.9.3 sim.core_clk_cycle ... 6-40
6.9.4 sim.core_clk_freq ... 6-40
6.9.5 sim.core_clk_period ... 6-40
6.9.6 sim.fbus_clk_cycle ... 6-40
6.9.7 sim.fbus_clk_freq ... 6-40
6.9.8 sim.fbus_clk_period ... 6-40
6.9.9 sim.goto_and_ubreak_key_on_p1 ... 6-40
6.9.10 sim.halt... 6-40
6.9.11 sim.pci_clk_cycle ... 6-40
6.9.12 sim.pci_clk_freq ... 6-40
6.9.13 sim.pci_clk_period.. 6-41
6.9.14 sim.post_sim_exec_order .. 6-41
6.9.15 sim.prune_prefix_comments .. 6-41
6.9.16 sim.silent .. 6-41
6.9.17 sim.time.. 6-41

7 Foreign Model Simulation Extensions..7-1
7.1 Overview ... 7-1
7.2 Integrating Foreign Models with the Transactor .. 7-2

7.2.1 Foreign Model Dynamic-Link Library (DLL) ... 7-3
7.2.2 Integrated Executable (Integrated Transactor and Foreign Model) 7-4
7.2.3 Remote Foreign Model Executable.. 7-4

7.3 Simulating StrongARM Core Applications... 7-6
7.3.1 Using the Hardware Abstraction Layer (HAL) .. 7-6
7.3.2 Determining IOSTYLE.. 7-7
7.3.3 Coding Considerations... 7-7
7.3.4 Accessing Foreign Model Functions from the C Interpreter... 7-8
7.3.5 Building the Application.. 7-8

7.4 Simulating IX Bus Devices .. 7-8
7.5 Sample Code... 7-11

7.5.1 Creating A Foreign Model DLL Used with the Developer Workbench 7-11
7.5.1.1 DLL Sample Code .. 7-11

7.5.2 Creating A Remote Foreign Model - Local Foreign Model Layer............................... 7-12
7.5.2.1 Sample Code.. 7-12

7.5.3 Creating a Remote Foreign Model - Remote Foreign Model Layer 7-14
7.5.3.1 Sample Code.. 7-14

A Transactor States ...A-1

A.1 About States...A-1
A.1.1 State Definition Format ..A-3
A.1.2 Display Formats for Statistics States ...A-4

A.2 Hardware States...A-5
A.2.1 Microengine GPR or Transfer Register..A-5
A.2.2 Microengine Control Store ...A-6
A.2.3 Microengine Condition Codes ..A-7
A.2.4 Microengine Microstore Data Registers ...A-8
A.2.5 Microengine Microstore Address Registers ...A-8
A.2.6 Microengine Thread Program Counter Register ..A-9
A.2.7 Enabled Thread Wake Up Signals ...A-10
A.2.8 Active Thread Wake Up Signals ..A-11
A.2.9 Transmit and Receive FIFOs ...A-12
x Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
A.2.10 FBI CSRs ...A-13
A.2.11 FBI Scratchpad Memory ..A-15
A.2.12 SRAM...A-16
A.2.13 SRAM Push/Pop Registers ..A-17
A.2.14 SDRAM ..A-18

A.3 Simulation States..A-19
A.3.1 Specify Microengine(s) for GOTO..A-19
A.3.2 Specify Thread(s) for GOTO ..A-20
A.3.3 Report Core Clock Cycles..A-20
A.3.4 Core Clock Frequency ...A-21
A.3.5 Core Clock Period ..A-21
A.3.6 Report FBus Clock Cycles ...A-21
A.3.7 FBus Clock Frequency...A-22
A.3.8 FBus Clock Period ...A-22
A.3.9 Report PCI Clock Cycles..A-22
A.3.10 PCI Clock Frequency ...A-23
A.3.11 PCI Clock Period..A-23
A.3.12 Execution Order ...A-24
A.3.13 Report Error Count...A-24
A.3.14 Error Handle Mode...A-25
A.3.15 Stop Simulation on P1 or P3 ..A-25
A.3.16 Halt Simulation ...A-26
A.3.17 Suppress Comments..A-26
A.3.18 Suppress Debug Information ...A-27
A.3.19 Report Simulation Time..A-27
A.3.20 Specify Debug Verbosity Level ..A-28
A.3.21 Specify Reported Execution Stages...A-29
A.3.22 Chip Version...A-30
A.3.23 Suppressing Outstanding Signal Errors or Warnings...A-31

A.4 Statistics States ..A-32
A.4.1 Compute Cycles...A-32
A.4.2 SDRAM Read Latency ...A-33
A.4.3 SRAM Read Latency..A-33
A.4.4 SRAM Read Lock Latency ...A-34
A.4.5 Thread PC During Idle Cycle ...A-34
A.4.6 Thread Latency ..A-35
A.4.7 Thread Latency Start and Stop Addresses ..A-35
A.4.8 Time Slice ..A-36
A.4.9 Time Slice Thread Idle ...A-36
A.4.10 SDRAM Bandwidth ..A-37
A.4.11 SDRAM Even Bank Queue Fullness..A-37
A.4.12 SDRAM Odd Bank Queue Fullness ...A-38
A.4.13 SDRAM Order Queue Fullness..A-38
A.4.14 SDRAM Priority Queue Fullness..A-39
A.4.15 SRAM Bandwidth ...A-39
A.4.16 SRAM Order Queue Fullness ..A-40
A.4.17 SRAM Priority Queue Fullness ..A-40
A.4.18 SRAM Read Lock Queue Fullness ..A-41
A.4.19 SRAM Read Queue Fullness ...A-41
A.4.20 SRAM State Machine Distribution..A-42
Development Tools User’s Guide xi

Intel® IXP1200 Network Processor Family
A.4.21 Command Bus Bandwidth..A-42
A.4.22 SBUS Pull Bus Bandwidth ...A-43
A.4.23 SBUS Push Bus Bandwidth ...A-44
A.4.24 SDRAM Pull Bus Bandwidth ..A-45
A.4.25 SDRAM Push Bus Bandwidth ..A-46

B Developer Workbench Shortcuts..B-1

B.1 Introduction...B-1

Figures

2-1 The Developer Workbench GUI ...2-3
2-2 Floating Window, Tool Bar, and Menu Bar ..2-3
2-3 Marking Instructions ...2-47
2-4 The Assembler Thread Window...2-57
2-5 The Compiler Thread Window ...2-58
2-6 Expanding Macros ...2-61
2-7 The Execution Coverage WIndow..2-82
2-8 The Queue Status Window ..2-92
2-9 The Thread Status Window..2-95
2-10 The IX Bus Port I/O Dialog Box..2-112
3-1 Assembly Process..3-3
7-1 Three Uses of Foreign Models...7-1
7-2 Workbench, Transactor, and Foreign Model Interaction7-3
7-3 Command Line Interface..7-4
7-4 Foreign Model Interface ...7-5
xii Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Tables

2-1 Simulation and Hardware Mode Features ...2-45
2-2 Instruction Markers...2-63
2-3 Data Watch Values...2-75
4-1 Supported CLI Option Switches ...4-2
5-1 FileHdr—File Header..5-6
5-2 FileChunkHdr ...5-6
5-3 Objects Header - UOF_OBJS - UOF ...5-7
5-4 Ucode Object Header - UofChunkHdr..5-7
5-5 String Table Containing the Ucode Object Strings - UOF_STRT.......................5-7
5-6 Generating Tool Identification - UOF_GTID ...5-7
5-7 Image Module - UOF_IMAG...5-7
5-8 Microword Page - CodePage ...5-8
5-9 Import Variables Table - ImpVarTab ..5-8
5-10 Import Variables - ImportVar ..5-8
5-11 Microwords - CodeArea..5-8
5-12 Export Function Table - ExpFuncTab...5-8
5-13 Export Functions - ExportFunc...5-9
5-14 Debug Objects Header - DBG_OBJS ..5-9
5-15 Debug Object Chunk Header - DbgChunkHdr ...5-9
5-16 Debug Object Strings - DBG_STRT...5-9
5-17 Debug Image - DBG_IMAG..5-9
5-18 Debug Object Table - DbgObjTable ...5-10
5-19 Debug Registers - DbgReg ..5-10
5-20 Debug Labels - DbgLabels...5-10
5-21 Debug Source Lines - DbgSource..5-10
6-1 IXP1200 Transactor Optional Switches..6-2
6-2 IXP1200 Transactor Commands ..6-4
6-3 State Setting Descriptions for fx.art.debug...6-30
6-4 State Setting Descriptions for *.art.debug ..6-31
6-5 Pipeline Stage Work...6-31
6-6 Condition Code Meanings ..6-32
7-1 Transactor Names for IX Bus Interface Pins ..7-9
A-1 IXP1200 Transactor States ... A-1
A-2 FBI CSRs .. A-13
B-3 Developer Workbench Shortcuts—Files ... B-1
B-4 Developer Workbench Shortcuts—Projects .. B-2
B-5 Developer Workbench Shortcuts—Edit... B-2
B-6 Developer Workbench Shortcuts—Bookmarks ... B-3
B-7 Developer Workbench Shortcuts—Breakpoints .. B-3
B-8 Developer Workbench Shortcuts—Builds ... B-4
B-9 Developer Workbench Shortcuts—Debug .. B-4
B-10 Developer Workbench Shortcuts—Run Control.. B-4
B-11 Developer Workbench Shortcuts—View ... B-5
Development Tools User’s Guide xiii

Intel® IXP1200 Network Processor Family
Introduction 1

1.1 About this Document

This manual is a reference for using the Intel® IXP1200 Network Processor development tools.
The rest of this book is organized as follows:

Chapter 2, “Developer Workbench,” describes the IXP1200 Workbench and its graphical user
interface (GUI).

Chapter 3, “Assembler,” describes how to run the IXP1200 Assembler.

Chapter 4, “Microengine C Compiler,” describes how to run the IXP1200 Microengine C
Compiler.

Chapter 5, “Linker,” describes how to run the IXP1200 Linker.

Chapter 6, “Transactor,” describes the IXP1200 Transactor and its commands.

Chapter 7, “Foreign Model Simulation Extensions,” provides information on interfacing the
IXP1200 to foreign models.

Appendix A, “Transactor States,” contains a listing and descriptions of commonly used transactor
states.

Appendix B, “Developer Workbench Shortcuts,” contains a listing and descriptions of GUI
shortcuts and buttons with references to Chapter 2 where they are used.

The intended audience for this book is Developers and Systems Programmers.

1.2 Related Documents

Further information on the IXP1200 is available in the following documents:

IXP1200 Network Processor Family Microcode Programmer’s Reference Manual—Contains
detailed programming information for designers.

IXP1200 Network Processor Datasheet—Contains summary information on the IXP1200
including a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP1250 Network Processor Datasheet—Contains summary information on the IXP1250
including a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP1200 Network Processor Family Hardware Reference Manual - Contains detailed hardware
technical information for designers.

IXP1200 Network Processor Microcode Software Reference Manual - Contains detailed software
technical information for designers.

IXP1200 Microengine C Language Support Reference Manual - Contains functions and intrinsics
supported by the C Compiler for designers.
Development Tools User’s Guide 1-1

Intel® IXP1200 Network Processor Family
Developer Workbench 2

2.1 Overview

The Intel® IXP1200 Network Processor Family Developer Workbench is an integrated
development environment for assembling, linking, and debugging microcode that runs on the
IXP1200 Network Processor Family Microengines. The Workbench is a Microsoft* Win32*
application that runs on Windows NT* platforms.

Features

Important Workbench features include:

• Source level debugging.

• Execution history and statistics.

• IX Bus device and network traffic simulation.

• Optional command line interface to the IXP1200 Network Processor Family Transactor.

• Command line interface to the IXP Network Processor simulators (Transactors).

• Command line interface to the IXP Network Processor simulators (Transactors).

• Customizable graphical user interface (GUI) components.

Debugging Support

The Workbench supports debugging in four different configurations:

• Local simulation with no foreign model, in which the Workbench and the IXP1200 Network
Processor Family simulator (Transactor) both run on the same Microsoft Windows* platform.

• Local simulation with a local foreign model, in which the Workbench, the Transactor, and a
foreign model Dynamic-Link Library all run on the same Windows platform.

• Local simulation with a remote foreign model, in which the Workbench and the Transactor
both run on the same Windows platform and communicate over the network with a foreign
model running on a remote system.

• Hardware, in which the Workbench runs on a Windows host and communicates over a
network or a serial port with a subsystem containing actual IXP12nn Network Processors.

Performance Statistics

When debugging in a simulation configuration, the Workbench provides performance statistics for
the IXP12nn Network Processor subsystem. For example, it provides data on memory bandwidth
to the SDRAM. (See Section 2.11.15.)
Development Tools User’s Guide 2-1

Intel® IXP1200 Network Processor Family
Developer Workbench
2.2 Getting Help

You can get help about the Developer Workbench and the IXP1200 Network Processor Family
several ways:

• On the Help menu, click Help Topics. This gives the Developer Workbench online help tool.

• On the Help menu, click Tip of the Day. The Tip of the Day dialog box displays helpful in
formation about using the Workbench. The Tip of the Day changes every time you invoke it.

• In the Project Workspace window (see Figure 2-1), click the InfoView tab. This give you
access to Workbench documentation. See Section 2.6.3, “About InfoView.”.”

• On the Web, go to http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
to get more information about Intel products.

Developer Workbench Revision Information

To do this:

• On the Help menu, click About Developer Workbench.

The About Developer Workbench information box appears showing you the revision of your
Developer Workbench.

2.3 About the Graphical User Interface (GUI)

The Workbench GUI (Figure 2-1) conforms to the standard Windows look and feel. You can do the
following:

• Dock and undock (float) windows, menu bars, and toolbars (see Section 2.3.1).

• Hide and show windows and toolbars (see Section 2.3.2).

• Customize toolbars and menu bars (see Section 2.3.3).

• Save and restore GUI customizations (see Section 2.3.3.6).
2-2 Development Tools User’s Guide

http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm

Intel® IXP1200 Network Processor Family
Developer Workbench
2.3.1 About Windows, Toolbars, and Menus

Dockable windows contain controls and data. You can attach them to a location on the Workbench
main window or you can float them over the main window. All toolbars and menu bars are
dockable. (See Figure 2-2.)

To float, or undock, a window or toolbar, double-click its gripper bar (see Figure 2-1). To restore it
to its previously docked location, double-click its title bar. You can also drag the window to a new
docking location.

Figure 2-1. The Developer Workbench GUI

Toolbar
Title Bar

Minimize
Maximize

Close

Project Workspace Window

View/Edit Area

Output Window

Menu Bar

Gripper Bar

Run Control Window Command Line Window

Figure 2-2. Floating Window, Tool Bar, and Menu Bar

Title Bar

Floating Menu

Floating Toolbar
Development Tools User’s Guide 2-3

Intel® IXP1200 Network Processor Family
Developer Workbench
2.3.2 Hiding and Showing Windows and Toolbars

Form the View menu, you can toggle the visibility of the following windows in the Workbench’s
GUI:

Toolbar If you are viewing a source file, or the edit/view
area is empty, selecting Toolbar on the View
menu displays the Toolbars dialog box. Here
you can select to view or clear to hide any of the
available toolbars. You can also select Show
Tooltips, Large Buttons, and Cool Look. (Cool
Look removes the borders from the buttons.)

If you are viewing a thread, selecting or clearing
Toolbar on the View menu shows or hides the
toolbar at the top of the thread window.

Workbook Mode This control puts the tabs at the bottom
of the view/edit area (see Figure 2-1).
Without the tabs you must use other
methods to select different windows, such as going to the Window
menu and selecting the window; cascading the windows using the
button and selecting with the mouse pointer; using the Microengine and
Thread lists (above, right). Removing the tabs gives you more
workspace in the windows.

Project Workspace See Section 2.6.

Output Window This window displays the results of Find in Files, assembly and
compile results, build results and other messages. See Figure 2-1.

Click the button to show or hide this window.

Debug Windows

Command Line See Section 2.11.5.

Data Watch See Section 2.11.12.

Memory Watch See Section 2.11.13.

History See Section 2.11.16.

Thread Status See Section 2.11.18.

Queue Status See Section 2.11.17.

IX Bus Device Status See Section 2.11.23.4.

Run Control See Sections 2.11.8 and 2.11.9.

To toggle the visibility of a dockable window, select or clear the window’s name on the View
menu.

If a window is visible, you can hide it by clicking the button in either the upper-right or upper-
left corner of the window.

If a toolbar is floating, you can hide it by clicking the button in the upper right corner.
2-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: You can float and dock the GUI’s default menu bar but you cannot hide it. If you create a
customized menu bar, you can display or hide in it using the same method used for windows and
toolbars.

Status Bar The status bar appears at the bottom on the Workbench GUI.

General Information Information and tips appear here as you work.

Microengine Clock The present cycle count of the Microengine clock.

IX Bus Clock The present cycle count of the IX Bus clock.

Read-only/Write The Read/Write status of the selected file. If READ is dimmed,
the status is Read/Write.

Text Insertion Point The location of the text insertion point (cursor) by line and
column.

2.3.3 Customizing Toolbars and Menus

You can add and remove buttons from toolbars and create your own toolbars.

2.3.3.1 Creating Toolbars

To create a toolbar:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Toolbars tab.

3. Click New.

The New Toolbar dialog box appears.

4. Type a name for the new toolbar and click OK.

The toolbar name is added to the Toolbars list and the new toolbar appears in a floating state. If
you want the toolbar to be docked, drag it to the desired location.

To populate the toolbar with buttons, go to Section 2.3.3.4.

2.3.3.2 Renaming Toolbars

You can rename toolbars that you have created.

To rename a toolbar:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Toolbars tab.

General Information Microengine clock

Text Insertion Point

IX Bus clock Read-only/Write
Development Tools User’s Guide 2-5

Intel® IXP1200 Network Processor Family
Developer Workbench
3. Select the desired toolbar in the Toolbars list.

4. Edit the name in the Toolbar Name box at the bottom.

5. Click OK.

Note: You cannot rename the GUI’s default toolbars (Menu bar, File, Debug, Build, Edit, View).

2.3.3.3 Deleting Toolbars

To delete a toolbar you have created:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Toolbars tab.

3. Select the toolbar to delete in the Toolbars list.

4. Click Delete.

Note: You cannot delete the GUI’s default toolbars (Menu bar, File, Debug, Build, Edit, View).

2.3.3.4 Adding and Removing Toolbar Buttons and Controls

To customize the buttons on the toolbars:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Commands tab.

3. From the Categories list, select a command category.

A set of toolbar buttons for that category appears in the Buttons area.

To get a description of the command associated with a button, click the button. The description
appears in the Description area at the bottom of the dialog box.

4. To place a button in a toolbar, drag the button to a location on a toolbar.

5. To remove a button from a toolbar, drag the button into the dialog box.

6. Click OK when done.

2.3.3.5 Customizing Menus

You can change the appearance of the main menu or you can put menus on toolbars.

Main Menu Appearance

To change the order of the main menu items:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Drag any main menu item to the new position on the main menu bar. For example, drag File
and drop it after Help.
2-6 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
3. To remove a menu from the main menu bar, drag it into the work area below.

4. To add a menu to the main menu bar:

a. In the Customize dialog box, click the Commands tab.

b. Click Menu in the Commands box.

All the menus appear in the Buttons box.

c. Select a menu and drag it to the main menu bar.

That menu then becomes a new menu on the main menu bar.

Menus On Toolbars

To put a menu on a toolbar:

1. In the Customize dialog box, click the Commands tab.

2. Click Menu in the Categories box.

All the menus appear in the Buttons box.

3. Drag any menu to any toolbar.

Note: You can put your most used or favorite menus on a floating
toolbar by creating a new toolbar (see example at right) and
dragging the menus to that toolbar.

2.3.3.6 Returning to Default Toolbar Settings

To set toolbars to their default configurations:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Toolbars tab.

3. Select the desired toolbar and click Reset.

Only the Workbench default toolbars can be reset.

2.3.4 GUI Toolbar Configurations

Build Versus Debug

The Workbench maintains two sets of toolbar and docking configurations, one for debug mode and
one for build, or non-debug mode. The GUI configuration that you establish while in build mode
applies only when you are in build mode. Similarly, the debug mode GUI configuration applies
only for debug mode.

Save And Restore

Menu bar and toolbar configurations are saved when you exit the Workbench. These configurations
persist from one Workbench session to the next.
Development Tools User’s Guide 2-7

Intel® IXP1200 Network Processor Family
Developer Workbench
2.4 About Projects

A project consists of one or more IXP1200 Network Processor Family chips, microcode source
files, debug script files, and Assembler, Compiler, and Linker settings used to build the microcode
image files. This project configuration information is maintained in a developer workbench project
file (.dwp).

You can:

Create a new project. See Section 2.4.1.

Open an existing project. See Section 2.4.2.

Save a project. See Section 2.4.3.

Close a project. See Section 2.4.4.

2.4.1 Creating a New Project

To create a new project:

1. On the File menu, click New Project.

The New Project dialog box appears.

2. Type the name of the new project in the Project name box.

3. Specify a folder where you want to store the project in the Location box.

If the folder doesn’t exist, the Workbench creates it. You can browse to select the folder by
clicking the button.

4. Specify the number of IXP1200 Network Processor Family chips to be in the project in the
Specify the chips to be in the project box.

• If you have only one chip in your project, it can be <unnamed>.

• To specify more than one chip, they must all have unique names. You cannot add a second
chip until you have named the first chip. When you finish creating a project, you cannot
change the number of chips in it.

— To rename a chip, select the chip in the list and click Rename. The Chip Name
dialog box appears. Type the chip’s name and click OK.

— To add a chip to the configuration, click Add. The Chip Name dialog box appears.
Type the chip’s name and click OK.

— To delete a chip from the configuration, select the chip in the list and click Delete.

5. In the Specify a chip area, elect the type of IXP12nn processor you want simulated. You can
change this setting at any time as part of the Chip Configuration (see Section 2.5.1).

6. When you are finished, click OK to create the project.

The project name you typed actually becomes a folder containing two files—project_name.dwp
and project_name.dwo. From this point on, all the project files and information defaults to this
folder or one of its subfolders. For example, a project named CrossBar has a project file named
Crossbar.dwp.
2-8 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: Creating a new project automatically closes the active project, if one is open, and asks you if you
want to save any changes if there are any.

2.4.2 Opening a Project

To open an existing project:

1. On the File menu, click Open Project.

The Open Project dialog box appears.

2. Browse to the folder that contains the project file (*.dwp) for the project you want to open.

3. Double-click the project filename or select the project filename and click Open.

You can also select a project from the most recently used list of projects, if it is one of the most
recent four projects opened.

1. On the File menu, click Recent Projects.

2. Click the project file from the list.

Note: Opening a project automatically closes the currently open project, if any, after asking you if you
want to save changes if there are any.

2.4.3 Saving a Project

To save a modified project:

• On the File menu, click Save Project.

This saves all project configuration information to the project file. If your project hasn’t been
modified, the Save Project selection is unavailable. Also, on the File menu, click Save All to save
all files and the current project.

The project is saved in the folder that you specified when you created it. If you opened an existing
project, it is saved in the folder from which that you opened it.

Note: You do not have the option of saving the project in a different folder.

2.4.4 Closing a Project

To close a project:

• On the File menu, click Close Project.

If there are any modified but unsaved files in the opened project, you are asked if you want to
save these changes.

— Click Yes to save the file and close it, or

— Click No to close it without saving any changes, or

— Click Cancel to abort closing the project.

An open project is automatically closed whenever you open another project or create a new project.
Development Tools User’s Guide 2-9

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5 Configuring the System

To change the system configuration you must have a project opened.

You can configure the following:

Chip See Section 2.5.1.

Memory See Section 2.5.2.

IX Bus Interface See Section 2.5.3.

PCI Interface See Section 2.5.4.

IX Bus See Section 2.5.5.

The settings in these pages are passed to the Transactor when debugging is started. They are not
used during hardware debugging.

2.5.1 Modifying the Chip Configuration

To modify your project’s chip:

1. On the Project menu, click System Configuration.

The System Configuration dialog box appears.

2. Click the Chip tab.

2.5.1.1 Selecting Chip Type

Select the IXP12nn processor chip that you want to
simulate. Note that you need to insure that the Assembler
settings are compatible with your chip type selection (see
Section 2.8.2).

The IXP1200 with 1K microstore is considered to be
revision 1.

The IXP1200 with 2K microstore is considered to be
revision 3.

The IXP1240 is considered to be revision 6.

The IXP1250 is considered to be revision 7.
2-10 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5.1.2 Selecting Clock Frequencies

Standard Core

You can chose from one of the
Standard core clock frequencies
based on an oscillator frequency
of 3.6864 MHz. Note that only the
standard frequencies are
supported in actual hardware. The
PLL_CFG register data appears
in the lower right corner. (See the
Programmer’s Reference Manual
for more information.)

Customized Core

You can enter a customized clock frequency by clicking Customized and then typing a number
from 0 to 1000. Note the PLL_CFG data in the lower right corner is unavailable as it no longer
applies.

PCI Bus

You can change the PCI Bus clock frequency from the default of 83 to a value between 0-366 by
selecting the number in the box and typing the new number.

IX Bus Interface

You can change the IX Bus Interface clock frequency from the default of 66 to a value between
0-366 by selecting the number in the box and typing the new number.

2.5.2 Modifying the Memory Configuration

To modify your chip’s memory configuration:

1. On the Project menu, click System Configuration.

The System Configuration dialog box appears.

2. Click the Memory tab.

If your project has multiple chips, select a chip from the Select a chip list. The settings on the page
apply only to that chip.

Note: You must select the number of chips when you created the project. (See Section 2.4.1.)

The settings controlled on this page and in the dialog boxes invoked from this page determine the
values for the SDRAM and SRAM control and status registers. These register values are displayed
in the Registers area on the right side of the page. (See the Programmer’s Reference Manual for
more information on these registers.)
Development Tools User’s Guide 2-11

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5.2.1 Changing the SDRAM Configuration

Note: You cannot change the System Configuration if the Transactor is running (debug mode). If you
start and stop the Transactor, you can no longer change the memory size.

The SDRAM area contains the controls for changing the SDRAM configuration.

To do this:

1. Specify memory
size in the Size box.

2. Select whether the
SDRAM unit treats
data in big-endian
(default) or little-
endian format.

CRC

If you chose the IXP1240 or the IXP1250 on the Chip tab, you have the option of enabling CRC by
selecting or clearing Enable CRC.

SDRAM Templates

You can specify settings for the SDRAM registers indirectly by selecting a template from the
Select a template of settings list.

To customize the SDRAM settings:

1. Click Advanced.

The SDRAM Configuration
dialog box appears.

2. Select a template from the list, or

Specify individual fields in the
registers.

To save your customized settings:

1. Click Save Template.

The Save Template dialog box appears.

2. Type a unique name for the template.

3. Click OK.

To delete a template:

1. Select the template from the list in the SDRAM Configuration dialog box.

2. Click Delete Template.

Note: Templates are independent of Workbench projects and are available across Workbench invocations.
2-12 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5.2.2 Changing the SRAM Configuration

Note: You cannot change the System Configuration if the Transactor is running (debug mode). If you
start and stop the Transactor, you can no longer change the memory size.

The SRAM area contains the controls for changing the SRAM configuration.

To do this:

1. Select which bank
Configuration you
want under
Configuration.

2. Specify the number
of banks (1-8) in the
Number of banks
box.

3. Select the type of
pipe delay in the
Pipe delay box.

4. Click Bank switch
wait enable if desired. When enabled, this bit enables a wait state to be inserted when
switching between the 8 SRAM banks. This bit must be set when using SRAMs that have a
slower output disable time than output enable time.

Note that the total size of SRAM displayed below the Number of banks box dynamically changes
as you make your selections.

2.5.2.3 Changing the Boot ROM Configuration

Note: You cannot change the System Configuration if the Transactor is running (debug mode). If you
start and stop the Transactor, you can no longer change the memory size.

The Boot ROM area contains the controls for changing the Boot ROM configuration.

1. Select which bank
configuration you
want under
Configuration.

2. Specify the number
of banks (1-4) in the
Number of banks
box.

Boot ROM Templates

The settings for the SRAM registers that pertain to the Boot ROM can be specified indirectly by
selecting a template from the Select a template of settings list.

To customize your settings:

1. Click Advanced.

The Boot ROM Configuration dialog box appears.

Total amount of
memory selected.
Development Tools User’s Guide 2-13

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Select a template from the list or specify the SRAM_SLOW_CONFIG and the
SRAM_BOOT_CONFIG values that you want in the corresponding boxes.

To save your customized settings:

1. Click Save Template.

The Save Template dialog box appears.

2. Type a unique name for the template.

3. Click OK.

To delete a template:

1. Select the template in the Select a template... list.

2. Click Delete Template.

Note: Templates are independent of Workbench projects and are available across Workbench invocations.

2.5.2.4 Changing the Slow Port Configuration

The Slow Port area contains the controls for changing the Slow Port configuration.

Slow Port Templates

The settings for the SRAM registers that pertain to
Slow Port can be specified indirectly by selecting
a template from the Select a template of settings
list.

To customize your settings:

1. Click Advanced.

The Slow Port Configuration dialog box appears.

2. Select a template from the list or you can specify the SRAM_SLOW_CONFIG and
SRAM_SLOWPORT_CONFIG values that you want in the corresponding boxes.

To save your customized settings:

1. Click Save Template.

The Save Template dialog box appears.

2. Specify a unique name for the template.

3. Click OK.

To delete a template:

1. Select the template.

2. Click Delete Template.

Note: Templates are independent of Workbench projects and are available across Workbench invocations.
2-14 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5.3 Modifying the IX Bus Interface Configuration

To modify your project’s IX Bus Interface:

1. On the Project menu, click System Configuration.

The System Configuration dialog box appears.

2. Click the IX Bus Interface tab.

If your project has multiple chips, select a chip from the Select a chip list. The settings on the page
apply only to the chip you select.

The settings for the IX Bus Interface registers can be specified:

• Indirectly by selecting a template from the list, or

• Directly using the controls on the page.

IX Bus Interface Templates

To save your customized settings:

1. Click Save Template.

The Save Template dialog box appears.

2. Type a unique name for the template.

3. Click OK.

To delete a template:

1. Select the template from the Select a template... list.

2. Click Delete Template.

Note: Templates are independent of Workbench projects and are available across Workbench invocations.

The settings controlled on this page and on the dialog boxes invoked from this page determine the
values for the IXBI control and status registers. These register values are displayed in the Registers
area in the lower right portion of the page.

Timing Mode

To set the timing mode for the IX Bus and the Ready Bus:

• If you have 1 or 2 MACs/Devices, click the top selection.

• For 3 or more, click the bottom selection.

IX Bus Mode

Select:

• 64-bit bidirectional, or

• 32-bit (dual) unidirectional.
Development Tools User’s Guide 2-15

Intel® IXP1200 Network Processor Family
Developer Workbench
Status Mode

Select:

• MAC/Device returns a status (after EOP).

• MAC/Device doesn’t return a status (after EOP).

Shared IX Bus Mode

Select:

• Single IXP1200 mode.

• Multiple IXP1200 mode (enable token passing).

Endian Mode

Controls how the IX Bus FBE# signals are interpreted when EOP is asserted
during an IX Bus receive cycle. Default is Big endian.

In the Endian Mode area, click Little endian or Big endian (default).

Dual Valid Bit Mode

Selects the dual valid bit mode for TFIFO writes. Click Enable
or Disable.

Fast Port

• Click Single thread or Explicit thread. (See the IXP1200
Programmers Reference Manual for more details.)

• Select from 0-15 from the Fast port 1 wait cycles list. This
is the number of IX Bus clock cycles for Fast Port 1.

• Select from 0-15 from the Fast port 2 wait cycles list. This
is the number of IX Bus clock cycles for Fast Port 2.

2.5.3.1 Programming the Ready Bus Sequencer

To program the Ready Bus Sequencer:

1. Select Enable sequencer in the Ready Bus Sequencer area.

2. Click Program.

The Ready Bus Sequencer Programming dialog box appears.

3. Select the instruction category from the set of option buttons on the
left side of the dialog box.

4. Select an instruction from the list of instructions in that category.
2-16 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
5. Click Append to insert that instruction at the end of the program.

6. Repeat steps 3-5 above until you have the desired 12 instructions in the Sequencer Program
window.

Since the program requires exactly 12 instructions, the Append button becomes unavailable
once 12 instructions are in the program.

You can delete an instruction from the program by:

1. Selecting the instruction in the Sequencer program area.

2. Clicking the button.

You can also move an instruction up or down in the program by:

1. Selecting the instruction in the Sequencer program area.

2. Clicking the up or the down arrow.

When you have completed the 12 instruction program, click OK.
Development Tools User’s Guide 2-17

Intel® IXP1200 Network Processor Family
Developer Workbench
2.5.3.2 Configuring Autopush

To specify what actions are to be performed when the sequencer executes an RxAutopush or
TxAutopush instruction:

1. Click Configure Autopush.

The Autopush dialog box
appears.

2. Specify whether or not registers
are to be pushed, and, if so,
which ones.

3. Specify whether a specific thread
is to be signalled then select the
thread from the list.

There are two areas in the Configure
Autopush dialog box, one for
RxAutopush and one for
TxAutopush. You can configure these actions independently.

2.5.4 Modifying the PCI Interface Configuration

To modify your project’s PCI Interface Configuration:

1. On the Project menu, click System Configuration.

The System Configuration dialog box appears.

2. Click the PCI Interface tab.

If your project has multiple chips, you must select a chip from the Select a chip list. The settings
on the page apply only to that chip.

PCI Interface Configuration Templates

You can specify the settings for the PCI Interface registers indirectly by selecting a template from
the list, or directly using the controls on the page.

To save your customized settings:

1. Click Save Template.

The Save Template dialog box appears.

2. Type a unique name for the template.

To delete a template:

1. Select the template.

2. Click Delete Template.

Note: Templates are independent of Workbench projects and are available across Workbench invocations.
2-18 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The settings controlled on this page and on the dialog boxes invoked from this page determine the
values for the PCI Interface control and status registers. These register values are displayed in the
Registers area in the lower right portion of the page.

2.5.4.1 About PCI Configuration

PCI Bus Arbiter and Central
Function

In the PCI Configuration area,
specify whether you want the
IXP12nn to act as the PCI central
function, the PCI bus arbiter, or both.
A system must have exactly one PCI
bus arbiter. If you do not have a foreign model that is acting as the arbiter, you must enable one of
your chips to act as the arbiter. Similarly, only one chip can be the PCI central function.

2.5.4.2 About PCI Configuration Space

PCI Configuration Space

You can specify that the Workbench
initialize the PCI configuration space by
enabling Initialize Configuration Space.
However, the initialization is not done if
Intel® StrongARM* core model is enabled
because it is assumed that the core
programs will do the initialization.

Memory Window Size

You can specify the window sizes for the memory and DRAM spaces by clicking the window size
in the Memory Window Size area and the DRAM Window Size area.

I/O Space Window

The I/O space window size is fixed at 128 bytes.

Central Function initialization

• To specify that the Workbench
perform central function
initialization, enable Perform
Central Function
Initialization.

This enables the other
selections in the group.

• If you check Memory Space
Enable, you must specify a PCI Memory Base and a PCI DRAM Base in the corresponding
boxes.

• If you check I/O Space Enable, you must specify a PCI I/O Base in the corresponding box.
Development Tools User’s Guide 2-19

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: For debugging convenience, you can have the Workbench perform central function initialization
even if you have not enabled the IXP12nn to be the PCI central function.

For more information on central function initialization, see the PCI_CMD_STAT register bits
<4,2:0> in the Programmer’s Reference Manual.

2.5.5 Modifying the IX Bus Configuration

To modify your project’s IX Bus Configuration:

1. On the Project menu, click System Configuration.

The System Configuration dialog box appears.

2. Click the IX Bus tab.

3. If you are not using an IXB3208 chip in your configuration, click No IXB3208 to configure.

To customize the bus configuration for multichip
projects, see Section 2.5.5.1.

If your project has two chips and you want a bus
configuration that includes an IXB3208 chip
configured in MAC mode:

1. Click One or more IXB3208 to configure.

2. Select Master (MAC) Mode - 2 IXP, 1BSF,
2 IX Bus from the Template Name box.

Note: The Workbench detects if the microcode tries to address a non-existent device on the IX Bus. If this
happens, an error message appears and the simulation stops.

2.5.5.1 Customizing Buses for Multichip Configuration

By default, if you specify multiple chips, each chip is connected to its own IX Bus and Ready Bus.

To establish different connections:

1. On the IX Bus tab, click No IXB3208 to configure, and then click Advanced IX Bus
Configuration.

The Bus Configuration dialog box
appears. The name for an IX Bus or
Ready Bus must correspond to a chip
name.

To change the IX Bus that a chip is
connected to:

1. Select the chip.

2. Click Change IX Bus.

The Select IX Bus dialog box
appears.

3. Select the new IX Bus to connect the chip to and click OK.
2-20 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: The IX Bus choices may exclude one or more chip names to prohibit invalid bus configurations.

To change the Ready Bus that a chip is connected to:

1. Select the chip and click Change Ready Bus.

The Select Ready Bus dialog box appears.

2. Select the new Ready Bus to connect the chip to and click OK.

2.6 About the Project Workspace

The project workspace is a dockable window where you access and modify project configuration
information (see Figure 2-1) files. It consists of three tabbed windows:

FileView

ThreadView

InfoView

To select a window, click its tab.

When you start the Workbench, only InfoView is
visible.

When a project is open, FileView and ThreadView
become visible, but access to ThreadView is
unavailable.

When you start debugging, access to ThreadView is enabled.

When you stop debugging, access to ThreadView is disabled.

To toggle the visibility of the Project Workspace:

• On the View menu, select or clear Project Workspace, or

Click the button on the View toolbar.

2.6.1 About FileView

FileView contains a tree listing your project files. The top-level item in the tree is labeled <project-
name> files. There are four second-level folders:

Assembler Source Files Expands to an alphabetical list of
all project Assembler source
files.

Compiler Source Files Expands to an alphabetical list of
all project Compiler source files.

Macros Expands to list the macros that are defined in the project’s source
files. This folder expands to:
Macros saved by name, and
Macros saved by file.

Script Files Expands to an alphabetical list of all debugging script files.
Development Tools User’s Guide 2-21

Intel® IXP1200 Network Processor Family
Developer Workbench
2.6.2 About ThreadView

ThreadView lists a tree containing all Microengine
threads. ThreadView provides access to all 24 threads for each IXP12nn
Network Processor.

The top-level item in the tree is labeled <project-name> threads. There is
a second-level item for each chip in the project. Each chip item expands
to list the six Microengines in the chip. Each Microengine item expands
to list the four threads in a Microengine. By default, a chip’s threads are
named Thread 0 through Thread 23. The Microengine number appears in
parenthesis after the thread name.

2.6.2.1 Expanding and Collapsing Thread Trees

You can expand the entire tree for a chip as follows:

1. Right-click the chip name.

2. Click Expand All from the shortcut menu.

To collapse a chip’s tree, double-click the chip name.

2.6.2.2 Renaming a Thread

You can rename a thread (to indicate its function or for any other reason. To do this:

1. Right-click the thread name in ThreadView.

2. Click Rename Thread from the shortcut menu.

The Rename Thread dialog box appears.

3. Type the new name for the thread.

4. Click OK.

2.6.3 About InfoView

InfoView provides access to documentation on Workbench components:

Development Tools User’s Guide

Programmer’s Reference Manual

To view a document, double-click its name or icon. This invokes Adobe Acrobat Reader*, which
then displays the document. A copy of Acrobat Reader is provided on the distribution CD-ROM.
2-22 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.7 Working with Files

The Workbench allows you to:

Create files. See Section 2.7.1.

Open files. See Section 2.7.2.

Close files. See Section 2.7.3.

Save files. See Section 2.7.4.

Save copies of files. See Section 2.7.5.

Save all files at once. See Section 2.7.6.

Print files. See Section 2.7.8.

Insert files into a project. See Section 2.7.9.

Remove files from a project. See Section 2.7.9.

Edit a file. See Section 2.7.10.

Bookmarks, error/tags. See Section 2.7.11.

See also:

Working with File Windows. See Section 2.7.7.

About Find in Files. See Section 2.7.12.

About Fonts and Syntax colors. See Section 2.7.13.

About Macros. See Section 2.7.14.

2.7.1 Creating New Files

To create a new file:

1. On the File menu, click New, or

Click the button on the File toolbar.

The New dialog box appears.

2. Select which type of file you want to create from the list.

3. Click OK.

This creates a new document window. The name of the window in the title bar reflects the type of
file you have created.

2.7.2 Opening Files

To open an file for viewing or editing, do one of the following:

• On the File menu, click Open, and select a file from the Open dialog box, or

Click the button on the File toolbar, or

If the file is in your project, double-click the file in FileView.
Development Tools User’s Guide 2-23

Intel® IXP1200 Network Processor Family
Developer Workbench
In the open dialog box you can filter your choices using the Files of type: list to select a file
extension. This limits your choices to only files with that extension. If you select All files (*.*),
your choices are unlimited. You can select any unformatted text file to view or edit.

You can open any of the last four files that you have opened. To do this:

1. On the File menu, click Recent Files.

2. Select from the list of files that appears to the right.

2.7.3 Closing Files

To close an open file:

• On the File menu, click Close, or

On the Window menu, click Close to close the active file and its document window, or

On the Windows menu, click Close All to close all open files and their document windows.

Note: All files that have been edited but not saved are automatically saved when you perform any
operation that uses file data, such as assembling, building, updating dependencies, and finding in
files.

2.7.4 Saving Files

To save a file:

1. On the File menu, click Save, or

Click the button on the File toolbar.

If you have just created the new file, the Save As dialog box appears. If you are saving an
existing file, the Save dialog box appears.

2. Type the name of the new file.

3. Click OK.

This saves your work to a file when you are finished editing. It also displays the new file name
in the title bar of the window. By convention, microcode source files have the file type .uc, C
Compiler source files have the file type .c, and script files have the file type .ind.

If you are saving an existing file, you do not need to type a new name.

To save a file under a new name:

1. On the File menu, click Save As.

The Save As dialog appears. The current name of the file appears in the File Name box.

2. Type a new name in the File Name box and click Save.

Note that the old file remains in the folder but will not have edits that you have made. The new
name appears in the title bar.
2-24 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.7.5 Saving Copies of Files
You can save a copy of a file that you are viewing or editing.

To do this:

1. On the File menu, click Save As.

The Save As dialog box appears.

2. Browse to the folder where you want to save the file.

3. Type the new name of the file in the File name box.

4. Click Save.

The Save as type list is used only if you don’t include the extension in the File name box. If you
select All files (*.*), you must include the extension in the name.

2.7.6 Saving All Files at Once

You can save all modified files in your project at once.

To do this:

• On the File menu, click Save All, or

Click the button on the File toolbar.

2.7.7 Working With File Windows

When you select a file (text, Assembler source, Compiler source, source header, or script) for
viewing or editing, it appears in a file window in the upper-left part of the Workbench. The
Windows menu deals mostly with the text file windows in the Workbench.

New Window Creates a new window containing a copy of the file in the
active window. The Title Bar displays filename.ext:2.

Close Closes the active window.

Close All Closes all the open windows.

Cascade Cascades all windows that are not minimized in the viewing
area.

Tile Tiles all windows that are not minimized in the viewing area.

Arrange Icons Tiles the window icons (if
minimized) at the bottom of the
viewing area.

Open Windows Selection

At the bottom of the Windows menu is a list of the first nine windows that you opened. Click any
one of these windows to make it the active window. If you opened more than nine windows, click
More Windows. From the Select Window dialog box, click the window that you want to make
active and then click OK.
Development Tools User’s Guide 2-25

Intel® IXP1200 Network Processor Family
Developer Workbench
Other Window Controls

Minimize Click the button on the window that you want to minimize.

Maximize Click the button on the window that you want to maximize. You can also
double-click the title bar to do this.

Close Click the button on the window that you want to close.

Restore Click the button on the minimized window that you want to restore to its
previous view.

2.7.8 Printing Files

2.7.8.1 Setting Up the Printer

1. On the File menu, click Printer Setup

The Print Setup dialog box appears.

2. Select the printer properties for your printer. They will
vary depending on the printer you select in the Name
box.

3. Click OK when done.

Setting the printer properties does not print the file. To do
this see Section 2.7.8.3.

2.7.8.2 Previewing the Printed File

1. On the File menu, click Print Preview.

The Print Preview window appears with the name of the file you are viewing in the title bar.

2. Click Two Page to view two pages at a time.

3. Click Zoom In and Zoom Out to magnify the preview.

4. Click Next Page or Previous Page to browse through your file.

5. Click Print if you would like to print the file. The Print dialog box appears. This is explained
in Section 2.7.8.3.

6. If you do not want to print the file, click Close.

2.7.8.3 Printing the File

You can print text files to a hardcopy printer or to a file.

To do this:

1. Make sure that the file you want to print is in the active window.

2. On the File menu, click Print, or

Click the button on the File toolbar. (This button is not on the default File menu. To put
this button there, see Section 2.3.3.4.)

The Print dialog box appears.
2-26 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
3. Select the printer (or printer driver) from the Name list.

4. Click Properties to customize your particular printer. Each printer has its own printer settings.

5. If you want to print to a file (*.prn), select Print to file and select a folder and file name after
you click Print.

6. Select the pages you want to print in the Print range area.

7. Select the number of copies in the Copies area.

8. Click Print.

2.7.9 Inserting Into and Removing Files from a Project

2.7.9.1 Inserting Files Into a Project

You can insert Assembler source files, Compiler source files, and script files into a project.

To do this:

1. On the Project menu, click Insert Assembler Source File, or

Insert Assembler Source File, or

Insert Script Files, whichever is appropriate.

The corresponding dialog box appears.

2. Browse to the desired folder and select one or more files to be inserted.

3. Click Insert.

The newly inserted files are added to the list of files displayed in FileView in the corresponding
folder.

2.7.9.2 Removing Files From a Project

To remove a file from your project:

1. In the Project Workspace, click the File View tab.

2. Right-click the file that you want to delete.

3. Click Delete on the shortcut menu, or

Select the file and then press the DELETE key.

Note: The file is removed from the project but it is not deleted
from the disk.

2.7.10 Editing Files

The Workbench editor is similar to standard text editors. See Table B-5 on page B-2 for a list of
supported actions and their shortcuts.

If a file has been modified, an asterisk appears after its
name in the Workbench title bar.
Development Tools User’s Guide 2-27

Intel® IXP1200 Network Processor Family
Developer Workbench
2.7.11 Bookmarks and Errors/Tags

You can mark your place in a file using
bookmarks. The table below lists the
tools to manipulate bookmarks in your
files.

You can find errors in your files using
the Error/Tag tools listed in Table B-6
on page B-3 and Table B-9 on
page B-4.

2.7.12 About Find In Files

The Workbench supports the ability to search multiple files for the occurrence of a specified text
string. To perform this search:

1. On the Edit menu, click Find In Files,
or

Click the button on the Edit
toolbar.

The Find In Files dialog box appears.

2. Type the text string you want to search
for, or select from the list of previously
searched-for strings from the Find what list.

3. Type the file types to be searched, or select from a predefined list of file types in the
In files/file types list.

This box acts as a filter on the names of files to be searched. For example, you can specify
“foo*.txt” to search only files with names that begin with “foo” and have an file extension of
“txt”.

4. Type the name of the folder to be searched in the In folder box, or select from the list of
previously searched folders in the list. You can also browse for the folder by clicking the
button to the right of the In folder box.

5. You can also select from the options:

Match whole word only Search for whole word matches only. The characters
(){}[]"'<>,.?/\;$#@!~+=-|:*&^%, plus space, tab, carriage return
and line feed are considered delimiters of whole words.

Match case Search only for strings that match the case of the characters in
your string.

Look in subfolders Search all subfolders beneath the specified folder.

Output to pane 2 Display the search results in the second output pane, labeled Find
In Files 2.

6. When you have selected all the options, click Find.

Bookmarks
2-28 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The results of the search are displayed in the
Find In Files 1 (or 2) tab of the Output
window. For each occurrence of the search
string that is found, the file name, line number,
and line of text are displayed.

Do any of the following to display an occurrence of the search string:

• Double-click the occurrence.

• Click the occurrence and then press ENTER.

• Press F4 (the default key binding for the GoToNextTag command) to go to the next
occurrence. If no occurrence is currently selected, then the first occurrence becomes selected.
If the last occurrence is currently selected, then no occurrence is selected, or

• Press SHIFT+F4 to go to the previous occurrence. If no occurrence is currently selected, then
the last occurrence becomes selected. If the first occurrence is currently selected, then no
occurrence is selected.

In all cases, the window containing the file is
automatically put on top of the document windows. If the
file isn’t already open, it is automatically opened.

The line containing the occurrence is marked with a blue
arrow.

2.7.13 About Fonts and Syntax Coloring

Source files, that is, those with file extensions of .uc, .c or .h, appear with syntax coloring of
keywords and comments. Keywords are words that are reserved by the Assembler and Compiler
are used in specific context. For example, ‘alu_shf’ is reserved because it is an Assembler
instruction.

Comments comprise ‘;’ followed by text on a line in Assembler language. By default, keywords
are colored blue and comments are colored green.

To change color defaults:

1. Open a source file.

2. On the Edit menu, click Options.

The Font and Color Settings dialog
box appears.

3. In the Color list box, select the item
for which you want to specify a color.

At the Foreground and Background
controls, the colors already selected for the
item you selected in Step 3 are displayed.

• Select Automatic to use the
Window’s default colors.

• Clear Automatic to enable the color selection controls. Then select a color for the item you
selected.
Development Tools User’s Guide 2-29

Intel® IXP1200 Network Processor Family
Developer Workbench
Continue this procedure for any other items that you want to change.

• To change fonts, click Choose Font to select a different font for display.

• To go back to original settings, click Reset All.

Your customized settings are saved in the UcSyntaxColoring.ini file located in the folder with
the Workbench executable.

2.7.14 About Macros

The FileView tab in the Project Workspace has a Macro folder that contains the macros that are
defined in the project’s source files.

The macros are:

• Listed alphabetically, in the By Name folder, and

• Grouped according to the file that they are defined in, in the By File folder.

The Workbench:

• Creates these folders when you open a project.

• Updates them when:

— An edited source file is saved,

— A source file is inserted into or deleted from the project, or

— You update dependencies.

To go to the location in the source file where a macro is defined, double-click the macro name.

If an opened source file contains a macro reference and you want to go to the file and location
where that macro is defined:

1. Right-click the macro reference.

2. Click Go To Macro Definition on the shortcut menu.

2.8 About the Assembler

The Workbench contains an Assembler for your *.uc source files.

For information on:

Creating new Assembler source files. See Section 2.7.1.

Saving Assembler source files. See Section 2.7.4.

Opening Assembler source files. See Section 2.7.2.

Editing Assembler source files. See Section 2.7.10.

Closing an Assembler source file. See Section 2.7.3.

Searching for text in an Assembler source file. See Sections 2.7.10 and 2.7.12.

Fonts and syntax colors in an Assembler source file. See Section 2.7.13.
2-30 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The following topics on the Assembler will help you understand:

Root Files and Dependencies. See Section 2.8.1.

Assembler Build Settings. See Section 2.8.2.

Specifying Additional Include Directories. See Section 2.8.2.1.

Specifying Processor Revision Range. See Section 2.8.2.2.

Specifying Assembler Options. See Section 2.8.2.3.

Invoking the Assembler. See Section 2.8.3

Assembly Errors. See Section 2.8.4

Invoking the Assembler. See Section 2.8.3

2.8.1 About Root Files and Dependencies

The executable image for a Microengine is generated by a single invocation of the Assembler that
produces an output ‘.list’ file. You can place all the code for a Microengine into a single source file,
or you can modularize it into multiple source files. However, the Assembler allows you to specify
only a single filename. Therefore, to use multiple source files, you must designate a primary, or
root, file as the one that gets specified to the Assembler. You include the other files from within the
root file or from within already included files, by nesting or chaining them. The included files are
considered to be descendants of the root file. In the FileView tab of the Project Workspace, root
files are distinguished by having a to the left of it.

You can designate the same output file to be loaded into more than one Microengine. You can also
include the same source file under more than one root file, making the file a descendant of multiple
root files.

In order for the Workbench to build list and image files, you must assign a .list file to each
Microengine. You set root files as part of setting Assembler options.

On the Project menu, click Update Dependencies to have the Workbench update the
dependencies for all source files in the project.

If a file is included by a source file but is not itself a source file in the project, the Workbench
automatically inserts that source file into the project. The Workbench automatically performs a
dependency update when a project is opened. When you insert a microcode file into a project, the
Workbench checks that file for dependencies.

2.8.2 Selecting Assembler Build Settings

To make or change Assembler settings:

1. On the Build menu, click Settings.

The Build Settings dialog box appears.

2. Click the General tab to specify additional include directories (see Section 2.8.2.1) and the
processor revision range (see Section 2.8.2.2).

3. Click the Assembler tab to specify parameters for creating .list files and other Assembler
options (see Section 2.8.2.3).
Development Tools User’s Guide 2-31

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: Compiler settings on the General tab are covered in Section 2.9.2.

2.8.2.1 Specifying Additional Include Directories

The Assembler needs to know which folders contain the files referenced in #include statements
in Assembler source files.

To do this:

1. On the Build menu, click Settings.

2. Click the General tab.

To specify additional Assembler include
directories, the following controls are provided:

• A button to specify a new path.

Type the path name in the space provided or
use the browse button to search for it.
You must double-click the include path
listed in order to display the browse button.

• A button to delete an included path from the list.

• A button to move an included path up the list.

• A button to move an included path down the list.

Absolute Versus Relative Paths

Regardless of whether the path information is entered in an absolute or relative format, it is
automatically converted to a relative format. This allows the project to be moved to other locations
on a system or to other systems without rendering the path information invalid in most instances as
long as files are maintained in the same relative locations. This path information is passed to the
Assembler so it may locate the files referenced in #include statements in the source code. It is also
used by the dependency checker for locating assembly source files in the project.

2.8.2.2 Specifying Processor Revision Range

The IXP12nn network processors are available in different versions with different features. You
can specify a range of revisions for which you want your microcode assembled. Section 3.1.5
covers this topic in more detail. Also, see Section 2.5.1.1 for chip revision information.

Do the following:

1. On the Build menu, click Settings.

The Build Settings dialog box appears.

2. Click the General tab.

3. Select the range of processor revisions on
which you want the linked code to run.

Select from the Minimum revision and the
Maximum revision lists. If you select no
limit as the maximum revision number then
you are specifying that your microcode is written to run on all revisions of the processor.
2-32 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.8.2.3 Specifying Assembler Options

To specify Assembler options, do the following:

1. On the Build menu, click Settings.

The Build Settings dialog box appears.

2. Click the Assembler tab.

The .list File

The Output to target .list file box allows you to select a .list file from the set of .list files that are
currently defined in the project. All other controls on the page are updated according to which .list
file is selected in the box.

Inserting the .list File

1. On the Assembler tab, click New.

The Insert New List File into
Project dialog box appears.

2. Select a path for the .list file.

3. Type a filename.

You cannot insert a .list file that has already been inserted into the project.

4. Click Insert List File.

This closes the dialog box and adds the new filename to the list. The file’s path appears in the
read-only Path of target .list file list. The rest of the boxes assume default values.

Deleting the .list File

To delete a .list file from a project, click Delete. This removes the .list file currently selected in the
list box from the project. All references to the file on the Linker Build Settings page are removed.
The actual .list file, if it exists on disk, is not altered or deleted.

Root Files

The Root File list provides a read-only list of all of the .uc and .h
files in the project. Select a file to designate it as the root file for the
.list file.

If no root file is selected, "- no root file -" (default) is displayed. If a
root file is not selected and you attempt to select another page or
close the dialog with the OK button a warning message appears.

Optimizing

Select Optimize to turn on Assembler optimizations, or clear it to
turn off optimizations.

Use Of New Register Allocator

Select Use New Register Allocator to enable the Assembler to
efficiently allocate registers, or clear it to rely on the .local
directives for allocating registers.
Development Tools User’s Guide 2-33

Intel® IXP1200 Network Processor Family
Developer Workbench
Produce Debug Information

Select Produce debug info to add debug information to the output file. If you do not select this
option, you will not be able to open a thread window in debug mode.

Preprocessor Definitions

Preprocessor definitions are symbols used in
#ifdef and #ifndef statements to
conditionally assemble sections of source files.
Multiple definitions are separated by spaces.
Optionally a replacement value may be assigned
to a definition by append an "=" and a value; no
spaces can occur between the symbol name and
the "=" or between the "=" and the value. Default is blank.

Edit/Override

The Edit/Override box allows you to change the Assembler command line parameters in the
Parameters used to invoke assembler box. The default is disabled. Use this to fine tune your
build settings.

Save Build Settings

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to close if there are
any errors. Validation is independent of which page is active at the time.

You have the option to fix the errors or click Cancel if you choose not to save any changes you
have made. When the data in Build Settings passes validation, the data in the project is updated.

2.8.3 Invoking the Assembler

To assemble a microcode source file:

1. On the File menu, click Open to open the file or double-click on the file in FileView.

If the file is already open, activate its document window by clicking on the file window.

2. On the Build menu, click Assemble, or

Press CTRL+F7, or

Click the button.

Root Files

If the file is a root file, the Workbench assembles it using the Assembler settings associated with
the Microengine for which the file is a root. Otherwise, the Workbench determines which root files
the file is a descendant of. Therefore:

• If only one root file is found, the Workbench assembles that root file using the associated
Assembler settings.

• If multiple root files are found, the Workbench displays a dialog box listing the root files.
Select one or more of these root files to be assembled.
2-34 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
• If the active file is neither a descendant nor a root file, the Workbench displays a dialog box
informing you of that fact and requests confirmation to proceed with the assembly using the
default Assembler settings.

Results

The results of an assembly appear in the Build tab of
the Output window, which appears automatically.

You can control the amount of detail provide in the
results. On the Build menu, click Verbose Output
to toggle between getting detailed results and
summary results.

Assembly is also done as part of a build operation.

Note: You can toggle the visibility of the Output window by clicking the button on the View
toolbar.

2.8.4 About Assembly Errors

Assembly errors appear in the Build tab of the Output window. Do any of the following to display
the line of source code that caused an error:

• Double-click the error description, or

Press F4, or

Click the button.

If no error is selected, the first error becomes selected. If the last error is selected, then no error is
selected.

To go to the source line for the previous error:

• Press SHIFT+F4, or

Click the button.

If no error is selected, then the last error becomes selected. If the first error is selected, then no error
is selected.

In all cases, the window containing the source file is put on top of the document windows. If the
source file isn’t open, Workbench opens it.

A blue arrow in the left margin marks lines containing errors. Only
one error at a time is marked.

Note: The default Debug toolbar does not contain these buttons. To add them, go to Section 2.3.3.4.
Development Tools User’s Guide 2-35

Intel® IXP1200 Network Processor Family
Developer Workbench
2.9 About the Microengine C Compiler
The Workbench contains a C Compiler to compile C source code into microcode for the
Microengines. The Microengine C Compiler is a general purpose compiler but the C language used
for the Microengines is limited. Refer to the IXP1200 Microengine C Language Support Reference
Manual for information on the functions and intrinsics designed for use with the IXP12nn family.

For information on:

Creating new C source files. See Section 2.7.1.

Saving C source files. See Section 2.7.4.

Opening C source files. See Section 2.7.2.

Editing C source files. See Section 2.7.10.

Closing a C source file. See Section 2.7.3.

Searching for text in a C source file. See Sections 2.7.10 and 2.7.12.

Fonts and syntax colors in a C source file. See Section 2.7.13.

This section details:

Adding C source files to your project. See Section 2.9.1.

Selecting the target .list file. See Section 2.9.2.2.

Selecting C source files to compile. See Section 2.9.2.3.

Removing C source files from project. See Section 2.9.2.5.

Selecting Compile options. See Section 2.9.2.6.

Invoking the C Compiler. See Section 2.9.3.

Compilation errors. See Section 2.9.4.

2.9.1 Adding C Source Files to Your Project

After creating and saving C source files, you need to add them to your project. To do this:

1. On the Project menu, click Insert Compiler Source Files.

The Insert Compiler Source Files into Project dialog box appears.

2. From the Look in list, browse to the folder containing your C source file(s).

3. Select the file(s) that you want to insert into your project.

4. Click Insert.

In the Project Workspace window, to the left of the Compiler Source Files folder, a ‘+’ appears
(if the folder was previously empty) indicating the folder now contains files. Click the ‘+’ to
expand the folder and display the files. You should see the files that you have just added to your
project.

2.9.2 Selecting Compiler Build Settings

Before building you project, you must select your C Compiler options.
2-36 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: Assembler settings on the General tab are covered in Section 2.8.2.

2.9.2.1 Selecting the Compiler Include Paths

The C Compiler needs to know which areas of the file system to search for locating files referenced
in #include statements in C source code files. This control displays a list of paths with a GUI for
typing in or editing of directory paths, or browsing to directories to be added to the list. The GUI
also provides the means for deleting or changing the search order of the paths. Regardless of
whether the path information is entered in an absolute or relative format, it is automatically
converted to a relative format. This allows the project to be moved to other locations on a system or
to other systems without rendering the path information invalid in most instances, so long as the
relative location of the paths is maintained. This path information is passed to the Assembler so it
may locate the files referenced in #include statements in the source code. It is also used by the
dependency checker for locating C source files in the project.

To specify additional Compiler include directories, the following controls are provided:

• A button to specify a new path.

Type the path name in the space provided or use the button to search for it. You must
double-click the include path listed in order to display the browse button.

• A button to delete an included path from the list.

• A button to move an included path up the list.

• A button to move an included path down the list.

2.9.2.2 Selecting the target .list file

When you compile your C source file, the results become a .list file. You must select the name of
the .list file.

To do this:

1. On the Build Settings dialog box, click the C Compiler tab.

2. Select the name of the .list file from the Output to target list file list, or if the list is empty,

a. Click New.

The Insert New List File into Project dialog box appears.

b. In the Look in list, browse to the folder where you want to store the .list file.

c. Type the file name in the File name box.

d. Click Insert List File.

The Path of target .list file box is a read-only text field displaying the absolute path of the target
.list file. If this path is not correct, click New again and select a new path.

2.9.2.3 Deleting a Target .list File

To delete a target .list file from the project:

1. Select the file from the list in the Output to target .list file box.

2. Click Delete.
Development Tools User’s Guide 2-37

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: This removes the file from the project but does not delete it from the disk.

2.9.2.4 Selecting C Source Files to Compile

The C Compiler in the Workbench can compile one or more C source files into one .list file. You
must select the source files that you want to compile. To do this:

1. In the Build Settings dialog box, click the C Compiler tab.

2. Click Choose source files.

The Compiler Sources dialog box appears. The files displayed here are all the *.c files in your
project, that is all the files in the Compiler Source Files folder in the Project Workspace
window.

3. Click the file(s) that you want to compile.

Clicking the file once selects the file and clicking a selected file deselects it.

4. Click the button to move the selected files from the left window to the right window.

You can select any file(s) in the right window and move them back to the left window by
clicking the button.

5. Click OK when done.

In the Source files to compile box is a list of C source files that you selected to compile.

2.9.2.5 Removing C Source Files to Compile

To remove any file:

1. Click the desired file in the Source files to compile list.

2. Click the button.

This removes the file from the compilation but not from the project.

2.9.2.6 Selecting Compile Options

In the Compiler Options box, select:

Optimize

None (debug) Turns off optimizations for better code
troubleshooting.

Size Compiled for smallest memory footprint.
Speed may be sacrificed.

Speed (default) Compiled for fastest instruction
execution. Size may be sacrificed.
2-38 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Inlining

None No inlining is done, including functions
explicitly tagged in the source code with the
inline specifier.

Explicit (default) Only functions tagged with the inline
specifier are inlined. Any function that could
be inlined by the Compiler but not having this
tag is not inlined.

Auto All functions with the inline tag and all other functions
thought by the Compiler to be inlinable are inlined.

Endian Mode

Little Endian Compile in little-endian mode.

Big Endian (default) Compile in big-endian mode.

Warning Level

0 Print only errors.

1, 2, or 3 (default) Print only errors and warnings.

4 Print errors, warnings, and remarks.

Number of Threads

1, 2, 3, 4 (default) Select the number of threads that you want
to be active in the Microengine. All others
are killed.

Produce Debug Information

Select (default) Produces debug information in the .list
file. This information is needed for
many of the debugging features of the
Workbench.

Clear No debug information is compiled into the .list file.

Produce Assembly Code File

Select Produces an assembly code file
(*.uc).

Clear (default) Does not produce an assembly
code file.

Preprocessor Definitions

This is a text edit box where you type symbols used in #ifdef and #ifndef statements to
conditionally compile sections of Assembler sources. Multiple definitions are separated by spaces.
Optionally a replacement value may be assigned by appending an “=” and a value. There can be not
spaces between the symbol name and the “=” or between the “=” and the value. The default is
blank.
Development Tools User’s Guide 2-39

Intel® IXP1200 Network Processor Family
Developer Workbench
2.9.2.7 Edit/Override

The Edit/Override check box allows you to change the Compiler parameters in the Parameters
used to invoke compiler box. The default is disabled. Selecting it allows you to change the
information in the box. See Section 4.3, “Supported Option Switches.”” for more information.

2.9.2.8 Saving Build Settings

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to close if there are
any errors. Validation is independent of which page is active at the time. You have the option to fix
the errors or click Cancel if you choose not to save any changes you have made. When the data in
Build Settings passes validation, the data in the project is updated.

2.9.3 Invoking the Compiler

To compile a C source file:

1. On the File menu, click Open, or

You can also double-click the file in FileView. If the file is already open, activate its document
window by clicking on the file window.

2. On the Build menu, click Compile, or

Press CNTRL+SHIFT+F7, or

Click the button on the Build toolbar.

Results

The results of an assembly appear in the Build tab of the Output window, which automatically
appears.

You can control the amount of detail provide in the results. On the Build menu, select Verbose
Output to display detailed results, or clear it to display summary results.

Compilation is also done as part of a build operation.

2.9.4 Compilation Errors

Compiler errors appear in the Build tab of the Output window.To locate the error in the source
file:

• Double-click the error description in the Output window, or

Click the error description, then press ENTER.

You can press F4 or click the button to go to the next error. If no error is selected in the Output
window, the first error becomes selected. If the last error is selected, then no error is selected, or

You can press SHIFT+F4 or click the button to go to the previous error. If no error is selected in
the Output window, the last error becomes selected. If the first error is selected, then no error is
selected.
2-40 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
In all cases, the window containing the source file is put on top of the document windows and
becomes the active document. If the source file isn’t already open, it opens.

A blue arrow in the left margin marks lines containing errors. Only one error at a time is marked.

2.10 About the Linker

The Linker

You build a project using the Linker. The Linker takes the Assembler or Compiler output (.list
files) on a per-Microengine basis and generates an image file for up to six Microengines. To invoke
the Linker and build a project:

• On the Build menu, click Build, or

Click the button on the Build toolbar, or

Press F7.

Stopping Compilation

There is no way to stop a build in progress. You must wait until it finishes or encounters an error.

Out-of-date Files

To perform a link, the Workbench requires that all .list files be up to date. If any microcode source
file is newer than the list file generated from it or if Assembler settings have been changed since
the last build, the Workbench automatically assembles a new .list file.

Results

The results of the build appear in the Build tab of the
Output window, which appears automatically. You can
control the amount of detail provide in the results. On the
Build menu, click Verbose Output to toggle between
getting detailed results and summary results.

Rebuild

To perform a full unconditional build of your configuration:

• On the Build menu, click Rebuild, or

Press ALT+F7, or

Click the button on the Build toolbar.

2.10.1 Customizing a Build Configuration

To customize your build configuration:

1. On the Build menu, click Settings.

The Build Settings dialog box appears.

2. Click the Linker tab to view the Linker settings.
Development Tools User’s Guide 2-41

Intel® IXP1200 Network Processor Family
Developer Workbench
3. Adjust the Linker settings (see Section 2.10.2).

4. Click OK.

The Linker page provides an interface for selecting options for the Linker and directing the
packaging of one or more Microengine specific *.list files into a *.uof file. Each IXP12nn chip has
6 Microengines that can each be loaded with execution code according to the *.list file selected for
that Microengine.

You can also specify the assembly options by clicking the Assembler tab in the Build Settings
dialog box (see Section 2.8.2.3).

2.10.2 Changing Linker Settings

In the Linker page of the Build Settings dialog box, you can set the following build parameters:

Chip

The Chip box contains a list of all the IXP12nn chips in your
project. Select the chip for which you want to change Linker
settings. The other controls on the page are updated based on the
selected chip.

Output to Target .uof File

The Output to target .uof file box displays the .uof file that the
Linker produces.

Note: The Developer Workbench does not support multiple .uof files.

To change the output *.uof file to the project for the selected chip:

1. Click the button.

The Select Name and Location for the Linker Output File dialog box appears.

2. In the Look in box, browse to the folder where you want to put the output file.

3. Type a new name in the File name box.

You do not have to type the .uof extension—the Workbench adds it for you. Typing it does no
harm.

4. Click Select.
2-42 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Microengine .list File Selection

The project has one or more .list file(s) generated
using the Assembler or Compiler. On the Linker
page you can control which .list file is linked into the
.uof file and for which Microengine.

To do this:

1. View the list to the right of Microengine 0.

2. Select either:

a. <none>, or

b. Any .list file from list.

3. Do the same for Microengines 1-5.

This method allows you to select any combination of .list files or no .list file for any or all the
Microengines to be linked to the .uof file.

If you specify <none>, no microcode is loaded into that Microengine. If you select <none> for all
the Microengines, you get an error.

Hex “.c” Files

Select Generate hex ‘.c’ file to request the Linker to create a *.c file, with the same name as the
corresponding *.uof file. This file contains a microcode listing in a form that you can include in an
IXP processor core application. This is usually done when deploying microcode into a final
product.

Produce Debug Information

Select Produce debug info to add debug information to the output file. If you do not select this
option, you will not be able to open a thread window in debug mode.

Unused Microstore

Unused microstore can be initialized by using
the controls in the Fill option area.

To leave the unused microstore unchanged,
clear Fill unused microstore.

To fill the unused microstore:

1. Select Fill unused microstore.

2. Click Default to fill with 0xe00c0004, or

Click Custom and type an eight character hex pattern to be used. Make sure the number
begins with “0x.”

Reserved Memory Segment for Variables

The reserved memory segment for variables provides the Linker with information needed for
allocating memory to be used for variable data storage.
Development Tools User’s Guide 2-43

Intel® IXP1200 Network Processor Family
Developer Workbench
SCRATCH Base Address

The Scratch base address is a parameter sent to the Linker. The Linker uses scratch memory
starting at the base address, allocating as much memory as needed up to the Scratch max size
for variables.

SCRATCH Max Size (Bytes)

The Scratch max size is a parameter sent to the Linker. The Linker reserves as much scratch
memory as necessary for variables up to the max size.

SRAM Base Address

The SRAM base address is a parameter sent to the Linker. The Linker uses scratch memory
starting at the base address, allocating as much memory as needed up to the SRAM max size
for variables.

SRAM Max Size (Bytes)

The SRAM max size is a parameter sent to the Linker. The Linker reserves as much SRAM as
necessary for variables up to the max size.

SDRAM Base Address

The SDRAM base address is a parameter sent to the Linker. The Linker uses sdram memory
starting at the base address, allocating as much memory as needed up to the SDRAM max size
for variables.

SDRAM Max Size (Bytes)

The SDRAM max size is a parameter sent to the Linker. The Linker reserves as much
SDRAM as necessary for variables up to the max size.

Header File Generation

Selecting Generate a header file causes the Linker to produce a C language *.h file with the same
filename as the linked *.uof file. The defined symbols are set to values based on how the Linker
allocated memory for the reserved memory variables. The base address symbols should have the
same values as the ones defined in the GUI, but the size symbols have the actual sizes used by the
Linker.

Saving Settings

Linker settings are saved when you save the project.

Build Settings

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to close if there are
any errors. Validation is independent of which page on Build Settings is active at the time. You
have the option to fix the errors or click Cancel if you choose not to save any changes you have
made. When the data in Build Settings passes validation, the data in the project is updated.
2-44 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11 Debugging

Simulation Mode Versus Hardware Mode

Using the Workbench, you can debug microcode either in Simulation mode or in Hardware mode
using the IXP12nn Evaluation Board or compatible hardware.

When in Simulation mode, the Transactor provides debugging support to the Workbench. In
Hardware mode, the Microengine Debug Library (debug_1200.a) running as part of a StrongARM
core application program communicates with the Workbench and relays debugging operations
between the Workbench and the Microengines. The StrongARM core application may either be one
that is supplied with the IXP12nn Evaluation Board or one that is independently developed.

The Workbench menus and toolbar selections provide the following capabilities:

• Set breakpoints and control execution of the microcode.

• View source code on a per-thread basis.

• Display the status and history of Microengines, threads, and queues.

• View and set breakpoints on data, registers, and pins.

• Configure and enable IX Bus device and network traffic simulation.

Some of the debugging operations are either disabled when debugging in Hardware mode or
available in a limited fashion. The descriptions in the sections that follow include any limitations
that apply in Hardware mode. Table 2-1 summarizes which debugging features are available in
Hardware and Simulation modes.

Table 2-1. Simulation and Hardware Mode Features (Sheet 1 of 2)

Feature Simulation Hardware

System Configuration X

Starting and Stopping Debug X X

Command Line Interface X X

Script Files X X

Command Scripts X X

Thread Windows

• Display Microword Address X X

• Instruction Markers X X

• View Instructions X X

Run Control X X1

Breakpoints X X1

Examine Registers X X

Watch Data

• Enter New Data Watch X X

• Watch CSRs and Pins X X1

• Watch GPRs and XFER X X

• Deposit Data X X1
Development Tools User’s Guide 2-45

Intel® IXP1200 Network Processor Family
Developer Workbench
NOTES:

1. With restrictions.

2.11.1 Starting and Stopping the Debugger

Starting

To enter debug mode:

• On the Debug menu, click Start Debugging, or

Press F12, or

Click the button.

Once the debugger begins, you can interact with it through the command line window and by using
the Debug menu and toolbar selections that become activated.

Stopping

To exit debug mode:

• On the Debug menu, click Stop Debugging, or

Press CTRL+F12, or

Click the button.

Project debug settings such as breakpoints are automatically saved in a debug options file (.dwo)
when you save a project.

2.11.2 Changing Simulation Options

2.11.2.1 Marking Instructions

You can select how instructions are marked in a thread window when a thread execution is stopped,
such as at a breakpoint.

To modify the instruction marker:

1. On the Simulation menu, click Options.

• Break on Data Change X

Watch Memory X X

Performance Statistics X

Execution Coverage X

Thread and Queue History X

Queue Status X

Thread Status X X

IX Bus Device Status X

Table 2-1. Simulation and Hardware Mode Features (Sheet 2 of 2)

Feature Simulation Hardware
2-46 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Click the Markers tab.

Note: For more information on thread windows, see Section 2.11.7.

By default, the stage 3 instruction is marked as the current instruction (see Figure 2-3). It is
highlighted by horizontal black lines above and below it. The thread window is automatically
scrolled so that the current instruction marker is visible when execution stops.

If the line containing the current instruction is displayed, then the instruction marker points to it. If
the line is hidden because it is in a collapsed macro, then the instruction marker points to the line
containing the collapsed macro.

Figure 2-3. Marking Instructions

You can optionally choose to have multiple instructions marked in addition to the current
instruction when thread execution stops. The Workbench marks any combination of instructions
that are in one of the 5 pipeline stages. To add the stages you want marked, click the appropriate
check boxes in the Markers tab.

For more information on instruction markers, see:

Section Section 2.11.2.2, “Changing the Colors for Execution State.”

Section Section 2.11.7.9, “About Instruction Markers.”

Section Section 2.11.7.10, “Viewing Instruction Execution in the Thread Window.”

Note: You cannot clear the stage that you have selected for the current instruction.

2.11.2.2 Changing the Colors for Execution State

To customize the colors used to indicate the execution state:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Colors tab.

3. Select the color for each execution state using the
corresponding list.

For more color options, click Other. Select the color you
want and click OK.

4. Click OK when done.
Development Tools User’s Guide 2-47

Intel® IXP1200 Network Processor Family
Developer Workbench
Note: The execution state colors are used for both the Pipe Stage markers and for the thread history lines.

2.11.2.3 Initializing Simulation Startup Options

When you are debugging in Simulation mode, the Transactor and its hardware model must be
initialized before you can run microcode.

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Startup tab.

This property page specifies how the Workbench behaves when you start debugging and when you
reset the simulation.

Initialization Customization

By default, all initialization is done by
the Workbench. You can customize the
initialization by selecting the
Configuration tab.

On this page you can specify:

The simulation step unit. See Section 2.11.2.4.

The tagging of memory. See Section 2.11.2.5.

The enabling of the PCI unit. See Section 2.11.2.7.

The enabling of the StrongARM core model. See Section 2.11.2.6.

Startup Scripts

You can perform all initialization yourself. This requires you to do the initialization in a script file.

To have the Workbench execute one or more scripts at startup:

1. On the Startup tab, click Add Script(s).

The Add Startup Scripts dialog box appears.

2. Select the script(s) that you want executed at
startup.

Note that the scripts must be part of your
project (in the Script File folder) to appear in
this list. Otherwise the list is blank.

3. Click OK when done.

The Workbench executes the scripts in the order
in which they appear in the Scripts to be
executed when debugging is started box. You
can change the order in which scripts are
executed by selecting the script and using the Up
and Down arrow buttons. You can delete a script
from the list with the Delete button.
2-48 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
These scripts are executed even if the Workbench performs the initialization. If you specify that the
Workbench perform model initialization, it will execute a series of commands in the Transactor,
which do the following:

1. Define the chip using the chip command.

2. Initialize SRAM, SDRAM, and FLASH based on the sizes you specified when you created the
project. This is done using the mem_init sram, mem_init sdram, and mem_init flash
commands.

3. Initialize the model using the init command.

4. Load the microcode into all Microengines that are included in the Build Configuration.

5. Set the clock frequencies using the set_clk_freq command. The frequencies are those that
you specified in the Chip tab in the System Configuration dialog box.

6. Configure the SRAM and SDRAM units using the sram_config and sdram_config
commands. The configuration is based on values that you specified in the Memory tab in the
System Configuration dialog box.

7. Configure the IX Bus Interface by depositing into several control and status registers. The
configuration is based on values that you specified in the IX Bus Interface tab in the System
Configuration dialog box.

8. Set the clock domain default using the go_clk_domain command.

9. Enable each Microengine included in the build configuration (see Sections 2.8.2 and 2.10.1).
This is done using the set dep.art.enable = 1 command, where n is the Microengine
number.

10. Enable all four contexts in each enabled Microengine. This is done using the
dep/s fn.ctl.thread_trigger_mask_x command, where n is the Microengine number
and x is the context number.

11. Enable pipeline abort control in each enabled Microengine. This is done using the
dep/s fn.ctl.px_abort = 1 command, where n is the Microengine number and x is the
pipeline stage.

If you enable the StrongARM model, do not perform steps 4, 9, 10, and 11.

Preferred Initialization Method

The suggested method of initialization is to let the Workbench perform the initialization as
described above and to perform all other customized initialization using one or more startup
scripts. Your startup scripts should avoid any conflicts with the initialization done by the
Workbench.

2.11.2.4 Setting the Simulation Step Unit

The Workbench allows you to specify which clock domain is used when you single step or go for a
specified number of cycles. To set the simulation step unit:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Configuration tab.

3. In the Simulation step unit area, click
Microengine/StrongARM core clock or IX Bus clock.
Development Tools User’s Guide 2-49

Intel® IXP1200 Network Processor Family
Developer Workbench
If you set the step unit before you start debugging, your selection takes effect only if you also elect
to have the Workbench perform initialization (see Startup Options, Section 2.11.2.3”). After
debugging has been started, changing the simulation step unit takes effect immediately.

2.11.2.5 Tagging Memory

The Transactor supports the tagging of SDRAM, SRAM, and flash memory. This provides detailed
information on access to each memory location. However, it consumes significantly more memory
and slows down the simulation. If you have the Workbench do the initialization (see Startup
Options, Section 2.11.2.3), you can specify memory tagging by selecting the appropriates check
box(es) for the memory types.

To turn tagging on or off:

1. On the Simulation menu, click Options.

The Simulation Options dialog
box appears.

2. Click the Configuration tab.

3. Select or clear Tag SRAM, Tag SDRAM, or Tag Flash Memory.

2.11.2.6 Enabling StrongARM* Core Model

If you have the Workbench do the simulation initialization (see Startup Options, Section 2.11.2.3),
you can conditionally enable the simulation of the StrongARM core model in order to debug your
StrongARM boot code.

To enable StrongARM:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Configuration tab.

3. Select or clear Enable
StrongARM.

If you enable the StrongARM
model, you must specify the name
of the file containing the image to
be loaded into boot memory. This is
the code that the StrongARM core
executes.

Note: When you start debugging with the StrongARM core model enabled, eight simulation cycles are
executed in order to perform initialization. Also, it is assumed that microcode loading is being done
by the boot code, therefore, the Workbench does not load the microcode. However, the Workbench
defines a Transactor function named WB_Load_Microcode() that you can invoke from a script at
the appropriate time in order to do a quick loading of the microcode. This function executes
Transactor load_uc commands to load the appropriate .list files as specified by the build settings.

2.11.2.7 Enabling the PCI Interface

To enable the simulation of the PCI Interface in the IXP12nn chip:
2-50 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Configuration tab.

3. Select Enable PCI unit.

To specify the configuration of the PCI Interface, see Section 2.5.4.

2.11.2.8 Enabling the PCI Transactor

When you are debugging in Simulation mode and you enable the PCI Interface, you can simulate
one or two generic PCI devices. To do this:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Bus Simulators tab.

Here you can:

• Enable the simulation one or both of the PCI devices, and

• Specify the start address and size for each.

2.11.2.9 Enabling IX Bus Device Simulation

When you are debugging in Simulation mode and you enable the IX Bus device simulation, you
can:

• Simulate devices on the IX Bus as well as

• Network traffic coming into those devices.

To do this:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the Bus Simulators tab.

3. Select Enable IX bus device simulation.

2.11.3 Exporting the Startup Script

To create a text file containing all the commands that the Workbench sends to the Transactor during
simulation startup:

1. On the Simulation menu, click Export Startup Script.

The Export Simulation Start Script dialog box appears.

2. Browse to the folder to save the file.

3. Type the name of the script file in the File name box.

4. Click Save.
Development Tools User’s Guide 2-51

Intel® IXP1200 Network Processor Family
Developer Workbench
The default .ind file extension for script files is added to the name that you typed. See
Section 2.7.9.1 to insert the script file into the project.

2.11.4 About Hardware Options

2.11.4.1 Specifying Hardware Startup Options

To specify whether or not the Workbench loads microcode when hardware debugging is started:

1. On the Hardware menu, click Options.

The Hardware Options dialog box appears.

2. Click the Startup tab.

3. Select or clear Load microcode when debugging is started.

4. Click OK.

If you choose not to have the Workbench load microcode automatically at startup, you can:

• Load microcode manually by selecting Load Microcode on the Debug menu.

(You can also click the button. This button is not on the default Build menu. To put this
button there, see Section 2.3.3.4.)

• By selecting or clearing Assume microcode is already loaded in the Hardware Options
dialog box, you can specify whether or not you want the Workbench to assume that microcode
has been loaded into the Microengines by some other mechanism.

Note that if you select this option, the Workbench connects to the hardware without resetting
the Microengines.

2.11.4.2 Specifying MAC Port Control

To specify which MAC ports get started and
stopped along with a chip’s Microengines:

1. On the Hardware menu, click Options.

The Hardware Options dialog box appears.

2. Click the Ports tab.

3. Select a chip from the Select a chip list if
there is more than one available.

4. Select each MAC port that you want to start
and stop along with the chip’s Microengines.

If there is more than one chip in your project,
repeat steps 3 and 4 for the remaining
chip(s).

5. Click OK.
2-52 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.5 About the Command Line Interface

The command line interface (CLI) comprises:

Simulation Mode

If you are debugging in Simulation mode, the command line is an interface to the Transactor
command line. Commands entered on the command line are passed to the Transactor. The
command and the Transactor responses are logged into the command line output area. Also, when
you perform a simulation operation using GUI controls, the Workbench sends the appropriate
command to the Transactor, as if you had typed in on the command line.

Hardware Mode

If you are debugging in Hardware mode, the command line provides an alternative way to access
the hardware. The hardware command line supports C-interpreted functions, script files and
conditional directives. Type help on the command line to get a complete list of supported
commands.

CLI Implementation

The CLI is a dockable window.

To view it:

1. On the View menu, click Debug
Windows.

2. Select Command Line, or

Click the button on the View
toolbar.

This makes the Command Line window visible. To hide the Command line window, clear the
Command Line check box.

2.11.6 About Command Scripts

Creation

The Workbench supports the creation of command scripts for frequent execution of a set of
Transactor or hardware commands. Command scripts are numbered 1 through 10.

A read-only scrollable text area
for reporting the results of the

command.

A prompt indicating command
line status.

 A single-line text edit control
for entering commands.
Development Tools User’s Guide 2-53

Intel® IXP1200 Network Processor Family
Developer Workbench
To create a command script:

1. On the Tools menu, click Customize.

The Customize dialog box appears.

2. Click the Command Scripts tab.

3. From the list on the left, select the command script number that you want assigned to the
script.

4. In the box on the right, enter the Transactor commands you wish to have executed, just as you
would enter them on the Transactor command line.

5. In the Script name box, enter the name you want associated with the command script. This
name will be displayed in the tool tip and fly-by text when you position the mouse cursor over
the corresponding command script toolbar button.

6. Click Assign. This assigns the commands and name to the selected command script number.

7. Repeat steps 3 through 6 for as many command scripts as you wish to assign, up to a total of
10.

8. Click OK.

Each command script (1-10) has an associated debug toolbar button . To place a command
script button in a toolbar, see Section 2.3.3.4.

Execution

Script files provide batch-style control of the Transactor or hardware.

To execute a script file:

1. Click the script file from the Script Files list in FileView.

2. On the Debug menu, click Execute Selected Script,

Or:

1. Right-click a script file in FileView.

2. Click Execute Script on the shortcut menu.

2.11.7 About Thread Windows

Thread windows differ from normal document windows in that they have a toolbar across the top
(see Figure 2-6 and Figure 2-7). Setting and clearing breakpoints (see Section 2.11.10), displaying
register contents (see Section 2.11.11), and viewing the instruction(s) currently being executed (see
Section 2.11.7.10) are all done in thread windows. They cannot be performed in the source file
windows.
2-54 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.7.1 Controlling Thread Window Activation

You can control how the thread windows
are activated using the Thread Window
Options dialog box.

To do this:

1. On the Debug menu, click Thread
Window Options, or

Click the button in the toolbar of
an open thread window.

The Thread Window Options dialog
box appears.

2. Select how you want threads activated.
Select one of the following:

a. Use only one thread window.
Always reuse the currently open thread window and bring it to the top.

b. Use one thread window per chip. Reuse a currently open thread window only if it
displays a thread in the same chip as the thread being activated.

c. Use one thread window per Microengine. Reuse a currently open thread window only if
it displays a thread in the same Microengine as the thread being activated.

d. Use a separate thread window for each thread. Always open a new thread window
unless one is already open for the thread being activated, in which case the open window
is brought to the top.

Whether or not you can select an option depends on the current thread window configuration. For
example:

• If you have one or no thread window open, then all options are allowed.

• If you have two thread windows open, you cannot select option (a).

• If you have two or more thread windows open for different Microengines in the same chip, you
cannot select option (a) or (b).

• If you have two or more thread windows open for different threads in the same Microengine,
you cannot select option (a), (b) or (c).

• If you select an invalid option and click OK, the following message box appears:

— If you click No the option reverts to the previous selection.

— If you click Yes the Workbench closes the appropriate thread windows.
Development Tools User’s Guide 2-55

Intel® IXP1200 Network Processor Family
Developer Workbench
The activation option you select determines the behavior of the thread-selection toolbar.

• If you select option (d), all list boxes are disabled.

• If you select option (c), the chip and Microengine list boxes are disabled, allowing you to
select a different thread.

• If you select option (b), the chip list box is disabled, allowing you to select a different
Microengine and thread.

• If you select option (a), all list boxes are selected, allowing you to select a different chip,
Microengine and thread.

• If the open project has only one chip, the chip list box is hidden in order to save toolbar space.

In the next area of the Thread Window Options dialog box:

3. Select Track active thread in new thread windows if desired (not available if you selected to
view each thread in its own window).

4. Select Expand macro references when an ‘assembled’ thread is activated for the first
time if desired.

5. Select Show list view in new ‘compiled’ thread windows if desired.

6. Select Display instruction addresses if desired (in list view only).

7. Click OK when done.

2.11.7.2 About Thread Window Controls

Assembled Thread Windows

If a thread is in a Microengine whose list file is generated by the Assembler, then its thread window
displays a ’list’ view. This represents flattened code for the entire microstore, as contained in the
.list file.

Note: Setting and clearing breakpoints (see Section 2.11.10), displaying register contents
(see Section 2.11.11), and viewing the instruction(s) currently being executed are also done in
assembled thread windows. They cannot be performed in the source file windows.
2-56 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Figure 2-4. The Assembler Thread Window

When a thread is being displayed in an assembled thread window, the toolbar contains the
following controls:

Chip list This control is not visible if your project has only one chip.

Microengine list This control is disabled if you are using one thread window per
Microengine or you are using a separate thread window for each
thread.

Thread list This control is disabled if you are using a separate thread window
for each thread.

Source list (if in source view).
Here you can view any of the *.c files used to generate the .list file.
When Microengine execution starts then stops, the Workbench
changes the displayed source file to the one that generated the
current instruction.

The toolbar contains following buttons:

Track Active Thread. See Section 2.11.7.3.

Display the Thread Window Options dialog box.
See Section 2.11.7.1.

Step Over. See Section 2.11.8.3.

Run to Cursor. See Section 2.11.7.5.

Expand macros. See Section 2.11.7.7.

Collapse macros. See Section 2.11.7.7.

Note: Not all buttons are available in hardware mode.
Development Tools User’s Guide 2-57

Intel® IXP1200 Network Processor Family
Developer Workbench
Compiled Thread Windows

Compiler thread windows look the same as Assembler thread windows but have some differences.
Display options are similar (see Section 2.11.7.1).

Note: Setting and clearing breakpoints (see Section 2.11.10), displaying register contents
(see Section 2.11.11), and viewing the instruction(s) currently being executed are also done in
Compiler thread windows. They cannot be performed in the source file windows.

Figure 2-5. The Compiler Thread Window

When a thread is being displayed in a compiled thread window, the toolbar contains the following
controls:

Chip list. This control is not visible if your project has only one chip.

Microengine list. This control is disabled if you are using one thread window per
Microengine or you are using a separate thread window for each
thread.

Thread list. This control is disabled if you are using a separate thread window
for each thread.

Source list (if in source view).
Here you can view any of the *.c files used to generate the .list file.
When Microengine execution starts then stops, the Workbench
changes the displayed source file to the one that generated the
current instruction.

The toolbar contains following buttons:

Track the active thread. See Section 2.11.7.3.

Toggle View. See Section 2.11.7.4.

Display the Thread Window Options dialog box.
See Section 2.11.7.1.
2-58 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Step Into. See Section 2.11.8.4.

Step Out. See Section 2.11.8.5.

Step Over. See Section 2.11.8.3.

Run to Cursor. See Section 2.11.7.5.

Note: Unlike the assembled thread window, you cannot expand or collapse the display in a compiled
thread window in list view.

Note: Not all buttons are available in hardware mode.

2.11.7.3 Tracking the Active Thread

You can specify that you want tracking of the active thread by clicking the button in the thread
window toolbar. This feature is available only if you have specified that you want only one thread
window or one thread window per chip or per Microengine.

When Microengine execution is started then stopped and a different thread in the same
Microengine becomes active, the thread window is automatically changed to display the active
thread.

In the Thread Windows Options dialog box, specify whether new thread windows are opened
with active thread tracking enabled by selecting or clearing Track active thread in new thread
windows.

2.11.7.4 Toggling Views (compiled threads only)

You can toggle between source view and list view by clicking the button. When switching
from list view to source view, the Workbench displays the source file that contains the line that
generated the list view line where the cursor is located. The generating source line is scrolled to be
visible in the list view. When switching from source view to list view, the Workbench scrolls to the
first list view line generated by the source line where the insertion cursor is located.

2.11.7.5 Running to Cursor

If you are debugging in Simulation mode, you can place the cursor at a point in the code and then
you can Run to Cursor.

To do this:

1. Place the cursor on a line in a thread window by clicking in that line.

2. On the Debug menu, click Run Control, then click Run To Cursor, or

Click the button in the Thread window.

Or:

Right-click in the line to which you want to run, then select Run To Cursor from the shortcut
menu.

If the line is in the source view of a compiled thread or if it contains a collapsed macro reference in
an assembled thread, then the simulation runs until the first generated instruction is reached.
Development Tools User’s Guide 2-59

Intel® IXP1200 Network Processor Family
Developer Workbench
Run to Cursor can be performed only on lines that generated instructions.

2.11.7.6 Activating Thread Windows

Once microcode is loaded, you can directly access the execution state of all the threads in the
project.

To explicitly activate a thread window, do this:

1. Double-click the thread name in the ThreadView or the Thread Status window, or

Right-click the desired thread in the ThreadView or the Thread Status window and click
Open Thread Window, or

Change the selection(s) in the thread-selection toolbar in the thread window.

The thread window is implicitly activated by:

• Stopping at a breakpoint. The thread in which this occurred is activated.

• Selecting Go To Instruction from the shortcut menu in either the thread history or queue
status window. The thread in which the instruction was executed is activated.

When Microengine execution stops for any reason other than a location breakpoint—such as, a
break-on-change occurs, or you click Stop, or a packet count limit was reached by the IX bus
device simulation—the Workbench determines the active thread for each Microengine and does
one of the following:

• If the active thread is already activated in a thread window, the window is simply scrolled to
display the current instruction or source line.

• If the active thread isn’t already activated and there is a thread window in which a different
thread in the same Microengine is activated, then the active thread is activated in that window
if you have specified that you want tracking of the active thread. (A toolbar button in the
thread window allows you to enable or disable this feature.)

• If the active thread isn’t already activated and there are no thread windows in which a different
thread in the same Microengine is activated, then the active thread is not activated.

Thread Window Title Bar

The title displayed on the thread window shows the thread name and Microengine numbers. Also
displayed is the currently executing PC and whether the thread is active or swapped out.

Thread Window Contents

A thread window displays the output of the Assembler as opposed to original source code. The
Assembler output differs from source code in that:

• Symbols are replaced with actual values.

• Instructions may be reordered due to optimization.

• Names of local register are adorned by a prefix, etc.

• If you built a Microengine image from multiple source files by using the #include directive,
then the associated thread window displays the modified output from the combined sources.
2-60 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.7.7 Displaying, Expanding, and Collapsing Macros
(assembled threads only)

By default, all macros are collapsed. A green triangle to the left of the instruction indicates that the
instruction is a fully collapsed macro (see Figure 2-6).

First time thread activation

You can specify whether macro references are fully expanded or collapsed when an assembled
thread is activated for the first time. To do this:

1. On the Debug menu, click Thread Window Options.

The Thread Window Options dialog box appears.

2. Enable or clear the Expand macro
references when an ’assembled’ thread
is opened for the first time.

When you re-activate an assembled thread,
the Workbench restores the state of macro
expansion that existed when the thread was
deactivated. However, when you stop
debugging, the macro expansion state is no longer remembered.

Macro Marker Display

If you don’t see the macro markers you may have to enable them.

To display macro markers:

1. Right-click the thread window.

2. Click Display Macro Markers on the shortcut menu.

Macro Expansion

To expand a collapsed macro:

1. Right-click on the triangle or anywhere on the instruction line.

2. Click Expand Macro One Level, or

Click Expand Macro Fully.

Figure 2-6. Expanding Macros

Collapsed
Expanded One Level

Fully Expanded
Development Tools User’s Guide 2-61

Intel® IXP1200 Network Processor Family
Developer Workbench
Macro Collapse

You can only fully collapse an expanded macro, not one level at a time. To do this:

1. Right-click anywhere on the instruction line.

2. Click Collapse Macro.

Expand and Collapse of All Macros at Once (Assembled Threads Only)

You can expand and collapse all macros at the same time. Do the following:

• To expand all macros one level, click the button.

• To collapse all macros one level, click the button.

Note that this is the only way to collapse a macro one level at a time.

Go To Source

To go to the source line corresponding to a line in a thread window:

1. Place the insertion cursor on the line.

2. On the Debug menu, click Go To Source.

The Workbench:

— Opens a document window with the source file.

— Places the insertion cursor at the beginning of the requested line.

— Scrolls the line into view.

You can also right-click the thread window line and click Go To Source from the shortcut menu.

2.11.7.8 Displaying and Hiding Instruction Addresses

To display or hide the microstore address at which each instruction in a thread window is located:

1. Right-click in the thread window.

2. Select or clear Display Instruction Addresses on the shortcut menu.

This toggles displaying of the addresses of the microstore instructions. You can also do this using
the Thread Window Options dialog box.

If macro references are expanded, instruction addresses are displayed on the generated instruction
lines. If references are collapsed, addresses are displayed on the macro reference lines, with the
address being that of the first instruction generated by that reference.

Note: The displaying of instruction addresses affects all thread windows and is saved as a global option
that is in effect across all projects.

2.11.7.9 About Instruction Markers

During a typical debugging session, thread windows display several types of instruction markers.
An instruction marker displays on the left side of the thread window, in the same location as
bookmarks and breakpoints. The types are summarized in Table 2-2:
2-62 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Assembled Thread

In an assembled thread, if line containing the current instruction is displayed, then the instruction
marker points to it. If the line is hidden because it is in a collapsed macro, then the instruction
marker points to the line containing the collapsed macro.

Compiled Thread

In the list view for a compiled thread, the instruction marker points to the current instruction. In the
source view for a compiled thread, the instruction marker points to the C source line that generates
the current instruction.

2.11.7.10 Viewing Instruction Execution in the Thread Window

During a simulation session, the Pipe Stage marker allows you to view which instruction is inside
each of the five stages of the pipeline. This marker contains up to five stacked arrowheads that
correspond to each of the five pipeline stages. The leftmost arrowhead represents stage 0, and the
rightmost arrowhead represents stage 4. The default is stage 3.

Colors

The arrowheads are color-filled according to the state of the instruction in the pipeline stage. By
default, the Workbench uses:

Black for instruction executing.

Yellow for instruction aborted.

Red for thread stalled.

If a thread has a different instruction in each of the pipe stages, then the thread window will have
five Pipe Stage markers, one on each of the five instructions. Each marker will have a different
arrowhead filled with the appropriate color. For example, if an instruction is executing in stage 3,
then its marker will have the stage 3 arrowhead filled with black with all other arrowheads unfilled.
If an instruction is aborting in stage 2, then its marker will have the stage 2 arrowhead filled with
yellow with all other arrowheads unfilled. If an arrowhead is not color-filled, it means that the
instruction that the marker points to is not in the corresponding pipeline stage.

Same Instruction in More Than One Pipeline Stage

It is possible, due to branching, for the same instruction to be in more than one pipeline stage. In
this case, the Pipe Stage marker on that instruction will have multiple arrowheads filled in, possibly
with different colors. This also means that there will be fewer than five markers in the thread
window.

Table 2-2. Instruction Markers

Marker Name Symbol Function

Swapped Out Marks the instruction to be executed when the thread’s context is
swapped back in.

History Marks the instruction that was executing in pipe stage 3 at the cycle
associated with the thread history window’s cycle marker.

Pipe Stage Marks the instructions executing in each of the 5 pipeline stages.
Development Tools User’s Guide 2-63

Intel® IXP1200 Network Processor Family
Developer Workbench
Context Swapping Issues

When a context swap is in progress, the latter stages of the pipeline have instructions from the
context being swapped out and the early stages have instructions from the context being swapped
in. In this case, the thread windows for both contexts have Pipe Stage markers displayed. However,
the marker for each thread window will show arrowheads only for those stages in which the thread
has instructions.

For example, if a thread only has an instruction in stage 4, then its marker will only show a single
arrowhead, corresponding to stage 4. The other thread marker will show arrowheads for each of the
four stages in which it has instructions.

When a context is completely swapped out, its thread window displays all five arrowheads unfilled
to mark the instruction at which execution will resume when the context is swapped back in.

2.11.8 About Run Control—Simulation Mode

Run Control lets you govern execution of the Microengines. Different control operations are
available from the Workbench depending on whether you are in Simulation or Hardware mode
mode (see Table 2-1).

In Simulation mode, the Workbench provides the controls for running microcode in a dockable
Run Control window.

To display the Run Control window:

1. On the View menu, click Debug Windows.

2. Select or clear Run Control to toggle visibility of the Run Control window, or

Click the button on the View toolbar.

2.11.8.1 Single Stepping
Single stepping has four variations:

Microengine Step Performed on Microengines (see Section 2.11.8.2).

Step Into Performed on a single thread in a compiled thread window only
(see Section 2.11.8.4).

Step Over Performed on one thread (see Section 2.11.8.3).

Step Out Performed on a single thread in a compiled thread window only
(see Section 2.11.8.5).

2.11.8.2 Stepping Microengines

To single step one cycle:

1. Click Step in the Run Control window, or

On the Debug menu, click Run Control, then click Step Microengines, or

Press SHIFT+F10, or

Click the button.
2-64 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
All Microengines

To single step all Microengines, regardless of which threads are running:

• Select the All threads entry from the list under the Step
button in the Run Control window.

A Specific Thread

To single step one cycle of a specific thread:

• In the Run Control window, select the thread’s entry from
the list under the Step button.

2.11.8.3 Stepping Over

Step Over allows you to execute as many machine cycles as it takes complete the current line in the
thread window. To Step Over:

• On the Debug menu, click Run Control, then click Step Over, or

Click the button, or

Right-click in the thread window and click Step Over from the shortcut menu, or

Press F10.

2.11.8.4 Stepping Into (compiled threads only)

Step Into executes as many Microengine cycles as it takes to execute the current line in the thread
window, whether it is a microinstruction line in a list view or a C source line in a source view.
Stepping into is supported only for compiled threads.

To Step Into do the following:

• On the Debug menu, click Run Control, then click Step Into, or

Click the button in the thread window’s toolbar, or

Right-click in the thread window and select Step Into from the shortcut menu.

2.11.8.5 Stepping Out (compiled threads only)

Step Out executes as many Microengine cycles as it takes to complete the thread’s current function
and return to the calling function. Stepping out is supported only for compiled threads.

To step out, do the following:

• On the Debug menu, click Run Control, then click Step Out, or

Click the button in the thread window’s toolbar, or

Right-click in the thread window and select Step Out from the shortcut menu.
Development Tools User’s Guide 2-65

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.8.6 Executing Multiple Cycles

All Microengines

To run for a specified number of cycles in all Microengines, regardless of which threads are
running:

1. Select All threads in the list under the Go for button.

2. Type the number of cycles in the box to the right of the
Go for button.

3. Click Go for.

All Microengines run until the specified thread has executed the specified number of cycles.

A Specific Thread

To run for a specified number of cycles in a specific thread:

1. Select the thread’s entry from the list under the Go for button.

2. Type the number of cycles in the box to the right of the Go for button.

3. Click Go for.

2.11.8.7 Running to a Specific Cycle

To run until a specified cycle count is reached:

1. Type the cycle count in the box under the Go to cycle button.

2. Click Go to cycle.

2.11.8.8 Running to a Label or Microword Address

To run until a specific microcode label or microword address is reached by a thread:

1. Enter the label(s) and/or address(es) into the appropriate boxes.

2. Click Go to label/address.

Thread Specification

To specify the thread(s) for which an operation is effective:

1. Click Set thread filter.

The Thread Filter to Go To dialog box appears.

The dialog box to the right shows all threads selected
(equivalent to clicking Enable all Threads).

2. Select a chip (if more than one); select a thread filter
(if available); save the filter you just created; delete a
saved filter(s); and select a previously saved filter.

3. You can also enable any combination of threads by
selecting or clearing Microengine and Context.

4. Click OK when done to set the filter.
2-66 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
5. Click Go to label/address to run.

Execution stops when any one of the selected threads reaches the target label or microword.

2.11.8.9 Running Indefinitely

To run the microcode indefinitely:

1. On the Debug menu, click Run Control, then click Go, or

Click the button in the Run Control window, or

Click the button on the Debug toolbar, or

Press F5.

Microcode execution stops only if a breakpoint is reached or if you manually stop execution (see
Section 2.11.8.10).

2.11.8.10 Stopping Execution

To stop microcode execution at any time:

1. On the Debug menu, click Run Control, then click Stop, or

Click in the Run Control window, or

Click the button on the Debug menu, or

Press SHIFT+F5.

2.11.8.11 Resetting the Simulation

Reset executes a Transactor sim_reset command, which puts the simulation back to the state after
the original initialization was done. After the reset, the Workbench re-executes the options
specified by the Startup page of the Simulation Options dialog box. However, if you specified
that the Workbench should initialize the model, it doesn’t repeat the chip and memory definition
commands and the init command since they are unnecessary.

To reset the simulation:

1. On the Debug menu, click Run Control, then click Reset, or

Click the button on the Debug toolbar, or

Press CTRL+SHIFT+F12.

2.11.9 About Run Control—Hardware Mode

Run Control in Hardware mode is limited to the following commands:

Hop See Section 2.11.9.1.

Run indefinitely. See Section 2.11.9.2.

Stop See Section 2.11.9.3.

Reset See Section 2.11.9.4.
Development Tools User’s Guide 2-67

Intel® IXP1200 Network Processor Family
Developer Workbench
The dockable Run Control window is not
available in Hardware mode. Run Control
commands are issued using the Debug toolbar or
from the Debug menu. The Debug toolbar appears
when you enter debug mode if it is not already
visible.

2.11.9.1 About Hopping

A Hop lets each Microengine run until a context switch occurs, at which time the Microengines are
placed in the Paused State.

Invocation

A Hop is invoked using the Hop command. A Hop can be invoked only if all of the Microengines
are in a Stopped or Paused State.

Completion

The Hop operation completes when all of the Microengines have executed a context swap and are
paused. A context swap occurs as a result of a ctx_arb microcode command or a ctx_swap optional
token on a microcode command.

Hop and Tight Loop Problem

If a thread executes a tight loop, such as waiting for an inter-thread signal, the thread may not
release its context. If one or more Microengines does not swap its context, the Hop operation fails
and you see a message similar to, “Microengine 0 failed to pause.” If this occurs, you are
not able to execute another Hop until all of the Microengines are either stopped or reset.

Hop While Microengine is in the Run State

If you do invoke a Hop operation while one or more Microengines is in the Running State, you will
see the message, “Hop MicroEngines operation could not be performed because MicroEngine is
active”.

Hop Failures

If a Hop fails, you can determine which Microengines are active by viewing the Thread Status
window from the Workbench. An active Microengine has a black arrow next to the thread ID that is
running. A paused Microengine will have a gray arrow next to the thread ID that is scheduled to
resume execution.

2.11.9.2 Running Indefinitely

To run the microcode indefinitely:

• Click the go button on the Debug toolbar, or

On the Debug menu, click Run Control then select Go, or

Press F5.

Microcode execution stops only if a breakpoint is reached or if you manually stop execution.
2-68 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.9.3 Stopping Execution

To stop microcode execution at any time:

• Click the stop button on the Debug toolbar, or

Click Debug, Run Control, Stop, or

Press SHIFT+F5.

Failure to Stop Problem

When you issue the Stop command, the debug library on the StrongARM core waits for a context
swap in each of the Microengines before completing the command. If the active thread on one or
more Microengines fails to swap, you see the message, “Microengine 0 failed to pause.”
You can determine which threads are still active by viewing the Thread Status window.

2.11.9.4 Resetting the Hardware

You can reset the microcode and hardware by issuing the Reset command, which places each
Microengine in the Reset State.

Simulation Mode

When the Reset command is issued in Simulation mode, each Microengine marks its first thread as
ready to run next.

Hardware Mode

In Hardware mode, the thread that was marked as ready to run at the time of the reset is the one to
run when execution resumes. This may cause the results of a Hop operation or a breakpoint to vary
each time the hardware is reset. You can determine which thread is marked as ready to run by
viewing the Thread Status window.

To perform a Reset:

• On the Debug menu, click Run Control, then click Reset, or

Click the button on the Debug toolbar, or

Press CTRL+SHIFT+F12.

2.11.10 About Breakpoints

In the source view, when you set a breakpoint on a line, a breakpoint marker is displayed on that
line and a breakpoint is set on the first instruction that it generates. In the list view, it is possible to
set breakpoints on multiple lines that are generated by the same C source line. In this case, the
marker that is displayed on the source line in the source view depends on the state of the
breakpoints on the generated lines.

• If all breakpoints have the same status, then the source line marker reflects that status. In this
situation, you can perform a breakpoint action on the source line and the action is performed
on all the breakpoints on the generated lines. For example, if all are disabled, then the
disabled-breakpoint marker is displayed on the source line. If you enable the breakpoint on the
source line, all breakpoints on generated lines are enabled.

• If the breakpoints do not have the same status, then a distinct marker consisting of a red circle
filled with dark gray is displayed on the source line. In this situation, the only supported action
is to enable all the breakpoints by executing an Insert/Remove Breakpoint command.
Development Tools User’s Guide 2-69

Intel® IXP1200 Network Processor Family
Developer Workbench
In an assembled thread, when you set a breakpoint on a line containing a collapsed macro
reference, a breakpoint marker is displayed on that line and a breakpoint is set on the first
instruction that the macro generates. If you then expand that macro reference, the breakpoint
marker is displayed on the generated line.

For situations where there are breakpoints on multiple lines generated by a collapsed macro, the
breakpoint marker and supported actions are the same as described above for the C source line.

Thread Window Action Taken

When a breakpoint is reached during execution:

• The thread window that reached the breakpoint is activated.

• The appropriate instruction is displayed and marked.

• A message box appears (if set) indicating the breakpoint was reached.

To disable the display of this message box, on the Debug menu, select or clear the Report
Breakpoint Hit option.

Conditional And Unconditional

A breakpoint can be unconditional or conditional.

• An unconditional breakpoint on an instruction halts execution when any context in the
Microengine reaches that instruction.

• A conditional breakpoint halts execution only when one of the specified contexts reaches that
instruction.

2.11.10.1 Setting Breakpoints in Hardware Mode

Restrictions

You can set breakpoints in Hardware mode with the following restrictions:

• Each breakpoint you insert causes the Debug library in the StrongARM core to place a
breakpoint routine in unused Control Store space within the Microengines. Consequently, the
number of breakpoints you can insert will be limited by the size of your microcode image.

• You may be prevented from setting a breakpoint on certain instructions because processing the
breakpoint will adversely affect the thread’s execution state or register contents.

If this occurs, you see the following message when you attempt to insert the breakpoint:
“Breakpoint can’t be set at line xx because of Microcode sequencing restrictions”.

If breakpoints are set in multiple Microengines, it is possible to hit more than one breakpoint before
all of the Microengines have paused.

As with Hop processing, if a thread running on a Microengine does not release its context, it will
continue to run. You should check the Thread Status window after a breakpoint has been reached
to determine if any threads are still active.

2.11.10.2 About Breakpoint Markers

When a breakpoint is set on a microword address, the Workbench displays a breakpoint marker in
the left-hand margin of the corresponding line in the thread window. The marker’s appearance
depends on the properties of the breakpoint.
2-70 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The different markers and their meanings are described below:

Unconditional breakpoint Enabled in all threads in Microengine.

Unconditional breakpoint Disabled in all threads in Microengine.

Conditional breakpoint Set and enabled in this thread but not set in all threads in the
Microengine.

Conditional breakpoint Set but disabled in this thread but not set in all threads in the
Microengine.

Conditional breakpoint Not set in this thread but set and enabled in one or more other
threads in the Microengine.

Conditional breakpoint Not set in this thread but set and disabled in one or more other
threads in the Microengine.

 Special breakpoint The states of two or more breakpoints in the generated code are
different, so the corresponding line in the source code gets a
special breakpoint marker. In this situation, the only supported
action is to enable all the breakpoints by executing and
Insert/Remove Breakpoint command.

2.11.10.3 Inserting and Removing Breakpoints

To insert a breakpoint in a Microengine:

1. Open a thread window for one of the threads in the Microengine.

2. Place the insertion cursor on the line where you wish to insert the breakpoint.

3. On the Debug menu, click Breakpoint, then click Insert/Remove, or

Click the button on the Debug toolbar, or

Press F9.

Or:

1. Right-click the line at which you wish to insert the breakpoint.

2. Click Insert/Remove Breakpoint from the shortcut menu.

Conditional Breakpoints

By default, the breakpoint is inserted as unconditional. To make the breakpoint conditional you
must change its properties (see Section 2.11.10.4).

Hardware Mode Restrictions

When debugging in Hardware mode, you cannot set breakpoints on instructions that:

• Are in defer shadows, or

• Are indirect branches.

Breakpoint Removal

To remove a breakpoint in a Microengine:
Development Tools User’s Guide 2-71

Intel® IXP1200 Network Processor Family
Developer Workbench
1. Open a thread window for one of the threads in the Microengine in which the breakpoint is set.

2. Place the insertion cursor on the line at which you wish to remove the breakpoint.

3. On the Debug menu, click Breakpoint, then click Insert/Remove, or

Click the button on the Debug toolbar.

Press F9.

or

1. Right-click the line at which you wish to remove the breakpoint.

2. Click Insert/Remove Breakpoint from the shortcut menu.

The breakpoint is removed in all contexts, regardless of whether it was conditional or
unconditional.

Removal of All Breakpoints

To remove all breakpoints in all Microengines:

• On the Debug menu, click Breakpoint, then click Remove All, or

Click the button on the Debug toolbar.

2.11.10.4 Enabling and Disabling Breakpoints

To enable or disable breakpoints on code locations, do the following:

1. Place the insertion cursor on the line at which you wish to enable/disable a breakpoint.

2. On the Debug menu, click Breakpoint, then click Enable/Disable, or

Click the button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.3.3.4.), or

Press CNTRL+F9.

Or:

1. Right-click the line at which you wish to enable/disable a breakpoint.

2. Click Enable/Disable Breakpoint from the shortcut menu.

To disable all breakpoints:

• On the Debug menu, click Breakpoint, then click Disable All, or

Click the button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.3.3.4.).

To enable all breakpoints:

• On the Debug menu, click Breakpoint, then click Enable All, or

Click the button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.3.3.4.).

2.11.10.5 Changing Breakpoint Properties

To change the breakpoint properties,
2-72 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
1. Open a thread window for one of the threads in the Microengine where the breakpoint is set.

2. Place the insertion cursor on the line where you want to change breakpoint properties.

3. On the Debug menu, click Breakpoint, then click Properties.

The Breakpoint Properties dialog box appears. The dialog box shows the chip, Microengine,
microword address, and thread window line number where the breakpoint is set.

In this dialog box you can:

• Select or clear Enabled to enable or disable the breakpoint.

• Click Unconditional to make the breakpoint unconditional.

• Click Conditional to make the breakpoint conditional (that is, it applies to selected contexts in
the Microengine)

Select the boxes for the contexts for which you want to apply the breakpoint.

• Click Remove in the Breakpoint Properties dialog box to remove the breakpoint.

2.11.11 Displaying Register Contents

When program execution is stopped, you can display register contents directly from instruction
context in a thread window.

To do this:

1. Position the cursor over the register symbol.

2. Wait for a moment.

The Workbench displays the contents of the register assigned to that symbol as a pop-up
window beneath the cursor.

Hex or Decimal Display

To control whether the data is displayed in decimal or hexadecimal format:

1. Right-click in the thread window.

2. Select or clear Hexadecimal Data on the shortcut menu.

2.11.12 About Data Watch

In debug mode, you can monitor the values of simulation states using the Data Watch window.

To do this:

• On the View menu, click Debug Windows, then click Data Watch, or

Click the button on the View toolbar.
Development Tools User’s Guide 2-73

Intel® IXP1200 Network Processor Family
Developer Workbench
This toggles visibility of the Data Watch window. The
window contains a list with three columns:

Name Contains the name of the state
being watched.

Value Displays the state’s value.

Description Contains information such as
which chip, Microengine or thread the watch pertains to.

Values Updates

Watch values are updated whenever microcode execution stops. To force updating the values at
other times, click Refresh.

2.11.12.1 Data Watches in C Thread Windows

In C thread windows, data watches can be set for C variables by right-clicking on the variable in
the thread window and selecting Set Data Watch for:<variable_name>.

• When the variable is in scope its value appears in the Data Watch window.

• When the variable is out of scope, the phrase out of scope appears in the Value field for the
watched variable.

• Variables that contain C structures are displayed hierarchically, with the member variables
displayed on separate lines in the watch window. You can expand and collapse the display of
the member variables.

Note: Not all variables can have data watches set. Many variables are optimized away by the Compiler
and the Compiler does not provide any debug data for those variables. The workbench doesn’t
know that the text you select is a variable if it doesn’t have any debug data. If this is the case, the
Set Data Watch option on the shortcut menu is unavailable.

2.11.12.2 Entering a New Data Watch

To enter a new data watch:

1. Right-click anywhere in the Data Watch window.

2. Click New Watch from the shortcut menu, or

Double-click the blank entry at the bottom of the data watch list.

3. Type the name of the state you want to watch.

Array States

For states that are arrays, such as SDRAM, you must enter a range of array locations to be watched.
The format for the range is the same as that for the Transactor:

[m] to watch a single location of an array. For example, sram[1] watches location
one in SRAM.

[m:n] to watch locations m through n inclusive. For example, sdram[0:3] watches
locations 0 through 3 in SDRAM. And since a data watch range can be specified
in ascending or descending order, you could specify this watch as sdram[3:0].

[m:+n] to watch location m plus the n locations following it. For example, sdram [5:+3]
watches locations 5 through 8.
2-74 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
FIFO Elements

An element that is a FIFO can be watched either as an array or a FIFO.

• Watching such an element as an array shows the locations in physical order.

• Watching it as a FIFO shows the locations in FIFO order.

To watch as a FIFO, use a “[[” instead of “[” to begin the range qualifier.

Bit Range

You can specify a bit range to be watched. The format for a bit range is:

<m> to watch only bit m of a state. For example, f0.ctl.p0_addr<12> watches only bit
12 of the stage 0 address.

<m:n> to watch bits m through n of a state, with m being greater than n. For example:

sdram[0:3]<12:10> watches bits 12 through 10 of sdram locations 0 through 3.

Segments

Data watch values are broken into 32-bit segments. For example:

A 64-bit value displays as 0xcafecafe 0xcafecafe.

Save

Data watches are saved with project debug settings.

2.11.12.3 Watching Control and Status Registers and Pins

The Workbench recognizes the control and status register (CSR) and pin names described in the
IXP1200 Network Processor Programmer’s Reference Manual. For example, you can enter the
name IREQ to watch the FBI Interrupt Register. If your project contains multiple chips, you are
prompted to select which chip’s register to watch. Similarly, if the register is Microengine-based,
you are prompted to select which Microengine register to watch.

Named Elements

To add a data watch by selecting a named element from a list:

1. Click Add Watch or right-click in the Data Watch window and click Add Watch from the
shortcut menu.

The Add Data Watch dialog box appears.

2. Click the category of named element that you want listed.

Table 2-3. Data Watch Values

Variable Name Inserted In the Name Column Comments

sim.error_count Watch a simulation state variable. Not available on real
hardware.

fbi.scratch_pad[0:3] Watch only the first four words of fbi.scratch_pad.

sram[0:10] Watch an array of 11 values each 32 bits long.

sram[0:10]<3:0> Watch an array of 11 values, only the first four bits.

sdram[20:22] Watch an array of 3 values each 64 bits long.
Development Tools User’s Guide 2-75

Intel® IXP1200 Network Processor Family
Developer Workbench
A list of recognized element names appears on the right.

3. In the list, select one or more elements you want to watch.

Note: Use the left mouse button in combination with the SHIFT or the CTRL keys to select multiple
elements.

4. Click Add Watch to have a watch added for each selected element.

If you select from the list of MicroEngine CSRs, you are prompted with a dialog box to select
in which Microengine you want the watch to be done. Similarly, if you select from a list of
chip-specific elements, such as the Memory CSRs, and your project contains multiple chips,
you are prompted to select a chip.

5. When you are finished adding your watches, click Close.

Note: In Hardware mode, you cannot create a Data Watch for the Pins category as well as certain CSRs.

2.11.12.4 Watching General Purpose and Transfer Registers

To watch general purpose registers (GPRs) and transfer registers whose symbols are defined in
your microcode:

1. Open the thread window containing the microcode.

2. Right-click the register name.

3. Click Set Data Watch for: from the shortcut menu.

You can also add a watch by selecting a register name from a list:

1. Click Add Watch or right-click in the Data Watch window and click Add Watch from the
shortcut menu.

The Add Data Watch dialog box appears.

2. Select the chip and Microengine in which you want to watch registers.

3. Select whether you want GPRs listed by selecting or clearing List GPRs.

4. Select whether you want transfer registers listed by selecting or clearing List Transfer Regs.

Based on your selections, the relative registers are listed in the Relative registers list box and
the absolute registers are listed in the Absolute registers list box.

5. Select one or more registers from either or both lists and click Add Watch to add watches for
the selected registers.

If you select relative registers, then you must specify which threads you want to watch by
selecting or clearing the four check boxes beneath the relative registers list.

6. When you are finished adding your watches, click Close.

2.11.12.5 Deleting a Data Watch

To delete a data watch:

• Right-click the watch to be deleted in the Data Watch window, and click Delete Watch from
the shortcut menu, or

Select the watch to be deleted, then, on the Debug menu, click Data Watch, then click Delete,
or
2-76 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Select the watch to be deleted and press DELETE.

2.11.12.6 Changing a Data Watch

To change a data watch:

1. Right-click the watch to be changed in the Data Watch window and select Edit Name on the
shortcut menu, or

Select the data watch whose name you want to change, then, on the Debug menu, click Data
Watch, then click Edit Name, or

Double-click the name to be changed.

2. Type the state name.

3. Press ENTER.

2.11.12.7 Changing the Data Watch Radix

To select whether watch values are displayed in decimal or hexadecimal:

1. Right-click anywhere in the Data Watch window.

2. Click Hexadecimal Data on the shortcut menu to display values in hexadecimal format or
clear it to display in decimal format.

2.11.12.8 Depositing Data

To change the value of a simulation state in the Data Watch window:

1. Right-click the value to be changed and click Edit Value on the shortcut menu, or

Select the data watch whose value you want to change, then, on the Debug menu, click Data
Watch, then click Edit Value, or

Double-click the value to be changed.

2. Type the new value in either hexadecimal or decimal format and press ENTER. Hexadecimal
values must be preceded by a ‘0x’.

Note: In Hardware mode, you cannot change the contents of the FIFO elements and certain CSRs.

2.11.12.9 Breaking on Data Changes

In Simulation mode, you can halt microcode execution when a state’s value changes.

A red dot (the breakpoint symbol) appears before each state on which a break-on-change is set.

You can set and remove a break-on-change on aggregate state (an array or FIFO) or on its
individual elements. Setting or removing a break-on-change on an aggregate state affects all its
elements. If some but not all of an aggregate state’s elements have break-on-change set, then a half-
filled breakpoint symbol is displayed on the aggregate state.

When the value changes for a state on which a break-on-change is set, microcode execution halts
and a message box is displayed containing the state name along with its old and new values.

Note: Breaking on data changes is not supported in Hardware mode.
Development Tools User’s Guide 2-77

Intel® IXP1200 Network Processor Family
Developer Workbench
Set

To break execution on a changed data value:

1. Right-click the name or value of the state and click Set Break On Change on the shortcut
menu, or click the name or value of the state.

2. On the Debug menu, click Data Watch, then click Set Break On Change.

Remove

To remove a break-on-change:

1. Right-click the name or value of the state and click Remove Break On Change on the
shortcut menu, or click the name or value of the state.

2. On the Debug menu, click Data Watch, then click Remove Break On Change.

2.11.13 About Memory Watch

In debug mode, you can
monitor the values of
SDRAM, SRAM, and
Scratchpad memory
locations using the Memory
Watch window.

Visibility

To toggle visibility of the
Memory Watch window:

• On the View menu, click Debug Windows, then click Memory Watch, or

Click the button on the View toolbar.

Chip Selection

You select which chip’s memory is watched using the list in the upper left
corner of the Memory Watch window. Chip selection is synchronized with
chip selection in the History, Thread Status and Queue Status windows.

Subwindows

The Memory Watch window comprises three subwindows,
one for each memory type. Each memory type has a check box
at the top of the Memory Watch window to control the
visibility of the subwindow.

Each subwindow contains a multicolumn tree. The first column contains the range of the
location(s) being watched, e.g. sdram[0:3]. The values of the locations are displayed in columns 1
through n. The number of value columns varies with the width of the Memory Watch window,
with a minimum of one value column.
2-78 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Endianness

The Display big endian longwords check box enables SDRAM
values to be displayed in big-endian or little-endian format.

Values Updates

Watch values are updated whenever microcode execution stops. To force an update of
the values at other times, click Refresh at the top of the Memory Watch window.

2.11.13.1 Entering a New Memory Watch

To enter a new memory watch:

1. Right-click anywhere in the name or value column of the
Memory Watch subwindow (either Sram. Sdram, or Scratchpad)
and click New Watch on the shortcut menu, or

Double-click the blank entry at the bottom of the data watch list
for that subwindow.

2. Type the range of memory locations you would like to watch.

The format for the range is the same as that for the Transactor:

[m] To watch a single location. For example, sram[1] watches location one in
SRAM.

[m:n] To watch locations m through n inclusive. For example, sdram[0:3] watches
locations 0 through 3 in SDRAM. And since a range can be specified in
ascending or descending order, you could specify this watch as sdram[3:0].

[m:+n] To watch location m plus the n locations following it. For example, sdram
[5:+8] watches locations 5 through 8.

3. Optionally, you can specify a bit range to be watched. The format for a bit range is:

<m> To watch only bit m of a state. For example, sdram[0]<12> watches only bit 12
of the sdram location 0.

<m:n> To watch bits m through n of a state, with m being greater than n. For example,
sdram[0:3]<12:10> watches bits 12 through 10 of sdram locations 0 through 3.

Note: SRAM and Scratchpad locations are 32-bit values, while SDRAM locations are 64-bit values.

2.11.13.2 Adding a Memory Watch

To add a memory watch:

1. Click Add Watch at the top of the Memory Watch window, or

Right-click in the name or value column window and click Add Watch on the shortcut menu.

The Add Memory Watch dialog box appears.
Development Tools User’s Guide 2-79

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Select Sram, Dram, or Scratchpad under Select the type of
memory.

3. Type the range of addresses to be watched in the Select the
range... box.

You can also specify a range of bits to be watched. By
default, the entire location is watched.

4. Click Add Watch.

When you are finished adding your watches,

5. Click Close.

2.11.13.3 Deleting a Memory Watch

To delete a memory watch:

1. Right-click the watch to be deleted in the Memory Watch window.

2. Click Delete Watch on the shortcut menu.

or

1. Select the watch to be deleted.

2. Press DELETE.

2.11.13.4 Changing a Memory Watch

To change a memory watch:

1. Right-click the watch to be changed in the Memory Watch window and click Edit Address
on the shortcut menu, or

Double-click the mouse button on the watch to be changed.

2. Edit the address range (and bit range, if applicable).

3. Press ENTER.

2.11.13.5 Changing the Memory Watch Address Radix

To select whether memory addresses are displayed in decimal or hexadecimal:

1. Right-click anywhere in the Memory Watch window.

2. Click Hexadecimal Addresses on the shortcut menu to display addresses in hexadecimal
format or clear it to display in decimal format.

2.11.13.6 Changing the Memory Watch Value Radix

To select whether memory values are displayed in decimal or hexadecimal:

1. Right-click anywhere in the Memory Watch window.

2. Click Hexadecimal Data on the shortcut menu to display values in hexadecimal format or
clear it to display in decimal format.
2-80 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.13.7 Depositing Memory Data

Simulation Mode

In Simulation mode, you can change the value of any entry in the Memory Watch window.

Hardware Mode Restrictions

In Hardware mode, you can change only those entries that were added as a single memory location.
You cannot change any value that is displayed as a result of adding a range of memory locations.

Values Changes

To change the value of a memory location that you are watching:

1. Right-click the value to be changed and click Edit Value on the shortcut menu, or

Double-click the value to be changed.

2. Type the new value in either hexadecimal or decimal format.

Hexadecimal values must be preceded by a ‘0x’.

2.11.14 About Execution Coverage

The code window in the Execution Coverage dialog box mimics the display in a thread window.
That is, for a Microengine that contains C code, you can select a source view or a list view. In the
source view you can select which source to display. In the source view, source lines show the sum
of the number of times each generated instruction was executed. For example, if a source line
generates three instructions and each instruction was executed 10 times, then the execution count
displayed on that source line would be 30. Similarly, for assembled threads, the execution count for
a collapsed macro reference is the sum of the execution counts for all instructions generated by the
macro. The units for the horizontal axis on the bar graph remain instruction addresses.

To display the Execution Coverage dialog box (see Figure 2-7):

1. Stop simulation (if necessary).

2. On the Simulation menu, click Execution Coverage.

The Execution Coverage dialog box appears.
Development Tools User’s Guide 2-81

Intel® IXP1200 Network Processor Family
Developer Workbench
3. If your project contains multiple chips, select the chip whose coverage data you wish to view
from Select a chip list in the upper left corner of the dialog box.

4. Select a Microengine from the Select a Microengine list.

The microcode that is loaded in that Microengine appears in the code window. This display is the
same as is shown in the thread window.

Execution Count

The number to the left of each instruction displays the number of times each instruction was
executed. The background is color-coded to indicate a range of execution counts. (see
Section 2.11.14.1).

Bar Graph

At the bottom of
the dialog box is
a bar graph that
shows the
execution
coverage. The
instruction addresses are represented along the horizontal axis, and the execution counts are
represented by the vertical axis. The bars are color-coded using the same colors and ranges as in the
code window.

Figure 2-7. The Execution Coverage WIndow
2-82 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
By default, the execution counts are the total for
all contexts in the Microengine. You can see the
execution counts for any subset of contexts by
selecting or clearing the four check boxes
beneath the Microengine list.

The execution count for a collapsed macro
reference is the sum of the execution counts of all
instructions generated by the macro.

2.11.14.1 Changing Execution Count Ranges and Colors

By default, the colors and ranges for execution counts are:

Blue Instruction was executed less than 10 times.

Black Instruction was executed between 10 and 50 times, inclusive.

Red Instruction was executed more than 50 times.

To change the colors and ranges, in the Execution Coverage, click Customize.

2.11.14.2 Displaying and Hiding Instruction Addresses

To toggle displaying and hiding instruction addresses in the code window:

1. Right-click in the microcode window.

2. Select Display Instruction Addresses on the shortcut menu to display the addresses or clear
to hide the addresses.

2.11.14.3 About Instruction Markers

To synchronize viewing between the code window and the bar
graph, the Workbench displays an instruction marker. The
‘current’ instruction is marked in the code window by a
horizontal green arrow in the leftmost gutter.

In the bar graph window, it is marked by a black vertical marker on the
horizontal axis.

Marker Movement

Above the code window are four buttons that move the instruction marker:

Moves the marker to the next instruction that has an execution
count of 0.

Moves the marker to the previous instruction that has an
execution count of 0.

Address

Execution count (>50)

Macro expansion

Execution count (<10)

Execution count (10<>50)
Development Tools User’s Guide 2-83

Intel® IXP1200 Network Processor Family
Developer Workbench
 Moves the marker to the next instruction that has an execution
count that is greater than 0.

 Moves the marker to the previous instruction that has an
execution count that is greater than 0.

You can also double-click an instruction in the code window or an address in the bar graph window
and the marker moves to that instruction.

2.11.14.4 Miscellaneous Controls

Other controls in the Execution Coverage dialog box are:

Expand macros. See Section 2.11.7.7.

Collapse macros. See Section 2.11.7.7.

Toggle views. See Section 2.11.7.4.

Select the source file to view.

2.11.14.5 Scaling the Bar Graph

To the right of the bar graph window are four buttons for scaling. They are:

Horizontal zoom out.

Horizontal zoom in.

Vertical zoom out.

Vertical zoom in.

2.11.14.6 Resetting Execution Counts
By default, execution counting starts at the first simulation cycle. If you have initialization code
that you don’t want included in the counts:

1. Run the simulation until it completes the initialization.

2. On the Simulation menu, click Execution Coverage.

The Execution Coverage dialog box appears.

3. Click Reset Counts.

Execution counting restarts from the cycle at which you clicked Reset.

2.11.15 About Performance Statistics

The Workbench provides the ability to gather and display statistics on simulation performance.
Statistics gathering is available only in Simulation mode.

2.11.15.1 Displaying Statistics

To display a Statistics Summary:
2-84 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
1. Stop debugging (if necessary).

2. On the Simulation menu, click Statistics.

The Statistics dialog box appears.

3. Click the Summary tab.

The Summary page shows the percentage of time that each Microengine and memory unit is
active and the rate that this activity represents.

4. Click the Microengine tab.

The Microengine statistics page contains a multicolumn hierarchical tree displaying the statistics.
The first column identifies the component for which the statistics apply. The next four columns
show the percentage of time that the component was executing, aborted, stalled, idle, and swapped
out. You can expand and collapse the tree by clicking on the + sign to the right of a component, or
by double-clicking on the component.

2.11.15.2 Resetting Statistics

By default, statistics are gathered starting at cycle 1 of a simulation. However, you can reset the
statistics at any time. The statistics are then gathered from the current cycle forward.

To reset statistics, on the Simulation menu, click Reset Statistics.

2.11.16 About Thread and Queue History

Thread and queue history is a powerful feature that enables you to look at the status of all 24
threads and all SDRAM and SRAM queues in a chip at the same time. It provides a high level view
of how your microcode is executing, enabling you to quickly locate performance bottlenecks.

Threads and queues are displayed on a timeline that represents the number of cycles executed. A
thread’s history is depicted by line segments that change color depending on whether an instruction
is executing or aborted, if the thread is stalled, or the Microengine is idle. A queue history is
depicted by vertical bars whose height indicates how many entries are in the queue at a given cycle.
You select which chip’s history is displayed using the box in the upper left corner of the History
window. Chip selection is synchronized with chip selection in the Thread Status, Queue Status
and Memory Watch windows.
Development Tools User’s Guide 2-85

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.16.1 Displaying the History Window

• On the View menu, click Debug Windows, then select History, or

Click the button on the View toolbar.

This toggles visibility of the History window. You must be in debug mode to view history.

Hardware Debugging Restrictions

When debugging in the hardware configuration, thread and queue history is not supported.

2.11.16.2 Scaling the Display

To control the horizontal scale for the history display, use the zoom in and zoom out
buttons.

2.11.16.3 Displaying Thread History Lines

You can control whether or not a specific thread’s history line is displayed. This allows you to limit
the display to only those threads that you are interested in. By default, all history lines are
displayed.

To hide a thread’s history line:

1. Right-click the thread’s name or its history line.

2. Click Hide ‘threadname’ on the shortcut menu, where ‘threadname’ is the name of the thread
you clicked on.

You can also right-click the thread’s name in ThreadView and click Hide Thread History on
the shortcut menu.

To redisplay a hidden thread’s history:

1. Right-click in the thread history subwindow.

2. Click Display Thread then click the thread’s name on the shortcut menu.

You can also right-click the thread’s name in ThreadView and click Display Thread History
on the shortcut menu.

To get details about a thread’s history, position the cursor over the
history line and wait for a moment. The Workbench displays the
cycle count, PC, and the instruction state in a pop-up window
beneath the cursor.

2.11.16.4 Displaying Code Labels

The thread history window supports the viewing of microcode labels along a thread’s history line.
This helps in determining what code is being executed during a certain cycle.

To specify which code labels to displayed, do the following:

1. In the History window, click Customize.

The Customize Thread History dialog box appears.
2-86 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Click the Code Labels tab.

3. In the Select Microengine box is a list of all the Microengines in the project. Click a
Microengine to display all the labels in the microcode associated with that Microengine.

:

4. In the All labels in MicroEngine’s microcode box, select the labels to be displayed in the
History window by clicking the label, and then clicking Add.

The Labels to be displayed in thread history box lists all the code labels you have selected to
be displayed on the selected Microengine’s history lines.

5. Continue this procedure for each Microengine for which you want code labels displayed.

6. To delete a label from the display list, select the label in the rightmost box and then click the
 button.

7. Click OK to close the Customize Thread History dialog box.

Code Labels for a Thread

Displaying code labels on a particular thread's history line is controlled via shortcut menus in the
History window.

• To display code labels for a thread, right-click on the thread name or on its history line and
check Display Code Labels for ‘threadname’ on the shortcut menu, where ‘threadname’ is
the name of the thread you clicked on.

• To hide code labels for a thread, right-click and uncheck Display Code Labels for
‘threadname’.

Code Labels for a Microengine

Whether or not code labels are displayed on a particular Microengine’s history line is controlled by
shortcut menus in the History window.

To display or hide code labels for a Microengine:

1. Right-click the thread name or on its history line.

2. Click Display Code Labels for.

3. Click the Microengine you wish to display or hide code labels.

Code Labels

You separately control whether or not code labels are displayed at all.

• Right-click and select Enable Code Label Display on the shortcut menu.

The Workbench displays code labels for those threads that you have selected as having code
labels displayed.

• If you right-click and clear Enable Code Label Display on the shortcut menu, the Workbench
hides all code labels.
Development Tools User’s Guide 2-87

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.16.5 About Reference History

The Thread History window supports the viewing of reference history lines underneath the
history lines of the thread issuing the reference.

The reference line starts at the cycle when the reference is issued and ends at the cycle when the
reference’s signal is consumed by the thread. If the thread doesn’t request a signal, then the
reference line ends at the cycle when processing is complete.

On a reference line, the Workbench displays markers at the cycles when
reference events occur.

X Displayed at the cycle when the reference is put into the
queue of the unit being referenced.

Tick mark Displayed at the cycle when the unit removes the
reference from the queue.

Diamond Displayed at the cycle when the unit finishes processing
the reference.

Up-arrow Displayed at the cycle when the unit signals the thread
that the reference is completed.

Dotted line Shown from the reference line to the thread’s history line at the cycle when the
thread consumes the signal.

Thick vertical squiggle
Displayed when a reference’s signal has been superseded by another reference’s
signal before the signal was consumed. When this occurs, if the signalled thread
eventually consumes the signal, it will be consuming the superseding reference’s
signal, not the original reference’s signal.

Interthread references are displayed in two sections:

• The reference creation section is displayed underneath the signalling thread, with the name of
the signalled thread shown above the reference line.

• The reference consumption section is displayed underneath the signalled thread, with the name
of the signalling thread shown above the reference line.

To get details about a reference:

• Position the cursor over the reference line and wait for a moment.

The Workbench displays the reference command, the address it is accessing, and the number
of longwords being referenced in a pop-up window beneath the cursor.

For details on how to customize the reference line colors, see Section 2.11.16.7.

Only SDRAM, SRAM, interthread and IX Bus Interface references are available.

2.11.16.6 Displaying References

Whether or not references are displayed on a particular thread’s history line is controlled via
shortcut menus in the History window.

To display references for a thread:

1. Right-click the thread name or its history line.

Reference Events
2-88 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Click Display References for ‘threadname’ on the shortcut menu, where ‘threadname’ is the
name of the thread you clicked on. To hide references for a thread, right-click and clear
Display References for ‘threadname’.

To display or hide references for all threads in a Microengine:

• Right-click in the thread history area and click Display References for, then click
MicroEngine n on the shortcut menu, where n is the number of the Microengine for which
you want all thread references displayed.

• To hide references for all threads in a Microengine, right-click in the thread history area and
click Hide References for, then click Microengine n.

You separately control whether or not references are displayed at all.

• If you right-click and click Enable Reference Display on the shortcut menu, the Workbench
displays references for those threads that you have selected as having references displayed.

• If you right-click and clear Enable Reference Display on the shortcut menu, the Workbench
hides all references.

2.11.16.7 Changing Thread History Colors

By default, the Workbench displays a thread history line in:

 if an instruction is executing

if it is aborted

if the thread is stalled

 if the Microengine is idle

Reference lines are displayed in black.

To change the colors for the thread history and reference lines, do the following:

1. In the thread history window, click Customize, or

On the Simulation menu, click Simulation Options.

2. Click the Colors tab.

3. Click the color button next to the item whose color you want to change.

4. Select the new color.

5. Click OK after specifying the colors you want.

Note: For consistency, the execution state colors also apply to the instruction markers that are displayed
in the thread windows.

2.11.16.8 Displaying the History Legend

To see a legend of the thread history colors and the reference event markers, click the Legend
button in the History window. The modeless History Legend dialog box appears.
Development Tools User’s Guide 2-89

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.16.9 Tracing Instruction Execution

To view the instruction that a thread was executing at a given cycle count,

1. Right-click the thread’s history line at the cycle count in which you are interested.

2. Click Go To Instruction on the shortcut menu.

This opens or activates the thread's code window and scrolls it to show the requested instruction.

• If the requested instruction is displayed, the history instruction marker appears on the
appropriate instruction line.

• If the requested instruction is not displayed because it is in a collapsed macro reference, the
history instruction marker is displayed on the line with the macro reference.

• If the thread is compiled and the source view is being displayed, the history instruction marker
is displayed on the line that generates the instruction.

• If the thread is compiled and the list view is being displayed, the history instruction marker is
displayed on the appropriate instruction line.

The thread history window contains a cycle marker that marks a particular
cycle count using a vertical dashed line cutting across all displayed history
lines (see image at left). The cycle count at the cycle marker’s position is
reported in the box located between the right and left green arrow buttons in
the History window.

There are several ways to move the cycle marker:

• To immediately move the cycle marker to a given cycle count, double-
click the History window at the cycle where you want the marker.

• To drag the cycle marker, press the left mouse button on the marker, drag
to the desired cycle and release the mouse button. As you drag, the marker
snaps to cycle count positions and the cycle count is displayed.

• To move the cycle marker to the next cycle, click the button labeled with
the green right arrow.

• To move the cycle marker to the previous cycle, click the button labeled
with the green left arrow.

If a thread’s code window is opened, movement of the cycle marker scrolls the window to show the
instruction being executed by the thread at that cycle count. The instruction is marked with a green
arrow in the window's gutter. This enables you to trace past program flow by going to a specific
cycle and incrementing the cycle marker.

2.11.16.10 About Queue History

You can control whether or not a specific queue’s history is displayed. This allows you to limit the
display to only those queues that you are interested in. By default, all queues are displayed.

Hide

To hide a queue’s history:

1. Right-click the queue’s name or its history.
2-90 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Click Hide ‘queuename’ on the shortcut menu, where ‘queuename’ is the name of the queue
you clicked on.

Display

To display or redisplay a hidden queue’s history:

1. Right-click in the queue history subwindow

2. Click Display Queue then click the queue’s name on the shortcut menu.

Queue’s Contents

To get information about a queue’s contents:

1. Position the cursor over a vertical bar and wait for a second.

2. The Workbench displays the number of entries in the queue and the size of the queue in a pop-
up window beneath the cursor.

Queue’s Contents in Detail

To get detailed information about the contents of the queues:

• Right-click and click Show Queue Status on the shortcut menu.

The Queue Status window appears showing details of all the queues. (See Section 2.11.17 for
more information on the Queue Status window.)

2.11.16.11 About History Collecting

You can control whether or not history data is collected. Not collecting history data improves
simulation performance by approximately 10 percent.

Disable

To disable history collecting,

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the History tab.

3. Clear Enable history collecting.

Enable

To collect history:

1. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

2. Click the History tab.

3. Select Enable history collecting.

4. Select:

a. Collect Thread History, or

b. Collect Queue History, or
Development Tools User’s Guide 2-91

Intel® IXP1200 Network Processor Family
Developer Workbench
c. Both, depending on what history you want collected.

5. Specify how many cycles of history you want collected by typing a number in the
corresponding box.

6. If you want to have history collected throughout the simulation, click Always collect.

7. If you want to run the simulation for a time before starting to collect history, click Start
collecting at cycle and type the cycle count at which you want collecting to start.

8. If you want the simulation to stop after the history has been collected, select Stop simulation
after collecting the specified number of cycles.

Note: These options must be specified before you start debugging. If you are already in debug mode,
these selections are disabled.

2.11.17 About Queue Status

The queue status window provides current and historical information on the contents of the
SDRAM, SRAM and IX Bus Interface queues, with one subwindow for each queue type. Each
queue type has an associated check box at the top of the queue status window to control whether or
not it’s subwindow is visible.

• To display the Queue Status window, on the View menu, click Debug Windows, then click
Queue Status, or

Click the button on the View toolbar.

The Queue Status window appears (see Figure 2-8).

Select which chip’s queue status is displayed using the list in the upper left corner. Chip selection is
synchronized with chip selection in the Memory Watch, Thread Status and History windows.

The number of entries in the queue is displayed for each queue in the SDRAM, SRAM and IX Bus
Interface.

Figure 2-8. The Queue Status Window
2-92 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
To examine the references that are in a queue, expand the queue’s tree item by clicking on the +
symbol or double-clicking on the item. For each reference in the queue, the Workbench displays:

• The type of reference.

• The address being referenced.

• Which thread made the reference.

• The PC of the instruction which made the reference.

• The cycle count at which the reference was made.

• The number of longwords being referenced.

• Whether a signal will be generated when the reference is completed.

In addition, the SDRAM references show:

• Whether the reference is chained

• The destination FIFO address (if applicable).

Instruction Cross-reference

If you right-click a reference and click Go To Instruction on the shortcut menu, click the
Workbench opens the appropriate thread window and displays the microcode instruction that
issued the reference. A purple marker in the left margin of the thread window marks the instruction.
The reference is also highlighted with the same marker in the queue status window.

2.11.17.1 About Queue Status History

When the simulation stops, the queue status window is automatically updated to show the current
queue contents. If you enabled collecting of queue history, you can also review the contents of the
queues for previously executed cycles.

To do this:

• Click the right and left arrows at the top of the queue status window.

The number between the arrows shows the cycle count at which the queue contents occurred.
This historical cycle count is synchronized with the corresponding cycle count in the History
window. Changing either one also changes the other. The allows you to move the graphical
cycle marker in the History window to a specific cycle and view the queue contents in relation
to the thread history.

2.11.17.2 Setting Queue Breakpoints

You can set a breakpoint on a queue to have simulation stop when the queue rises to or falls below
a specified threshold.

To do this:

1. Right-click the queue name and click Insert/Remove Breakpoint on the shortcut menu.

The Queue Breakpoint dialog box appears.

2. By default, the breakpoint is enabled and triggers when the queue rises to the default threshold
for the queue. You can change the trigger threshold by changing the number in the Threshold
box.
Development Tools User’s Guide 2-93

Intel® IXP1200 Network Processor Family
Developer Workbench
3. By selecting or clearing the check boxes, you can change the breakpoint properties.

When a breakpoint is set and enabled on a queue, a solid red breakpoint symbol is displayed to the
right of the queue name.

To disable a breakpoint:

1. Right-click the queue name.

2. Click Enable/Disable Breakpoint on the shortcut menu.

A disabled breakpoint is indicated by an unfilled breakpoint symbol.

To enable a breakpoint:

1. Right-click the queue name.

2. Click Enable/Disable Breakpoint or Insert/Remove Breakpoint on the shortcut menu.

To remove an enabled breakpoint:

1. Right-click the queue name.

2. Click Insert/Remove Breakpoint on the shortcut menu.

To change a breakpoint’s properties:

1. Right-click the queue name.

2. Click Breakpoint Properties on the shortcut menu.

The Queue Breakpoint dialog box reappears where you can change properties or click
Remove to remove the breakpoint.

2.11.18 About Thread Status

The Thread Status window provides static or snapshot information on the status of each thread in
a selected chip in your project. For each thread, the following information is displayed:

— Current instruction address.

— The list of events for which the thread is waiting.

— The list of events that have been signaled to the thread.

• To display the Thread Status window, on the View menu, click Debug Windows, then click
Thread Status (see Figure 2-9), or

Click the button the View toolbar.
2-94 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
In each Microengine, an arrow appears to the left of the thread that is currently executing or that is
scheduled to resume execution when the Microengine resumes execution.

Select which chip’s status is displayed using the box in the upper left corner of the Thread Status
window. Chip selection is synchronized with chip selection in the memory watch, queue status and
history windows.

View

You can control which threads are displayed by expanding and collapsing the Microengine entries
in the status tree. You can expand the tree so that all threads of the selected chip are displayed by
right-clicking and selecting Expand All on the shortcut menu.

Update

The status display is updated whenever Microengine execution stops, for example, when you stop
execution or when you hit a breakpoint.

Polling

You can also have the Workbench poll the threads and update the status at regular intervals. To
enable or disable thread status polling and to change the polling interval:

1. On the Debug menu, click Status Polling, or

Right-click within the Thread Status window and click Status Polling on the shortcut menu.

The Status Polling dialog box appears.

2. Select Poll thread status to enable polling or clear it to disable polling.

Note: You can also enable and disable polling in the Thread Status dialog box by selecting or clearing
Enable Polling.

Polling Interval

If you enable polling, specify the polling interval by:

• Typing the number of seconds between polls in the Polling interval (sec) box. You can also use
the spin controls to increment or decrement the number in the box.

The value that you type in must be an integer.

Figure 2-9. The Thread Status Window
Development Tools User’s Guide 2-95

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.19 About IX Bus Device Simulation

The Workbench provides simulation of IX Bus devices as well as simulation of network traffic. To
simulate devices and network traffic you need to:

1. Configure the devices on the IX Bus (or busses if you have multiple IXP12nn chips).

This involves specifying how many devices are on the bus as well as the characteristics of each
device.

2. Create one or more data streams (see section Section 2.11.20).

These streams can consist of Ethernet frames or ATM cells.

3. Assign one or more data streams or a network traffic DLL to each device port that you want to
receive network traffic.

4. Specify the options under which you want the traffic simulation to operate.

While you are running your simulation, you can observe the status of the IX Bus and its devices in
the IX Bus Device Status window (see Section 2.11.23.4).

2.11.19.1 Configuring IX Bus Devices

To configure the devices on the IX Bus:

1. On the Simulation menu, click IX Bus Device Simulator, then click Devices and Ports.

The IX Bus Devices and Ports dialog box appears.

2. If there is more than one IX Bus in your system configuration, select the IX Bus you wish to
configure in the Select an IX bus box.

Adding a Device

To add a device to the selected IX Bus:

1. Click Add Device.

The Add IX Bus Device dialog box appears.

2. Type the number of ports that the device supports and optionally enter a brief device
description, for example, OctalMAC.

Setting Default Port Characteristics

You can also customize the default port characteristics. These characteristics, in the Default port
characteristics area, are:

Data rate (Mbits/sec) Specifies the rate at which data is taken from the network and
inserted into the port’s receive (Rx) buffer and the rate at which
data is taken from the port’s transmit (Tx) buffer and put onto
the network.

Interpacket gap (nsec) Specifies the amount of time between packets when receiving
packets from and transmitting packets to the network.

Number of pruned bytes Specifies the number of bytes of packet data that is normally
processed by the device and not passed to the IXP12nn, such as
an Ethernet preamble.
2-96 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Receive buffer size Specifies the number of bytes in the receive buffer. The receive
buffer holds the data received from the network until the
IXP12nn reads it from the port.

Receive ready threshold Specifies number of bytes that must be in the port’s receive
buffer in order for the port to assert its receive ready (RxRdy)
bit. This signals the IXP12nn that it can select the port and
request data from it.

Strip trailer on receive Specifies that you want the trailer stripped from the end of each
frame before it is received by the IXP12nn.

Fast port By selecting this check box, you specify that the port is to
assert the FastRx1 or FastRx2 signal when it asserts RxRdy.
Note: You are limited to two fast ports in your simulation. One
has to be Fast port 1 and the other has to be Fast port 2. Both
fast ports can be on one device or each can be on separate
devices.

Transmit buffer size Specifies the number of bytes in the transmit buffer. The
transmit buffer holds the data transmitted by the IXP12nn until
it is transmitted onto the network.

Transmit ready threshold Specifies number of free bytes that must be available in the
port’s transmit buffer in order for the port to assert its transmit
ready (TxRdy) bit. This signals the IXP12nn that it can select
the port and transmit data to it.

Transmit send threshold Specifies the number of bytes that must be in the transmit
buffer before the data in the buffer is transmitted onto the
network. Data is transmitted even if the number of bytes is
below the threshold provided there is at least one end-of-
packet (EOP) in the buffer.

Maximum packets allowed in buffer
Specifies the maximum number of packets that can be in the
transmit buffer. When this number of packets is in the buffer,
the port will not assert TxRdy even if the number of free bytes
exceeds the transmit ready threshold.

Number of bytes to strip Specifies the number of bytes to be stripped from the end of
each received frame.

Append trailer on transmit Specifies that you want an trailer appended to the end of each
frame that is transmitted by the IXP12nn.

Number of bytes to append Specifies the number of bytes to be appended to the end of
each transmitted frame.

Standard Templates

As an alternative to manually entering parameter values, you can select a template from the
template list. When you select a template, all parameters are updated with the values that are stored
with that template. The Workbench comes with two pre-defined templates for the IXF1002 and the
IXF440 MAC devices.

To load a standard template:

1. On the Simulation menu, click IX Bus Simulator Devices, and then click Devices and Ports.
Development Tools User’s Guide 2-97

Intel® IXP1200 Network Processor Family
Developer Workbench
The IX Bus Devices and Ports dialog box appears.

2. Click Add Device.

The Add IX Bus Device dialog box appears.

3. From the list in the upper-left corner, select either Standard IXF1002, or Standard IXF440.

Template Customization and Save

In the Add IX Bus Device dialog box, you can create your own template by:

1. Setting the parameters you wish to save.

2. Clicking Save Template.

The Save Template dialog box appears.

3. Type the name for your template.

4. Specify a file path where the template will be saved.

You can browse to a file or folder by clicking the button.

5. Click OK when done.

6. In the Add IX Bus Device dialog box, the template that you just created appears in the list in
the upper-left corner.

Templates Import

The default file extension for template files is ‘wbt’. If you have template files that you copied
from other sources, you import those into your Workbench configuration.

To import a template(s) from the Add IX Bus Device dialog box:

1. Click Import Template.

The Import IX Bus Device Template dialog box appears.

2. Browse to the file(s) you want to import.

3. Select them then click OK.

Device Removal

To remove a device from the bus:

1. On the Simulation menu, click IX Bus Simulator Devices, and then click Devices and Ports.

The IX Bus Devices and Ports dialog box appears.

2. Select the device you want to remove.

3. Click Remove Device.

Since device numbering always start at 0, removing a device may cause renumbering of the
remaining devices.

Port Characteristics Edit

To edit an individual port’s characteristics:

1. In the IX Bus Devices and Ports dialog box, select the port you want to edit.

2. Click Edit Port.
2-98 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The Configure Port dialog box appears.

3. Modify any of the Port characteristics.

4. When you have finished configuring all devices and ports, click OK.

Any changes that you have made now appear in the corresponding column of the port.

2.11.20 About Data Streams

Data streams are used to simulate network traffic.

2.11.20.1 Creating and Editing a Data Stream

You can create and edit the following date streams:

ATM See Section 2.11.21.1.

Custom Ethernet IP See Section 2.11.21.2.

Ethernet IP See Section 2.11.21.3.

Ethernet TCP/IP See Section 2.11.21.4.

PPP TCP/IP See Section 2.11.21.5.

2.11.20.2 Deleting a Data Stream

To delete a data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click the data stream that you want to delete.

3. Click Delete Stream.

Note: The Workbench only deletes the data stream from the project, not from the folder. If you delete in
error, click Import Stream(s) to retrieve it.

2.11.20.3 Importing a Data Stream

To import a data stream from a previously saved file:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click Import Stream(s).

The Import Stream dialog box appears.

3. Browse to the desired folder and select one or more stream files (.strm).

4. Click OK to import the selected files.
Development Tools User’s Guide 2-99

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.20.4 Copying a Data Stream

Copying a data stream then editing the copy gives you a quick way to create a new data stream that
is similar to an existing data stream.

To copy an existing data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click the data stream that you want to copy.

3. Click Copy Stream.

The Stream Name dialog box appears.

4. Type the name of the new data stream.

5. Click OK.

The Specify file... dialog box appears.

6. Select the folder where you want to save the stream.

7. Click OK.

The stream appears (or reappears if you did not change the name) in the Data Streams dialog
box. It has all the characteristics of the stream copied.

2.11.20.5 Assigning an IX Bus Device Port

To assign data streams to IX Bus device ports:

1. On the Simulation menu, click IX Bus Device Simulator, and then click Data Streams.

The Data Streams dialog box appears.

2. Click the data stream that you want to assign.

3. Click Assign Port I/O.

See Section 2.11.21.14 for more detailed information.

2.11.21 Creating and Editing Different Data Streams Types

This section explains how to create five different data streams. They are:

ATM See Section 2.11.21.1.

Custom Ethernet IP See Section 2.11.21.2.

Ethernet IP See Section 2.11.21.3.

Ethernet TCP/IP See Section 2.11.21.4.

PPP TCP/IP See Section 2.11.21.5.
2-100 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.21.1 Creating and Editing an ATM Data Stream

An ATM Protocol Data Unit (PDU) comprises the unsegmented components of ATM data:

• The ATM Header

• An AAL5 trailer

• An optional LLC/SNAP header

• An IP packet payload

Creating

To create an ATM data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click Create Stream.

The Create Steam dialog box appears.

3. Type the name of the ATM stream in the Stream name box.

4. Select ATM from the Stream type list (if not already selected).

5. Click Continue.

The ATM Stream dialog box appears.

To create a PDU:

1. Click Create PDU(s).

The Create AAL5 PDU dialog box appears.

2. Type the values you want for the ATM header.

This header is prepended to each segmented ATM cell. If you select Automatic for PTI, then
the box will contain zero for all cells except for the last one, where the box will contain a one.

3. For RFC1483 options, you can select LLC/SNAP, which prepends a header to the packet
data, or VCMUX, which does not prepend a header. The optional header plus the packet data
constitute a CS-DSU information box. Currently, an AAL5 trailer is always appended to the
CS-DSU information box.

4. If you want to encapsulate a single IP packet, click the Single Packet option.

— Click IP Header to specify the fields of the IP header (see Section 2.11.21.9),

— Click IP Payload to specify the data payload for the IP packet (see Section 2.11.21.12).

5. If you want to encapsulate a pool of packets, click the Multiple packets from pool option.
Select a packet pool from the list of available pools.

6. To import a previously created packet pool, click Import Pool.

7. To create a new pool, click Create Pool.

The IP Packet Pool dialog box appears. Go to Section 2.11.21.6 to create the IP packet pool.

8. Click Create Packet(s) to create a PDU(s) for each packet in the selected pool.

9. Click IP Header to specify IP Header information (see Section 2.11.21.9).
Development Tools User’s Guide 2-101

Intel® IXP1200 Network Processor Family
Developer Workbench
The created PDUs are added to the ATM data stream. The dialog box remains active so you
can change settings and create additional PDUs.

10. Specify the frame size in the Frame size (in bytes) area (see Section 2.11.21.13).

11. When you are finished creating PDUs, click Close.

12. When you are finished creating the data stream, click OK.

Editing

To edit an ATM stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Select an ATM stream that you want to edit.

3. Click Edit Stream.

The ATM Stream dialog box appears.

4. Here you can:

— Edit PDUs (similar to creating—see previous section).

— Delete a PDU by selecting the PDU and clicking Delete PDU.

— Change the order of the PDUs using the or arrows.

5. Click OK when done.

2.11.21.2 Creating and Editing a Custom Ethernet IP Data Stream

Creating

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click Create Stream.

The Create Stream dialog box appears.

3. Type the name of the stream in the Stream name box.

4. Select Custom Ethernet IP from the Stream type list.

5. Click Continue.

The Custom Header Size dialog box appears.

6. Type the number of bytes to be in the custom header.

7. Click OK.

The Custom Ethernet IP Data Stream dialog box appears.

8. Type a new name in the Stream name box if you want to change it.

To create one or more frames:

1. Click Create Frame(s).

2. Click Custom Header (see Section 2.11.21.7).
2-102 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
3. Click Ethernet Header (see Section 2.11.21.8).

4. Click IP Header (see Section 2.11.21.9).

5. Click Data Payload (see Section 2.11.21.12).

6. Specify the frame size in the Frame size (in bytes) area (see Section 2.11.21.13).

7. Type the number of frames you want to create in the Number of new... box.

8. Click Create.

The number of frames you specified is created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

9. When you are finished creating frames click Close.

10. When you are finished creating the data stream, click OK.

The Save dialog box appears.

11. Type in the file name if you want to change it.

12. Browse to the folder where you want to save the file.

13. Click Save.

14. In the Data Streams dialog box, click OK.

Editing

To edit a Custom Ethernet IP data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Select stream that you want to edit.

3. Click Edit Stream.

The Custom Ethernet IP Data Stream dialog box appears.

4. Click Create Frame(s) to create a new frame.

5. Click Edit Frame(s) to edit the:

Custom Header See Section 2.11.21.7.

Ethernet Header See Section 2.11.21.8.

IP Header See Section 2.11.21.9.

Data Payload See Section 2.11.21.12.

6. Click Delete Frame to delete the selected frame.

7. Click the and arrows to change the order of the frames.

8. Click OK when done.

2.11.21.3 Creating and Editing an Ethernet IP Data Stream

Creating

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.
Development Tools User’s Guide 2-103

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Click Create Stream.

The Create Stream dialog box appears.

3. Type the name of the stream in the Stream name box.

4. Select Ethernet IP from the Stream type list.

5. Click Continue.

The Ethernet IP Data Stream dialog box appears.

6. Type a new name in the Stream name box if you want to change it.

To create one or more frames:

1. Click Create Frame(s).

2. Click Ethernet Header (see Section 2.11.21.8).

3. Click IP Header (see Section 2.11.21.9).

4. Click Data Payload (see Section 2.11.21.12).

5. Specify the frame size in the Frame size (in bytes) area (see Section 2.11.21.13).

6. Type the number of frames you want to create in the Number of new... box.

7. Click Create.

The number of frames you specified is created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

8. When you are finished creating frames click Close.

9. When you are finished creating the data stream, click OK.

The Save dialog box appears.

10. Type in the file name if you want to change it.

11. Browse to the folder where you want to save the file.

12. Click Save.

13. In the Data Streams dialog box, click OK.

Editing

To edit an Ethernet IP data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Select stream that you want to edit.

3. Click Edit Stream.

The Ethernet IP Data Stream Dialog box appears.

4. Click Create Frame(s) to create a new frame.

5. Click Edit Frame(s) to edit the:

Ethernet Header See Section 2.11.21.8.

IP Header See Section 2.11.21.9.

Data Payload See Section 2.11.21.12.
2-104 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
6. Click Delete Frame to delete the selected frame.

7. Click the and arrows to change the order of the frames.

8. Click OK when done.

Note: The Workbench puts a four byte CRC value at the end of each packet that is included in the byte
count.

2.11.21.4 Creating and Editing an Ethernet TCP/IP Data Stream

Creating

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click Create Stream.

The Create Stream dialog box appears.

3. Type the name of the stream in the Stream name box.

4. Select Ethernet TCP/IP from the Stream type list.

5. Click Continue.

The Ethernet TCP/IP Data Stream dialog box appears.

6. Type a new name in the Stream name box if you want to change it.

To create one or more frames:

1. Click Create Frame(s).

2. Click Ethernet Header (see Section 2.11.21.8).

3. Click IP Header (see Section 2.11.21.9).

4. Click TCP Header (see Section 2.11.21.10).

5. Click Data Payload (see Section 2.11.21.12).

6. Specify the frame size in the Frame size (in bytes) area (see Section 2.11.21.13).

7. Type the number of frames you want to create in the Number of new... box.

8. Click Create.

The number of frames you specified is created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

9. When you are finished creating frames click Close.

10. When you are finished creating the data stream, click OK.

The Save dialog box appears.

11. Type in the file name if you want to change it.

12. Browse to the folder where you want to save the file.

13. Click Save.

14. In the Data Streams dialog box, click OK.
Development Tools User’s Guide 2-105

Intel® IXP1200 Network Processor Family
Developer Workbench
Editing

To edit an Ethernet TCP/IP data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Select stream that you want to edit.

3. Click Edit Stream.

The Ethernet TCP/IP data Stream Dialog box appears.

4. Click Create Frame(s) to create a new frame.

5. Click Edit Frame(s) to edit the:

Ethernet Header See Section 2.11.21.8.

TCP Header See Section 2.11.21.10.

IP Header See Section 2.11.21.9.

Data Payload See Section 2.11.21.12.

6. Click Delete Frame to delete the selected frame.

7. Click the and arrows to change the order of the frames.

8. Click OK when done.

2.11.21.5 Creating and Editing a PPP TCP/IP Data Stream

Creating

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Click Create Stream.

The Create Stream dialog box appears.

3. Type the name of the stream in the Stream name box.

4. Select PPP TCP/IP from the Stream type list.

5. Click Continue.

The PPP TCP/IP Data Stream dialog box appears.

6. Type a new name in the Stream name box if you want to change it.

To create one or more frames:

1. Click Create Frame(s).

2. Click PPP Header. Type the Protocol value and click 8-bit or 16-bit.

3. Click IP Header (see Section 2.11.21.9).

4. Click TCP Header (see Section 2.11.21.10).

5. Click Data Payload (see Section 2.11.21.12).

6. Specify the frame size in the Frame size (in bytes) area (see Section 2.11.21.13).

7. Type the number of frames you want to create in the Number of new... box.
2-106 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
8. Click Create.

The number of frames you specified is created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

9. When you are finished creating frames click Close.

10. When you are finished creating the data stream, click OK.

The Save dialog box appears.

11. Type in the file name if you want to change it.

12. Browse to the folder where you want to save the file.

13. Click Save.

14. In the Data Streams dialog box, click OK.

Editing

To edit a PPP TCP/IP data stream:

1. On the Simulation menu, click IX Bus Device Simulator, then click Data Streams.

The Data Streams dialog box appears.

2. Select stream that you want to edit.

3. Click Edit Stream.

The PPP TCP/IP Data Stream dialog box appears.

4. Click Create Frame(s) to create a new frame.

5. Click Edit Frame(s) to edit the:

PPP Header See Section 2.11.21.11.

TCP Header See Section 2.11.21.10.

IP Header See Section 2.11.21.9.

Data Payload See Section 2.11.21.12.

6. Click Delete Frame to delete the selected frame.

7. Click the and arrows to change the order of the frames.

8. Click OK when done.

2.11.21.6 Creating an IP Packet Pool

In the ATM data stream, you can create IP Packet Pools. Do the following:

1. Create an ATM data stream.

2. Create a PDU.

3. In the Create AAL5 PDU dialog box, click Multiple packets from pool in the lower-left
corner.

4. Click Create Pool.

The IP Packet Pool dialog box appears.

5. Click Create Packet(s).

The IP Packet dialog box appears.
Development Tools User’s Guide 2-107

Intel® IXP1200 Network Processor Family
Developer Workbench
6. Click IP Header (see Section 2.11.21.9).

7. Click Payload (see Section 2.11.21.12).

You can specify a fixed packet size or, if you are creating multiple packets, a size that is
randomly selected from within a specified range or that is incremented within a specified
range.

8. Specify the number of packets you want to create

9. Click Create.

The created packets are added to the pool. The dialog box remains active so you can change
settings and create additional packets.

10. When you are finished creating packets, click Close.

To delete a packet:

1. Click the packet you want to delete.

2. Click Delete Packet.

To edit a packet:

1. Click the packet you want to edit.

2. Click Edit Packet.

To change the order of the packets:

1. Click a packet.

2. Click the up or down arrow buttons to move the frame up or down in the list.

When you are finished creating the packet pool:

1. Click OK.

The Specify File... dialog box appears.

2. Browse to the folder where you want to store the file.

3. Type the name of the file in the File Name box.

4. Click Save.

The packet pool that you just created appears in the Select packet pool... box.

5. Click on the name of the pool.

6. Click Create.

7. If done, click Close.

The ATM Stream dialog box appears.

8. Click OK.

2.11.21.7 Specifying a Custom Header

1. Create a Custom Ethernet IP data stream (see Section 2.11.21.2).

2. In the Custom Ethernet IP Data Stream dialog box, click Create Frames.
2-108 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
3. Click Custom Header.

4. Enter values directly into the box to the right.

2.11.21.8 Specifying an Ethernet Header

1. Create a Custom Ethernet IP data stream (see Section 2.11.21.2), an Ethernet IP data stream
(see Section 2.11.21.3), or an Ethernet TCP/IP data stream (see Section 2.11.21.4).

2. In the Ethernet IP Data Stream dialog box, click Create Frames.

3. Click Ethernet Header.

4. Enter values directly into the boxes.

If you are creating multiple frames and want each frame to have a different value for the
destination or source MAC address, click Advanced next to the appropriate address box.

The Specify how you want... dialog box appears. It displays options for generating MAC
addresses.

• Click Fixed if you want all frames to have the same address.

• Click From within range if you want addresses chosen from a range that you specify.

— Click Sequential to have addresses chosen sequentially from within the range, starting
within the range’s lower bound.

— Click Random for random selection of addresses from within the range.

• Click From list if you want addresses chosen from a list that you specify.

— Click Sequential to have addresses chosen sequentially from the list, starting within the
first address in the list.

— Click Random for random selection of addresses from the list.

— To add an address to the list either click the button or double-click beneath the last
address in the list, enter the address value and pressing ENTER.

— To delete an address from the list, select it, then click the button.

— To move an address up or down in the list, select it and click the or the button.

The list of addresses is saved in the Windows registry, so it is available during future Workbench
sessions.

2.11.21.9 Specifying an IP Header

1. Create a Custom Ethernet IP data stream (see Section 2.11.21.2), an Ethernet IP data stream
(see Section 2.11.21.3) or an Ethernet TCP/IP data stream (see Section 2.11.21.4).

2. In the Ethernet IP Data Stream dialog box, click Create Frames.

The Create frame(s) dialog box appears.

3. Click IP Header.

4. Enter values directly into the boxes.

• If you want the packet length to be automatically computed based on the length of the
encapsulated payload, select Computed next to the Packet length box. Otherwise, the value
you enter will be used without modification.
Development Tools User’s Guide 2-109

Intel® IXP1200 Network Processor Family
Developer Workbench
• If you want the header checksum to be automatically computed, select Computed next to
the Header checksum box. Otherwise, the value you enter will be used without
modification.

• If you are creating multiple frames and want each frame to have a different value for the
Source IP address or Destination IP address, click Advanced next to the corresponding
address box.

The Specify how you want... dialog appears.

In the Frame size (in bytes) area:

— Click Single if you want all frames to have the same address then specify the address.

— Click From within range if you want addresses chosen from a range that you specify.
To have addresses chosen sequentially from within the range, starting within the range’s
lower bound, click Sequential. For random selection of addresses from within the
range, click Random.

— Click From list if you
want addresses chosen
from a list that you
specify.

– To add an address to the list, enter the address in the box to the right of the list then
click Add Address.

– To delete an address from the list, select it then click the button.

– To move an address up or down in the list, select it and click the or the
button.

– To have addresses chosen sequentially from the list, starting within the first address
in the list, click Sequential.

– To have addresses chosen randomly from the list, click Random.

2.11.21.10 Specifying a TCP Header

1. Create an Ethernet TCP/IP data stream (see Section 2.11.21.4) or an PPP TCP/IP data stream
(see Section 2.11.21.5).

2. In the Ethernet IP Data Stream dialog box, click Create Frames.

3. Click TCP Header.

4. Enter values directly into the boxes.

5. If you want the checksum to be automatically computed, select Computed next to the
Checksum box. Otherwise, the value you enter will be used without modification.

2.11.21.11 Specifying a PPP Header

1. Create a PPP TCP/IP data stream (see Section 2.11.21.5).

2. In the PPP TCP/IP Data Stream dialog box, click Create Frames.

3. Click PPP Header.

4. Enter the protocol value in the box to the right.

5. Choose between 8-bit and 16-bit protocol in the same box to the right.
2-110 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.21.12 Specifying a Data Payload

1. Create or edit a data stream of any type containing frames (any except an ATM data stream).

2. Click the Data Payload button to display the options for specifying the data payload for a
frame.

3. Select a pattern from the Fill pattern list.

4. If you select an incrementing or decrementing pattern, you can specify the starting value for
the fill operation in the Hex starting value box.

5. If you are creating multiple new frames you also have the option of having the incrementing or
decrementing span the set of frames being created. For example, if the first frame is created
with data 00 01 02... 4f, the second frame will have data 50 51 52..., and so on.

6. If you are editing an existing frame, you can choose to edit the data directly by clicking
Custom Data, then editing the data fields within the box.

2.11.21.13 Specifying Frame Size

Specify a fixed frame size or, if you are creating multiple frames, a size that is randomly or
incrementally selected from within a specified range.

To do this:

1. Create or edit a data stream of any type containing frames.

2. In the Create Frame(s) dialog box, go to the Frame size (in bytes) area and do one of the
following:

— Click Fixed and type the frame size in the Fixed box.

— Click Random and type the from and to values in the boxes to the right.

— Click Increment and type the from and to values in the boxes to the right.

2.11.21.14 Assigning I/O to Device Ports

After you have configured the IX Bus with devices and ports and created or imported data streams,
you need to specify the input and output (I/O) for each enabled port. A port is connected to the
IXP12nn on one side and to the ‘network’ on the other. Data comes into the port from the network
and is placed into the receive buffer. Conversely, data is taken from the transmit buffer and sent out
to the network.

To effectively simulate a port’s operation, network traffic must also be simulated. Input from the
network can either be simulated by the Workbench using data from streams or you can provide a
DLL that supplies the input data. Output to the network can be thrown away or you can provide a
DLL that receives the transmitted data. For details on how to implement a network traffic
simulation DLL, see Section 2.11.22.

To assign I/O to ports:

• On the Simulation menu, click IX Bus Device Simulator, then click Port I/O.

The IX Bus Port I/O dialog box appears. (See Figure 2-10.)
Development Tools User’s Guide 2-111

Intel® IXP1200 Network Processor Family
Developer Workbench
If there is more than one IX Bus in your system configuration, select the IX Bus to which you want
to assign streams.

Information Window

Column one Lists the devices and ports for the selected IX Bus.

Column two Shows the name of the DLL that is assigned to receive output from the
port. If no DLL is assigned, the column is blank.

Column three Shows either the name of the DLL that is to supply input data to the port
or the data streams assigned to supply input data. In the latter case, the
method by which packets are selected from the streams is shown in
brackets after the stream names. If no input is assigned, the column is
blank.

To change the I/O assignments for a port:

1. Click the port.

2. Click Assign Port I/O.

The Assign IX Bus Port I/O dialog box appears.

The Assign IX Bus Port I/o Dialog Box

In the Transmit area at the top of the Assign IX Bus Port I/O dialog box, select how you want to
process data taken out of the port’s transmit buffer. Select:

No output If you don’t want to process it, or

Send data to DLL If you want the data passed to your network simulation DLL. Enter
the full file path for the DLL or click the button to browse to and
select the DLL.

Figure 2-10. The IX Bus Port I/O Dialog Box
2-112 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
In the Receive area at the bottom of the dialog box, select how you want to supply input data for
the port’s receive buffer. Select:

No input If you don’t want the port to receive any data, or

Get data from DLL If you want the Workbench to get data from your network
simulation DLL. Type the full file path for the DLL or click the
button to browse to and select the DLL, or

Get data from streams If you want the Workbench to get data from data streams.

— All data streams associated with the project along with their
type are displayed in the list labeled List of all data streams.

— The streams that are assigned to the port are displayed in the
list box labeled Assigned streams.

To assign a stream to the port:

1. Select the stream in the List of all data streams list.

2. Click Assign.

The selected stream is added at the end of the assigned streams list. If a stream is already
assigned, it is not assigned again.

To deassign a stream:

1. Select the stream in the Assigned streams list.

2. Click Remove.

In the How to select... area at the bottom right of the dialog box are controls that allow you to
specify the method by which packets are selected from the assigned streams to be received by the
port. When multiple streams are assigned, the Workbench treats them as one continuous sequence
of packets.

Click Sequential, Starting at packet
If you want the packets to be selected sequentially from the stream(s). You
can specify which packet you want to be the first packet received by the port.
After the port receives the last packet in the last assigned stream, the
Workbench wraps to the first packet in the first assigned stream.

Click Random
If you want packets to be selected at random from the assigned streams. For
ATM streams, the PDUs are selected at random but the ordering of cells
within the PDU is always maintained. For example, assume a stream has five
PDUs. If PDU#2 is selected, its first cell will then be placed into the receive
buffer. The next time PDU#2 is selected, its second cell is placed in the
buffer, and so on, until all cells in the PDU are selected. Then the first cell is
selected again.

Click Interleaved, starting at packet
If you want interleaved cell selection for ATM streams. PDUs are selected
sequentially but only one cell in a PDU is selected at a time. For example,
assume an ATM stream has three PDUs, with PDU#1 having one cell,
PDU#2 having three cells and PDU#3 having two cells.

The packet selection sequence will be:

PDU#1 Cell#1
Development Tools User’s Guide 2-113

Intel® IXP1200 Network Processor Family
Developer Workbench
PDU#2 Cell#1

PDU#3 Cell#1

PDU#1 Cell#1

PDU#2 Cell#2

PDU#3 Cell#2

PDU#1 Cell#1

PDU#2 Cell#3

PDU#3 Cell#1

For non-ATM streams, the sequential and interleaved choices are identical.

When you have completed assigning streams and specifying the packet selection method, click OK
to apply your choices and close the Assign IX Bus Port I/O dialog box.

Random Selection Seeds

In the IX Bus Port I/O dialog box, you can force the random selection generator to use the number
used on the last simulation, or you can type a new number. The number displayed is the number
last used. To keep the same seed value, select Use this seed for random selection.

Templates

You can perform the I/O assignment by selecting a template from the Select a template... list. The
ports I/O is assigned based on the configuration specified in the template. The number of devices
and number of ports in each device on the selected IX Bus must match the values in the template.

Note: All streams that are assigned in the template must be in the project.

You can create your own template by assigning I/O then:

1. Click Save Template.

The Save Template dialog box appears.

2. Type the name for your template and specify a file path where the template will be saved.

You can browse to a file or folder by clicking the button. The default file extension for
template files is .wbt.

If you have template files that you copied from other sources, you can import them into your
Workbench configuration.

To do this:

1. Click Import Template.

The Import Port I/O Template dialog box appears.

2. Browse to the file(s) you want to import.

3. Select one or more files and click OK.

The files that you import appear in the Select a template... list.

4. Select the template from this list.

When you have completed assigning I/O to each port:

5. Click OK to apply your assignments and dismiss the IX Bus Port I/O dialog box.
2-114 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.22 About Network Traffic Simulation DLLs

To simulate receiving or sending packet data from or to the network you can provide a dynamic-
link library (DLL). You assign this DLL to the input and/or output side of an IX bus device port
(see Section 2.11.21.14).

A network traffic simulation DLL must provide the following functions:
Initialize
Close

If the DLL is assigned to supply data to a port, then it must also have the following functions:
InitializeRxPortEx
InitializeRxPort
GetNextByte
GetInterpacketTime
GetReturnStatus
CloseRxPort

If the DLL is assigned to take data from a port, then it must also have the following functions:

InitializeTxPortEx
InitializeTxPort
SendNextByte
CloseTxPort

When you Start Debugging, the Workbench loads the DLL and calls the Initialize() function
immediately after the Transactor initializes the model. This is the only time that this function is
called. In the Initialize() function you can register console functions with the Transactor. You
can then call these functions from a script in order to configure your traffic simulation. To call the
Transactor you must include the file xact_dll.h and link against xact_dll.lib.

When you activate the Workbench to start receiving packets, it calls the DLL to initialize each port.
If you have checked the option for packets to be received at the first clock cycle
(see Section 2.11.23.1), then the initialization occurs at the first clock cycle. Otherwise, it will
occur when the start_packet_receive() function is invoked from your startup script. In either
case, the Workbench iterates through all the ports on every IX bus device.

If the DLL is connected to the receive side of the port, then the function InitializeRxPortEx()
is called if you have provided it. Otherwise, the function InitializeRxPort() is called.

If the DLL is connected to the transmit side, then the function InitializeTxPortEx() is called
if you have provided it. Otherwise, the function InitializeTxPort() is called.

Note: See the file NetTrafficSimInterface.h for the contents of the port configuration data
structures that are passed to these initialization functions.

As the simulation progresses, the Workbench calls function GetNextByte() whenever a byte of
data is required on a receive port. In addition to the byte of data, the DLL must also return a flag
indicating whether the byte is the last byte (EOP) in the frame/cell. When the Workbench receives
the last byte, it will call the GetReturnStatus() function if you have provided one. It also calls
the GetInterpacketTime() function in order to determine how long it waits before asking for
the first byte of the next frame/cell. This allows the DLL to randomize the arrival of frames/cells.

On the transmit side, the Workbench calls the function SendNextByte() when it takes a byte of
data is out of the transmit buffer to be sent over the network. An EOP flag is asserted along with the
last byte in the frame/cell.
Development Tools User’s Guide 2-115

Intel® IXP1200 Network Processor Family
Developer Workbench
When the user Stops Debugging, the functions CloseRxPort() and CloseTxPort() are called
for each connected receive and transmit port, respectively.

When the user closes the project or exits the Workbench, the function Close() is called just
before the DLL is freed.

A Visual C++ project that is an example of a network traffic simulation DLL can be found at:

...\IXP1200\WIN32DevTools\Samples\NetworkTraffic.

2.11.23 About IX Bus Device Simulation Options

The Workbench provides several options that determine how the IX Bus device simulation
behaves.

To do this:

• On the Simulation menu, click IX Bus Device Simulator, then click Options.

The IX Bus Device Simulation Options dialog box appears. It has three tabs:

Options See Section 2.11.23.1.

Logging See Section 2.11.23.2.

Stop Control See Section 2.11.23.3.

2.11.23.1 About Miscellaneous Options

In the IX Bus Device Simulation Options dialog box:

• On the Simulation menu, click IX Bus Device Simulator, then click Options.

• Select Automatically start receiving packets at first clock cycle to specify that the ports
start receiving packets from their assigned data streams at the first IX Bus clock cycle.

If this option is cleared, then packets won’t be received until you execute the command line
function start_packet_receive(). This can be done in several ways:

— Go to the Command Line window and type the command start_packet_receive();, or

— Add the command start_packet_receive(); to one of your startup scripts at the
point where you want packet reception to begin, or

— Create a command script (see Section 2.11.6) with the command start_packet_receive();,
add the command script’s button to the toolbar, then click the button when you want to
start receiving packets.

• Enable Run unbounded (infinite wire speed) to have data always ready to be received by the
IXP12nn and to have the ports always ready to receive data from the IXP12nn.

This makes the simulation acts as if data was coming from and going to the network at infinite
speed, bypassing the receive and transmit buffer and ignoring the data rate and interpacket gap
values set for the port. In this mode, RxRdy and TxRdy are always asserted for every port.

If this option is cleared, data is received from and transmitted to the network at the specified
data rate with an interpacket gap.

• Enable Stop simulation if a receive overflow occurs to control whether or not the Workbench
stops the simulation when a receive overflow occurs.
2-116 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
• Select or clear Stop simulation if a transmit underflow occurs to control whether or not the
Workbench stops the simulation when a transmit underflow occurs.

The IX Bus Device Status window (see Section 2.11.23.4) displays receive and transmit rate data.

• In the IX Bus Device Simulation Options dialog box, select the units in which you want the
rates displayed:

Megabits per seconds (Mbps) at the network interface—this calculation includes pruned
bits and bits that would have been processed in an interpacket gap.

Megabits per seconds (Mbps) at IX Bus.

Frames per second (fps).

Cycles per frame—this represents the average number of cycles between.

For ATM streams, a cell is considered to be a frame. For each port, the Workbench starts counting
cycles for the receive rate calculation when the port asserts start-of-packet (SOP) for the first
packet received by the IXP12nn after the user starts debugging or reset statistics. For the transmit
rate calculation, cycle counting starts when the port gets start-of-packet (SOP) for the first packet
transmitted by the IXP12nn after the user starts debugging or reset statistics.

• By default, the Workbench updates the data displayed in the IX Bus Device Status window
only when simulation stops. However, when you select Update status window every xxx IX
bus cycles, the Workbench updates the status at the specified interval while the simulation is
running.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.

2.11.23.2 About Logging

In the IX Bus Device Simulation Options dialog box, click the Logging tab in order to specify
whether and how the logging of received and transmitted packets is to occur. Logging is done on a
per-port basis with receive and transmit logs being written to separate files. Only complete packets
are logged. This means that if you enable logging during simulation, logging for a port will start
when the next SOP occurs. Similarly, if you disable logging, any packet that is in the process of
being received or transmitted will not get logged. You can clear all log files at any time by clicking
Clear log files. Existing log files are automatically cleared when the first packet is logged after
debugging is started.

• Select or clear Enable Logging to toggle whether packet logging occurs or not. This is a
global setting that determines whether the individual port logging settings are in effect.

• Select or clear Log frame numbers to toggle whether or not frame numbers are logged along
with the packet data. If enabled, the frame number appears as the first item on a line. Frame
numbering starts when debugging is started, with the first packet received on a port and first
packet transmitted to a port being number 1. The numbers continue to increment regardless of
whether logging is enabled or not. So if you enable logging, disable it, then enable it again you
will see a gap in the logged frame numbers.

• Select or clear Log IX bus cycle times for SOP and EOP to toggle whether or not to log the
cycle times at which the first byte and last byte of a packet are received or transmitted. If
enabled, the cycles times appear before the packet data on the line but after the frame number,
if Log frame numbers is also selected.

• If logging of both frame numbers and cycle times are enabled, the logged data looks like:
Development Tools User’s Guide 2-117

Intel® IXP1200 Network Processor Family
Developer Workbench
25 4387 4395 01010101010202020202...

• If you want to get a log of packets received by the IXP12nn to the port, select Log packets
received by IXP from this port to file: and type a file path in the box. You can browse to a
file by clicking the button to the right of the box. The packet data is written to the file in
hexadecimal format with one packet per line.

• If you want to get a log of packets transmitted by the IXP12nn to the port, select Log packets
sent by IXP to this port to file: and type a file path in the box. You can browse to a file by
clicking the button to the right of the box. The packet data is written to the file in
hexadecimal format with one packet per line.

• If there is more than one IX Bus in your system configuration, select the IX Bus for which you
want to specify logging. Select a port and specify whether or not you want received packets
and/or transmitted packets logged.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.

2.11.23.3 About Stop Control

In the IX Bus Device Simulation Options dialog box, click the Stop Control tab in order to
specify whether and when you want simulation or packet reception to stop.

If there is more than one IX Bus in your system configuration, select the IX Bus for which you
want to specify stop control.

There are two bus-specific options:

• If you want to stop the simulation after a specific number of packets are received by the
IXP12nn from the selected bus, select Stop the simulation after the next nnn packets are
received by the IXP from this bus and type the number of packets in the box.

When the specified number of packets are received, the simulation stops and a message box is
displayed. If you continue the simulation from that point, it will again stop after the next nnn
packets are received.

• If you want to stop the simulation after a specific number of packets are transmitted by the
IXP12nn to the selected bus, select Stop the simulation after the next nnn packets are
transmitted by the IXP to this bus and type the number of packets in the box.

To specify port-specific options, select a port from the list of devices and ports. The options are:

• If you want to enable the port to receive packets from the network, select Send packets to the
IXP from this port. Ports are always enabled to accept packets transmitted by the IXP12nn.

• If you want to take action after a specified number of packets are received by the IXP12nn
from the port, select After the IXP receives the next nnn packets from this port:, type the
number of packets in the box, then click Stop sending packets from this port to the IXP or
click Stop the simulation.

• If you want to take action after a specified number of packets are transmitted from the
IXP12nn to the port, select After the IXP transmits the next nnn packets to this port:, type
the number of packets in the box, then click Stop receiving packets from the IXP on this
port or click Stop the simulation.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.
2-118 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.23.4 About the IX Bus Device Status Window

After you start debugging, you can view the status of the IX Bus device simulation in the IX Bus
Device Status window.

To toggle visibility of the IX Bus Device Status window:

• On the View menu, click Debug Windows, then click IX Bus Device Status, or

Click the button on the View toolbar.

If there is more than one IX Bus in your system configuration, select the IX Bus for which you
want to view status.

The status comprises:

• The mode that the IX Bus is operating under: unidirectional or
bidirectional, and 1-2 MACs or 3+ MACs.

• The state of the IX Bus signals. Since some of the signals are
asserted low (those whose names end in #), you select whether to
display electrical values (0 = low, 1 = high) or logical values (0 =
not asserted, 1 = asserted).

• The total number of packets received by the IXP12nn from this
bus and the rate at which they were received in minpackets per
second (a minpacket = 64 bytes).

• The total number of packets transmitted by the IXP12nn to this
bus and the rate at which they were transmitted in minpackets per
second.

• Important per-device and per-port data:

— An indication as to whether a port is enabled to send packets to the IXP12nn. If it is, a
green circle is displayed before the port identifier. It if isn’t, a red circle is displayed.

— An indication as to whether a port is receive- or transmit-selected by the IXP12nn. If it is
receive-selected, the Selected column with display ‘Rx’. If it is transmit-selected a ‘Tx’ is
displayed.

— The Rx buffer fullness–the number of bytes in the Rx buffer. If the number is equal to or
greater than the RxRdy threshold or if the buffer contains at least on end-of-packet byte,
then a green square is displayed next to the byte count indicating that the port will assert
its receive ready bit.

— The Tx buffer fullness–the number of bytes in the Tx buffer. If the number is equal to or
greater than the TxSend threshold or if the buffer contains at least on end-of-packet byte,
Development Tools User’s Guide 2-119

Intel® IXP1200 Network Processor Family
Developer Workbench
then a green square is displayed next to the byte count indicating that the port will send Tx
buffer data to the network.

— The Tx buffer emptiness–the number of free bytes in the Tx buffer. If the number is equal
to or greater than the TxRdy threshold, then a green square is displayed next to the byte
count indicating that the port will assert its transmit ready bit.

— The total number of packets received and transmitted by the IXP12nn from and to each
device and the receive and transmit rates for the device.

— The total number of packets received and transmitted by the IXP12nn from and to each
port and the receive and transmit rates for the port.

If you have specified that the simulation run unbounded, then the receive and transmit buffers
are bypassed. So the word Unbounded is displayed instead of values for Rx buffer fullness, Tx
buffer fullness and Tx buffer emptiness.

• Detailed data for a selected port. Select the port for which you want to view detailed data by
clicking on it in the summary data list. The detailed data comprises:

— The RxRdy threshold and the Rx buffer size.

— The Rx buffer contents in hexadecimal format. A ‘**’ entry indicates end-of-packet.

— The number of EOPs in the Tx buffer.

— The TxRdy and TxSend thresholds and the Tx buffer size.

— The Tx buffer contents in hexadecimal format. A ‘**’ entry indicates end-of-packet.

2.11.24 About Debug Configuration

The Workbench supports debugging in four different configurations:

2.11.24.1 Setting Up Local Simulation with No Foreign Model

To specify local simulation with no foreign model:

1. On the Debug menu, select Simulation, if not already checked.

2. On the Simulation menu, click Options.

The Simulation Options dialog box appears.

3. Click the Foreign Model tab.

Mode
Foreign
Model Comments Reference

Local Simulation None The Workbench and the IXP12nn Network Processor
simulator (Transactor) both run on the Windows platform. Section 2.11.24.1

Local Simulation Local
The Workbench, the Transactor and a foreign model
Dynamic-Link Library all run on the same Windows
platform.

Section 2.11.24.2

Local Simulation Remote
The Workbench and the Transactor both run on the same
Windows platform and communicate over the network with
a foreign model running on a remote system.

Section 2.11.24.3

Hardware None

The Workbench runs on a Windows host and
communicates over a network or a serial port with a
subsystem containing an actual IXP12nn Network
Processor.

Section 2.11.24.5
2-120 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
4. Click Local transactor with no foreign model.

5. Click OK.

2.11.24.2 Setting Up Local Simulation with Local Foreign Model

To specify local simulation with a local foreign model:

1. On the Debug menu, select Simulation, if not already checked.

2. On the Simulation menu, click Options.

The Simulation Options
dialog box appears.

3. Click the Foreign
Model tab.

4. Click Local transactor
with local foreign
model(s).

— Type, or browse for
using the button, the complete file path for DLL that contains your foreign model.

— Delete DLLs from your project using the button.

— Move DLLs up or down in your project using the or the button.

(See Chapter 6 for details on creating a foreign model simulation extension).

5. Click OK when done.

2.11.24.3 Setting Up Local Simulation with Remote Foreign Model

To specify local simulation with a remote foreign model:

1. Ensure that Portmapper is running, see Section 2.11.24.4.

2. On the Debug menu, select Simulation, if not already checked.

3. On the Simulation menu, click Options.

The Simulation Options dialog box
appears.

4. Click the Foreign Model tab.

5. Click Local transactor with
remote foreign model.

6. Type, or browse for using the
button, the complete file path for
DLL that contains the local interface
to your remote foreign model.

7. Type the name of the node where the foreign model runs in the Specify the name... box.

8. Click OK when done.
Development Tools User’s Guide 2-121

Intel® IXP1200 Network Processor Family
Developer Workbench
2.11.24.4 Installing PortMapper

PortMapper is automatically installed as part of the IXA SDK installation process. To ensure
PortMapper is installed and running:

1. On the Window’s task bar, click Start, Settings, Control Panel.

2. Double-click the Services icon.

3. In the Services dialog box, scroll down to find the IXP1200 PortMapper service.

4. Ensure this service is started by selecting the status column.

5. If the PortMapper service isn't started, highlight IXP1200 PortMapper with the mouse.

6. Click Start.

2.11.24.5 Setting up Hardware Debug

To debug hardware, you must specify how to connect to the subsystem(s) containing the IXP12nn
Network Processor:

1. Ensure that Portmapper is running, see Section 2.11.24.4.

2. On the Debug menu, select Hardware if not already enabled.

3. On the Hardware menu, click Options.

The Hardware Options dialog box appears.

4. Click the Connections tab.

5. Select a chip from the Select a chip box (<unnamed> if only one chip).

6. Enable the type of connection to that chip by clicking on the appropriate button:

No Connection If you have multiple chips in your project, you can
specify that one or more not be connected. However,
at least one must be connected.

Connect via PCI bus This allows you to connect to an IXP12nn that is on
the PCI bus in your PC.

Connect via serial port to VxWorks You must specify the name of the node where the
hardware is located.

Connect via Ethernet You must specify the name of the node where the
hardware is located.

2.12 Running in Batch Mode

Workbench Batch Files

A Workbench batch file is an ASCII text file.

The first line must contain the complete path for a Workbench project file, for example,
c:\mydir\router.dwp.

The Workbench opens the specified project and performs a build operation.
2-122 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
The second line must contain the keyword hardware or simulation to specify the debug
configuration.

The Workbench starts debugging in the specified configuration.

All subsequent lines are executed by the command line interface.

To have the Workbench exit when it completes executing the batch file, place an exit
command as the last line in the batch file.

Here is an example of a batch file:
c:\mydir\router.dwp
simulation
@foobar.ind
go 100
exit

Batch Mode

You can run the Workbench in batch mode by specifying a Workbench batch file preceded by an @
as a program argument when starting the Workbench.

For example:

1. On the Windows task bar, click Start, and
then click Run.

The Run dialog box appears.

2. Type c:\ixp1200\bin\DevWorkbench.exe
@test.bat in the Open box.

3. Click OK.

Windows launches the Workbench and executes
the batch file test.bat.

2.13 An Exercise in Using the Workbench

The procedure that follows introduces you to basic Workbench functions by showing you how to
create a project, insert some source microcode, build a project, and perform some simple
debugging.

Invoking The Workbench

From the Start button on the Taskbar:

• Click Programs, Intel IXP1200, Developer WorkBench.

The selection IXP1200 is the default, but may be different if you assigned another name during the
installation of your IXP1200 software. If the Tip of the Day appears, click OK.

Your screen should now display the Developer Workbench application (see Figure 2-1).

Creating a New Project

1. On the File menu, click New Project.
Development Tools User’s Guide 2-123

Intel® IXP1200 Network Processor Family
Developer Workbench
The New Project dialog box
appears.

2. Click the button to the right of the
Location box, select C:\ and click
OK.

3. Type wb_test in the Project name
box.

The text in the Location box
should now display C:\wb_test.
This is because the project name
you typed actually becomes a
folder containing two files—
wb_test.dwp and wb_test.dwo.
From this point on, all the project
files and information will default
to this folder or one of its
subfolders.

4. From the Select chip type... list, select IXP1200 with 1K microstore.

5. Click OK when done.

Note that your project, wb_test, appears in the Project Workspace. It contains a tree of
supporting empty folders that will contain the various files needed to build the project.

Creating a New Source File

1. On the File menu, click New.

The New dialog box appears.

2. Select Source File from the list and click OK.

This opens an empty document window (the background changes from dark gray to white).
Note that the name Source1 appears on the title bar.

3. Type the following two lines into the document:
 #include "wb_gpr_ctx.uc"

 #include "wb_gpr_abs.uc"

Note that the name in the title bar changes from Source1 to Source1* because you modified the
document. Also, the two #include entries are blue indicating that they are keywords.

Saving the New Source File

1. On the File menu, click Save As.

2. Enter wb_test in the File name box.

3. From the Save in list, browse to folder C:\wb_test and click Save.

The Workbench saves the file as wb_test.uc (microcode file).

Inserting New Source File Into Project

1. On the Project menu, click Insert Assembler Source Files.

The Insert Assembler Source Files into Project dialog box appears. The dialog box displays
the folder (C:\) where you saved the file wb_test.uc.
2-124 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
2. Select the file wb_test.uc and click Insert.

This inserts wb_test.uc into the project. Ignore, for now, the messages in the Output window
about not finding files, if there is one. Note that in the Project Workspace, the folder labeled
Assembler Source Files has a “+” to it’s left. If you click it, the folder expands and the file
name wb_test.uc appears.

Note: If you can’t see the file wb_test.uc in the Insert Assembler Source Files dialog box, type
c:\wb_test.uc in the File name box and click Insert. This causes the program to go directly to the
file where you saved it.

Selecting Build Settings

1. On the Build menu, click Settings.

The Build Settings dialog box appears.

2. Click the Assembler tab.

3. Click New to add a .list output file to the project.

The Insert New List File into Project dialog box appears.

4. Browse to C:\.

5. Type wb_test.list in the File name box and click Insert List File.

The file wb_test.list appears in the Output to target .list file box. Also, in the Path to target
.list file box just below, the full path of the .list file appears. The entry in this box should be
C:\wb_test.list.

6. From the Root File list, select wb_test.uc (it should be the only choice).

7. Click the Linker tab.

8. From the list to the right of MicroEngine 0, select wb_test.list (it should be the only choice).

This specifies that this file gets loaded into Microengine 0’s microstore.

9. Click OK.

Notice that the file wb_test.uc in the Assembler Source Files folder in the Project
Workspace is now preceded by an . This indicates that this file is a root file.

Building the Project

1. On the Build menu, click Build, or

This invokes the Assembler to assemble wb_test.uc. The Assembler results appear in the
Output window at the bottom of the Workbench.

Note that it found (2) errors and (0) warnings.

2. Scroll the Output window to view the errors if necessary.

3. Double-click the line containing the first error message.

This highlights the error message and marks the source line on which the error occurs.

In this case, the Assembler cannot open the two
files that we included because they are not in the
project folder. The next steps fix this problem.
Development Tools User’s Guide 2-125

Intel® IXP1200 Network Processor Family
Developer Workbench
4. On the Build menu, click Settings and then click the General tab.

5. In the Assembler include directories box, click the button.

This activates an entry in the list box for editing.

6. Type C:\IXP1200\MicroCode\workbench\ into the entry or click the button to browse to
this location.

This step assumes you used the default folder name of IXP1200 when you installed the IXP
SDK software. This folder contains the microcode files that were included in the wb_test.uc
file.

Note: At this point you must press ENTER to accept the new folder. The button disappears.

7. Click OK to accept the changes and close the dialog box.

8. On the Build menu, select Build.

9. The build summary should now indicate (0) errors and (28) warnings, with the Linker
producing a wb_test.uof file.

Debugging

1. On the Debug menu, click Start Debugging. You can also press F12 or click the button.

This initializes the simulation and enables all of the debug features of Workbench.

2. In the Project Workspace, click ThreadView .

3. Expand the tree under the MicroEngine 0 entry by clicking the “+” to the left of it.

4. Double-click Thread 0 (0).

This opens a thread window for Thread 0. Click the button (if not already) to maximize
this window.

5. Hide Project Workspace by clicking on the in its upper right corner or by clearing Project
Workspace on the View menu. Similarly, hide the Output window (if present).

6. If you do not see the Run Control window, click View, Debug Windows, Run Control.

The Run Control window appears (see Figure 2-1).

7. If you do not see the Command Line window, on the View menu, click Debug Windows,
then click Command Line.

The Command Line window appears (see Figure 2-1).

Note: The Run Control and Command Line windows may appear automatically when you start
debugging.

8. In the Run Control window, click the Step button.

This starts the Transactor and executes one cycle.
The Pipe Stage marker should now point to the
instruction that is in the P1 stage of the
Microengine pipeline.
2-126 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
Notice that the Command Line output
area logs the Transactor commands that
are being executed.

9. Click Step four more times to see the Pipe Stage marker advance.

10. Using the mouse pointer, set the insertion point in the line
that contains the instruction at line 23.

Note: If you don’t see the line numbers, right-click in the window and click Display
Instruction Addresses.

11. Press F9 to set a breakpoint on that line.

Pressing CTRL+F9 toggles whether the breakpoint is enabled or disabled . Make sure
you leave the breakpoint enabled.

12. Type 200 into the box next to the Go for button.

13. Click the Go for button.

The simulation stops at the breakpoint before
completing the 200 cycles. The following message
appears.

14. Click OK.

The Pipe Stage marker should point to the line with the breakpoint (the breakpoint marker may
be obscure under the Pipe Stage marker).

15. Click the Go For button again.

The Pipe Stage marker should advance to the end of the thread window.

16. Move the cursor over the [gpr_fill 15,15] symbol in the thread window and
leave it there for a second.

A data tip appears showing the value in that register. In parenthesis, we also
see to which bank the register was allocated and that the value is absolute.

17. Close the Thread(0) window (click the all the way to the right on the menu bar, or on the
Window menu, click Close).

18. On the File menu, click Exit.

This displays a dialog box asking you if you want to save changes to the project.

19. Click Yes.

Restarting the Workbench

1. From the Start button on the Windows task bar, click Start, Programs, Intel IXP1200,
Developer WorkBench.

If the Tip of the Day appears, click OK.

2. On the File menu, click Recent Projects, C:\...wb_test.

3. On the Project menu, click Insert Assembler Source Files.
Development Tools User’s Guide 2-127

Intel® IXP1200 Network Processor Family
Developer Workbench
4. Navigate to the folder C:\IXP1200\MicroCode\workbench (or wherever you may installed
your kit).

5. Select the files wb_xfer_reg.uc, wb_sram_addr.uc, and wb_sdram_addr.uc.

6. Click Insert.

7. On the Build menu, click Settings, and then click the Assembler tab.

8. Click New to add a .list output file to the project.

The Insert New List File into Project dialog box appears.

9. Type the file name wb_xfer_reg in the File name box and click Insert List File.

The list file wb_xfer_reg.list appears in the Output to target .list file box.

10. From the Root File list, select the file wb_xfer_reg.uc.

11. Click the Linker tab.

12. From Microengine 0 list, select <none> to exclude it from the linked image.

13. In the list to the right of MicroEngine 1, select
wb_xfer_reg.list.

This specifies that this file gets loaded into Microengine
1’s microstore.

14. Click OK.

15. On the Build menu, click Build (or press F7).

The message window displays:

Build results: (1) errors, (0) warnings.

16. Press F4 to highlight the assembly error.

A blue pointer points to the line my_macro(reg_1). This indicates an error that occurred
because of an incorrect source line that needs to be conditionally omitted from the assembly.

17. On the Build menu, click Settings, then click the Assembler tab.

18. Select wb_xfer_reg.list from the Out to target .list file list.

19. Type the symbol foobar into the Preprocessor definitions box.

20. Click OK.

21. On the Build menu, click Build.

This time the build should succeed with:

(0) errors, (4) warnings

Debugging the Warnings

1. On the Debug menu, click Start Debugging (or press F12, or click the button.

2. On the Window menu, click Close All.

3. On the View menu, click Project Workspace (if not already checked).

4. Click ThreadView in the Project Workspace.

5. Expand the tree under the MicroEngine 1 entry.
2-128 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench
6. Double-click Thread 4 (1).

7. On the View menu, clear Project Workspace to hide the Project Workspace window.

8. In the Run Control window, click the button to the right of the Label(s) box.

You may need to expand the size of the Run Control window to see the button. Clicking the
button displays the Go To Labels dialog box.

9. Select the label lowersram# and click Add.

10. Select the label lowersdram# and click Add.

Notice that the two labels appear in the Labels to go to box.

11. Click OK.

12. Click Go to label/address in the Run Control dialog box.

The simulation stops with thread 4 executing at the label
lowersdram# (as displayed in the Command Line window).

13. Click Step 2 or 3 times.

Notice that only thread 4’s PC is advancing. This is because thread 5 is swapped out.

14. Click Go to label/address again.

The simulation stops with thread 5 executing at the label lowersram#. Notice that thread 5 is
now the active thread.

15. Click Step 2 times.

Notice that only thread 5’s PC is advancing.

16. Right-click the same line as the Pipe Stage marker in thread 4’s window.

17. Select Go To Source on the shortcut menu.

This opens the source file wb_sdram_addr.uc and places the cursor in the corresponding
source line.

18. Close the wb_sdram_addr.uc source window (click the button).

19. Place the insertion cursor on the same line as the Pipe Stage marker in thread 5’s window.

20. On the Debug menu, click Go to source.

Notice the source file is different from the one displayed the last time you selected Go To
Source for Thread 4.

21. Close the wb_sdram_addr.uc source window.

22. On the Debug menu, click Run Control, then click Reset (or press CTRL+SHIFT+F12).

23. In the Run Control window, click Set Thread Filter.

The Thread Filter For Go To dialog box appears.

24. Clear all Microengines except MicroEngine 1.

25. Clear all four chip-wide contexts located across the top of the matrix of boxes.

This leaves the four MicroEngine 1 context check boxes
enabled.

26. Clear the check boxes for MicroEngine 1 context 0,
MicroEngine 1 context 2, and MicroEngine 1 context 3.
Development Tools User’s Guide 2-129

Intel® IXP1200 Network Processor Family
Developer Workbench
This leaves only MicroEngine 1 context 1 selected, which
corresponds to thread 5 (out of the total of 24 threads in all six
Microengines).

27. Click OK.

28. In the Run Control dialog box, click the button again to select a label.

29. Select the label done# and click Add.

30. Click OK.

31. Click Go to label/address.

The simulation stops when thread 5 reaches the done# label.

Terminating the Debug Session

Now that you have set the proper thread filters for this session, you can end the debugging.

• On the Debug menu, click Stop Debugging (or press CTRL+F12).

The debugging session ends and you return to the main window.

Rebuilding the Program

To check if the program runs properly:

• On the Build menu, click Build (or press F7).

The microcode should execute with no errors and no warnings, displaying the message

Build results: (0) errors, (0) warnings

Exiting the Workbench

To exit the Developer Workbench:

1. On the File menu, click Exit (or press ALT+F4).

This displays a dialog box asking you if you wish to save changes to the project (assuming you
have made changes since it was last saved).

2. Click Yes if you want to save your changes.
2-130 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Assembler 3

This chapter provides information on running the Assembler. Background information on the
Assembler functions appears in the IXP1200 Network Processor Programmer’s Reference Manual.

3.1 Assembly Process

This section describes how to invoke the Assembler and the steps that it goes through in processing
a microcode file.

3.1.1 Command Line Arguments

The Assembler is invoked from the command line:
uca [options] microcode_file microcode_file...

where the options consist of:

-CPU=n Use n=1 for the IXP12nn.

-m file Loads the microword definitions from the specified file rather than the default.

-p file Loads the ucc parse definitions from the specified file rather than the default.

-o file Use file as the generated list file. This is only valid if there is one microcode_file.

-O Enables optimization.

-g Adds debugging info to output file.

-v Prints the version number of the Assembler.

-h Prints a usage message (same as -?).

-? Prints a usage message (same as -h).

-new Use new register allocation.

-t=n Time-out in seconds for old register allocator.

-r Register declarations are not required.

-R Register declarations are required.

The following revision arguments allow assembly to be targeted for a specific chip version or range
of versions, overriding the default values. The predefined Preprocessor symbols
__REVISION_MIN and __REVISION_MAX reflect the specified version range. In addition, the
version range is also written to the .list file in a ’.cpu_version’ directive. Use the following:

0 1200 (A0)
1 1200 (B0)
2 not used
3 1200 (C0)
4 1200 (D0)
Development Tools User’s Guide 3-1

Intel® IXP1200 Network Processor Family
Assembler
5 1240/1250 (A0)
6 1240 (B0)
7 1250 (C0)

-REVISION=n Targets assembly to chip version n. This is equivalent to setting specifying
options ’-REVISION_MIN=n’ and ’-REVISION_MAX=n’ with the same
value.

-REVISION_MIN=n Targets assembly to the minimum chip version n. (the default is 0).

-REVISION_MAX=nTargets assembly to the maximum chip version n. (the default is 15, no
limit).

The following options are passed to the preprocessor, UCP:

-P Preprocess only into a file: microcode_file.ucp.

-E Preprocess only into stdout.

-Ifolder Add the folder to the end of the list of directories to search for included files.

-Dname Define name as if the contained “#define name 1”

-Dname=def Define name as if the contained “#define name def”

-N Disable the pre-processor

The microcode_file names may contain an explicit suffix, or if the suffix is missing, .uc is
assumed. Assembling several files in one command line is equivalent to assembling each
individually; the files are not associated with each other in any way.

If uca is invoked with no command line arguments, then a usage summary is printed.

In Windows 95/NT environments, the Assembler may also be invoked through the IXP1200
workbench (see Section 2 for more information on the Developer Workbench).

3.1.2 Assembler Steps

As shown in Figure 3-1, invoking the Assembler results in a two-step process composed of a
preprocessor step and an Assembler step. The preprocessor step takes a .uc file and creates a .ucp
file for the Assembler. The Assembler takes a .ucp file and creates an intermediate file with the file
name extension of .uci. The .uci file is used by the Assembler to create the .list file and provides
error information that may be used in resolving semantic problems (such as register conflicts) in
the input file.
3-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Assembler
The .uc file contains three types of elements: microwords, directives, and comments. Microwords
consist of an opcode and arguments and generate a microword in the .list file. Directives pass
information either to the preprocessor, Assembler, or to downstream components (e.g., the Linker)
and generally do not generate microwords. Comments are ignored in the assembly process.

The Assembler performs the following functions in converting the .uc file to a .list file:

• Checks microcode restrictions.

• Resolves symbolic register names to physical locations.

• Optimizes branches, in some cases by rearranging instructions near a branch to minimize
branch penalties.

• Resolves label addresses.

• Translates symbolic opcodes into bit patterns.

3.1.3 Case Sensitivity

The microcode file is case insensitive, while the command line arguments are case sensitive.

Figure 3-1. Assembly Process

A8824-02

source files
(.uc)

Assembler

Preprocessor

intermediate
file (.list)

Linker

Loader

MicroEngine
output file (.uof)

MicroEngine

.ucp file

uca

.uci file
Development Tools User’s Guide 3-3

Intel® IXP1200 Network Processor Family
Assembler
3.1.4 Assembler Optimizations

If optimizations are enabled, instructions occurring before a branch may be moved after the branch
to minimize branch latency effects. This optimization is illustrated by the following code segment
example:

alu[x,a,+,b]
load_addr [link, nextline#1]
br[sub1#]

nextline#:
alu[y,a,-,b]
nop

sub1#:
immed[a,1]
rtn[link]

The following instructions are assembled as a result:
alu[x,a,+,b]
br[sub1#], defer[1]
; branch latency fill optimization: the uword below
; was pushed down 1 position
load_addr[link,nextline#]

nextline#:
alu[y,a,-,b]
nop

sub1#:
rtn[link], defer[1]
;branch latency fill optimization: the uword below
;was pushed down 1 position
immed [a,1]

3.1.5 Processor Revision

Over time, IXP1200 processors will be released in different versions with different features. There
will be microcode written to use these features, but this microcode will fail if it is run on the wrong
revision of the processor. To deal with this issue, the user can specify a range of revisions for which
they want their microcode assembled. This is done using the -REVISION_MIN and
-REVISION_MAX directives. For simplicity, the -REVISION directive can be used to set the min.
and max. to the same value.

These directives have two effects: They define two preprocessor symbols: __REVISION_MIN and
__REVISION_MAX. They also deposit the revision information into the output file to be used
eventually by the loader.

The intent is that microcode that uses features that are available only on a range of processor
revisions should check these predefined symbols to see if will work under all of the requested
versions. If it does not, the microcode should signal an error via the #error directive. This is
illustrated in the IXP1200 Network Processor Programmer’s Reference Manual.

Thus, if the user requests that the generated code be valid for some range of processor revisions,
and there are no errors during the assembly, then the user can assume that the generated code will
in fact work on all processors in that range. If the user tries running it on a processor outside of that
range, then the loader returns an error.
3-4 Development Tools User’s Guide

Microengine C Compiler 4

The IXP1200 supports microcode compiled from C language code to support the Microengines and
their threads. The StrongARM processor must be coded in assembly language and does not support
the C language. You can create the C code using the DWB GUI or any available text editor. You
can then compile and link the code using the GUI or the Compiler command line.

This chapter explains the subset of the C language supported by the IXP1200 Microengine C
Compiler and the extensions to the language to support the unique features of the processor.

For information on the Compiler functions refer to the Intel Microengine C Compiler Language
Support Reference Manual, PN 278426.

4.1 The Command Line

You can invoke the command line from a DOS window on your system. Do the following:

1. Open a DOS window.

2. Go to the folder containing the C Compiler files, typically:
C:\IXP1200\bin>

3. Invoke the C Compiler using this command:
uccl [options] filename [filename...]

4.2 Supported Compilations

Two kinds of compilations are supported:

• Compile a single source file (*.c, *.i) into one object (*.obj) file

• Compile any combinations of source file (*.c, *.i) and/or object file (*.obj) into one list file
(*.list).

In the first case, you must use the -c switch in the command line.

Example: uccl -c file1.c file2.i

In the second case, do not use the -c switch.
Intel® IXP1200 Network Processor Family Development Tools User’s Guide 4-1

Microengine C Compiler
4.3 Supported Option Switches

Table 4-1 lists and defines all the supported C Compiler command line switches. The CLI warns
and ignores unknown options. The CLI honors the last option if it conflicts with previous one, for
example,

uccl -c -O1 -O2 file.c

generates the following warnings and proceeds:

uccl: Command line warning: overriding ’-O1’ with ’-O2’

Table 4-1. Supported CLI Option Switches (Sheet 1 of 2)

Switch Definition

-?
-help

Lists all the available options.

-c Compile each .c or .i file to a .obj file (rather than compile and link).

-On Optimize for: n=1, size (default); n=2, speed; n=d, debug (turns off
optimizations).

-Obn Inlining control: n=0, none; n=1, explicit (inline functions declared with
__inline or __forceinline (default)); n=2, any (inline functions based on
Compiler heuristics, and those declared with __inline or __forceinline)"

-Qip_no_inlining Turn off inter-procedural inlining, which is often too aggressive.

-Dname[=value] Specify a #define symbol. The value, if omitted is 1.

-E

-EP

-P

Preprocess to stdout.

Preprocess to stdout, omitting #line directives.

Preprocess to file.

-Zi Produce debug information. The Compiler generates a file with a .dbg
extension.

-Qbigendian Compile big-endian byte order (default). Compiler adds -DBIGENDIAN,
-ULITTELENDIAN. All other command line BIGENDIAN/
LITTLEENDIAN symbol definitions and undefinitions are ignored.

-Qlittleendian Compile little endian byte order. Compiler adds -DLITTLEENDIAN
-UGIBIGENDIAN. All other command line LITTLEENDIAN/BIGENDIAN
symbol definitions and undefinitions are ignored.

-Qperfinfo=n Print performance information. n=0, no information (similar to not
specifying); n=1, variables stayed in memory (not allocated in register)
and the reason why.

-Fo<file> -Fo<Dir/> Name of object file or directory for multiple files.

-Fe<file> Base name of executable (.list, .ind) file.

-I path[;path2...] Path(s) to include files, prepended before path(s) specified in
environment variable UCC_INCLUDE.

-FI<file> Force inclusion of file.

-Wn n=0, 1, 2, 3, 4 Warning level.

0=print only errors

1, 2, 3=print only errors and warnings

4=print errors, warnings, and remarks.
4-2 Intel® IXP1200 Network Processor Family Development Tools User’s Guide

Microengine C Compiler
4.4 Compiler Steps

The .uc file contains three types of elements: microwords, directives, and comments. Microwords
consist of an opcode and arguments and generate a microword in the .list file. Directives pass
information either to the preprocessor, Assembler, or to downstream components (e.g., the Linker)
and generally do not generate microwords. Comments are ignored in the assembly process.

The Assembler performs the following functions in converting the .uc file to a .list file:

• Checks microcode restrictions.

• Resolves symbolic register names to physical locations.

• Optimizes branches, in some cases by rearranging instructions near a branch to minimize
branch penalties.

• Resolves label addresses.

• Translates symbolic opcodes into bit patterns.

4.5 Case Sensitivity

The C language code as well as the command line switches are case sensitive.

-Qrevision_min=n

-Qrevision_max=m

The version arguments allow the Compiler to generate code that will
work on a range of processor versions.

ID Chip

0 1200 A0

1 1200 B0

2 not used

3 1200 C0

4 1200 D0

5 1240/1250 A0

6 1240 B0

7 1250 B0

Use min and max to set the range of processor versions that the code
will run on.

Note: The loader will error if you try to load on an incorrect processor
version.

-Qnthreads=<1,2,3,4> Specify number of thread, default to 4.

-Fa<filename> Produces a .uc file containing the generated microcode intermixed with
the source program lines.

-link Call Microengine image linker (ucld) after successful compilation,
passing default options
"-u 0 -sr 4:0xfffffffc -sc 4:0x0ffc -dr 0x10:0xfffffff0"

Table 4-1. Supported CLI Option Switches (Sheet 2 of 2)

Switch Definition
Intel® IXP1200 Network Processor Family Development Tools User’s Guide 4-3

Intel® IXP1200 Network Processor Family
Linker 5

The Linker is used to link microcode images. Microcode images are generated by the microcode
Compiler or Assembler, whereas application objects are generated by a StrongARM C/C++
compiler. The method is C/C++ compiler independent. Two types of pointers are bound between
microcode and StrongARM Core application objects:

• Shared address pointers

• Function pointers

This chapter describes how to use the microcode Linker, ucld. The task of ucld is to process one or
more microcode Compiler or Assembler, (uca) output files,*.list, and create an object file that can
be loaded by the microcode loader. The loader, UcLo, is a library of C functions that facilitate
external address pointer resolution and the loading of images to the appropriate Microengine. The
microcode loader is described in the IXP1200 Network Processor Software Reference Manual and
uca is described in Chapter 6.

5.1 About the Linker

Memory is shared between the StrongARM Core and the Microengines. A common mode of
design will have the StrongARM Core generate and maintain data structures, while the
Microengine reads the data. Common address pointers will be used for these data structures. For
example, the base address of a route table will need to be shared. The solution will allow
microcode and StrongARM applications to be written and compiled that can access the common
address pointer.

5.1.1 Configuration and Data Accessed by the Linker

Various Microengine configuration data structures will exist in the StrongARM Core. These are
used to hold information about Microengines. Key repositories are:

• Microcode object. This is the binary object containing images that can be loaded into
microcode.

• Microcode page/functionality map, per Microengine. Association of microcode image to
Microengines. This is a list of libraries currently loaded. Separate list gives which libraries can
be loaded (dynamically paged), but are currently in memory.

• Thread functionality map, per Microengine context. Each thread is identified as either a
service thread or an autonomous thread. Each service thread has a library list of what libraries
it supports.

• Shared address imports/externs list, per microcode image. Linker uses this to update the
microcode image.

• ‘C’ Compiler variables memory segments locations and sizes.

• Message library/function dispatches. For service thread routines, a function call in an
application will result in a jump to a microPC location for a Microengine-thread. The
microcode page and label must be bound with the application library and function pointer.
Development Tools User’s Guide 5-1

Intel® IXP1200 Network Processor Family
Linker
5.1.2 Shared Address Update (Flow)

1. From Assembler, get a list of externs. Get the microPC locations where these variables are
used as an immediate. Get the microword format to know offset and size of the immediate.
Format this in the microcode “linked” object.

2. In the StrongARM Application, load or map the microcode “linked” object.

3. In the StrongARM application, bind the external variable with a value by calling the
appropriate function in the loader library.

4. The loader library updates the “immediates” with the bind-value for all occurrences of the
variable in the micro-image.

5. In StrongARM application, load the images to appropriate Microengines via a loader library
function.

5.2 Microengine Image Linker (UCLD)

ucld is an executable that accepts a list of Microengine images (*.list) generated by the Assembler,
uca, and combines them into a single object that is loadable by the core image, running on the
StrongARM processor, utilizing Microengine Loader Library (libD) functions.

Usage: ucld [options ...] uca_list_file ...

Command line options:

-h
Print a description of the ucld commands.

-o outfile
Produce an output object file of the name outfile. The default output name is ucld.uof.

-u Microengines
Associate the specified Microengine(s) to subsequent uca_list_file. The Microengines option is a
string of digits 0 through 5, with no space separating the digits, representing the number of the
Microengine. The -u option can be repeated for subsequent list files. The default is '012345' which
associates all Microengines to the uca_list_file that follows.

-f [fill_pattern]
Output all 1024 microwords and fill the unused microwords with the four-byte hexadecimal
constant specified by fill_pattern. If the -f option is not specified, then only up to the last
microword used will be output. The default fill_pattern value is 0x0.

-c
Creates a hexidecimal representation of the output object to a ‘C’ module. The filename will be the
name of the output object file but with a ‘.c’ file type.

-i
Ignore CPU versions compatibility error.

-g
Include debugging information, to be used by the Workbench, in the output object file.

-v
Print a message that provides information about the version of the Linker being used.
5-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Linker
5.3 Generating a Microengine Application

On development system:
% uca ueng0.uc -o ueng0.list

% uca ueng1_5.uc -o ueng1_5.list

% ucld -u 0 ueng0.list -u 12345 ueng1_5.list -o ueng.uof

On an ARM machine:
arm> armcc -o core_app core_app.c uclo.a

arm> core_app ueng.uof

5.4 Syntax Definitions

5.4.1 Image Name Definition

This definition associates a name to the content of the uca_list_file in the output object file. This
provides the means of identifying the image within the object file, allowing referencing to
particular section of the object file by name - used by the loader link library. The image name
must be unique for all input files that are to be linked. The Image name is defined in the micro-code
source file (*.uc) use of the .image_name keyword. If the .image_name is not specified in the
micro-code source file, then the image name will be the name of the uca_list_file excluding any
folder path and the file extension.

Format for uca source (*.uc), and output (*.list) files:
.image_name name

5.4.2 Import Variable Definition

This scheme provisions the sharing of address pointers between Microengine images and the core
image.

An IXP1200 application is physically comprised of two parts: a Microengine image and a core
image. Microengine images are microinstructions that run on the Microengine and are created
using the uca and ucld tools. Core image runs on the StrongARM Core processor and is created
using the ARM compiler/assembler and linker tools.

Address sharing between the Microengine and core images is achieved by declaring the variables
as an imported/external variable using the .import_var keyword in the microcode source file (*.uc),
prior to the variables being used. The uca assembler will create a list of microword addresses and
the field bit positions within the microword where the variables are used and provided the
information in its output file (*.list) in the format as described below. The ucld Linker will process
the uca output files (*.list), possible one for each Microengine, and store the information in a
format that is acceptable by the loader. Core application binds and resolves a value to the Import-
Variable, by using the functions provided in the Micro-code Loader Library (uclo.a). The binding/
resolution of import variables must be performed prior to the loading of the micro image to the
Microengines.

Format for uca source (*.uc) file:
.import_var variable_name variable_name …
Development Tools User’s Guide 5-3

Intel® IXP1200 Network Processor Family
Linker
Format of uca output (*.list) files:
.%import_var variable_name page_id uword_address
<msb:lsb:rtSht_val, ...msb:lsb:rtShf_val>

Where:

variable_name String name of the external variable as declared in the uca source file
(*.uc).

highLow_flag An integer 0 or 1 indicating the lower or upper respective 16 bits of the
external 32-bit address.

page_id String name of the page identifier

uword_address An integer number between 0 and 1023 indicating the micro word
address.

<msb:lsb:rtSht_val,...msb:lsb:rtShf_val>
A list of a maximum of four integer triad representing the bit field most
and least significant bit positions, and the number of bit position to right
shift the source address value.

5.4.3 Microengine Assignment

This feature allows the loading of Microengine images to the appropriate Microengine at load time.
This is achieved by the specifying the -u option on the command line indicating the number of
Microengine(s) to be associated with the subsequent uca-list-file. The -u option can be repeated for
subsequent input files, and defaults to ’012345’ if the option is not specified. An error will be
generated if a Microengine is assigned to multiple input files.

Format of command line to associate Microengines 0, 1, and 2 to the input file test.list, and to
associate Microengines 3, 4, and 5 to the input file test2.list:
ucld -u 012 test.list -u 345 test2.list

5.4.4 Thread Type Definition

Thread type definition allows the user to specify whether the Microengine thread is either an
autonomous or a service type. An autonomous type thread is one that typically has one entry point
and implements a specific task/operation. A service type thread image typically contains multiple
entry points -- similar to dynamic library. Thread_ids is a string of decimal digits, 0 through 3
without spaces separating the digits, identifying the thread context. Undefined thread type defaults
to an Autonomous type.

Format for source (*.uc), and output list (*.list) files:
.thread_type thread_ids ["SERVICE" or "AUTONOMOUS"]

5.4.5 Code Entry Point Definition

Code entry point definition allows the user to specify the starting point of each Microengine image
instead of the default entry point of zero. This definition is of particular use to autonomous type
thread--service type threads have multiple entry points that are defined by ".export_func" keyword.

Format for uca source file (*.uc), and output (*.list) files:
.entry page_id uword_address
5-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Linker
5.4.6 Export Function Definition

The exporting of Microengine functions, allows the invocation of these functions from the core
image. Export functions are addressed relative to a function jump-table. The association between
function jump table and functions is achieved by prefixing the table name to the function name.
Function jump tables are defined by the .func_table keyword followed a label. Export functions are
defined using the .export_func keyword preceded by a definition of a function jump-table. Export
functions must be within 256 microwords of the their related table-maximum of 256 export
functions per function table. Therefore, care must be taken to avoid the placing of extraneous
microinstructions between the table definition and export functions definition that will reduce the
total number of functions in the table.

Func_type is either the keyword one way or two way, which specifies whether or not the function
returns a value.

Thread_ids is a string of decimal digits, between 0 and 3 without spaces separating the digits,
identifying the Microengine thread(s) that could be used to execute the defined function(s).

In_arg_len and out_arg_len specify the number long-words that comprised the input and output
arguments respectively. Argument lengths should be have a value between 0 and 3 long-words.

Format for uca source file (*.uc):
.func_table tableName

.export_func func_type thread_ids tableName_funcName in_arg_len out_arg_len

:

.export_func func_type thread_ids tableName_funcName in_arg_len out_arg_len

Format for uca output list file (*.list):
.%func_table tableName page_id uword_addr

.%export_func func_type thread_ids tableName_ funcName in_arg_len out_arg_len
page_id uword_addr

 :

.%export_funcl func_type thread_ids tableName_ funcName in_arg_len out_arg_len
page_id uword_addr

5.5 Examples

5.5.1 Uca Source File (*.uc) Example

 .entry common_code 0

 .thread_type 0123 service

 .image_name test

 .import_var rbuf rswap

 .func_table memsv#

 .export_func oneway 0123 memsv_bcopyt# 1 1

 .export_func oneway 0123 memsv_bzero# 2 0

 .memsv#:

 memsv_bcopyt#:

 br[memsv_bcopysubr#]

 :

 memsv_bzero#:

 br[memsv_bzerosubr#]
Development Tools User’s Guide 5-5

Intel® IXP1200 Network Processor Family
Linker
 memsv_bcopy#:

 br[memsv_bcopysubr#]

5.5.2 Uca Output File (*.list) Example

.entry common_code 0

.thread_type 0123 service

.image_name test

 .%import_var rbuf common_code 1 <16:0:0>

.%import_var rbuf common_code 2 <31:16:16> 10<31:16:16> 21<31:16:16>

.%import_var rswap common_code 3 <16:0:0>

.%import_var rswap common_code 4 <31:16:16>

.%export_func oneway 0123 memsv_bcopyt# 1 1 common_code 44

.%export_func oneway 0123 memsv_bzerot# 1 1 common_code 45

:

memsv#:

memsv_bcopyt#:

br[memsv_bcopysubr#]

.44 F8001C07 common_code

memsv_bzero#:

br[memsv_bzerosubr#]

.45 F8002707 common_code

memsv_bcopy#:

br[memsv_bcopysubr#]

.46 F8003E87 common_code

:

5.6 Microcode Object File (UOF) Format

Identifies the file format. This header is mandatory and must be the first entry in the file and
consists of a fixed 16-byte section and a variable section indexing the chunks.

Variable section of the File Header.

Table 5-1. FileHdr—File Header

FileID 8 bytes: value identifying the file as a chunk formatted file.

MaxChunks 2 bytes: maximum possible chunks that the file can contain-specify at the creation
of the file.

NumChunks 2 bytes: number of chunks currently being used.

File-chunk headers MaxChunks * sizeof(FileChunkHdr) contiguous bytes of file chunk headers.

Table 5-2. FileChunkHdr

FileChunkId 8 bytes: a unique value identifying the chunk

Checksum 4 bytes: CRC checksum of chunk.

Offset 4 byte: offset into the file where the chunk begins

Size 4 bytes: size of the chunk.
5-6 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Linker
5.6.1 FileChunkId Type: UOF_OBJS

5.6.2 UOF ObjId Types: UOF_STRT, UOF_GTID, and UOF_IMAG

Table 5-3. Objects Header - UOF_OBJS - UOF

CpuType 4 bytes: CPU family type.

CpuMinVers 2 bytes: the minimum CPU revision that the UOF will run on.

CpuMaxVers 2 bytes: maximum CPU revision that the UOF will run on.

MaxChunks 2 bytes: maximum chunks that can be contained in an UOF chunk.

NumChunks 2 bytes: number of chunks currently being used.

Reserved1 4 bytes: reserved for future use.

Reserved2 4 bytes: reserved for future use.

UOF-object headers MaxChunks * sizeof(UofChunkHdr) contiguous bytes of uof object headers.

Table 5-4. Ucode Object Header - UofChunkHdr

ObjId 8 bytes: a unique value identifying the object

Offset 4 byte: offset of the object from the beginning of the UOF object

Size 4 bytes: size of the object

Table 5-5. String Table Containing the Ucode Object Strings - UOF_STRT

TableLength 4 bytes: total length of the strings

Strings NULL terminated strings

Table 5-6. Generating Tool Identification - UOF_GTID

ToolName 8 bytes: generating-tool name offset into the UOF string table

ToolVersion 4 bytes: generating-tool version

Reserved1 4 bytes: reserved for future use.

Reserved2 4 bytes: reserved for future use.

Table 5-7. Image Module - UOF_IMAG

Image Module

ImageName 4 bytes: image name offset into UOF string table

FillPattern 4 bytes: unused ustore fill pattern

Reserved1 4 bytes: reserved for future use.

Reserved2 4 bytes: reserved for future use.

CpuType 4 bytes: CPU family type.

CpuMinVers 2 bytes: minimum CPU revision that the image will run on.
Development Tools User’s Guide 5-7

Intel® IXP1200 Network Processor Family
Linker
CpuMaxVers 2 bytes: maximum CPU revision that the image will run on.

ImageAttrib 2 bytes: uEngineFlags(byte 0), threadType(byte 1<3:0>, unused(byte 1<7:4>)

EntryPage 2 bytes: page number entry point

EntryAddress 2 bytes: uPC entry point into the code

NumOfPages 2 bytes: the number of page

Micro store pages NumOfPages * sizeof(CodePage) contiguous bytes of code pages

Table 5-8. Microword Page - CodePage

ImpVarTabSize 2 bytes: size of the import variable table

CodeAreaSize 2 bytes: size of the code area

ExpFuncTabSizee 2 bytes: export func table size

Unused1 2 bytes: reserved/alignment

Reserved1 4 bytes: reserved for future use.

ImpVarTableOffset 4 bytes: offset into the file of the import variable table

CodeAreaOffset 4 bytes: offset into the file of the code area

ExpFuncTabOffset 4 bytes: offset into the file of the export function table

Table 5-9. Import Variables Table - ImpVarTab

NumEntries 4 bytes: the number of entries in the table

Table entries NumEntries * sizeof(ImportVar) contiguous bytes of import variables

Table 5-10. Import Variables - ImportVar

VarName 4-bytes: offset into string table

AddressDirective 4-bytes: micro word address(bytes 0 &1), unused (bytes 2 & 3)

FieldPos 12-bytes: fields position within uword; each byte represents a bit position, field
length, and a right-shift value - max of four fields

Table 5-11. Microwords - CodeArea

NumMicroWords 4 bytes: the number of uwords in segment 1

NumMicroWords_2 4 bytes: the number of uwords in segment 2.

Micro words (NumMicroWords + NumMicroWords_2) * 4 contiguous bytes of micro words

Table 5-12. Export Function Table - ExpFuncTab

NumEntries 4 bytes: the number of entries in the table

Table entries NumEntries * sizeof(ExportFunc) contiguous bytes of export function labels

Table 5-7. Image Module - UOF_IMAG
5-8 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Linker
5.6.3 FileChunkId Type: DBG_OBJS

5.6.4 DBG ChunkId Types: DBG_STRT, DBG_IMAG

String table containing the Debug Object Strings.

Contains debug information from a particular list file.

Table 5-13. Export Functions - ExportFunc

FuncName 4 bytes: function name offset into UOF string table

FuncAddress 2 bytes: micro word address-relative to the function table

ThreadIds 2 bytes: threadID flags(byte 0<3:0>), funcType(byte 1<1:0>), unused (bytes
0<7:4>, 1<7:2>)

InArgLen 2 bytes: input arguments length in long-words

OutArgLen 2 bytes: output arguments length in long-words

Table 5-14. Debug Objects Header - DBG_OBJS

MaxChunks 2 bytes: maximum objects that can be contained in a DBG_OBJ chunk.

NumChunks 2 bytes: number of chunks currently being used.

Debug-object headers MaxChunks * sizeof(DbgChunkHdr) contiguous bytes of debug object headers.

Table 5-15. Debug Object Chunk Header - DbgChunkHdr

ObjId 8 bytes: a unique value identifying the object

Offset 4 byte: offset of the object from the beginning of the Debug object

Size 4 bytes: size of the object

Table 5-16. Debug Object Strings - DBG_STRT

TableLength 4 bytes: total length of the strings

Strings NULL terminated strings

Table 5-17. Debug Image - DBG_IMAG

ImageName 4 bytes: list-file name string-table offset

ImageAttrib 2 bytes: uEngineFlags(byte 0), unused(byte 1)

DbgRegTabSize 2 bytes: size of the Register table

DbgLblTabSize 2 bytes: size of the Label table

DbgSrcTabSize 2 bytes: size of the Source table

DbgRegTabOffset 4 bytes: register table offset from beginning of the debug object

DbgLblTabOffset 4 bytes: label table offset from the beginning of the debug object

DbgSrcTabOffset 4 bytes: source table offset from the beginning of the debug object
Development Tools User’s Guide 5-9

Intel® IXP1200 Network Processor Family
Linker
Table containing either Registers, Labels, or Source objects.

Table 5-18. Debug Object Table - DbgObjTable

NumEntries 2 bytes: the number of objects in the table

Unused1 2 bytes: reserved/alignment

Table entries NumEntries * sizeof(object) contiguous bytes of objects

Table 5-19. Debug Registers - DbgReg

Name 4 bytes: offset into string table

Type 2 bytes: register type

Addr 2 bytes: address of the register

Table 5-20. Debug Labels - DbgLabels

Name 4 bytes: label name offset into the debug string table

Addr 2 bytes: address of the label

Unused1 2 bytes: reserved/alignment

Table 5-21. Debug Source Lines - DbgSource

FileName 4 bytes: filename offset into debug string table

Lines 4 bytes: source lines offset into the string table

LineNum 2 bytes: line number

Addr 2 bytes: the associated microcode address

ValidBkPt 2 bytes: valid breakpoint indicator

Unused1 2 bytes: reserved/alignment
5-10 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor 6

This chapter describes the IXP1200 Transactor and its command line interface. The IXP1200
Workbench graphical user interface to the Transactor is described in Chapter 2. The chapter
contains the following sections:

• Overview (see Section 6.1).

• Invoking the Transactor (see Section 6.2).

• Command Interface (see Section 6.3).

• IXP1200 Transactor Commands (see Section 6.4).

• C Interpreter (see Section 6.5).

• Debugging (see Section 6.6).

• Transactor Command Script Files (see Section 6.7).

• Enabling the StrongARM Core (see Section 6.8).

• Simulation Switches (see Section 6.9).

6.1 Overview

The IXP1200 Transactor executes IXP1200 Microengine object code. It demonstrates the
functional behavior and performance characteristics of a system design based on the IXP1200
without relying on IXP1200 hardware. The IXP1200 Transactor is a cycle-accurate architectural
model of the IXP1200 hardware that is optimized for high-speed simulation of an IXP1200 based
system.

The first step in using the IXP1200 Transactor is to create a model of an IXP1200 based system.
This involves the use of commands that define how many IXP1200 chips are in the system and the
amount of SRAM and SDRAM associated with each IXP1200. Once the system model has been
defined, the Transactor can be used to run simulations, debug them, and gather performance
statistics.

The Transactor recognizes two types of input:

• Transactor commands. Commands unique to the IXP1200 Transactor that allow you to
control its operation.

• A subset of C commands. Provided to give you greater flexibility in controlling the
Transactor.

Commands can be typed in through the command line interface or executed as a series of
commands from a command script file.

6.2 Invoking the Transactor

The IXP1200 Transactor is invoked by using a command in the following format:
Development Tools User’s Guide 6-1

Intel® IXP1200 Network Processor Family
Transactor
safe_xact {switch1 switch2 switch3}

Up to three optional switches can be specified in any order. These switches take the following
forms:

6.3 Command Interface

The command interface performs the following functions:

• Enable state initialization and model configuration.

• Model simulation.

• State assignment or examination.

• Statistics collection and reporting.

• Microcode debug.

• Command file execution

• Data logging.

• Model save/restore capability.

Commands are interpreted as either a C statement or expression (when terminated with a
semicolon or a "}") or as an transactor-specific command otherwise.

A subset of the C preprocessor function allows users to define macros using the "#define"
command, thereby allowing users to customize the command interface.

The C interpreter implements a subset of the ANSI C language definition. The following
summarizes its capabilities:

• Handles "if", "if/else", "while", "for", "break", "continue", "return", code blocks (i.e. list of C
statements delimited by "{}"), structs, and most C expressions.

• Any simple model state (i.e. a signal, register or array (not a fifo) is treated as a global int
when it appears in a C statement or expression. Users can additionally create user-defined int
variables (currently, unsigned int, char, etc., are not supported).

• As in C, scoping of variables is implemented based on their definitions within {...}. Variables
defined outside of any {...} are defined as global variables and can also be examined and
deposited by non-C commands.

Table 6-1. IXP1200 Transactor Optional Switches

-i command_script.ind Execute the command script file command_script.ind

-m directory_path uword.def Look for the file uword.def in the folder specified by
directory_path. This file is required to invoke the
IXP1200 Assembler with the uca Transactor
command when the Transactor is running. If the file is
located in the same folder as safe_xact.exe, this
switch is not required to run the Assembler

-p directory_path ucc.def Look for the file ucc.def in the folder specified by
directory_path. This file is required to invoke the
IXP1200 Assembler with the uca Transactor
command when the Transactor is running. If the file is
located in the same folder as safe_xact.exe, this
switch is not required to run the Assembler.
6-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
• Functions may be defined and called by the user in the normal manner. Some built-in C
functions are also provided (see "help built-in C functions" for more information). User-
defined C functions with variable argument lists are currently not supported.

• C "struct" definitions can be defined and instantiated in both SRAM and SDRAM memory
spaces.

Note that when C text is interpreted from the command line, it assumes the entire C expression is
specified when the user presses the ENTER key. The user can specify code on multiple lines by
entering a continuation character that instructs the interpreter to wait for more input before
interpreting the text. Continuation characters come in two flavors:

1. A "\" at the end of a line instructs the interpreter to wait for the subsequent line to be input,

2. An implicit continuation always exists as long as one or more "{" are not terminated with "}".

6.4 IXP1200 Transactor Commands

Transactor commands fall into four functional categories: initialization, simulation, debugging, and
miscellaneous. The sections that follow list the Transactor commands in alphabetical order. Each
command description includes:

• The symbolic command name (e.g., examine).

• A short description of what the command does.

• The format of the command.

• Command parameter descriptions, and where appropriate, definitions of predefined
parameters.

• One or more examples illustrating the use of the command.

• Optional input strings delimited by bracket characters ({}).

• The table that follows is a quick reference to the IXP1200 Transactor commands:
Development Tools User’s Guide 6-3

Intel® IXP1200 Network Processor Family
Transactor
Table 6-2. IXP1200 Transactor Commands (Sheet 1 of 2)

Command Name Command Type Section

#define Debugging 6.4.8

#elifdef Debugging 6.4.10

#else Debugging 6.4.11

#endif Debugging 6.4.12

#ifdef Debugging 6.4.20

#ifndef Debugging 6.4.21

#undef Debugging 6.4.40

@ Miscellaneous 6.4.1

bank_analysis Initialization 6.4.2

chip Initialization 6.4.3

close Debugging 6.4.4

config Miscellaneous 6.4.5

connect Miscellaneous 6.4.6

debug Debugging 6.4.7

deposit Debugging 6.4.9

examine Debugging 6.4.11

exit Miscellaneous 6.4.14

fbox Debugging 6.4.15

go_clk_domain 6.4.16

go Simulation 6.4.17

goto Simulation 6.4.18

help Miscellaneous 6.4.19

init Initialization 6.4.20

load_bin_file Miscellaneous 6.4.23

load_list_file Miscellaneous 6.4.24

load_uc Initialization 6.4.25

load_uof_file Initialization 6.4.26

log Debugging 6.4.27

mem_init Initialization 6.4.28

path Debugging 6.4.29

restore Debugging 6.4.30

return Miscellaneous 6.4.31

save Debugging 6.4.32

set_clk_freq Initialization 6.4.33

sim_reset Simulation 6.4.34

statistics Debugging 6.4.35

time Miscellaneous 6.4.36
6-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.4.1 @

Executes a series of simulation commands in a specified command script file name.

Format: @cmd_file_name

cmd_file_name
Name of command script file. See Section 6.7 for more information on
Transactor command script files.

Example: > @myfile.ind
Begins execution of the command script file named myfile.ind.

6.4.2 bank_analysis

When executed the first time, enables SDRAM reference statistics gathering to be used so that
SDRAM bandwidth can be improved by setting the position of the SDRAM bank bits.

At the end of the simulation, the command can be executed again to display the banking analysis
results.

Format: bank_analysis

Example: > bank_analysis
Begins bank analysis or display of statistics results.

The overall goal of the SDRAM controller design is to maximize memory bandwidth. Since
multiple D-streams are simultaneously processed by the SDRAM controller, the likelihood of
subsequent references mapping to the current open row of the current bank is very low. Therefore,
rows are scheduled for precharging when a reference completes so that row will be ready for
another RAS as soon as possible (NOTE: the one exception to this rule is when references are
explicitly “chained” together. In this case the row is held open for the reference following the
chained reference). Thus, the preferred access pattern employed by the SDRAM controller is to
process references in an order which accesses a different SDRAM bank every reference. By doing
this, the precharge time of one bank can be hidden under the execution of another reference. The
more often this pattern occurs, the greater the realized memory bandwidth. In order to maximize
this access pattern the SDRAM controller can swap the positions of one or two bank bits with one
or two other specified bits. By transposing the proper bits, the probability of bank swapping
between adjacent references can be increased, thus increasing overall memory bandwidth.

At the end of a simulation, the bank_analysis command is used to gather SDRAM reference
statistics to determine which bits should be swapped with the actual bank bits in order to optimize
memory bandwidth for the particular application running.

trace Debugging 6.4.37

ubreak Debugging 6.4.38

uca Miscellaneous 6.4.39

version Miscellaneous 6.4.41

watch Debugging 6.4.42

Table 6-2. IXP1200 Transactor Commands (Sheet 2 of 2)

Command Name Command Type Section
Development Tools User’s Guide 6-5

Intel® IXP1200 Network Processor Family
Transactor
6.4.3 chip

Adds an instance of the IXP1200 chip to the simulation environment. Each instantiated chip is
automatically connected to a common FBUS and a common PCI bus, but each chip has its own
SRAM and SDRAM memories.

Each instantiated chip must have a unique name comprised of alphanumeric characters or the
underscore (_) character. The name cannot begin with a numeric character nor can its name be the
same as one of the hierarchical instance name of the chip’s immediate children (e.g., sc for SRAM
controller). A null name can be specified by leaving chip_name blank.

Format: chip {/rdybus=chip_name} {/fbus=chip_name}
{chip_name}

chip_name An optional chip name. If no name is specified, the chip defaults to a null
name.

/rdybus Allows the user to configure the connectivity of one or more Ready
Buses among multiply instantiated IXP1200 devices. If this switch is not
specified, the instantiated IXP1200 Ready Bus is connected to the
globally shared Ready Bus called rdybus (with no chip prefix). If this
switch is never used when instantiating multiple chips, all chips are
connected to the same Ready Bus. If a chip command is specified as
chip/rdybus=A B for example, then the Ready Bus of chip B becomes
the same as the Ready Bus of chip A (i.e., A.rdybus). In that case, chip
A must be defined prior to executing this command.

/fbus This switch works analogously to /rdybus except that it uniformly
applies to the following buses composing the FBus interface: fdat_hi,
fdat_lo, fbe_hi_l, fbe_lo_l, sop, eop, token, fps, portctl_l, txasis.

Example 1: > chip a0
Instantiates a chip named a0.

Example 2: > chip
Instantiate a chip with a null name.

6.4.4 close

Closes a previously opened log or trace file. Exiting the Transactor will automatically close all
open log or trace files.

Format: close filename

filename Name of the log or trace file.

Example: > close mylog.txt
Close a log file.

6.4.5 config

Displays the current simulation configuration.

Format: config

Example: > config
6-6 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
Output:

Current Simulation Configuration: 1 SA-1200 chip
===
chip: ""
sram: memory array of 524288 32-bit words (2 MB); 545 words
currently valid.
flash: memory array of 524288 32-bit words (2 MB); 0 words
currently valid.
SRAM priority queue depth: 8
SRAM read queue depth: 16
SRAM order queue depth: 16
SRAM read lock queue depth: 24

6.4.6 connect

Effectively “wires” together the specified FBus input and output pins so that the input pin state is
assigned the value that the output pin state received during the previous FBus cycle.

Format: connect fbi_input_pin fbi_output_pin

fbi_input_pin
Name of FBus input pin.

fbi_output_pin
Name of FBus output pin.

Example: > connect pin1 pin2

6.4.7 debug

Displays debugging information related to the Microengines, SDRAM, SRAM, and the FBI. The
information displayed varies according to the settings specified by the unit.art.debug and
fx.art.debug_px states (see Appendix A for definitions of these states).

Format: deb{ug} {/status}

/status Displays the current state of all debug enable
switches.

Example 1: > debug /s
f0.art.debug: enabled (FBOX info)
f0.art.debug_p0: enabled (FBOX pipe 0 info)
f0.art.debug_p1: enabled (FBOX pipe 1 info)
f0.art.debug_p2: enabled (FBOX pipe 2 info)
f0.art.debug_p3: enabled (FBOX pipe 3 info)
f0.art.debug_p4: enabled (FBOX pipe 4 info)
f1 is not currently enabled for simulation
f2 is not currently enabled for simulation
f3 is not currently enabled for simulation
f4 is not currently enabled for simulation
f5 is not currently enabled for simulation
sc.art.debug: disabled (SRAM controller info)
dc.art.debug: disabled (SDRAM controller info)
Development Tools User’s Guide 6-7

Intel® IXP1200 Network Processor Family
Transactor
Example 2: Perform debugging with state settings made to display all five execution
stages of a Microengine.
> debug
====P4 fbox stage (write result) for f0. in ctx: 0 at fbox cycle 5====

uword addr = 0

.operand_synonym no_of_links 0x3

start#:

ld_field_b[cur_ptr, 1111, headptr, 0] ;cur_head = headptr

W_BUS: 00000001

operand write: GPR_A[0]=00000001

====P3 fbox stage (ALU/shifter) for f0. in ctx: 0 at fbox cycle 5====

uword addr = 1

immed[loop_no, no_of_links] ;loop = the number of links

A operand: 00000000; pre-shift B operand: 00000003; B operand:

00000003

shifter op: left shift 0; ALU op: ALU_OP_B;

ALU result: 00000003; old_ccs: !=0:>=0:no_carry

====P2 fbox stage (operand lookup) for f0. in ctx: 0 at fbox cycle 5===

uword addr = 2

loop_add#:

alu_shf_ri[val_ptr,cur_ptr, +, 1, 0] ;val_ptr = cur_ptr +1

A operand: 00000001 (selected from writeback bypassed data);

B operand: 00000001 (selected from immed data);

====P1 fbox stage (initial decode) for f0. in ctx: 0 at fbox cycle 5===

uword addr = 3

sram_bi[read, $next, cur_ptr, 0, word_cnt_1] ;$next = next

====P0 fbox stage (ustore lookup) for f0. in ctx: 0 at fbox cycle 5====

ustore addr = 4 ==> A00A3038

sram_bi[read, $val, val_ptr, 0, word_cnt_1],

defer[1], ctx_swap ;$val = valdep art.ctx_mask = 0x8

6.4.8 #define

Implements the text substitution function of the C preprocessor. Allows a user to specify text that is
automatically substituted into every command line before the line is interpreted. This allows users
to customize the command interface.

When a macro has substitutable arguments three preprocessor operators may be applied to modify
the resulting string. The preprocessor operator ## can be inserted between two tokens in the
macro_text to cause the two adjacent tokens to be concatenated. The preprocessor operator # can
be prepended onto a macro_text token causing the following token to be quoted. The preprocessor
operator ### can be prepended causing the following token to be dequoted if quote characters exist
as the first and last characters of the token.

Whenever a preprocessor operator is applied, the one or two tokens associated with the operator are
not expanded. In all other cases, every token in the macro_text is recursively expanded (if possible)
based on other existing macro definitions. If the recursive expansion of a macro name yields a
token of the same name, no further expansion occurs.

Format: #define macro_name {macro_argument_1,
macro_argument_2, macro_argument_3,...}
macro_text

macro_name Name of macro to be defined. If the macro_name has arguments
associated with it, the arguments are substituted into the macro_text
6-8 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
whenever the corresponding formal argument name matches a token of
the macro_text.

Example: > #define g go

6.4.9 deposit

Evaluates the C numeric expression deposit_expr and deposits the resulting number into the
specified state. The wildcard asterisk character (*) can be used to avoid specifying the entire state
name. However, unless the /multiple qualifier is specified, the wildcard specification must
unambiguously address only one state value.

The C interpreter only supports 32-bit integers during expression and statement evaluation. Use the
deposit command to initialize 64-bit data elements by depositing the data 32 bits at a time (see
example below).

Format: dep{osit} {deposit_qualifiers}
state_spec{[index_range]}{<bit_range>} = deposit_expr

deposit_qualifiers
/silentInhibits reporting the deposit action.
/multipleAllows a wildcarded name to deposit to multiple states.

state_spec Any predefined simulation state or user defined state that holds a
numeric value. See Appendix A for more details on states.

index_range The index_range specification is only relevant for arrays or FIFO
structures and can be a single C numeric expression or two numeric
expressions separated by a semicolon (:) to indicate the inclusive range
formed between the two numbers. For FIFOs, [[index_range] causes the
structure to be addressed in a first-in-first-out manner, where 0
represents the first element, 1 the second, and so on. The index range can
also be specified in terms of [beginning:+length], where the + following
the colon indicates that the end of the index range is determined by
adding the specified length to the beginning.

bit_range The bit_range spec has the same form as the index_range. If it is not
specified, the whole field is assumed.

deposit_expr A C numeric expression.

Examples: > dep sram [1:20]=1

> dep sdram [1:+10] = 0xabcd

> dep f0.reg.reg_name_0 = 5

> dep f1.reg.@absolute_reg_name = 6

> dep f0.art.thread_start_addr =
uaddr(f0.ctl.ustore,"label1#")

> dep/m f0.art.debug*1

> sdram[50010] = (0x55667788 << 16);
> dep/s sdram[50011]<47:16> = 0x55667788
> ex sdram [50010:50011]
Development Tools User’s Guide 6-9

Intel® IXP1200 Network Processor Family
Transactor
> memory:sdram[50010]<63:0>: 00000000 77880000
> memory:sdram[50011]<63:0>: 00005566 77880000

6.4.10 #elifdef

The #elifdef (else ifdef) directive, with the #ifdef, #ifndef, #else and #endif directives, controls
execution of commands typed at the command line or in a script file. If the symbol following
#elifdef is defined AND the preceding #ifdef/#ifndef and #elifdef’s are not satisfied, the commands
immediately following the #elifdef directive are executed up to the next #else, #elifdef, or #endif
directive.

An #elifdef directive must be preceded by an #ifdef or #ifndef directive. Any number of #elifdef
directives can appear between the #ifdef and #endif directives.

Format: #elifdef macro_name

6.4.11 #else

The #else directive, with the #ifdef, #ifndef, #elifdef and #endif directives, controls execution of
commands typed at the command line or in a script file. If the symbols in the closest preceding
#ifdef and #elifdef’s are not defined, the commands immediately following the #else directive are
executed up to the next #endif directive.

Any number of #elifdef directives can appear between the #ifdef/#ifndef and #endif directives, but
at most one #else directive is allowed. The #else directive, if present, must be the last directive
before #endif.

6.4.12 #endif

The #endif directive, with the #ifdef, #ifndef, #elifdef and #else directives, controls execution of
commands typed at the command line or in a script file. Each #ifdef/#ifndef directive must be
matched by a closing #endif directive.

6.4.13 examine

Examines the current state of one or more simulation states or user-defined variables. The wildcard
asterisk character (*) can be used to specify multiple states to be examined.

Format: ex{amine} {qualifier_list}
state_spec{[index_range]}{<bit_range>}

qualifier_list
Optional qualifiers may be applied to constrain the examination of
multiple variables to specific state types defined by the qualifiers. Any
number of qualifiers may be applied. They are:

/arrayData array.
/artifactModel artifact state (does not model real hardware).
/delayBus transfer delay element.
/fifoQueue structure.
/functionUser-defined C function.
/registerFlip-flop or latch hardware state element of 32 bits or less.
6-10 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
/signalCombinatorial hardware state element of 32 bits or less.
/statisticPerformance data collection and display facility.
/structUser-defined C struct definition.
/ustoreMicrocode control store.
/variableUser-defined C variable.
/watchUser-defined watch function.

state_spec Any predefined simulation state or user defined state that holds a
numeric value. See Appendix A for more details on states.

index_range The index_range specification is only relevant for arrays or FIFO
structures and can be a single C numeric expression or two numeric
expressions separated by a semicolon (:) to indicate the inclusive range
formed between the two numbers. For FIFOs, [[index_range] causes the
structure to be addressed in a first-in-first-out manner, where 0
represents the first element, 1 the second, and so on. The index range can
also be specified in terms of [beginning:+length], where the + following
the colon indicates that the end of the index range is determined by
adding the specified length to the beginning.

bit_range The bit_range spec has the same form as the index_range. If it is not
specified, the whole field is assumed.

Example: > examine f*abort
> examine/stat *
> examine/stat f0.*
> ex sdram [0:+20]

6.4.14 exit

Closes all open log files and then exits the Transactor.

Format: exit

Example: > exit
Exit the Transactor

6.4.15 fbox

Displays a summary of Microengine execution status.

Format: f{box}

Example: >fbox
Fbox: f0

ctx_0: saved_pc: 5; signals--> SELF ; wake_enable-->

ctx_1: saved_pc: 0; signals--> SELF ; wake_enable-->

ctx_2: saved_pc: 0; signals--> SELF ; wake_enable-->

ctx_3: saved_pc: 0; signals--> SELF ; wake_enable-->

ping ref (output): empty

pong ref (input): empty

--

0 PCIT master ops pending completion.

Simulation Time: 87 (core cycles); 43 (f_bus cycles) 43 (pci cycles)
Development Tools User’s Guide 6-11

Intel® IXP1200 Network Processor Family
Transactor
NOTE: "double click" CTRL-C to halt simulation.

Simulation time cycles for Core, FBus, and PCI are gathered from the following model variables:

sim.core_clk_cycle<31:0>
sim.fbus_clk_cycle<31:0>
sim.pci_clk_cycle<31:0>

6.4.16 go_clk_domain

Sets the clock domain default used in the "go" command when simulating a cycle count. Valid
values for the clock domain are: "fbox", "fbus", or "pci".

Format: go_clk_domain clock_domain_name

6.4.17 go

Simulates the number of Microengine cycles or microinstructions specified by count. If no count is
given, count defaults to 1.

Format: go{/silent} {fbox_name/thread_num} {count}

/silent Suppresses debug information during the simulation.

fbox_name/thread_num
The simulator runs until the specified number of microinstructions has
executed for the specified Microengine/thread. In other words, this
qualifier allows one to step through the execution of a particular thread
in the presence of multiple thread context switches.

count Number of Microengine cycles when no fbox_name/thread_num is
specified. Number of Microengine instructions when fbox_name/
thread_num is specified. A count of -1 means go indefinitely.

Example: //Create a log file titled Test.log

log Test.log

//Execute initialization commands

chip// chip command

mem_init sdram 1m// mem_init command (sdram initialize)

mem_init sram 1m// mem_init command (sram initialize)

init// init command

//Execute deposit commands

deposit sim.error_handle_mode = 3

dep sim.error_handle_mode = 3

dep/s f0.art.enable = 1

dep/s f1.art.enable = 0

dep/s f2.art.enable = 0

dep/s f3.art.enable = 0

dep/s f4.art.enable = 0

dep/s f5.art.enable = 0

dep/s f0.art.debug_p0 = 1

dep/s f0.art.debug_p1 = 1

dep/s f0.art.debug_p2 = 1

dep/s f0.art.debug_p3 = 1

dep/s f0.art.debug_p4 = 1
6-12 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
// Set abort ops in the last 4 stages of the pipe

// in order to avoid processing garbage microwords (these

// will be latched in the last 4 stages at the start of

// the clock edge

dep/s f0.ctl.p0_abort = 1

dep/s f0.ctl.p1_abort = 1

dep/s f0.ctl.p2_abort = 1

dep/s f0.ctl.p3_abort = 1

//load_uc command

load_uc f0.ctl.ustore forloop.list *

// go command

go f0/0 25

exit

6.4.18 goto

Run the Transactor until one of three conditions has been met, as defined by goto_spec.

A state called sim.goto_and_ubreak_key_on_p1 determines whether you go to pipeline stage 1 or
3. A state of 0 corresponds to pipeline stage 3. A nonzero value corresponds to pipeline stage 0.
The default value of the state is 0. More information on states is contained in Appendix A.

Format: goto{/silent} goto_spec {, max_cycles}

/silent If this qualifier is specified, debug information is suppressed during the
simulation.

goto_spec The goto_spec parameter may appear in any of the following formats:

• Cycles_count. If goto_spec is a single number, the Transactor will simulate up to and
including the specified Microengine cycle number.

• Microword_addr#. If goto_spec is a number followed immediately by the pound (#) character,
the Transactor will run until the specified microword numeric address has been reached in the
P1 pipe stage of one of the specified contexts in one of the specified Microengines.

• Label#. If goto_spec is a microword label, the Transactor will run until the specified
microword label has been reached in the P1 pipe stage of one of the specified contexts in one
of the specified Microengines.

The microword_addr# and label# formats allow multiple entries (separated by spaces) in a single
goto command. For multiple entries, the Transactor stops at the first address or label it encounters.

Where multiple threads are running at the same time, you can specify which thread(s) and which
Microengine(s) the goto command should apply. Any thread(s) in any Microengine(s) can be
specified. The following three model states are used by the goto command to enable threads and
Microengines:

{chip_name}.art.fbox_mask
This state specifies one or more of the six Microengines and exists for
every chip instantiated. The Microengines are specified by the low six
bits where the LSB specifies Microengine 0 and the MSB specifies
Microengine 5.

{chip_name}.art.ctx_mask
This state specifies one of 4 Microengine threads in the Microengine(s)
enabled by the {chipname}.art.fbox_mask state. This state exists for
Development Tools User’s Guide 6-13

Intel® IXP1200 Network Processor Family
Transactor
every chip instantiated. The threads are specified by the low four bits
where the LSB specifies thread 0 and the MSB specifies thread 3.

{chip_name}.fx.art.ctx_mask
This state specifies one of 24 Microengine threads in the Microengine
specified by fx, where x is the Microengine number. This state functions
as a logical OR with the {chip_name}.art.ctx_mask state. Multiple
Microengines and/or contexts can be simultaneously enabled, and if that
is the case, the goto command stops at the first simulation time in which
a match occurred.

max_cycles The Transactor runs until the goto point is reached or the number of
cycles reaches max_cycles.

Examples: > goto 34
> goto/silent 34#
> goto/s 34#

> goto label_1# label_2# label_3#

Set goto for Microengines 0, 2, and 3 in thread 0.
> dep/s art.fbox_mask = 7

Enables Microengine 0, 1,and 2.
> dep/s art.ctx_mask = 1

Enables all of thread 0.

Set goto for Microengine 0 thread 0:
> dep/s f0.art.ctx_mask = 1

Enables Microengine 0 thread 0.

6.4.19 help

Display helpful information about a topic or command.

Format: help {topic_or_command}

topic_or_command
The topic or command about which you need more information. Valid
entries are:

Example: > help examine
Get help on the examine command.
6-14 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.4.20 #ifdef

The #ifdef, #ifndef, #elifdef, #else and #endif directives control execution of commands typed at
the command line or in a script file. If the symbol following #ifdef is defined, the commands
immediately following the #ifdef directive are executed up to the next #else, #elifdef, or #endif
directive.

Each #ifdef/#ifndef directive must be matched by a closing #endif directive. Any number of
#elifdef directives can appear between the #ifdef/#ifndef and #endif directives, but at most one
#else directive is allowed. The #else directive, if present, must be the last directive before #endif.

The #ifdef, #ifndef, #elifdef, #else, and #endif directives can nest in other #ifdef/#ifndef directives.
Each nested #else, #elifdef, or #endif directive belongs to the closest preceding #ifdef/#ifndef
directive.

Format: #ifdef macro_name

6.4.21 #ifndef

The #ifdef, #ifndef, #elifdef, #else and #endif directives control execution of commands typed at
the command line or in a script file. If the symbol following #ifndef is not defined, the commands
immediately following the #ifndef directive are executed up to the next #else, #elifdef, or #endif
directive.

Each #ifdef/#ifndef directive must be matched by a closing #endif directive. Any number of
#elifdef directives can appear between the #ifdef/#ifndef and #endif directives, but at most one
#else directive is allowed. The #else directive, if present, must be the last directive before #endif.

The #ifdef, #ifndef, #elifdef, #else, and #endif directives can nest in other #ifdef/#ifndef directives.
Each nested #else, #elifdef, or #endif directive belongs to the closest preceding #ifdef/#ifndef
directive.

Format: #ifndef macro_name

6.4.22 init

Initializes the model for simulation. Memory for all simulation states is allocated and initialized.
All chip instantiations and SDRAM and SRAM instantiations must occur prior to performing this
operation.

Format: init

Example: > init
Initialize the model.

6.4.23 load_bin_file

Loads the binary data from the specified file into the specified array state. If an index expression
qualifies the array, the data will be loaded at the specified index; otherwise, the data will be loaded
starting at location 1 (if the array state is SRAM or SDRAM) or location 0 in all other cases.

If the arrayed state to be loaded has a bit width which is not a multiple of 32 bits, this function
assumes that memory storage for each state element is rounded up to an even number of 32-bit
words. Thus, this function always assumes that the binary data contains an integer number of 32-bit
words per array element.
Development Tools User’s Guide 6-15

Intel® IXP1200 Network Processor Family
Transactor
Format: load_bin_file array_name{[index_expression]}
binary_file_name

Example:

6.4.24 load_list_file

Loads the specified .list file (generated from the Assembler) into the specified memory or array
state starting at the specified array index.

Format: load_list_file ustore_state_name ucode_file_name
starting_load_addr

Example: This Transactor command loads forloop.list microcode starting at
SRAM location 1:
load_list_file sram forloop.list 1

The Transactor responds back with:
Loaded 6 words from "forloop.list", into sram[1:6] (sram[0x1:0x6])

Since the assembled forloop microcode contains six microwords, it
occupies six locations in SRAM.

6.4.25 load_uc

Loads the specified microcode file into the specified control store state name. Reads all microcode
into the control store, but only validates the microcode corresponding to the list of page names
specified.

Format: load_uc ustore_state_name ucode_file_name
{page_name_list}

ustore_state_name
A microstore state name in the form {chip_name}.fx.ctl.ustore, where
chip_name and fx are user specified.

code_file_name
Name of the microcode file to load.

page_name_list
Optional list of page names. An asterisk (*) entry in this field validates
all pages.

Example: load_uc f0.ctl.ustore ucode.list *

6.4.26 load_uof_file

Loads the specified uof file (generated from Linker) into the microcode control store. The uof file
contains microcode for one or more microengines. If no chip_name is specified, then the uof file is
loaded into the microcode control store for the unnamed/blank chip.

Format: load_uof_file uof_file_name {chip_name}

uof_file_name name of the uof file to be loaded.

chip_name If no chip_name is specified, then the uof file is loaded into the
microcode control store for the unnamed/blank chip.
6-16 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.4.27 log

Opens a log file of the specified name to log commands, responses, or both. If file_name is not
specified, displays all currently open log files. If neither commands nor responses are specified,
both are assumed. A log file may be closed using the close command. All log files are
automatically closed when the Transactor exits.

Format: log {file_name} {commands} {responses}

file_name The name of the log file to open.

commands The names of commands to log.

responses The names of responses to log.

Example: > log myfile.txt
Open a log file.

6.4.28 mem_init

Instantiates an SRAM or SDRAM memory array of a specified size.

Format: mem_init {/tag} mem_spec num_bytes

/tag Enables each memory location to record when the location was written,
what type of reference wrote it, which resource generated the reference,
and at what microPC value. This option increases the virtual memory
allocation of the memory structure by roughly a factor of 5, but is very
useful when debugging.

mem_spec Designates the SRAM or SDRAM state name which have the forms:
chip_name.sram and chip_name.sdram, respectively, where chip_name
is the instantiated chip name.

num_bytes The k or m suffix can be included to designate kilobytes or megabytes,
respectively. num_bytes specifies a number of bytes and not a number of
memory words (there are 4 bytes per word for SRAM and 8 bytes per
word for SDRAM).

Example: > mem_init chip.sram 30m
Instantiate 30 megabytes of SRAM.

6.4.29 path

Analogous to the DOS path command. Allows the user to specify the search list of folders which is
used to open files in the Transactor. Typing the command with no arguments displays the current
path setting. Typing the command followed by a semicolon resets the path list to look only in the
current folder area. Typing the command followed by a list of folder paths (separated by
semicolons) specifies the list of folder paths that are searched in left to right order. The special
keyword %path% specifies the previously existing search list.

Format: path{;}{path_spec}{;path_spec}{...}

path_spec The specification of the path used to open files in the Transactor.

Example: Example of the use of the path command in an IND file:
Development Tools User’s Guide 6-17

Intel® IXP1200 Network Processor Family
Transactor
// clear current path

path .

// Set search path for Transactor two directories below

path ..\regression\ready_slave; ..\regression

// Display current path information

path

cmd("path ;");

cmd("path ..\regression\ready_slave; ..\regression");

6.4.30 restore

Restores the previously saved simulation state from the specified binary file.

Format: rest{ore} file_name

file_name The name of the file from which to restore a state.

Example: > restore file.sav
Restore a previously saved simulation state from a file named file.sav.

6.4.31 return

When executed within a script file, return immediately halts execution of that script file even if
more commands exist in the script. return has no effect when executed from the command line.

Format: return

Example: > return

6.4.32 save

Saves the current simulation state to a binary file of the specified name. This saved state can be
restored by reading back the saved file using the restore command.

Format: save file_name

file_name Specifies the name of the file used to save a state.

Example: > save file.sav
Save the current simulation state in a file named file.sav.

6.4.33 set_clk_freq

Sets the simulator to simulate the Core, FBus and PCI clock domains according to the relative
clock periods derived from the specified clock frequencies. All three clock frequencies must be
specified. Each value must be specified in MHz and must be greater than or equal to 1 MHz. The
values can be expressed as decimal numbers. This command must be executed prior to model
simulation; the clock frequencies cannot be changed once one or more cycles have been simulated.
6-18 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
Format: set_clk_freq core_clk_freq_in_MHz
fbus_clk_freq_in_MHz pci_clk_freq_in_MHz

Example: > set_clk_freq 166 66 66

6.4.34 sim_reset

Resets the state of the model to the point just after the model was first initialized.

Format: sim_reset

Example: > sim_reset
Reset the state of the model.

6.4.35 statistics

Lists all built-in Transactor statistics available in current simulation configuration.

Format: stat{istics}

Example: > stat

Output:

The following statistics are available:

f0.stat.compute_cycles: Breakdown of compute cycles for f0

...

6.4.36 time

Prints the current wallclock time.

Format: time

Example: > time

Output: Current wallclock time: Mon Jun 18 16:19:28 2001

6.4.37 trace

Opens a binary file, a verilog ASCII file, or a vcd file of a specified file_name in order to log the
values of the specified list of simulation states over time. If neither the /verilog or /vcd qualifiers
are specified, a binary file in TEMPEST format is opened. The TEMPEST format can be read by
the DINOTRACE waveform display tool.

A trace file may be closed using the close command. All trace files are automatically closed when
the simulator is exited, or when the restore command is executed. Trace files are automatically
reopened whenever a restore operation is executed, which restores simulator state to the point in
time in which that trace was first opened.

Format: trace {/verilog}{/vcd}{/dots_to_underscores/}
file_name name_list
Development Tools User’s Guide 6-19

Intel® IXP1200 Network Processor Family
Transactor
/verilog Specifies that a Verilog stimulus file (an ASCII file) be opened as the log
file.

/vcd Specifies that a vcd file be opened as the log file.

/dots_to_underscores/
Specifies that dots in specified signal names be converted to underscore
characters in the trace file.

file_name Specifies the name of the file that contains the trace logging data.

name_list A list of simulation states separated by blanks. If @ is prepended to a
name, the name refers to a file from which additional names will be
derived. The wildcard character (*) may be used as a shorthand method
of specifying one or more state names.

If a signal is an array, an index range specification must be applied to address particular elements
within the array. The index range specification (delimited by square brackets) can be a single C
numeric expression or two numeric expressions separated by a colon (:) to indicate the inclusive
range formed between the two numbers.

Example: > trace trace.log sdram[0:100]

6.4.38 ubreak

Sets or clears a list of breakpoints for one or more specific Microengine threads or displays current
microcode breakpoints. When a thread has been enabled to respond to a breakpoint, the Transactor
unconditionally stops when a Microengine program counter reaches the breakpoint. Multiple
breakpoints can be specified in one ubreak instruction.

A state called sim.goto_and_ubreak_key_on_p1 determines whether you break on pipeline stage
1 or 3. A state of 0 corresponds to pipeline stage 3. A nonzero value corresponds to pipeline stage
0. The default value of the state is 0. Appendix A contains more information on states.

Format: ubreak fx.ctl.ustore {uaddr_or_label =
thread_mask}...{uaddr_or_label = thread_mask}

fx.ctl.ustore
Name of one of the six Microengine control store states, where fx = f0
through f5.

uaddr_or_label
Microengine control store address in the form of either an absolute
address (number#) or a label (label#).

thread_mask A four bit value that represents one of the four Microengine threads.The
LSB represents thread 0 and the MSB represents thread 3. Threads are
enabled by specifying a 1 and cleared be specifying a 0.

Example 1: > ubreak f0.ctl.ustore 5#=0xf
Breakpoint at PC: 5 of f0.ctl.ustore for
threads: 0 1 2 3
Set a breakpoint at control store address 5 for Microengine 0 and enable
all threads.

Example 2: 0> ubreak *.ctl.ustore 5#=0x0
No breakpoints currently enabled for
f0.ctl.ustore
6-20 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
Clear a breakpoint at control store address 5 for all Microengines and all
threads.

Example 3: > ubreak f0.ctl.ustore 5#=0xf 13#=0xf
Breakpoint at PC: 5 of f0.ctl.ustore for
threads: 0 1 2 3
Breakpoint at PC: 13 of f0.ctl.ustore for
threads: 0 1 2 3
Set multiple breakpoints in the control store for Microengine 0 and
enable all threads.

6.4.39 uca

Assemble a specified microcode source file.

Format: uca file_spec

file_spec The path and filename of the microcode source file.

Example: > uca filename.uc
> uca e:\myfiles\filename.uc

6.4.40 #undef

Delete a previously defined preprocessor macro name.

Format: #undef macro_name {macro_argument_1,
macro_argument_2, macro_argument_3,...}
macro_text

macro_name Name of macro to be deleted. If the macro_name has arguments
associated with it, the arguments are substituted into the macro_text
whenever the corresponding formal argument name matches a token of
the macro_text.

Example 1: #define g go
#undef g
The first line defines g as the go command macro. The second line
undefines or deletes the go command macro.

6.4.41 version

Displays the number associated with this version of the Transactor.

Format: version

Example: >version
Copyright (c) 1998 Intel Corporation
SA-1200 Transactor Version (safe_xact): 2.1.88
Compiled on Nov 2 2001 at 01:11:22
Development Tools User’s Guide 6-21

Intel® IXP1200 Network Processor Family
Transactor
6.4.42 watch

Defines a watch state of the specified name that looks for state transitions for each of the specified
state names after each simulation event completes. If one or more states are found to have
transitioned, then the specified C statement associated with the watch is executed; otherwise no
activity takes place.

Watches are automatically enabled when defined. Watches can be disabled and reenabled by
assigning a zero or nonzero value to the watch_name state (e.g., dep watch_name = 0 or
watch_name = 0;).

Format: watch (watch_name, state_name1, state_name2,...,
state_namen) C statement

watch_name Name of watch state.

state_name1, state_name2,..., state_namen
Names of states.

C statement C statement to be watched.

Example: > watch (watch1, dc.odd_cycle) {
printf (“dc.odd_cycle=%d/n”, dc.odd_cycle);
if (++iteration_count==100)
sim.halt=1; //halt the model after 100 passes
}

6.5 C Interpreter

The Transactor contains an integrated C interpreter that implements a subset of the ANSI C
language definition. The C interpreter is a powerful tool for creating test scripts. The C code can be
typed in at the command prompt or entered using command script files.

The C interpreter has the following characteristics:

• Handles if, if/else, while, for, break, continue, return, code blocks (i.e., a list of C statements
delimited by brackets ({}), and most C expressions).

• Any simple model state (i.e., a signal, register, or array (not a FIFO)) is treated as a global 32-
bit int when it appears in a C statement or expression. See Appendix A for more details on
states.

• User-defined int variables can be created. All user-defined variables are saved and restored
when the model states are saved and restored. (unsigned int, char, etc. are not currently
supported).

• As in C, scoping of variables is implemented based on their definitions within brackets {...}.
Variables defined outside of any {...} are defined as global variables and can also be examined
and deposited by Transactor commands.

• Functions may be defined and they can be called in the same manner as ANSI C functions.
Predefined C functions are also provided. User-defined C functions with variable argument
lists are currently not supported.

• C struct definitions can be defined and instantiated in both SRAM and SDRAM.

• When C text is interpreted, it is assumed that the entire C expression is specified on a single
line. Multiple line C text can be entered using continuation characters that instruct the
6-22 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
interpreter to wait for more input before interpreting the text. Continuation characters are of
two types:

— A continuation caused by a backslash (\) at the end of a line, which instructs the
interpreter to wait for a subsequent line to be input, or

— An implicit continuation, which always exists as long as one or more left brackets ({) are
not terminated with corresponding right brackets (}).

• C statements or expressions are evaluated to a precision of 32 bits (the initialization of 64-bit
data elements requires the use of the deposit Transactor command).

6.5.1 Macros

The C interpreter supports macros using the #define and #undefine commands. Macros allow a
user to specify text that is automatically substituted into every command line before the line is
interpreted. This function allows users to customize the command interface. Macros can be defined
at the command line or within command script files. The two forms of the syntax are:

#define macro_name macro_text

#define macro_name [(macro_argument, ... , macro_argument)] macro_text

Macro_text is a series of tokens, such as keywords, constants, or complete statements. One or more
space characters must separate a token string from an identifier. Space characters are not
considered part of the substituted text, nor are any spaces following the last token of the text.

Macro_argument names appear in macro_text to mark the places where actual values are
substituted. Each parameter name can appear more than once in the macro_text, and the names can
appear in any order. The number of arguments in the call must match the number of parameters in
the macro definition.

The second syntax form allows the creation of function-like macros. This form accepts an optional
list of parameters that must appear in parentheses. References to the macro_name after the original
definition replace each occurrence of macro_name [(macro_argument, ... , macro_argument)] with
a version of the token string argument that has arguments substituted for formal parameters.

Commas separate the formal parameters in the list. Each name in the list must be unique, and the
list must be enclosed in parentheses. No spaces can separate identifier and the opening parenthesis.
Line concatenation can be accomplished by using a backslash (\) before the newline character for
long directives on multiple source lines. The scope of a formal parameter name extends to the new
line that ends token-string.

When a macro has been defined in the second syntax form, subsequent instances of macro_name
[(macro_argument, ... , macro_argument)] constitute a macro call. The actual arguments following
an instance of macro_name in the source file are matched to the corresponding formal parameters
in the macro definition. Each token in macro_text that is not preceded by a stringing (#), token
pasting (##) operator, or by a ### operator, is replaced by the corresponding actual argument. Three
optional preprocessor operators provide the following functions:

Inserted between two tokens in the macro_text to concatenate them.

Prepended onto a macro_text token, causing the following token to be quoted.

Prepended, causing the following token to be dequoted if quote characters exist as the first and
last characters of the token.

Any nested macros (macros in the macro_text) are expanded before the directive replaces the
formal parameter.
Development Tools User’s Guide 6-23

Intel® IXP1200 Network Processor Family
Transactor
6.5.2 Predefined C Functions

The Transactor supports the following predefined C functions.

6.5.2.1 add_bus_client(bus_name, client_name)

Adds a new bus client to an existing bus. The bus_name must be previously defined. The
client_name must be new. Assigning a value to the bus client causes that value to be driven onto the
bus in the following bus cycle. A sim_reset command (without the /preserve switch)
automatically deletes any user-defined bus clients that were created by this command.

6.5.2.2 alloc_array(array_state_name, struct_name, array_length)

Allocates contiguous memory within the specified array (either SRAM or SDRAM) by
instantiating an array of the predefined struct type for the specified array length. The function
returns the address of the start of the array.

C Function Definition Reference

add_bus_client Add new bus client to existing bus. 6.5.2.1

alloc_array Allocates contiguous memory. 6.5.2.2

alloc_list Creates a linked list in memory. 6.5.2.3

amba_add_req Adds an AMBA request. 6.5.2.4

cmd Executes Transactor commands. 6.5.2.5

env_var Returns 1 if specified environment variable exists. 6.5.2.6

field Returns a specified field from a model state. 6.5.2.7

field_insert Inserts data into a state at a specified field. 6.5.2.8

fprintf Analogous to C fprintf. 6.5.2.9

gui Returns 1 if Workbench is enabled. 6.5.2.10

pcit_add_req Queues up a PCIT request. 6.5.2.11

pcit_set_slave_addr Set the address range for a PCIT slave. 6.5.2.12

pcit_slave_read Read a PCIT slave’s memory. 6.5.2.13

pcit_slave_read Write a PCIT slave’s memory. 6.5.2.14

printf Prints to stdio. 6.5.2.15

rand Returns random integer. 6.5.2.16

rec_error Analogous to C fprintf, but also registers simulation error. 6.5.2.17

seed Returns current seed for random number generation. 6.5.2.18

set_bus_validity_checks Sets validity checks for a named bus state object. 6.5.2.19

srand Sets the seed for random number generation. 6.5.2.20

state_type Returns numerically specified state type for defined states. 6.5.2.21

system Implements the C system function. 6.5.2.22

uaddr Returns the address of a label. 6.5.2.23

uninitialized Returns a 1 if the model has been initialized. 6.5.2.24

valid_array Returns the number of valid elements in a specified array. 6.5.2.25
6-24 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
Example:
// This example shows how to create an array of size 0x20000 in SRAM.
// There are three steps:
// 1. Define a structure
// 2. Define a pointer to the structure
// 3. Create the array in memory and return the pointer to the array
// Step 1
struct my_array \
 {

int data = 0;
};

// Step 2
struct my_array:sram *my_array_bass_addr;
// Step 3
my_array_base_addr = alloc_array(sram, my_array, 0x20000);

6.5.2.3 alloc_list(array_state_name, struct_name, list_length, flink_spec,
blink_spec)

Allocates contiguous memory within the specified array (either SRAM or SDRAM) by
instantiating a linked list of the predefined struct type to form a list of the specified length. The
flink_spec (forward-link ptr) is used to specify the member name of the struct that acts as a pointer
to the same struct type. The blink_spec (backward-link ptr) is used in an analogous fashion to
specify the backward pointer for doubly linked lists. If no blink_spec is specified, a singly linked
list is created. If only one member within the specified struct is defined as a pointer to the same
struct, then the flink_spec need not be specified either, because the flink ptr can be determined
unambiguously. The function returns the address of the start of the list.

Example:
// This example shows to create a linked list with three elements in
// SRAM. There are three steps
// 1. define a structure
// 2. define a pointer to the structure
// 3. create the linked list in memory and return a pointer to the
// first element.
// Step 1
struct llist \
{

struct llist *pnext;
int val;

};

// Step 2
struct llist:sram *pllist;

// Step 3
pllist = alloc_list(sram, llist, 3);

6.5.2.4 amba_add_req(chip_name, write, addr, size, burst_size,
num_prior_blank_cycles [, data...])

Adds an AMBA request to the AMBA Transactor command queue. The write parameter should be
set to 1 to indicate a write operation, or 0 otherwise. The addr parameter is the byte address where
the operation will occur. The size parameter indicates the size of the transaction and take on one of
the values: 1, 2, or 4. The burst_size parameter should take on values from 1 to 8. The
num_prior_blank_cycles parameter indicates the minimum number of cycles the AMBA bus
should be idle since the previous transaction before this transaction starts. For read operations, no
data is specified. For write operations, there should be as much data specified as the burst size.
Development Tools User’s Guide 6-25

Intel® IXP1200 Network Processor Family
Transactor
6.5.2.5 cmd(quoted_cmd_string)

Executes the quoted_cmd_string as a Transactor command. This allows Transactor commands to
be embedded inside C commands.

Example:
cmd("dep fbi.csr[32] = 0xffffffff");

6.5.2.6 env_var(char *environment_variable)

Returns 1 if the specified environment variable exists; otherwise it returns 0.

6.5.2.7 field(state_name, field_msb, field_lsb)

Returns the specified field within a state. The state_name can be any legal Transactor state and the
bit field is specified by the field_msb and field_lsb arguments.

Example:
// This example deposits a zero into the RCV_RDY_LO register bit 5 and
// reads it back. Then it deposits a one into the RCV_RDY_LO register
// bit 5 and reads it back.
printf("depositing 0 now \n");
cmd("dep fbi.csr[32]<5:5> = 0");

printf("looking at it now using the field function \n");
field(fbi.csr[32], 5, 5);

printf("depositing 1 now \n");
cmd("dep fbi.csr[32]<5:5> = 1");

printf("looking at it now using the field function \n");
field(fbi.csr[32], 5, 5);

6.5.2.8 field_insert(state_name, insertion_data, field_msb, field_lsb)

Inserts the insertion_data into the specified state at the specified bit field. The insertion_data must
be less than or equal to 32 bits. The function returns 1 if successful, otherwise 0.

6.5.2.9 fprintf(file_name, fmt, ...)

Analogous to C fprintf except that the first argument is a file name, not a file pointer. If the log file
corresponding to the file name was not previously open, it is automatically opened by this call.

6.5.2.10 gui()

Returns 1 if the IXP1200 Developer Workbench is enabled in this simulation. Otherwise, returns 0.

6.5.2.11 pcit_add_req(slave_nbr, cmd, address, byte, burst, delay, data...)

Queue up a PCIT request. CMD is a PCI command, BYTE are the byte enables (active low),
BURST is the size DATA is only supplied for write operations.

6.5.2.12 pcit_set_slave_addr(slave_nbr, start, len)

Set the address range for a PCIT slave. SLAVE_NBR indicates which slave is to be selected:
6-26 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
1..2. START is the start address in bytes, and LEN is the size of the region. The slave will respond
to transactions that fall within this range for BOTH memory and IO space transactions. Note that
while normal PCI devices must have address range lengths that are powers of 2, this is not required
by the PCIT.

6.5.2.13 pcit_slave_read(slave_nbr, io_space, address)

Read a PCIT slave’s memory. SLAVE_NBR indicates which slave is to be selected 1..2, io_space is
a boolean indicating that IO-space should be read. If it is false than MEM-space is read.
ADDRESS is the PCI address (including base-registers) to be read.

6.5.2.14 pcit_slave_write(slave_nbr, io_space, address, data, byte_en)

Write a PCIT slave’s memory. SLAVE_NBR indicates which slave is to be selected 1..2, io_space
is a boolean indicating that IO-space should be read. If it is false than MEM-space is read.
ADDRESS is the PCI address (including base-registers) to be written. DATA is the data to be
written, and BYTE_EN is an optional byte enable. If it is not specified, then 0xF is assumed.

6.5.2.15 printf(const char *format, ...)

The printf function is analogous to printf in C.

Example:
// This example uses printf to report an error if the Microengine
// register ex4_result_0 is not equal to 0

if (f0.reg.ex4_result_0 != 0) {
printf ("ERROR: alu-ex.uc\n");

printf ("ERROR: Example 4 failed.\n");
printf ("ERROR - expected: 0\n");
printf ("ERROR - returned: %p\n",f0.reg.ex4_result_0);

}

6.5.2.16 rand(bound1, bound2)

Returns a random integer between the two specified bounds, inclusive. If bound2 is not specified,
it defaults to 0. If neither bound is specified, a random 32-bit result is returned.

6.5.2.17 rec_error(fmt, ...)

Analogous to printf function, but also registers a simulation error.

6.5.2.18 seed()

Returns the current seed for random number generation.

6.5.2.19 set_bus_validity_checks(bus, min_dead_cyc_wrn_thrsh,
min_dead_cyc_err_thrsh max_dead_cyc_wrn_thrsh,
max_dead_cyc_err_thrsh)

Sets the validity checks for the named bus state object. The min_dead_cyc threshold is the least
number of dead cycles (cycles not being driven) required between two different sources driving the
bus. The wrn_thrsh is the threshold for warnings, and the err_thrsh is the threshold for errors. The
Development Tools User’s Guide 6-27

Intel® IXP1200 Network Processor Family
Transactor
max_dead_cyc threshold is the maximium number of dead cycles that can occur in a row. Values of
-1 disable the given check. Each bus client is considered a different source. The verilog model and
assignments directly from .ind files constitute another, single source.

6.5.2.20 srand(number)

Sets the seed for random number generation.

6.5.2.21 state_type(var_name)

Returns the numerically specified state type if the specified state name was previously defined. It
returns 0 if the state is undefined. The argument may be either a quoted or unquoted name.
Numeric values for the state types are as follows:

6.5.2.22 system(char *shell_cmd)

Implements the C system function which passes a shell command to the OS or executing shell. The
return status resulting from the execution of the command is returned by this function.

Register 1

Signal 2

Verilog Signal 3

Verilog Wide Signal 4

Longword Array 5

Verilog Array 6

Verilog Wide Signal Array 7

Microcode Register 8

Model Artifact 9

String Pointer 10

Wide Signal 12

FIFO 13

Array 14

Memory 15

Control Store 16

CAM 17

Bus 18

Bus Client 19

Delay Element 20

Struct 21

Statistic 22

User-defined Variable 23

Watch 24

User-defined C Function 25

Macro 26
6-28 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.5.2.23 uaddr(control_store_state, label_name)

Returns the address of the specified label name within the control store of the Microengine that is
specified by the control_store_state.

Example:
//This example uses uaddr to detect if the program reaches the label
// ethernet#. If this occurs, the address will be known during the
// Microengine execution pipeline stage 1. (During stage 0 the
// Microengine is fetching the next instruction). The f0.ctl.p1_abort
// state is inspected to ensure that the instruction at the label
// ethernet# is not aborted. This condition is noted by setting status
// equal to 0.

watch(w, sim.time) {
if ((uaddr(f0.ctl.ustore, "ethernet#") == f0.art.p1_uaddr)

&& ! f0.ctl.p1_abort){
status = 0;
}

}

6.5.2.24 uninitialized()

Returns a value of 1 if the model is not initialized. Otherwise it returns 0. Certain predefined states
act as simulation switches or parameters that you can set. All such states exist under the sim
hierarchy. The following is a description of these states.

Example:
// **
// This is the model setup and initialization section. The model is
// initialization includes:
// 1. one IXP1200 with a NULL chipname- chip
// 2. 1MB of SRAM memory-mem_init sram 1m
// 3. 1MB of SDRAM memory-mem_init sdram 1m
// 4. initialize the entire system -init

// Note that the chip and memory are initialized before the model. The
// If statement is not required to initialize the model. It’s purpose
// is to allow this file to be re-loaded multiple times during a
// session. If this statement were not included the Transactor would
// report an error indicating that the chip and the memory can not be
// instantiated after the model is initialized. The If statement uses
// the un-initialized function to determine that if the model has been
// initialized. The sim_reset command is used to reset the model.

if (uninitialized())

{
// instantiate a chip using the chip command
cmd("chip");
// instantiate some memory using the mem_init command
cmd("mem_init sdram 1m");
cmd("mem_init sram 1m");
// initialize the chip using the init command
cmd("init");
}

// reset all post-init simulation state
// using the sim_reset command
else cmd("sim_reset");
//load microcode into Microengine 0.
load_uc f0.ctl.ustore llist.list *
Development Tools User’s Guide 6-29

Intel® IXP1200 Network Processor Family
Transactor
6.5.2.25 valid_elements(array_state_name)

Returns the number of valid elements in the specified array.

6.6 Debugging

The IXP1200 Transactor supports a number of powerful debugging features that are provided
through the Transactor commands, C statements, and model states. This section describes some of
these features and will provide examples of how to use them. Debugging features include:

• Debug summary information reporting

• Memory tags

• Watch functions

• Breakpoints

• Saving and restoring the model state

• Logging the simulation session

6.6.1 Reporting of Debugging Information

Debugging information can be displayed when the debug command is executed or upon
completion of a go or goto Transactor command. The debug information is displayed based on the
values of the following two states.

• unit.art.debug

• fx.art.debug_px

These states are set and viewed using the Transactor examine and deposit commands. See
Appendix A for further information on these states.

unit.art.debug (where unit = fbi, sc, dc, or f0-f5)

This state enables a summary of debug information to be displayed for the FBI, SRAM, SDRAM,
and Microengines. Depositing a value of 0 (disabled) through 4 (most information) to this model
state sets the level of information that is displayed, as shown in the following tables:

Table 6-3. State Setting Descriptions for fx.art.debug

fx.art.debug State Setting Description

0 Disabled.

1 View execution pipeline stage 3 (ALU output).

2 View all 5 execution pipeline stages.

3 View all 5 execution pipeline stages and thread state
information.
6-30 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
fx.art.debug_px
(where fx = f0 through f5, and debug_px = debug_p0 through debug_p4)

When fx.art.debug is enabled to display execution pipeline stage information, the fx.art.debug_px
state disables the display of the specified Microengine execution pipeline stage information. For
example, when f0.art.debug is set to 4, the Microengine execution pipeline stage information for
each stage will be displayed. If f0.art.debug_p3 is set to 0 then only stages 0,1,2, and 4 will be
displayed. Depositing a value of 0 disables the display.

The work performed during each pipeline stage is summarized below:

Depositing a value of 0 (disabled) or 1 (enabled) to this state determines whether the information
for the execution pipeline stage is displayed. The format of the information displayed is shown in
the sections that follow.

6.6.2 Common Execution Pipeline Stage Format

Each execution pipeline displays the same information on the first three lines.
====P4 fbox stage (write result) for f0. in ctx: 0 at fbox cycle 63====

uword addr = 12

alu_shf_ri[loop_no, loop_no, -, 1, 0] ; decrement link_no

Where:

Line 1 shows the Microengine execution pipeline stage number (P0 through P4), a description of
the pipeline execution stage (write result), the Microengine executing this instruction (f0 through
f5), the thread/context number executing this instruction (ctx: 0), and the Microengine execution
cycle (fbox cycle 63).

Line 2 shows the location of this instruction in the control store (uword addr = 12). If the
instruction is aborted due to a branch or other condition, ***ABORTED_UWORD*** will appear
on this line. If the Microengine is stalled because the Microengine has more than two external
references waiting to be issued to the appropriate function unit ***STALLED UWORD *** will
appear.

Line 3 shows the instruction in this execution pipeline stage including comments.

Table 6-4. State Setting Descriptions for *.art.debug

sc.art.debug
dc.art.debug
fbi.art.debug State Setting

Description

0 Disabled.

1 Enabled.

Table 6-5. Pipeline Stage Work

Stage Work Performed

0 Read the instruction from the control store.

1 Decode the instruction.

2 Look up the operands.

3 Perform the ALU/shifter operations.

4 Write result to the destination register.
Development Tools User’s Guide 6-31

Intel® IXP1200 Network Processor Family
Transactor
The formats described in the sections that follow are displayed for each execution pipeline stage.

6.6.2.1 Execution Pipeline Stage 4 - Write the Result

This is the complete display for execution pipeline stage 4.
====P4 fbox stage (write result) for f0. in ctx: 0 at fbox cycle 63====
uword addr = 12

alu_shf_ri[loop_no, loop_no, -, 1, 0] ; decrement link_no

W_BUS: 00000002

operand write: GPR_A[0]=00000002

Where:
Lines 1 through 3: Common execution pipeline stage information.

Line 4 shows the output of the ALU (W_BUS = 00000002).

Line 5 is displayed if the output of the ALU has a destination. It displays where the result is being
written (GPR_A[0]) and the value (00000002). The value should be the same as W-BUS in line 4.

6.6.2.2 Execution Pipeline Stage 3 - Perform ALU Shift, Decode Instruction

This is the complete display for execution pipeline stage 3.
====P3 fbox stage (ALU/shifter) for f0. in ctx: 0 at fbox cycle 63====

uword addr = 13

br!=0_[loop_rl#], defer[2]

A operand: 00000000; pre-shift B operand: 00000007; B operand: 00000007

shifter op: right shift 0; ALU op: ALU_OP_A_AND_B; ALU result:00000000;

old_ccs: !=0:>=0:carry

Where:
Lines 1 through 3: Common execution pipeline stage information.

Line 4 shows the A, B and preshift B operand values. If no shift operation is performed the B and
preshift B operand values will be the same.

Lines 5 and 6 shows the ALU and shifter operation that were performed, the result of this operation
and the condition code status after the operation. If the condition code changes old_ccs will be
displayed, otherwise new_ccs is displayed. The possible condition code values are:

Table 6-6. Condition Code Meanings

Condition Code Meaning

!=0 Not equal to zero.

=0 Equal to zero.

>=0 Greater than or equal to zero.

<0 Less than zero.

carry Carry.

no_carry No carry.
6-32 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.6.2.3 Execution Pipeline Stage 2 - Look Up Operands

This is the complete display for execution pipeline stage 2.
====P2 fbox stage (operand lookup) for f0. in ctx: 0 at fbox cycle 63==

uword addr = 14

new_head#:

nop

A operand: 00000000 (selected from xreg data);

B operand: 00000000 (selected from immed data);

Where:
Lines 1 through 4: Common execution pipeline stage information.

Lines 5 and 6 show the operand values that were fetched per instruction.

6.6.2.4 Execution Pipeline Stage 1 - Decode Instruction

This is the complete display for execution pipeline stage 1.
===P1 fbox stage (initial decode) for f0. in ctx: 0 at fbox cycle 63===

uword addr = 15

ld_field_a[headptr, 1111, $ptr, 0]

Where:
Lines 1 through 3: Common execution pipeline stage information

6.6.2.5 Execution Pipeline Stage 0 - Read Instruction

====P0 fbox stage (ustore lookup) for f0. in ctx: 0 at fbox cycle 63===

ustore addr = 10 ==> A018108A

loop_rl#:

sram[pop, $ptr, temp, temp1, 0], ctx_swap

Where:
Lines 1 through 3: Common execution pipeline stage information.

6.6.3 Memory Tagging

The Transactor provides the ability to tag SRAM or SDRAM memory with information about
which location was written, what type of reference wrote it, which resource generated the
reference, and at what Microengine program counter value. Memory tagging is enabled when
memory is initialized using the mem_init command.

6.6.4 Watch

The watch function is a powerful tool that executes code upon the transition of one or more user
defined states. One purpose of the watch function is to observe states and display information on
transitions that occur upon the occurrence of some combination of conditions. It is also used to halt
simulation or deposit data into states when some combination of conditions occurs. The watch
function is invoked by using the watch command (see the watch command description).

The watch function can be defined in a command script file and run using
@command_script_filename.
Development Tools User’s Guide 6-33

Intel® IXP1200 Network Processor Family
Transactor
6.6.5 Breakpoints

Breakpoints are supported by the Transactor using the ubreak command. A breakpoint causes the
simulator to stop unconditionally when a thread that is enabled to respond to that breakpoint
reaches the specified Microengine program counter address. Breakpoints can be set or cleared on a
thread-by-thread basis. Any number of breakpoints can be set or cleared by specifying one of the
six Microengine control store states followed by a microcode address in the form of either number#
or label#, followed by an equal sign (=), followed by a thread mask value. The thread mask value is
a four bit value where the LSB specifies thread 0 and the MSB specifies thread 3.

6.6.6 Save and Restore

The save and restore commands are used to save and restore the state of a model and are used
frequently in connection with debugging. See the save and restore command descriptions for more
information.

6.6.7 Logging A Simulation Session

A log file can be created that contains information displayed during a simulation session. Log files
are opened using the log Transactor command and are closed using the close Transactor command.
See these command descriptions for more information.

6.7 Transactor Command Script Files

The Transactor can run command scripts that contain Transactor commands and C commands
supported by the Transactor’s C interpreter. The following rules apply to Transactor command
scripts.

• C commands that require more than one line must terminate each line with a continuation
character to instructs the interpreter to wait for more input before interpreting the text.
Continuation characters are of two types:

— A backslash (\) at the end of a line instructs the interpreter to wait for the subsequent line
to be input.

— An implicit continuation, always exists as long as one or more left brackets ({) are not
terminated with corresponding right brackets (}).

• Comments can be defined two ways.

— ANSI C - starting after a slash-asterisk (/*) and ending before an asterisk-slash (*/).

— C++ - comment starts after a double slash (//) and runs to the end of the current line.

There are two ways to execute a command script file:

1. A command script file can be executed at the command line interface using the
@script_filename Transactor command.

2. A single command script file can run automatically when the Transactor is executed using the
-i switch (e.g., safe_exact -i script_filename).
6-34 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
The safe_exact -i script_filename format can be used to create automated test script. An automated
test script would contain a series of command using this format. The last command in each
script_filename would contain the Transactor exit command so that the Transactor exits after the
command script completes.

Command scripts can be aborted by placing the return command into a command script.

6.7.1 Example Command Script File

The following is an example Transactor command script file.
// This is an init file
//***
// This is the model setup and initialization section. The model
// initialization includes:
// 1. One IXP1200 with a NULL chipname- chip
// 2. 1MB of SRAM memory- mem_init sram 1m
// 3. 1MB of SDRAM memory- mem_init sdram 1m
// 4. Initialize the entire system - init
//
// Note that the chip and memory are initialized before the model. The
// If statement is not required to initialize the model. Its purpose
// is to allow this file to be reloaded multiple times during a
// session. If this statement were not included the Transactor would
// report an error indicating that the chip and the memory can not be
// instantiated after the model is initialized. The If statement uses
// the uninitialized function to determine whether the model has been
// initialized. The sim_reset command is used to reset the model.
//***
{
if (uninitialized())

{
// instantiate a chip
cmd("chip");
// instantiate some memory
cmd("mem_init sdram 1m");
cmd("mem_init/tag sram 1m");
// Initialize the chip
cmd("init");
}

else cmd("sim_reset"); // reset all post-init simulation state

}

//***
// This section sets up the debug reporting states.
//***
dep dc.art.debug = 0 //do not view SDRAM debug info
dep sc.art.debug = 0 //do not view SRAM debug info
dep f0.art.debug = 2 //view F0 debug info
dep f0.art.debug_p0 = 1 //view all 5 pipeline stages
dep f0.art.debug_p1 = 1
dep f0.art.debug_p2 = 1
dep f0.art.debug_p3 = 1
dep f0.art.debug_p4 = 1
//***
// This section turns off unused Microengines
//***
dep f1.art.enable = 0 // only Microengine 0 will run
dep f2.art.enable = 0// 0 = off
dep f3.art.enable = 0// 1 = on
dep f4.art.enable = 0
dep f5.art.enable = 0
//***
// This section turns off unused Microengines
//***
Development Tools User’s Guide 6-35

Intel® IXP1200 Network Processor Family
Transactor
dep art.fbox_mask = 1 // Turn on f0 (binary representation)
// This is a six bit mask where
// lsb = uengine 0, msb = uengine 5
//***
// This section turn on the Microengines threads
//***
dep art.ctx_mask = 0xf // Turn on all threads
// This is a four bit mask where
// lsb = thread 0, msb = thread 3
//***
// This section is only temporary. This will not be required when the
// circuit is implemented.
// 0, msb = uengine 5 0, msb = uengine 5 0, msb = uengine 5 0,
// msb = uengine 5
// This section sets abort operands in the last 4 stages of the
// execution pipe in order to avoid processing garbage uwords (these
// will be latched in the last 4 stages at the start of the clock edge.
//***
dep f0.ctl.p0_abort = 1
dep f0.ctl.p1_abort = 1
dep f0.ctl.p2_abort = 1
dep f0.ctl.p3_abort = 1
//***
// This section loads the microcode into the program store
//***
 load_uc f0.ctl.ustore llist.list *
//***
// This section is specific to the microcode program. It shows how a
// linked lists can be placed into SRAM memory.
// The steps are as follows:
// 1. Create a structure for the elements in the list.
// 2. Define a pointer to the structure
// 3. Create the list in memory
// 4. Write the head of the list pointer to the push pop register
// 5. Initialize memory with data
//***

// Note that the following 5 lines demonstrate the two forms of
// continuation characters. The "\" character after the first line
// indicates that the following line is a continuation of the first
// line. Everything within brackets "{}" are also interpeted as a
// continuation.

struct llist \
{ struct llist *pnext;// Step 1
 int val;

};
struct llist:sram *pllist;// Step 2

pllist = alloc_list(sram, llist, 3);// Step 3
// The alloc_list function is used to create three elements
// of type llist in sram. The return value is the pointer
// to the first element in the list. Note that the first
// longword in each element is a pointer to the next element
// in the list. The last list has a NUL pointer

dep/s sc.push_pop_regs[0] = pllist// Step 4
// Write the pointer to the first element in the list to the SRAM
// unit’s push-pop register
// initialize the values in the array// Step 5
int i; // initialize memory with data
for (i=1; i<=3; i++) {// This example simply writes

pllist ->val = (i*10);// 10, 20, and 30 into the list
pllist++;

};
//***
// This section deposits the head of the linked list into a
// Microengine GPR for each thread.
//***
dep f0.reg.headptr_0=pllist
6-36 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
dep f0.reg.headptr_1=pllist
dep f0.reg.headptr_2=pllist
dep f0.reg.headptr_3=pllist
//***
// This section
//***
dep/multi f*.ctl.thread_trigger_mask* = 1 // turn on all threads
dep/multi f*.ctl.thread_trigger_mask*0 = 0// turn off 0 thread (which

 // is on by default)

6.8 Enabling the StrongARM Core

This section describes how to enable and disable the StrongARM Core model in the Transactor.
You may want to disable the StrongARM core for the following reasons:

• You are not executing ARM code and want to improve Transactor performance by disabling
the StrongARM Core.

• You prefer to use the AMBA Transactor rather than the StrongARM Core model.

The IXP1200 Developers Workbench automatically performs the necessary steps required to
enable or disable the StrongARM Core, but users that choose to use the command line interface
must manually perform the steps that follow. To make this easier, it is recommended that you create
separate script files to enable and disable the StrongARM Core. Then you can simply execute the
script files.

The following states are associated with enabling and accessing the StrongARM Core:

art.pci_enable Enable PCI registers (and eventually the PCI bus)

art.kbox_enable Enable StrongARM Core

art.amba_xact_enable Enable AMBA Transactor

art.resets_connected_to_reset_csr Connect resets to SA1200_RESET register

To disable the StrongARM Core model in the Transactor set the states as follows (these are the
default settings):

art.pci_enable 0

art.kbox_enable 0

art.amba_xact_enable 1

art.resets_connected_to_reset_csr 0

To run the Transactor with the StrongARM Core functioning, set the states as follows:

art.pci_enable 1

art.kbox_enable 1

art.amba_xact_enable 0

art.resets_connected_to_reset_csr 1

Do not set both the art.kbox_enable and art.amba_xact_enable states at the same time. Results
will be unpredictable.

The state art.resets_connected_to_reset_csr when set to 1 connects the SA1200_RESET register
in the PCI unit to the reset lines of the other functional units. Refer to the IXP1200 Network
Processor Programmer’s Reference for more information on the SA1200_RESET register. This
state must be set for the SA1200_RESET register to work properly, but it is off by default for
compatibility with .ind files written for previous versions of the Transactor. Set this state to 1 when
writing new .ind files.
Development Tools User’s Guide 6-37

Intel® IXP1200 Network Processor Family
Transactor
The SA1200_RESET register is known in the Transactor as p.sa1200_reset_reg.

Example

To enable the StrongARM Core, the .ind file (after the initialization part) might start with the
following:

 > art.pci_enable = 1;

 > art.kbox_enable = 1;

 > art.amba_xact_enable = 0;

 > art.resets_connected_to_reset_csr = 1;

 > p.sa1200_reset_reg = 0xFFFFFFFF; //Resets the whole IXP1200 chip.

 > go 8

 > p.sa1200_reset_reg = 0x1FFEFFFF; //Brings SRAM, StrongARM Core, and FBus out
//of reset.

 > watch (ucode_watcher, c.r[6]) ucode_func(); //Look at register 6 to determine
//when to load microcode.

 > void ucode_func() {

 > // load ucode here

 > }

 > load_bin_file flash[0] your_ARM_binary_code_filename_goes_here

The StrongARM assembly source code might be structured as follows:

;; initialize processor, bring SDRAM out of reset, etc.

 ...

 ;; prepare Microengines to receive microcode (they are already in

 ;; reset) - clear context_enables

 ;; load ucode

 MOV R6, #1

 ;; This doesn’t really load the microcode in real hardware, but here

 ;; it fires off the watcher to load the microcode directly (and more quickly)

 ;; Initialize and bring Microengines out of reset

 ;; ...

 ;; Take Microengines out of reset

 ;; Set Microengine CTX_ENABLES register

 ;; ...
6-38 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.9 Simulation Switches

Several pre-defined simulation states exist that act as simulation switches/parameters for the user
to set. All such states exist under the "sim." hierarchy.

The following is a description of the states:

6.9.1 sim.error_count

Indicates the number of errors that were flagged during the session.

6.9.2 sim.error_handle_mode

Indicates what action should be taken when the error occurs.

The valid values are:

-1 Suppress and ignore error message.

0 Print the error but ignore its occurrance (i.e. the sim.error_count is not incremented
and the simulation continues).

1 Print the error, increment sim.error_count and halt simulation if simulation is in
progress.

2 Print the error, increment sim.error_count and halt simulation and command line/
script file execution any is in progress.

3 Print the error, increment sim.error_count, halt all execution and then exit the
simulator. The default value is 2.

Switch Section

sim.error_count 6.9.1

sim.error_handle_mode 6.9.2

sim.core_clk_cycle 6.9.3

sim.core_clk_freq 6.9.4

sim.core_clk_period 6.9.5

sim.fbus_clk_cycle 6.9.6

sim.fbus_clk_freq 6.9.7

sim.fbus_clk_period 6.9.8

sim.goto_and_ubreak_key_on_p1 6.9.9

sim.halt 6.9.10

sim.pci_clk_cycle 6.9.11

sim.pci_clk_freq 6.9.12

sim.pci_clk_period 6.9.13

sim.post_sim_exec_order 6.9.14

sim.prune_prefix_comments 6.9.15

sim.silent 6.9.16

sim.time 6.9.17
Development Tools User’s Guide 6-39

Intel® IXP1200 Network Processor Family
Transactor
6.9.3 sim.core_clk_cycle

Indicates the current number of core clock cycles simulated.

6.9.4 sim.core_clk_freq

Indicates the core clock frequency (in MHz).

6.9.5 sim.core_clk_period

Indicates the number of simulation time units specified for a core clock cycle.

6.9.6 sim.fbus_clk_cycle

Indicates the current number of fbus clock cycles simulated.

6.9.7 sim.fbus_clk_freq

Indicates the fbus clock frequency (in MHz).

6.9.8 sim.fbus_clk_period

Indicates the number of simulation time units specified for an fbus clock cycle.

6.9.9 sim.goto_and_ubreak_key_on_p1

This state is relevant to the "goto", "ubreak" and "go ’fbox/ctx’" commands. It indicates whether to
stop simulation by examining P1 uword state or P3 uword state. P3 state is desired in most cases.
P1 state will stop simulation earlier in the pipeline, but may "falsely" stop because the P1 uword
may become aborted in P2 or P3.

6.9.10 sim.halt

This state is normally 0. If the user sets it to 1, the model halts (if running) at the end of the current
cycle. This is useful in watch statements when it is desired for the model to be halted when a
specific condition has been met. Note that this state must be reset to 0 in order to continue running
the model.

6.9.11 sim.pci_clk_cycle

Indicates the current number of pci clock cycles simulated.

6.9.12 sim.pci_clk_freq

Indicates the pci clock frequency (in MHz).
6-40 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor
6.9.13 sim.pci_clk_period

Indicates the number of simulation time units specified for an pci clock cycle.

6.9.14 sim.post_sim_exec_order

Indicates the order in which watches, callbacks and the foreign_model_post_sim routine are called
after each transactor simulation event is executed. Because watches, callbacks and
foreign_model_post_sim offer the user 3 different mechanisms to either actively change state, and/
or passively observe state, the possibility arises that the execution order of these mechanisms may
cause incorrect behavior. For example, performing passive reads (e.g. informational debug
statements) prior to an active state change could cause incorrectly display debug data; or the order
in which active state changes are evaluated could cause incorrect behavior.

This switch allows the execution order of these 3 mechanisms to be set based upon the user-defined
application of these 3 mechanisms. Using the notation: W (watches), C (callbacks) and P
(foreign_model_post_sim), the legal values for this switch are: 0: W-C-P, 1: W-P-C, 2: C-W-P, 3:
C-P-W, 4: P-W-C, 5: P-C-W. The default value is W-C-P.

6.9.15 sim.prune_prefix_comments

This state is normally 0. When set to 1, ucode comment lines are pruned so that pure comment lines
are not displayed--only lines with actual ucode descriptive text are displayed.

6.9.16 sim.silent

This state is normally 0. If the user sets it to 1, all debug information is suppressed.

6.9.17 sim.time

Represents current simulation time.
Development Tools User’s Guide 6-41

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions 7

Foreign Model simulation extension is a useful tool for simulating external hardware devices, and,
in development StrongARM core software. It acts as an extension to the capabilities of Transactor,
which is a cycle and data accurate software model of IXP1200. Section 7.1 provides an overview
of where foreign model simulation can be used. Section 7.2 describes how to integrate foreign
models with the Transactor. Section 7.3 discusses the simulation of software modules running on
the StrongARM Core. Details of simulating IX Bus devices are discussed in Section 7.4.
Section 7.5 contains some sample code.

7.1 Overview

There are three reasons to use Foreign Model simulation:

1. To interface hardware device models,

2. To generate traffic on external busses of IXP1200, and,

3. To perform rapid prototyping of StrongARM Core software modules.

These three are illustrated in Figure 7-1.

• Interfacing hardware device models. Foreign modeling allows integration of models of
external hardware such as a MAC device or custom chip that is connected to the IX Bus. This

Figure 7-1. Three Uses of Foreign Models

A8821-01

Transactor

Microcode

Intel® IX Bus

Verilog PLI

S
R
A
M

S
D
R
A
M

Transactor
Running Custom

Microcode

Foreign Model

Custom Verilog
Model

Transactor
Running Custom

Microcode

Foreign Model of
Intel® StrongARM*
Core Application

Foreign Mode
Generating
Intel IX Bus

Transactions

* Other names and brands may be claimed as the property of others.

Interfacing
Hardware Device

Model

Generating Traffic On
External Busses of the

Intel® IXP1200 Core
Processor

Intel StrongARM Core
Software Prototyping
Development Tools User’s Guide 7-1

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
could be a software model of the external device or a design in a hardware simulator such as
Verilog. This includes the ability to interface with hardware models (such as a Verilog model)
which could reside on a remote machine.

• Generating traffic on external busses. Microengine software designers can use a foreign
model to assist in the design and debugging of Microengine software modules by producing
generic transactions of the IX Bus. This way, hardware residing on the IX Bus such as a MAC
device or some custom chip can be simulated. Once the software is designed, the same foreign
model interface can be used to produce the traffic typical for the application. This assists in
estimating the performance of software.

• StrongARM Software Module Prototyping. The Foreign model interface can also be used to
develop the software that will run on the StrongARM Core. Even though StrongARM
software executes on a development machine, once it interfaces to the Transactor through the
Transactor API, execution is cycle accurate. This reduces the simulation time and allows
accurate verification of interactions between StrongARM and Microengine software.

7.2 Integrating Foreign Models with the Transactor

A foreign model provides a mechanism by which the software model of the IXP1200 (Transactor)
can be extended to include additional software models of hardware that interfaces with the
IXP1200. There are three different ways to integrate a foreign model with the Transactor.

• Foreign Model Dynamic-link Library (DLL): Used when the foreign model is running on
the same Microsoft Windows system as the Transactor, and the user chooses to use the
Developer’s Workbench Graphical User Interface.

• Integrated Executable: Used when the foreign model is running on the same system as the
Transactor, and the user chooses to use the command line interface rather than the Developers
Workbench Graphical User Interface.

• Remote Foreign Model Executable: Used to interface a hardware simulator (VHDL or
Verilog) running on Unix to the Transactor and the Developer’s Workbench (which run on
WindowsNT).

To integrate the foreign model, the Transactor calls a foreign model at five stages of simulation:

• Immediately after the Transactor has initialized the IXP1200 model,

• Before a simulation step occurs,

• After a simulation step has occurred,

• When the simulation is reset, and

• When the Transactor exits.

The foreign model must provide five foreign model functions corresponding to these five calls. The
foreign model interacts with the Transactor through the Transactor API, described in the file xact.h.
7-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
7.2.1 Foreign Model Dynamic-Link Library (DLL)

This section describes how to create a dynamic-link library (DLL) for a foreign model simulation
extension. The DLL is used in conjunction with the Transactor DLL when running the IXP1200
Developer Workbench. The Workbench, Transactor, and foreign model interact as shown in
Figure 7-2.

1. The Workbench requests from the foreign model the pointers to foreign model functions
through the foreign model API.

2. The foreign model replies with the function pointers.

3. The Workbench passes the pointers to the Transactor through the Transactor API.

4. As the Workbench controls the Transactor through the Transactor API, the Transactor notifies
the foreign model whenever:

a. The Workbench is initialized,

b. Before a simulation step occurs (preSim),

c. After a simulation step has completed (postSim),

d. The simulation is reset (i.e., a sim_reset command is executed), and

e. When the Workbench exits debug mode and releases the Transactor.

5. The foreign model interacts with the Transactor using the Transactor API.

The foreign model DLL must provide the exported function GetForeignModelFunctions(), that the
Workbench calls to get the addresses of the five functions that the Transactor calls to interact with
the foreign model. The Workbench registers these functions with the DLL version of the
Transactor.

The foreign model DLL runs in conjunction with the DLL version of the Transactor, so xact_dll.h
must be included in the foreign model DLL source files, if needed, and it must be linked against
xact_dll.lib.

Figure 7-2. Workbench, Transactor, and Foreign Model Interaction

A8823-01

Foreign Model API

Foreign Model

TransactorXact
API

Intel® IXP1200 Developer Workbench

13

5

2

4

Development Tools User’s Guide 7-3

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
To specify that the DLL simulator is to be used as an extension to the Transactor model in the
Workbench, select Debug > Simulator Options then select the Configuration tab. Select Local
Simulation and check the Use simulator extension option. Finally, type the file name for your
foreign Model DLL into the field provided, or browse for it by clicking on the '…' button.

7.2.2 Integrated Executable (Integrated Transactor and Foreign
Model)

This section describes how to create an executable containing both the Transactor and a foreign
model simulation extension. The foreign model and Transactor interact the same as the DLL except
that the pointers to the foreign model API function calls are determined at compile time. The
Transactor header file xact.h must be included in all files that call the Transactor API. Any object
modules must be linked with xact_main.lib to create an executable. When the executable file is
executed, the user can enter Transactor commands and any console commands that are defined in
the foreign model using the command line interface (Figure 7-3).

7.2.3 Remote Foreign Model Executable

The Remote Foreign Model uses the Open Network Computing Remote Procedure Protocol (ONC
RPC) to interface the IXP1200 Developer Workbench and Transactor DLL (executing on an
WindowsNT system) to a foreign model executing on another remote system. The advantage to
remote simulation is that the foreign model can execute on other platforms such as a Sun
Workstation running Solaris.

ONC RPC makes it appear as though a foreign model executable calls a procedure located in a
Transactor program. ONC RPC was originally designed by Sun Microsystems and is in the public
domain. Intel provides a Microsoft Windows NT version of ONC RPC (OncRpc32.lib) since the
native support for RPC under Windows NT is different than ONC RPC.

The Workbench and Transactor are WindowsNT applications that use the OncRpc32.lib
communications library to act as the communication layer between WindowsNT and UNIX,
VxWorks, or other WindowsNT systems on the network. This communication library stands
between user application and Wsock32. The Local and Remote Foreign Model Layers provide the
RPC client and server functions between the Transactor and the remote foreign model. Intel

Figure 7-3. Command Line Interface

A8822-01

Foreign Model API

Foreign Model

Transactor
Xact
API

Filename.exe

Command Line Interface
7-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
provides sample source code for the foreign model layers on both the WindowsNT and remote
sides. These files need to be modified to provide the specific functionality for each
implementation.

Figure 7-4 shows how the foreign model interface can be used to interface the IXP1200
Workbench to a Foreign Model Application or a hardware model written in hardware language
such as VHDL or Verilog.

As the figure shows, the Transactor calls a local foreign model layer function instead of the actual
foreign model. The foreign model layer function converts the input parameters as needed into a
standard network data representation format, and then calls functions in the runtime RPC library,
OncRpc32.lib, to send the request and its parameters to the remote foreign model.

The remote foreign model performs the following steps to call the actual foreign model functions:

1. The OncRPC library runtime library functions accepts the request and calls the remote foreign
model layer.

2. The foreign model layer converts the parameters from the network transmission format to the
format that the remote foreign function needs.

3. The remote model foreign layer function invokes the remote foreign function.

Figure 7-4. Foreign Model Interface

A8825-01

Foreign Model API
(RPC Client)

Local Foreign Model Layer

Transactor
Xact
API

Intel® IXP1200 Developer Workbench

Windows® NT*

OncRpc32.lib

Wsock32.lib

Transactor API
(RPC Server)

Foreign Model API
(RPC Client)

Remote Foreign Model Layer

Other System
(Example: Sun Solaris* on Sun Workstation)

OncRpc Library

Socket Library

Transactor API
(RPC Server)

Remote Foreign Model
Foreign Model Application Executing Foreign

Model Functions
OR

Hardware Model Simulator Executing VDHL
or Verilog Code

(interfaces via a "C" interface)

* Other names and brands may be claimed as the property of others.
Development Tools User’s Guide 7-5

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
The remote foreign model functions interact with the Transactor through the remote foreign model
layer DLL (RS_Xact_DLL.DLL). The Xact API for the remote Transactor is defined in the header
file rs_xact.h. The Transactor layer invokes the actual Transactor function via the OncRPC
mechanism.

7.3 Simulating StrongARM Core Applications

The Developer’s Workbench can simulate a StrongARM Core application in conjunction with
Microengine code. It supports the following methods for enabling the simulation:

• Invoke the StrongARM hardware simulator in the Workbench and run the core image

• Code the StrongARM Core application using Foreign Model techniques

The first method is accomplished by specifying the name of the StrongARM Core image in the
Simulation Options dialog selected from the Debug menu of the Workbench. A StrongARM Core
image is comprised of the operating system (e.g., VxWorks) and the core application. The
Workbench provides a cycle-accurate simulation engine of the IXP1200 StrongARM Core under
which the StrongARM Core image executes. This approach results in a precisely simulated
interaction between the StrongARM Core and the Microengines. However, the cycle-accurate
model used to simulate the StrongARM Core hardware may significantly increase the overall
execution time of a simulation, especially when large core applications are involved. Consequently,
this method should only be used when the core application contains limited functionality, such as
performing the hardware boot sequence.

The second testing method uses the Transactor to provide a communication path between the
StrongARM Core application and the Microengine code. While this technique does not result in a
cycle-accurate model of the StrongARM Core application, it does provide a functionally accurate
model of the interaction between the StrongARM Core and the Microengines while improving the
overall simulation time. This section describes guidelines to code and build an application using
Foreign Model interfaces that is targeted at both the StrongARM Core hardware and Transactor.

This section covers the following topics:

• Use Hardware Abstraction Layer (HAL) APIs

• Determine the IOSTYLE compiler directive

• Determine the coding considerations

• Accessing Foreign Model Functions from the C Interpreter

• Build the application to selected target format: Local Foreign Model or Remote Foreign Model

7.3.1 Using the Hardware Abstraction Layer (HAL)

The HAL API is documented in the IXP1200 Network Processor Software Reference Manual. The
HAL API defines the function calls for accessing CSRs and functional unit memory such as
SRAM, SDRAM and Scratchpad. To ensure portability of your StrongARM Core application
between the hardware and the Transactor, the HAL must be used for memory access rather using
direct memory-mapped reads and writes.
7-6 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
The HAL consists of set header files that define macros and function prototypes. These definitions
provide mappings to the appropriate underlying target system - either the Hardware or the
Workbench/Transactor. Compiler directives, in particular the IOSYTLE directive, control the
underlying mapping.

7.3.2 Determining IOSTYLE

The IOSTYLE compiler directive controls how the HAL function calls and macros are compiled.
All of the StrongARM Core application code must be built using the same IOSTYLE directive.

There are three possible IOSTYLE definitions:

IOSTYLE=HARDWARE Use this directive when building the core application to run on the
StrongARM Core. HARDWARE directs the HAL to write to the memory-mapped addresses
for functional unit memory and CSRs. If this directive is defined, you must also define the OS
macro as either OS=NT, OS=VXWORKS, or OS=UCOS.

IOSTYLE=AMBAIO Use this directive when building the core application to run under the
Transactor. AMBAIO supports access to all functional unit memory and CSRs. AMBAIO
simulates access to functional units via the AMBA Bus which bypasses command queues used
by the Microengine. This models the actual behavior of the StrongARM hardware.

IOSTYLE=XACTIO Use this directive when building the StrongARM Core application to
run under the Transactor. Unlike AMBAIO, it does not allow access to all of the HAL
functions. There is no access to CSRs or SRAM atomic functions when XACTIO is used,

7.3.3 Coding Considerations

Note the following when developing a StrongARM Core application that can be built as a Foreign
Model:

• The Foreign Model entry points must be included in the application so that the Transactor can
call them. Additionally, the function GetForeignModelFunctions() must be provided if
creating the Foreign Model as a Windows NT DLL. Refer to Section 6.4.1 for a description of
these entry functions. The compiler directive ext_model_port can be specified to
automatically generate the external references to the Foreign Model entry points.

• Regardless of whether IOSTYLE is defined as XACTIO or AMBAIO, the function
ambaIoInit() must be called by the StrongARM Core application if it uses the Microengine
library (ueng.lib).

• The Transactor does not simulate IX Bus devices such as a MAC controller. If such modeling
is required by the application, the device simulation must be provided separately, either in the
form of a C code library or using the C Interpreter scripting tool in the Workbench. See section
6.2 for information on simulating an IX Bus device using Foreign Model techniques.

• When writing large amounts of functional unit memory, as when initializing all of SDRAM,
the AMBAIO versions of the write() functions may take a significant amount of execution
time. Alternatively, the functions XactFastRead() or XactFastWrite()perform block IO. Use
these functions instead, but only in the Foreign Model version of the StrongARM Core
application.

• The Transactor APIs (defined in xact.h) must only be used when running in simulation mode
under control of the Transactor. Libraries built for any of the StrongARM Core operating
systems do not support these calls.
Development Tools User’s Guide 7-7

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
7.3.4 Accessing Foreign Model Functions from the C Interpreter

The C Interpreter is described in Section 6.5. The Interpreter supports a subset of the C
programming language and is used to create and run scripts on behalf of the Workbench and
Transactor.

A StrongARM Core application using Foreign Model techniques can register function entry points,
thus making them callable from a C script. To register an entry point in Simulation mode, use the
XACT_register_console_function() call during initialization of the StrongARM Core application.
This call is described in the IXP1200 Network Processor Software Reference Manual, Section
3.2.2.5.

Using a combination of scripts and Foreign Model code enables various configurations of the
hardware and StrongARM Core application to be tested while not requiring a recompilation of the
application code. Scripts can be written to initialize the state of the simulation, functional unit
memory, and CSRs. They can also be written to simulate MAC devices to generate packet traffic
on the IX Bus.

7.3.5 Building the Application

Once the design decisions are made, the following steps provide a guide to building the
StrongARM Core application as a Foreign Model:

• Determine if the StrongARM Core application will run as a Remote Foreign Model or Local
Foreign Model. If using the Local Foreign Model the application must be built as a Windows
DLL. If using the Remote Foreign Model, the target operating system must support ONC RPC.
See section 6.1 for more details on Local and Remote Foreign Models.

• The StrongARM Core application must include the header file xact.h. Additionally, use of the
HAL API requires inclusion of the appropriate header files: hal_sram.h, hal_sdram.h and
hal_fbi.h.

• The Foreign Model application must link a minimal set of libraries consisting of:
hal_1200.lib, xact_dll.lib, xactio.lib and utils.lib. Other libraries are linked if used. For a
description of the available libraries, see the IXP1200 Network Processor Software Reference
Manual.

7.4 Simulating IX Bus Devices

Simulating of IX Bus devices involves the following:

• Getting states of IX Bus pins,

• Determining appropriate action based on the pin states, and

• Setting the appropriate pin states

The Transactor state names and a brief description of the states for various IX Bus pins is shown in
Table 7-1. Section 3.3.4 (IX Bus Interface Pins) and Section 3.7 (IX Bus Decode Table) in the
IXP1200 Network Processor Datasheet gives details of the usage of these pins. Timing diagrams
showing the signal protocol can be found in Section 4.3.7.3 (IX Bus Protocol) and 4.3.7.4
(RDYBus). Other Transactor states are described in Appendix A, “Transactor States”.
7-8 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
In order to read or write data into Transactor states, a handle to the state must be first obtained
using the Transactor API call XACT_get_handle(char *state_name, -1) Note that the second
argument for this call is an array index. Since the pins are not arrayed states -1 should be used as
the second argument. If multiple devices are attached to the bus, then each device should added as
a bus client using the XACT_add_bus_client(char *bus_name, char *bus_client_name) API call
before the handle is obtained. This ensures that bus errors will be detected and reported. Bus errors
occur when multiple bus clients are simultaneously driving the bus, or when client reads invalid
data because the bus was not driven. Note that internally Transactor treats each of the states listed
in Table 7-1 as a separate “bus”. Thus, each of these states require a separate call to add a bus
client.

Once a handle is obtained for the state (or bus client) XACT_get_state_value(XACT_HANDLE
state_handle, unsigned int *value)and XACT_set_state_value(XACT_HANDLE state_handle,
unsigned int *value)can be used to read and write to the bus.

The device that is simulated needs to perform the following operations:

• Check which port is selected for driving ready flags and put out the appropriate ready flags on
the Ready Bus.

• Check if flow control is being asserted and read the Ready Bus to obtain the ports for which
flow control is asserted.

• Read port control outputs to determine which device is selected to drive (for receives by
IXP1200) or sink (for transmits by IXP1200) and appropriately drive or sink the bus.

Note: The set of pins that need to be driven or read from depends on the IX Bus mode selected. Please
refer to the IXP1200 Network Processor Datasheet for details.

The foreign model is called for every Transactor simulation clock cycle. The simulation clock
cycle can be configured to either IX Bus clock or core clock. This can be selected on the
Developer’s Workbench under Debug Simulator → Options → Configuration tab → FIFO Bus
Clock or Core Clock check box. The foreign model must drive/read the IX Bus pins in
synchronization with the IX Bus clock. If the simulation is configured for IX Bus clock, no special
synchronization is needed and reads/writes to the bus can performed in the post_sim() or pre-sim()
calls in Foreign Model API (Section 6.5.1).

If the simulation is configured for the Core clock, the foreign model should synchronize with the
IX Bus clock using one of the following:

• Use XACT_Define_Callback_State_Transition() with a handle to the sim.fbus_clk_cycle to
register a function that is called for each IX Bus clock cycle. Read and writes to the bus are
performed in this function.

• Use XACT_clock_cycle_with_remainder() or XACT_clock_cycle() in pre_sim() or
post_sim() Foreign Model functions to determine if the IX Bus clock has changed. Reads and
writes to bus are performed in the post_sim() or pre-sim() calls in Foreign Model API.

Table 7-1. Transactor Names for IX Bus Interface Pins

Pin Name Transactor Name Description

FDAT[31:0] fdat_lo Lower 32 bits of the IX data bus

FDAT[63:32] fdat_hi Upper 32 bits of the IX data bus

FBE#[3:0] fbe_lo_l Bi-directional byte enable bits <0:3>

FBE#[7:4] fbe_hi_l Bi-directional byte enable bits <4:7>
Development Tools User’s Guide 7-9

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
RXFAIL rx_fail Receive Packet Failure

EOP eop End of Packet Indication

SOP sop Start of Packet Indication

EOP32_XMIT eop32_xmit Transmit End of Packet Indication

SOP32_XMIT sop32_xmit Transmit Start of Packet Indication

FAST_RX1 fast_rx1 Ready input from Fast Port 1

FAST_RX2 fast_rx2 Ready input from Fast Port 2

PORTCTL#[3:0] portctl_1 Port Control outputs

FPS[2:0] fps MAC Port Select outputs

RDYBUS[7:0] rdybus Ready Bus I/O

RDYCTL[3:0] rdyctl_1 Ready control bits <0:3>

RDYCTL[4] rdyctl_4 Ready control bit <4>

TK_IN token_in Token in

TK_OUT token_out Token out

GPIO[3:0] gpio General Purpose I/O

Table 7-1. Transactor Names for IX Bus Interface Pins (Continued)

Pin Name Transactor Name Description
7-10 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
7.5 Sample Code

The sections that follow contain some sample code.

7.5.1 Creating A Foreign Model DLL Used with the Developer
Workbench

This procedure describes how to create a foreign model layer (DLL) to be used in the foreign
model DLL configuration.

• The foreign model DLL must provide the exported function GetForeignModelFunctions() in
addition to the foreign_model_initialize(), foreign_model_pre_sim(),
foreign_model_post_sim(), foreign_model_reset(), and foreign_model_exit() functions.

• The file xact_dll.h must be included in foreign model DLL source files, if needed, and it must
be linked against xact_dll.lib.

7.5.1.1 DLL Sample Code

// You must include xact_dll.h, NOT xact.h in order to link correctly against

// the DLL version of the Transactor.

//

#include "xact_dll.h"

int foreign_model_initialize()

{

…your initialization code…

return(1);

}

int foreign_model_pre_sim()

{

… your pre simulation event code…

return(1);

}

int foreign_model_post_sim()

{

… your post simulation event code…

return(1);

}

int foreign_model_reset()

{

… your reset code…

return(1);

}

int foreign_model_exit()

{

… your exit code…

return(1);

}

Development Tools User’s Guide 7-11

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
/*---

 GetForeignModelFunctions

 This function is exported as the sole entry point into the DLL version

 of this package. The Developer Workbench calls it in order to get the

 foreign model entry points for the Transactor. The Workbench then

 registers these entry points with the Transactor.

 returns:

 uses:

 modifies:

*/

#if defined(__cplusplus)

extern "C" // the exported function must be of generic C type (not CPP),

 // so that its name doesn’t get adorned.

#endif

__declspec(dllexport) void __cdecl

GetForeignModelFunctions(

int (**ForeignModelInitialize)(),

int (**ForeignModelPreSim)(),

int (**ForeignModelPostSim)(),

int (**ForeignModelReset(),

int (**ForeignModelExit)())

{

*ForeignModelInitialize = foreign_model_initialize;

*ForeignModelPreSim = foreign_model_pre_sim;

*ForeignModelPostSim = foreign_model_post_sim;

*ForeignModelExit = foreign_model_exit;

*ForeignModelReset = foreign_model_reset;

}}

7.5.2 Creating A Remote Foreign Model - Local Foreign Model
Layer

The procedure that follows describes how to create a Local and Remote Foreign Model layer
(DLL) to be used in the Remote Foreign Model Executable configuration. The procedure is the
same used to create a local foreign model DLL in the Foreign Model Dynamic-Link Library (DLL)
configuration with the addition of the following steps.

• OncRpb32.lib and Wsock32.lib must also be linked.

• Rs_xact.h must be included in the source files.

• OncRpc32Init() must be called before making any OncRpc calls, and call OncRpc32Cleanup()
before exit.

7.5.2.1 Sample Code

/*

foreign_model_initialize

This sample function calls the OncRpc32Init to initialize the network layers,
register a local foreign model function that performs the remote network
initialization. It invokes the local rs_foreign_model_initialize() stub function
7-12 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
which then calls clnt_call(), a OncRpc32 library function to send a request to the
remote foreign model application to execute the actual foreign_model_initialize()
function.

 */

int foreign_model_initialize()

{

 OncRpc32Init();

 if (!XACT_register_console_function("RemoteInit", RemoteInit, 1, 1)){

 fprintf(stderr,"XACT_register_console_function() failed\n");

return(0);

}

 rs_foreign_model_initialize();

 return(1);

}

/*---

foreign_model_pre_sim

This function calls a local rs_foreign_model_pre_sim stub function which then calls
clnt_call(), a OncRpc32 library function to send a request to the remote foreign
model application to execute the actual foreign_model_pre_sim() function.

*/

int foreign_model_pre_sim()

{

 rs_foreign_model_pre_sim();

 return(1);

}

/*---

foreign_model_post_sim

This function calls a local rs_foreign_model_post_sim stub function which then
calls clnt_call(), an OncRpc32 library function to send a request to the remote
foreign model application to execute the actual foreign_model_post_sim() function.

*/

int foreign_model_post_sim()

{

 rs_foreign_model_post_sim();

 return(1);

}

/*---

foreign_model_post_sim

This function calls a local rs_foreign_model_reset stub function which then calls
clnt_call(), an OncRpc32 library function to send a request to the remote foreign
model application to execute the actual foreign_model_reset() function.

*/

int foreign_model_reset()

{

 rs_foreign_model_reset();

 return(1);

}

/*

foreign_model_exit_sim

This function calls a local rs_foreign_model_exit stub function which then calls
clnt_call(), a OncRpc32 library function to send a request to the remote foreign
model application to execute the actual foreign_model_exit_sim() function.
Development Tools User’s Guide 7-13

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
*/

int foreign_model_exit()

{

 rs_foreign_model_exit();

OncRpc32Cleanup();

 return(1);

}

7.5.3 Creating a Remote Foreign Model - Remote Foreign Model
Layer

The procedure that follows describes how to create a Remote Foreign Model Layer (DLL) to be
used in the Remote Foreign Model Executable configuration. If you choose to create a server
thread that will get a transport handle used for receiving and replying to remote foreign model
calls, the foreign model must be linked against rs_xact_dll.lib, OncRpc, and socket libraries and
rs_xact.h must be included in the source files.

7.5.3.1 Sample Code

/*

 * The remote version of "rs_foreign_model_initialize"

 * you must call ConnectionToXact () to establish the connection with Transactor
before you make any *Transactor function calls.

 */

int *

rs_foreign_model_initialize()

{

static int result =1; /* must be static! */

 RS_XACT_HANDLE hSimTime;

/*

 *

 * *XactServer is the hostname where the Workbench is running on

 */

 if(ConnectionToXact(*XactServer) != RS_SUCCESS){

 printf("open_connection failed\n");

 result=0;

 }

 /*

 * For example, you are making a Transactor call

 */

 hSimTime = RS_XACT_get_handle("sim.time", -1);

 if(hSimTime == RS_INVALID_XACT_HANDLE)

 printf("ErrorError - RS_XACT_get_handle failed\n");

… your initialization code

 return &result;

}

7-14 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Foreign Model Simulation Extensions
/*

 * The remote version of "rs_foreign_model_pre_sim"

 */

int *

rs_foreign_model_pre_sim()

{

static int result=1; /* must be static! */

 … your pre simulation event code

return (&result);

}

/*

 * The remote version of "rs_foreign_model_post_sim"

 */

int *

rs_foreign_model_post_sim()

{

static int result=1; /* must be static! */

… your pre simulation event code

return (&result);

int *

rs_foreign_model_reset()

{

static int result=1; /* must be static! */

… your reset code

return (&result);

}

/*

 * The remote version of "rs_foreign_model_exit"

 */

int *

rs_foreign_model_exit()

{

static int result=1; /* must be static! */

 … your exit code

return (&result);

}

Development Tools User’s Guide 7-15

Intel® IXP1200 Network Processor Family
Transactor States A

A.1 About States

The IXP1200 Transactor contains internal states that define the overall state of the model. The
examine command with the asterisk wildcard character (examine *) can be used to view all the
model states. This section describes only the most commonly used model states. States can be
grouped into three categories:

• Hardware states. Affect SRAM, SDRAM, registers, FIFOs, etc.

• Simulator states. Affect simulator functions such as debugging and error reporting, starting
and stopping the Transactor, etc.

• Statistics states. Affect the reporting of SRAM, SDRAM, FBus, and Microengine performance
statistics.

States can be read and written by the user using the examine and deposit Transactor commands.
Any simple model state (i.e., a signal, register, or array (not a FIFO)) is also treated as a global int
when it appears in a C statement or expression. States can be preserved and recalled using the save
and restore Transactor commands.

Table A-1 is a quick reference to the IXP1200 Transactor states described in this chapter:

Table A-1. IXP1200 Transactor States

State Name State Format Page

Hardware States

Microengine GPR or Transfer Register {chipname}.fx.reg.register_name_thd A-5

Microengine Control Store {chipname}.fx.ctl.ustore{[addr]<msb:lsb>} A-6

Microengine Condition Codes {chipname}.fx.ctl.condition_code A-7

Microengine Microstore Data Register
{chipname}.fx.ctl.csr_ustore_rd_data

{chipname}.fx.ctl.csr_ustore_wr_data
A-8

Microengine Microstore Address Register
{chipname}.fx.ctl.csr_ustore_rd_address

{chipname}.fx.ctl.csr_ustore_wr_address
A-8

Microengine Thread Program Counter
Register {chipname}.fx.ctl.pc_ctx_x A-9

Enabled Thread Wake-Up Signals {chipname}.fx.ctl.thread_trigger_mask_x A-10

Active Thread Wake-Up Signals {chipname}.fx.ctl.enabled_signals_x A-11

Transmit and Receive FIFOs {chipname}.fbi.rfifo{[addr]<msb:lsb>}
{chipname}.fbi.tfifo{[addr]<msb:lsb>} A-12

FBI CSRs {chipname}.fbi.csr{[addr]<msb:lsb>} A-13

FBI Scratchpad Memory {chipname}.fbi.scratch_pad{[addr]<msb:lsb>} A-15

SRAM {chipname}.sram{[addr]<msb:lsb>} A-16

SRAM Push/Pop Registers {chipname}.sc.push_pop_regs{[addr]<msb:lsb>} A-17

SDRAM {chipname}.sdram{[addr]<msb:lsb>} A-18
Development Tools User’s Guide A-1

Intel® IXP1200 Network Processor Family
Transactor States
Simulation States

Specify Microengine(s) for GOTO {chipname}.art.fbox_mask A-19

Specify Thread(s) for GOTO
{chipname}.fx.art.ctx_mask

{chipname}.art.ctx_mask
A-20

Report Core Clock Cycles sim.core_clk_cycle A-20

Core Clock Frequency sim.core_clk_freq A-21

Core Clock Period sim.core_clk_period A-21

Report FBus Clock Cycles sim.fbus_clk_cycle A-21

FBus Clock Frequency sim.fbus_clk_freq A-22

FBus Clock Period sim.fbus_clk_period A-22

Report PCI Clock Cycles sim.pci_clk_cycle A-22

PCI Clock Frequency sim.pci_clk_freq A-23

PCI Clock Period sim.pci_clk_period A-23

Execution Order sim.post_sim_exec_order A-24

Report Error Count sim.error_count A-24

Error Handle Mode sim.error_handle_mode A-25

Stop Simulation on P1 or P3 sim.goto_and_ubreak_key_on_p1 A-25

Halt Simulation sim.halt A-26

Suppress Comments sim.prune_prefix_comments A-26

Suppress Debug Information sim.silent A-27

Report Simulation Time sim.time A-27

Specify Debug Verbosity Level {chipname}.unit.art.debug A-28

Specify Reported Execution Stages {chipname}.fx.art.debug_px A-29

Statistics States

Compute Cycles {chipname}.fx.stat.compute_cycles A-32

SDRAM Read Latency {chipname}.fx.stat.sdram_read_latency A-33

SRAM Read Latency {chipname}.fx.stat.sram_read_latency A-33

SRAM Read Lock Latency {chipname}.fx.stat.sram_read_lk_latency A-34

Thread PC During Idle Cycle {chipname}.fx.stat.threadx_pc_during _idle_cycles A-34

Thread Latency {chipname}.fx.stat.thread_latency A-35

Time Slice {chipname}.fx.stat.time_slice_threadx A-36

Time Slice Thread Idle {chipname}.fx.stat.time_slice_thread_idle A-36

SDRAM Bandwidth {chipname}.dc.stat.bandwidth A-37

SDRAM Even Bank Queue Fullness {chipname}.dc.stat.even_bank_queue_fullness A-37

SDRAM Odd Bank Queue Fullness {chipname}.dc.stat.odd_bank_queue_fullness A-38

SDRAM Order Queue Fullness {chipname}.dc.stat.order_queue_fullness A-38

SDRAM Priority Queue Fullness {chipname}.dc.stat.priority_queue_fullness A-39

Table A-1. IXP1200 Transactor States (Continued)

State Name State Format Page
A-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.1.1 State Definition Format

This section lists the most commonly used Transactor states in alphabetical order and describes
each one. The state definitions in the sections that follow contain:

• The state name (e.g., {chipname}.fx.reg.register_name_thd).

• A description of the state.

• A description of the parameters, if any, associated with the state.

• One or more examples illustrating the use of the state.

Optional input strings are delimited by bracket characters ({}) in these descriptions.

Bolding indicates a predefined, required part of the state definition.

SRAM Bandwidth {chipname}.sc.stat.bandwidth A-39

SRAM Order Queue Fullness {chipname}.sc.stat.order_queue_fullness A-40

SRAM Priority Queue Fullness {chipname}.sc.stat.priority_queue_fullness A-40

SRAM Read Lock Queue Fullness {chipname}.sc.stat.rd_lk_queue_fullness A-41

SRAM Read Queue Fullness {chipname}.sc.stat.read_queue_fullness A-41

SRAM State Machine Distribution {chipname}.sc.stat.state_machine_dist A-42

Command Bus Bandwidth {chipname}sc.stat.cmd_bus_bandwidth A-42

SBUS Pull Bus Bandwidth {chipname}.stat.sbus_pull_bandwidth A-43

SBUS Push Bus Bandwidth {chipname}.stat.sbus_push_bandwidth A-44

SDRAM Pull Bus Bandwidth {chipname}.stat.sdram_pull_bandwidth A-45

SDRAM Push Bus Bandwidth {chipname}.stat.sdram_push_bandwidth A-46

Table A-1. IXP1200 Transactor States (Continued)

State Name State Format Page
Development Tools User’s Guide A-3

Intel® IXP1200 Network Processor Family
Transactor States
A.1.2 Display Formats for Statistics States

Statistics states are used with the examine command to obtain microcode performance
information. Depending on the state, statistics are reported in one of two formats.

Format 1:
samples = 12; min = 17; ave = 20; max = 36; data units = cycles

 sample distrib | 4| 5| 1| 1| 1|

 percent |33%|42%| 8%| 8%| 8%|

 cumul percent |33%|75%|83%|92%|100%|

 cycles | 17| 18| 24| 30| 36|

The first line of text indicates the following:
samples = The total number of samples taken for these statistics.
min = The minimum number (of cycles, in this case).
ave = The average number (of cycles, in this case).
max = The maximum number (of cycles, in this case).
data units = The units in which the data (min, ave, and max) is expressed.

The table shows the distribution of samples by category. In this case, samples are categorized by
cycle count. The 12 samples taken for these statistics fall into five categories of cycle counts: 17,
18, 24, 30, and 36. Four samples had a cycle count of 17, five had a cycle count of 18, and so on.
The table contains the following information:

sample distrib = The number of samples in each category.
percent = The percentage of samples in each category.
cum percent = The cumulative percentage of samples by category.
cycles = Category. In this case, samples are categorized by cycle count.

Format 2:
samples = 24; min = 0; ave = 4; max = 9; data units = cycles

ctx 0 non-aborted cycles: 6 (25%) ************

ctx 0 aborted cycles: 1 (4%) **

ctx 0 stalled cycles: 0 (0%)

ctx 1 non-aborted cycles: 6 (25%) ************

ctx 1 aborted cycles: 0 (0%)

ctx 1 stalled cycles: 0 (0%)

ctx 2 non-aborted cycles: 6 (25%) ************

ctx 2 aborted cycles: 0 (0%)

ctx 2 stalled cycles: 0 (0%)

ctx 3 non-aborted cycles: 5 (21%) **********

ctx 3 aborted cycles: 0 (0%)

ctx 3 stalled cycles: 0 (0%)

no ctx active cycles: 0 (0%)

Format 2 categorizes samples (in this case) according to context and cycle type. The information in
the first line is identical to that of Format 1. The table, however, features category in column 1, the
number of samples in each category in column 2, the percentage of samples in each category in
column 3, and a graphical representation (horizontal bar chart) of the distribution of samples in
column 4.
A-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2 Hardware States

A.2.1 Microengine GPR or Transfer Register

Used with the deposit and examine commands.

Format: {chipname}.fx.reg.register_name_thd

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

reg Constant that specifies this is a register state.

register_name_thd
The name of the register followed by the thread number. The thread
number, can be 0, 1, 2, or 3. Can appear in one of three forms, where x
is the thread number:

• For GPRs: regname_x (e.g., reg0_1 for the GPR named reg0
associated with thread 1)

• For SRAM transfer registers: $regname_rd_x or $regname_wr_x
(e.g., $reg0_rd_1 for the SRAM read transfer register named reg0
associated with thread 1).

• For SDRAM transfer registers: $$regname_rd_x or
$$regname_wr_x (e.g., $$reg0_wr_1 for the SDRAM write
transfer register named reg0 associated with thread 1).

Example 1: > deposit f0.reg.$val_rd_0 = 0xffff

Deposit some data into an SRAM transfer register named $val_rd. Chip has a null (no) name. We
want Microengine 0, thread 0.

To examine the data: > examine f0.reg.$val_rd_0

Example 2: > examine chip1.f0.temp_0

Examine a GPR named temp in a chip named chip1. Examine Microengine 0, thread 0.
Development Tools User’s Guide A-5

Intel® IXP1200 Network Processor Family
Transactor States
A.2.2 Microengine Control Store

Used with the examine command. The Microengine control store is an array of 128 longwords.

Format: {chipname}.fx.ctl.ustore{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

ctl Constant that specifies this is a model control signal.

ustore{[addr]<msb:lsb>}
If [addr] is used, it specifies an offset into the program store. Valid values
are 0 to 1023. Single locations are specified by a single value (e.g., [0]).
A range of locations is specified by using maximum and minimum
values separated by a colon (e.g., [1023:0]). Bits within a longword can
be specified by <msb:lsb>. If [addr] is not used, information on the
number of valid words in the control store and the file from which the
control store was loaded are displayed.

Example 1: > examine f0.ctl.ustore
Examine the control store without specifying an [addr]. Example result:
f0.ctl.ustore: ustore of 1024 32-bit words; 23 words
currently valid.

Ucode loaded from: "llist.list"; contains 1 pages

Example 2: > ex f0.ctl.ustore[0]
Examine a single location in the control store.

Example 3: > ex f0.ctl.ustore[3:0]
Examine locations 3 through 0 in the control store.
A-6 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.3 Microengine Condition Codes

Used with the examine and deposit commands. There are three single bit condition codes: Carry,
Negative, and Zero. A condition code is set to 1 when its corresponding condition occurs.

Format: {chipname}.fx.ctl.condition_code

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

condition_code
Condition code name. Valid names are:

cc_carryCarry
cc_negNegative
cc_zeroZero

Example 1: > examine f0.ctl.cc_neg

Examine the Negative condition code. Example result indicating 0 as the
Negative condition code:
f0.ctl.cc_neg<0>: 0x0

Example 2: > examine f0.ctl.cc_neg

Examine the Carry condition code. Example result indicating 1 as the
Carry condition code:
f0.ctl.cc_carry<0>: 0x1
Development Tools User’s Guide A-7

Intel® IXP1200 Network Processor Family
Transactor States
A.2.4 Microengine Microstore Data Registers

Used with the examine and deposit commands. Each Microengine has a 32-bit microstore data
read register and a 32-bit microstore data write register, each of which has its own state definition.

Formats: {chipname}.fx.ctl.csr_ustore_rd_data
{chipname}.fx.ctl.csr_ustore_wr_data

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

csr_ustore_rd_data
Specifies the read microstore data register.

csr_ustore_wr_data
Specifies the write microstore data register.

Example: > ex f1.ctl.csr_ustore_rd_data
Examine the microstore data read register of Microengine 1.

A.2.5 Microengine Microstore Address Registers

Used with the examine and deposit commands. Each Microengine has a 10-bit microstore address
read register and a microstore address write register, each of which has its own state definition.

Formats: {chipname}.fx.ctl.csr_ustore_rd_address
{chipname}.fx.ctl.csr_ustore_wr_address

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

csr_ustore_rd_address
Specifies the read microstore address register.

csr_ustore_wr_address
Specifies the write microstore address register.

Example: > ex f1.ctl.csr_ustore_rd_address
Examine the microstore address read register of Microengine 1.
A-8 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.6 Microengine Thread Program Counter Register

Used with the examine and deposit commands. Each Microengine has four 10-bit thread program
counter registers.

Formats: {chipname}.fx.ctl.pc_ctx_x

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

pc_ctx_x Thread program counter register. Valid names are:

• pc_ctx_0 Program counter register for thread 0.

• pc_ctx_1 Program counter register for thread 1.

• pc_ctx_2 Program counter register for thread 2.

• pc_ctx_3 Program counter register for thread 3.

Example: > ex f0.ctl.pc_ctx_1
Examine the program counter register for thread 1 of Microengine 0.
Development Tools User’s Guide A-9

Intel® IXP1200 Network Processor Family
Transactor States
A.2.7 Enabled Thread Wake Up Signals

Used with the examine and deposit commands. This state involves an 11-bit mask, each bit of
which corresponds to a signal from one of the following sources:

BitSource
0self (current Microengine)
1SRAM
2SDRAM
3Interthread 1
4Interthread 2
5Receive request available
6FBI 1
7FBI 2
8Sequence number 1
9Sequence number 2
10PCI

When a bit in the bit mask is set, that source is allowed to wake up a thread. When a bit is cleared,
that source can not wake up a thread.

Formats: {chipname}.fx.ctl.thread_trigger_mask_x

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

thread_trigger_mask_x
Each thread can have its own mask. Valid names are:

• thread_trigger_mask_0 Mask for thread 0.

• thread_trigger_mask_1 Mask for thread 1.

• thread_trigger_mask_2 Mask for thread 2.

• thread_trigger_mask_3 Mask for thread 3.

Example 1: > dep/multi f*.ctl.thread_trigger_mask* = 0x111
Enable all threads in all Microengines to wake up as a result of a wake
up signal from any source.

Example 2: > dep/multi f*.ctl.thread_trigger_mask_0 = 0x0
Disable thread 0 in all Microengines from being woken up by any
source.
A-10 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.8 Active Thread Wake Up Signals

Used with the examine and deposit commands. This state involves an 11-bit mask, each bit of
which corresponds to a signal from one of the following sources:

BitSource
0Self (i.e., the current Microengine)
1SRAM
2SDRAM
3Interthread 1
4Interthread 2
5Receive request available
6FBI 1
7FBI 2
8Sequence number 1
9Sequence number 2
10PCI

When a bit in the mask is set, that source is currently waiting to wake up a thread. When a bit is
cleared, that source is not currently waiting to wake up a thread.

Formats: {chipname}.fx.ctl.enabled_signals_x

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

ctl Constant that specifies this is a model control signal.

enabled_signals_x Each thread can have its own mask. Valid names are:

• enabled_signals_0 Mask for thread 0.

• enabled_signals_1 Mask for thread 1.

• enabled_signals_2 Mask for thread 2.

• enabled_signals_3 Mask for thread 3.

Example: > ex f*.ctl.enabled_signals*
Use wildcards to check what sources are currently waiting to wake up
any thread in any Microengine.
Development Tools User’s Guide A-11

Intel® IXP1200 Network Processor Family
Transactor States
A.2.9 Transmit and Receive FIFOs

Used with the deposit and examine commands. Refers to an array of 128 quadwords in the FBI
unit’s transmit and receive FIFOs.

Format: {chipname}.fbi.rfifo{[addr]<msb:lsb>}
{chipname}.fbi.tfifo{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fbi Constant that specifies the FIFO bus interface unit.

rfifo{[addr]<msb:lsb>}
[addr] specifies a quadword offset into the receive FIFO array. Valid
[addr] values are 0 to 127. Note that the beginning of one of the sixteen
64-byte elements in the array occurs every eight quadwords. Bits within
a quadword can be specified by <msb:lsb>. Deposits can only be
performed for values of 32 bits or less. Examines can occur on 0 to 64
bit values. If [addr] is omitted, the state refers to the FBI receive FIFO as
a whole.

tfifo{[addr]<msb:lsb>}
[addr] specifies a quadword offset into the transmit FIFO array. Valid
[addr] values are 0 to 127. Note that the beginning of one of the sixteen
64-byte elements in the array occurs every eight quadwords. Bits within
a quadword can be specified by <msb:lsb>. Deposits can only be
performed for values of 32 bits or less. Examines can occur on 0 to 64
bit values. If [addr] is omitted, the state refers to the FBI transmit FIFO
as a whole.

Example 1: > examine fbi.rfifo[0]<63:0>
Examine the Example result:
array:fbi.rfifo[0]<63:0>: 00000000 00000000

Example 2: > dep fbi.rfifo[0]<63:32> = 0xffffffff
Deposit the Example result:
array:fbi.rfifo[0]<63:0>: FFFFFFFF 00000000
A-12 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.10 FBI CSRs

Used with the deposit and examine commands. Refers to a 32-bit FBI CSR.

Format: {chipname}.fbi.csr_name{<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fbi Constant that specifies the FIFO bus interface unit.

csr_name{<msb:lsb>}
Specifies the CSR name, as summarized in Table A-2.

Table A-2. FBI CSRs

Register Name csr_name

IREG ireg

SOP_SEQ1 sop_seq1

SOP_SEQ2 sop_seq2

ENQUEUE_SEQ1 enqueue_seq1

ENQUEUE_SEQ2 enqueue_seq2

THREAD_DONE_REG0 thread_done1

THREAD_DONE_REG1 thread_done2

THREAD_DONE_INCR1 thread_done1

THREAD_DONE_INCR2 thread_done2

RCV_RDY_CNT rec_ready_count

RCV_RDY_HI rec_ready_bits_hi

RCV_RDY_LO rec_ready_bits_lo

RCV_RDY_CTL rec_ready_control

RCV_REQ rec_req

RCV_CNTL rec_ctl

FLOWCTL_MASK fbus.flowctl_mask

RDYBUS_TEMPLATE_CTL fbus.rdybus_template_ctl

RDYBUS_TEMPLATE_PROG_1 fbus.rdybus_template_ctl1

RDYBUS_TEMPLATE_PROG_2 fbus.rdybus_template_ctl2

RDYBUS_TEMPLATE_PROG_3 fbus.rdybus_template_ctl3

RDYBUS_SYNC_COUNT_DEFAULT fbus.rdy_synch_count_default

SELF_DESTRUCT self_destruct

CYCLE_CNT_LO cycle_count_lsw

CYCLE_CNT_HI cycle_count_msw

HASH_MULTIPLIER_64_HI hash_multiplier_64_hi

HASH_MULTIPLIER_64_LO hash_multiplier_64_lo

HASH_MULTIPLIER_48_HI hash_multiplier_48_hi

HASH_MULTIPLIER_48_LO hash_multiplier_48_lo
Development Tools User’s Guide A-13

Intel® IXP1200 Network Processor Family
Transactor States
Bits within a CSR can be specified by <msb:lsb>. If [addr] is omitted, the state refers to the FBI
CSR as a whole.

Example 1: > dep fbi.csr[0] = 0xf1f1f1f1
Deposit a value into the THREAD_DONE_REG0 FBI CSR. Example
result:
fbi.csr[0]<31:0>: 32

Example 2: > ex fbi.csr[0]
Examine the THREAD_DONE_REG0 FBI CSR. Example result:
fbi.csr[0]<31:0>: F1F1F1F1

SEND_CMD fbus.sendq

GET_CMD getq

XMIT_RDY_LO xmit_ready_bits_lo

XMIT_RDY_HI xmit_ready_bits_hi

XMIT_RDY_CTL fbus.xmit_ctl

XMIT_VALIDATE xmit_valid_bits

XMIT_PTR fbus.frozen_xmit_valid_outptr

FP_READY_WAIT
fbus.fp1_wait_count_csr<3:0>

fbus.fp2_wait_count_csr<3:0>

REC_FAST_PORT_CTL

fast_port1_body_thread<4:0>

fast_port2_body_thread<4:0>

fast_port1_header_thread<4:0>

fast_port2_header_thread<4:0>

Table A-2. FBI CSRs (Continued)

Register Name csr_name
A-14 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.11 FBI Scratchpad Memory

Used with the deposit and examine commands. Refers to the FBI scratchpad memory, which is an
array of 128 quadwords.

Format: {chipname}.fbi.scratch_pad{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fbi Constant that specifies the FIFO bus interface unit.

scratch_pad{[addr]<msb:lsb>}
[addr] specifies an offset into FBI scratchpad. Valid [addr] values are 0
to 1023. Single locations are specified by a single value (e.g., [0]). A
range of locations is specified by using maximum and minimum values
separated by a colon (e.g., [1023:0]). Bits within a quadword can be
specified by <msb:lsb>. Deposits can only be performed for values of 32
bits or less. Examines can occur on 0 to 64 bit values. If [addr] is omitted,
the state refers to the FBI CSR as a whole.

Example 1: > dep fbi.scratch_pad[0] = 0xffffffff
Deposit 0xffffffff into FBI scratchpad memory. Example result:
fbi.scratch_pad[0]<31:0>: 32

Example 2: > ex fbi.scratch_pad[0]
Examine the same location. Example result:
fbi.scratch_pad[0]<31:0>: FFFFFFFF
Development Tools User’s Guide A-15

Intel® IXP1200 Network Processor Family
Transactor States
A.2.12 SRAM

Used with the deposit and examine commands. Refers to the SRAM array of longwords, the size
of which is set when you initialize memory with the mem_init Transactor command.

Format: {chipname}.sram{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sram{[addr]<msb:lsb>}
[addr] specifies a longword offset into SRAM. Valid [addr] values are 0
to the amount in bytes specified in the mem_init Transactor command
divided by 4 (since there are 4 bytes in one longword). Single locations
are specified by a single value (e.g., [0]). A range of locations is specified
by using maximum and minimum values separated by a colon (e.g.,
[1023:0]). Bits within an SRAM longword can be specified by
<msb:lsb>.If [addr] is omitted, the state refers to SRAM as a whole.

Example 1: > chip
AA-1200 chip, ““, was instantiated
> mem_init sram 1m
> dep sram[0] = 0xffffffff
memory:sram[0]<31:0> FFFFFFFF (-1)
Instantiate a chip, use the mem_init command to set the size of SRAM,
and deposit a value. The lines preceded by a prompt character (>) are the
ones you type in.

Example 2: > ex sram[0]
memory:sram[0]<31:0> FFFFFFFF (-1)
Examine the result of Example 1.

Example 3: > ex sram[0:4]
After changing the contents of SRAM, examine the first five longwords.
Example result:
memory:sram[0]<31:0>: 00123456 (1193046)
memory:sram[1]<31:0>: 00123456 (1193046)
memory:sram[2]<31:0>: 0000000A (10)
memory:sram[3]<31:0>: 00000005 (5)
memory:sram[4]<31:0>: 00000014 (20)
A-16 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.2.13 SRAM Push/Pop Registers

Used with the deposit and examine commands. Refers to any or all of eight 23-bit registers, each
of which holds a pointer to the first element in a linked list in SRAM.

Format: {chipname}.sc.push_pop_regs{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies SRAM.

push_pop_regs{[addr]<msb:lsb>}
[addr] specifies one of eight push/pop registers. Valid [addr] values are
0 to 7. Single registers are specified by a single value (e.g., [0]). A range
of registers is specified by using maximum and minimum values
separated by a colon (e.g., [4:2]). Bits within an SRAM push/pop register
can be specified by <msb:lsb>. If [addr] is omitted, the state refers to the
entire array of push/pop registers.

Example 1: > dep sc.push_pop_regs[0] = 0xff
Deposit a value into push/pop register 0.

Example 2: > ex sc.push_pop_regs[0]
Examine the result of Example 1. Example display:
array:sc.push_pop_regs[0]<22:0> 0000FF
Development Tools User’s Guide A-17

Intel® IXP1200 Network Processor Family
Transactor States
A.2.14 SDRAM

Used with the deposit and examine commands. Refers to the SDRAM array of quadwords, the size
of which is set when you initialize memory with the mem_init Transactor command.

Format: {chipname}.sdram{[addr]<msb:lsb>}

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sdram{[addr]<msb:lsb>}
[addr] specifies a quadword offset into SDRAM. Valid [addr] values are
0 to the amount in bytes specified in the mem_init Transactor command
divided by 8 (since there are 8 bytes in one quadword). Single locations
are specified by a single value (e.g., [0]). A range of locations is specified
by using maximum and minimum values separated by a colon (e.g.,
[1023:0]). Bits within an SDRAM quadword can be specified by
<msb:lsb>. Deposits can only be performed for values of 32 bits or less.
Examines can occur on 0 to 64 bit values. If [addr] is omitted, the state
refers to SDRAM as a whole.

Example 1: > chip
AA-1200 chip, ““, was instantiated
> mem_init sdram 1m
> dep sdram[0] = 0xffffffff
memory:sdram[0]<31:0> FFFFFFFF
Instantiate a chip, use the mem_init command to set the size of SDRAM,
and deposit a value. Then examine the result. The lines preceded by a
prompt character (>) are the ones you type in.

Example 2: > ex sdram[0]
memory:sdram[0]<31:0> FFFFFFFF
Examine the result of Example 1:
A-18 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3 Simulation States

A.3.1 Specify Microengine(s) for GOTO

Used with the deposit and examine commands. A 6-bit value that specifies the Microengine(s) to
which a GOTO command applies when used with a label or control store address. When GOTO
executes, the Transactor runs until the specified Microengine(s) reach the label or address and
ignores any Microengines that are not enabled.

Format: {chipname}.art.fbox_mask

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

art Constant that specifies this is a model artifact.

fbox_mask A six-bit mask that specifies which Microengine(s) should be enabled.
The LSB signifies Microengine 0 and the MSB signifies Microengine 5.

Example 1: > dep art.fbox_mask = 0x3f
Enable all Microengines.

Example 2: > dep art.fbox_mask = 0x4
Enable only Microengine 2.
Development Tools User’s Guide A-19

Intel® IXP1200 Network Processor Family
Transactor States
A.3.2 Specify Thread(s) for GOTO

Used with the deposit and examine commands. A 4-bit value that specifies the thread(s) to which a
GOTO command applies when used with a label or control store address. When GOTO executes,
the Transactor runs until the specified thread(s) reach the label or address and ignores any threads
that are not enabled. There are two formats for this state, either of which can be specified
independently of the other. The first allows you to specify a Microengine in a context and the
second one applies to all Microengines in a context.

Format: {chipname}.fx.art.ctx_mask
{chipname}.art.ctx_mask

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

art Constant that specifies this is a model artifact.

ctx_mask A four-bit mask that specifies which threads should be enabled. The LSB
signifies thread 0 and the MSB signifies thread 3.

Example 1: > dep f0.art.ctx_mask = 0xf
Enable all threads in Microengine 0.

Example 2: > dep f0.art.ctx_mask = 0x8
Enable only thread 2 in Microengine 0.

Example 3: > dep art.ctx_mask = 0x8
Enable thread 2 for all Microengines.

A.3.3 Report Core Clock Cycles

Used with the examine command. Indicates the number of StrongARM Core clock cycles
simulated during the current session.

Format: sim.core_clk_cycle

sim Constant that specifies this is a simulator state.

core_clk_cycle
Specifies that StrongARM Core clock cycles should be displayed.

Example: 0> ex sim.core_clk_cycle
sim.core_clk_cycle<31:0>: 0x00000000 (0) (model variable)

Show how many StrongARM Core clock cycles have been simulated
during the current session.
A-20 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.4 Core Clock Frequency

Used with the deposit and examine commands. Specifies the StrongARM Core clock frequency in
MHz.

Format: sim.core_clk_freq

sim Constant that specifies this is a simulator state.

core_clk_freq Specifies that the StrongARM Core clock frequency is set or displayed.

Example: 0> ex sim.core_clk_freq
sim.core_clk_freq<31:0>: 0x000000A6 (166) (model variable)

Show the StrongARM Core clock frequency in MHz.

A.3.5 Core Clock Period

Used with the deposit and examine commands. Specifies the number of simulation time units per
StrongARM Core clock cycle.

Format: sim.core_clk_period

sim Constant that specifies this is a simulator state.

core_clk_period
Specifies that the StrongARM Core clock period is set or displayed.

Example: 0> ex sim.core_clk_period
sim.core_clk_period<31:0>: x00000006 (6) (model variable)

Show the number of simulation time units per StrongARM Core clock
cycle.

A.3.6 Report FBus Clock Cycles

Used with the examine command. Indicates the number of FBus clock cycles simulated during the
current session.

Format: sim.fbus_clk_cycle

sim Constant that specifies this is a simulator state.

fbus_clk_cycle
Specifies that FBus clock cycles should be displayed.

Example: 0> ex sim.fbus_clk_cycle
sim.fbus_clk_cycle<31:0>: 0x00000000 (0) (model variable)

Show how many FBus clock cycles have been simulated during the
current session.
Development Tools User’s Guide A-21

Intel® IXP1200 Network Processor Family
Transactor States
A.3.7 FBus Clock Frequency

Used with the deposit and examine commands. Specifies the FBus clock frequency in MHz.

Format: sim.fbus_clk_freq

sim Constant that specifies this is a simulator state.

fbus_clk_freq Specifies that the FBus clock frequency is set or displayed.

Example: 0> ex sim.fbus_clk_freq
sim.fbus_clk_freq<31:0>: 0x00000058 (88) (model variable)

Show the FBus clock frequency in MHz.

A.3.8 FBus Clock Period

Used with the deposit and examine commands. Specifies the number of simulation time units per
FBus clock cycle.

Format: sim.fbus_clk_period

sim Constant that specifies this is a simulator state.

fbus_clk_period
Specifies that the FBus clock period is set or displayed.

Example: 0> ex sim.fbus_clk_period
sim.fbus_clk_period<31:0>: 0x0000000C (12) (model variable)

Show the number of simulation time units per FBus clock cycle.

A.3.9 Report PCI Clock Cycles

Used with the examine command. Indicates the number of PCI clock cycles simulated during the
current session.

Format: sim.pci_clk_cycle

sim Constant that specifies this is a simulator state.

pci_clk_cycle Specifies that PCI clock cycles should be displayed.

Example: 0> ex sim.pci_clk_cycle
sim.pci_clk_cycle<31:0>: 0x00000000 (0) (model variable)

Show how many PCI clock cycles have been simulated during the
current session.
A-22 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.10 PCI Clock Frequency

Used with the deposit and examine commands. Specifies the PCI clock frequency in MHz.

Format: sim.pci_clk_freq

sim Constant that specifies this is a simulator state.

pci_clk_freq Specifies that the PCI clock frequency is set or displayed.

Example: 0> ex sim.pci_clk_freq
sim.pci_clk_freq<31:0>: 0x00000058 (88) (model variable)

Show the PCI clock frequency in MHz.

A.3.11 PCI Clock Period

Used with the deposit and examine commands. Specifies the number of simulation time units per
PCI clock cycle.

Format: sim.pci_clk_period

sim Constant that specifies this is a simulator state.

pci_clk_period
Specifies that the PCI clock period is set or displayed.

Example: 0> ex sim.pci_clk_period
sim.pci_clk_period<31:0>: 0x0000000C (12) (model variable)

Show the number of simulation time units per PCI clock cycle.
Development Tools User’s Guide A-23

Intel® IXP1200 Network Processor Family
Transactor States
A.3.12 Execution Order

Used with the deposit and examine commands. Specifies the order in which watches, callbacks
and the foreign_model_post_sim routine is called after each Transactor simulation event is
executed.

Because watches, callbacks, and foreign_model_post_sim offer the user three different
mechanisms to actively change state and passively observe state, the execution order of these
mechanisms is important for correct operation. For example, passive reads (e.g., informational
debug statements) before an active state change may cause incorrect debugging data to be
displayed. As another example, incorrect behavior could occur if active state changes are not
evaluated in the correct order.

Using the notation W for watches, C for callbacks, and P for foreign_model_post_sim, the legal
values for execution order are as follows:

0 W-C-P

1 W-P-C

2 C-W-P

3 C-P-W

4 P-W-C

5 P-C-W

Format: sim.post_sim_exec_order

sim Constant that specifies this is a simulator state.

post_sim_exec_order
Specifies that the execution order is set or displayed.

Example: 0> ex sim.post_sim_exec_order
sim.post_sim_exec_order<2:0>: 0x0 (0) (model variable)

Show the execution order of watches, callbacks, and the
foreign_model_post_sim routine. In this case, the value displayed is 0,
which represents W-C-P.

A.3.13 Report Error Count

Used with the examine command. Indicates the number of errors flagged during the current
simulation session.

Format: sim.error_count

sim Constant that specifies this is a simulator state.

error_count Specifies that an error count should be displayed.

Example: > ex sim.error_count
sim.error_count<31:0>: 0x00000000 (0) (model variable)
Show how many errors occurred during the current simulation session.
A-24 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.14 Error Handle Mode

Used with the deposit and examine commands. Sets or displays what action is taken when a
simulation error occurs. Valid settings are as follows:

-1 Suppress and ignore the error.

0 Print the error, but ignore its occurrence. Simulation continues and
sim.error_count is not incmented.

1 Print the error, increment sim.error_count, and halt simulation if simulation is in
progress.

2 Print the error, increment sim.error_count, and halt simulation and/or any
command line/script file execution in progress.

3 Print the error, increment sim.error_count, halt all execution, and exit the
simulator.

The default setting is 2.

Format: sim.error_handle_mode

sim Constant that specifies this is a simulator state.

error_handle_mode
Specifies that error handle mode is set or displayed.

Example 1: > ex sim.error_handle_mode
sim.error_handle_mode<31:0>: 0x00000002 (2) (model variable)

Examine the error handle mode.

Example 2: > dep sim.error_handle_mode = 3
sim.error_handle_mode[0]<31:0>:0x00000003(2)(model variable)

Set the error handle mode to 3.

A.3.15 Stop Simulation on P1 or P3

Used with the deposit and examine commands. This state relates to the goto, ubreak, and go fbox/
ctx commands. It specifies whether to stop simulation by examining the P1 microword state or the
P3 microword state. The P3 state is desired in most cases, because a P1 state stop may be a “false”
one if the P1 microword aborts in P2 or P3.

Format: sim.goto_and_ubreak_key_on_p1

sim Constant that specifies this is a simulator state.

goto_and_ubreak_key_on_p1
Specifies goto and ubreak key on P1.

Example: 0> ex sim.goto_and_ubreak_key_on_p1
sim.goto_and_ubreak_key_on_p1<31:0>: 0x00000000 (0) (model variable)
Development Tools User’s Guide A-25

Intel® IXP1200 Network Processor Family
Transactor States
A.3.16 Halt Simulation

Used with the deposit and examine commands. When set to 1, halts a running simulation at the end
of the current cycle. Typically used with a watch statement when you want the simulation to stop
when a specific set of conditions exists. Set to 0 by default.

Format: sim.halt

sim Constant that specifies this is a simulator state.

halt Specifies a halt.

Example 1: > ex sim.halt
sim.halt<0>: 0x0 (0) (model variable)
Examine the halt state. It is 0 when the simulation is running.

Example 2: > dep sim.halt = 1
sim.halt[0]<0>: 0x1 (1) (model variable)
Model prematurely stopped by user action.
Halt the simulation.

A.3.17 Suppress Comments

Used with the deposit and examine commands. When set to 1, suppresses the display of lines that
contain only comments. Lines that contain instructions and comments are displayed. Set to 0 by
default.

Format: sim.prune_prefix_comments

sim Constant that specifies this is a simulator state.

prune_prefix_comments
Specifies the supression of prefix comments.

Example 1: > ex sim.prune_prefix_comments
sim.prune_prefix_comments<0>: 0x0 (0) (model variable)
Examine the suppress comments state. It is 0 by default.

Example 2: > dep sim.prune_prefix_comments = 1
sim.prune_prefix_comments[0]<0>: 0x1 (1) (model variable)

Suppress comments.
A-26 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.18 Suppress Debug Information

Used with the deposit and examine commands. When set to 1, suppresses the display of all
debugging information. Set to 0 by default.

Format: sim.silent

sim Constant that specifies this is a simulator state.

silent Specifies the supression of debug information.

Example 1: > ex sim.silent
sim.silent<0>: 0x0 (0) (model variable)
Examine the suppress debug information state. It is 0 by default.

Example 2: > dep sim.silent = 1
sim.silent[0]<0>: 0x1 (1) (model variable)
Suppress debug information.

A.3.19 Report Simulation Time

Used with the examine command. Indicates the current simulation time.

Format: sim.time

sim Constant that specifies this is a simulator state.

time Specifies simulation time.

Example: 0> ex sim.time
sim.time<31:0>: 0x00000000 (0) (model variable)
Show the surrent simulation time.
Development Tools User’s Guide A-27

Intel® IXP1200 Network Processor Family
Transactor States
A.3.20 Specify Debug Verbosity Level
Used with the deposit and examine commands. For Microengines, this state determines the level of
verbosity of information that is displayed when you execute the debug command. A value of 0
(disable information display) through 4 (display information with highest verbosity level) is valid.
For the FBI, SRAM, and SDRAM, only values of 0 (disable information display) or 1 (enable
information display) are used.

Format: {chipname}.unit.art.debug

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

unit Specifies the unit. Valid names are:

• fx A Microengine, where x specifies the Microengine
number. Valid Microengine numbers are 0 through 5 (e.g., f0 for
Microengine 0). You can use the wildcard notation f* with the
deposit/multi instruction to specify all Microengines.

• fbi FBI.

• dc SRAM.

• sc SDRAM.

art Constant that specifies this is a model artifact state.

debug Specifies debug verbosity.

Example 1: > dep f0.art.debug_p0 = 1//view stage 0
> dep f0.art.debug = 1
> debug
====P0 fbox stage (ustore lookup) for f0. in ctx:
0 at fbox cycle 5====
ustore addr = 4 ==> A00A3038
sram_bi[read, $val, val_ptr, 0, word_cnt_1],
defer[1], ctx_swap ;$val = val
View only execution stage 0 (refer to the Specify Reported Execution
Stages state for more information on execution stages).

Example 2: > dep f0.art.debug_p4 = 1 // view only pipeline stage 4

f0.art.debug_p4[0]<0>: 0x1 (1) (model variable)

> debug

ctx_0: saved_pc: 6; signals--> SELF ; wake_enable--> SELF

ctx_1: saved_pc: 1; signals--> SELF ; wake_enable-->

ctx_2: saved_pc: 0; signals--> SELF ; wake_enable--> SELF

ctx_3: saved_pc: 0; signals--> SELF ; wake_enable--> SELF

ping ref (output): READ; addr = 00000001; fbox = 0 ctx = 0

burst_cnt = 1 (issued at fbox cycle = 7; uPC = 3)

pong ref (input): READ; addr = 00000002; fbox = 0 ctx = 0

burst_cnt = 1 (issued at fbox cycle = 8; uPC = 4)

====P4 fbox stage (write result) for f0. in ctx: 0 at fbox
cycle 9====
uword addr = 4
sram_bi[read, $val, val_ptr, 0, word_cnt_1],
defer[1], ctx_swap ;$val = val

W_BUS: 00000002

View only execution stage 4 (refer to the Specify Reported Execution
Stages state for more information on execution stages).
A-28 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.21 Specify Reported Execution Stages

Used with the deposit and examine commands. Determines which micropipeline execution stages
are displayed when you execute the debug command. When the fx.art.debug state is enabled to
display execution pipeline stage information, this state disables the display of the specified
Microengine execution pipeline stage information. For example, when f0.art.debug is set to 4, the
Microengine execution pipeline stage information for each stage will be displayed. If
f0.art.debug_p3 is set to 0 then only stages 0,1,2, and 4 will be displayed. Depositing a value of 0
disables the display.

Format: {chipname}.fx.art.debug_px

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x specifies the number. Valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0). You
can use the wildcard notation f* with the deposit/multi instruction to
specify all Microengines.

art Constant that specifies this is a model artifact state.

debug_px Specifies one of the five execution stages. Valid names are:

• debug_p0 Execution stage 0.

• debug_p1 Execution stage 1.

• debug_p2 Execution stage 2.

• debug_p3 Execution stage 3.

• debug_p4 Execution stage 4.

Example: Display all execution stages when the debug command is executed.
Assume a low level of verbosity (refer to the Specify Debug Verbosity
Level state for more information on the verbosity level).
> dep f0.art.debug_p0 = 1//view stage 0

> dep f0.art.debug_p1 = 1//view stage 1

> dep f0.art.debug_p2 = 1//view stage 2

> dep f0.art.debug_p3 = 1//view stage 3

> dep f0.art.debug_p4 = 1//view stage 4

> debug

====P4 fbox stage (write result) for f0. in ctx: 0 at fbox cycle 5====

uword addr = 0

.operand_synonym no_of_links 0x3

start#:

ld_field_b[cur_ptr, 1111, headptr, 0] ;cur_head = headptr

W_BUS: 00000001

operand write: GPR_A[0]=00000001

====P3 fbox stage (ALU/shifter) for f0. in ctx: 0 at fbox cycle 5====

uword addr = 1

immed[loop_no, no_of_links] ;loop = the number of links

A operand: 00000000; pre-shift B operand: 00000003; B operand:

00000003

shifter op: left shift 0; ALU op: ALU_OP_B; ALU result: 00000003;

old_ccs: !=0:>=0:no_carry

====P2 fbox stage (operand lookup) for f0. in ctx: 0 at fbox cycle 5===

uword addr = 2
Development Tools User’s Guide A-29

Intel® IXP1200 Network Processor Family
Transactor States
loop_add#:

alu_shf_ri[val_ptr,cur_ptr, +, 1, 0] ;val_ptr = cur_ptr +1

A operand: 00000001 (selected from writeback bypassed data);

B operand: 00000001 (selected from immed data);

====P1 fbox stage (initial decode) for f0. in ctx: 0 at fbox cycle 5===

uword addr = 3

sram_bi[read, $next, cur_ptr, 0, word_cnt_1] ;$next = next

====P0 fbox stage (ustore lookup) for f0. in ctx: 0 at fbox cycle 5===

ustore addr = 4 ==> A00A3038

sram_bi[read, $val, val_ptr, 0, word_cnt_1],

defer[1], ctx_swap ;$val = valdep art.ctx_mask = 0x8

A.3.22 Chip Version

Used with the deposit and examine commands. These states specify the chip version for all chips to
be instantiated.

Format: param.major_stepping
param.minor_stepping

param Constant that specifies this is a simulation parameter state.

major_stepping Specifies the major stepping where 0, 1, 2,... represent steppings A, B,
C,…

minor_stepping Specifies the minor stepping, e.g., 0, 1, ….

Note: A deposit to these states should only be done prior to instantiating any chips. Changing these
values after a chip has been instantiated will have unpredictable results.

Example: fbox:0> dep param.major_stepping = 2

param.major_stepping[0]<31:0>: 0x00000002 (2) (model variable)

fbox:0> dep param.minor_stepping = 0

param.minor_stepping[0]<31:0>: 0x00000000 (0) (model variable)

Set stepping to C0.
A-30 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.3.23 Suppressing Outstanding Signal Errors or Warnings

Used with the deposit and examine commands. These states control the reporting of outstanding
signal errors or warnings.

Format: param.suppress_outstanding_sig_err
param.suppress_outstanding_sig_warn

param Constant that specifies this is a simulation parameter state.

suppress_outstanding_sig_err Specifies that the error reported when a signal
is received when the same signal is already outstanding should be
suppressed. A warning will be reported unless it too is suppressed

suppress_outstanding_sig_warning Specifies that the warning reported when a
signal is received when the same signal is already outstanding should be
suppressed. This state has no effect if the error is not suppressed.

Note: Use this option with caution, since in most cases, the error indicates a programming error

Example: fbox:0> dep param.suppress_outstanding_sig_err = 1

param.suppress_outstanding_sig_err[0]<0>: 0x1 (1) (model variable)

fbox:0> dep param.suppress_outstanding_sig_warn = 1

param.suppress_outstanding_sig_warn[0]<0>: 0x1 (1) (model variable)

Suppress both errors and warnings.
Development Tools User’s Guide A-31

Intel® IXP1200 Network Processor Family
Transactor States
A.4 Statistics States

A.4.1 Compute Cycles

Used with the examine command. Displays the efficiency of Microengine compute cycles. There
are three types of cycles: non-aborted (work is performed), aborted (no work is performed but the
Microengine is still executing), and stalled (no work is performed because the Microengine stalls).

Format: {chipname}.fx.stat.compute_cycles

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

compute_cycles
Specifies that the statistic type is compute cycles.

Example: > ex f0.stat.compute_cycles

f0.stat.compute_cycles:statistics collector:

"Breakdown of compute cycles for f0"

samples = 24; min = 0; ave = 4; max = 9; data units = cycles

ctx 0 non-aborted cycles: 6 (25%) ************

ctx 0 aborted cycles: 1 (4%) **

ctx 0 stalled cycles: 0 (0%)

ctx 1 non-aborted cycles: 6 (25%) ************

ctx 1 aborted cycles: 0 (0%)

ctx 1 stalled cycles: 0 (0%)

ctx 2 non-aborted cycles: 6 (25%) ************

ctx 2 aborted cycles: 0 (0%)

ctx 2 stalled cycles: 0 (0%)

ctx 3 non-aborted cycles: 5 (21%) **********

ctx 3 aborted cycles: 0 (0%)

ctx 3 stalled cycles: 0 (0%)

no ctx active cycles: 0 (0%)
A-32 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.2 SDRAM Read Latency

Used with the examine command. Displays the latency distribution for SDRAM references that
return data to a Microengine.

Format: {chipname}.fx.stat.sdram_read_latency

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

sdram_read_latency
Specifies that the statistic type is sdram_read_latency.

Example: > ex f0.stat.sdram_read_latency
f0.stat.sdram_read_latency:statistics collector:

A.4.3 SRAM Read Latency

Used with the examine command. Displays the latency distribution for SRAM references that
return data to a Microengine.

Format: {chipname}.fx.stat.sram_read_latency

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

sram_read_latency
Specifies that the statistic type is sram_read_latency.

Example: > ex f0.stat.sram_read_latency

f0.stat.sram_read_latency:statistics collector: "latency

distribution for SRAM non-read_lock refs returning data to

f0"

samples = 10; min = 17; ave = 18; max = 24; data units

= cycles

sample distrib | 4| 5| 1|

percent |40%|50%| 10%|

cumul percent |40%|90%|100%|

cycles | 17| 18| 24|
Development Tools User’s Guide A-33

Intel® IXP1200 Network Processor Family
Transactor States
A.4.4 SRAM Read Lock Latency

Used with the examine command. Displays the latency distribution for SRAM read lock references
that return data to a Microengine.

Format: {chipname}.fx.stat.sram_read_lk_latency

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

sram_read_lk_latency
Specifies that the statistic type is sram_read_lk_latency.

Example: > ex f0.stat.sram_read_lk_latency

A.4.5 Thread PC During Idle Cycle

Used with the examine command. For a given Microengine, displays a thread’s microstore address
when no threads are actively running.

Format: {chipname}.fx.stat.threadx_pc_during_idle_cycles

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

threadx_pc_during_idle_cycles
Specifies the thread. Valid names are:

• thread0_pc_during_idle_cycles Thread 0.

• thread1_pc_during_idle_cycles Thread 1.

• thread2_pc_during_idle_cycles Thread 2.

• thread3_pc_during_idle_cycles Thread 3.

Example: > ex f0.stat.thread0_pc_during_idle_cycles
A-34 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.6 Thread Latency

Used with the examine command. Displays information on thread latency, defined as the time
between the occurrences of the following two states: {chipname}.fx.art.thread_start_addr and
{chipname}.fx.art.thread_stop_addr.

Format: {chipname}.fx.stat.thread_latency

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

thread_latency
Specifies thread latency.

Example: > ex f0.stat.thread_latency

A.4.7 Thread Latency Start and Stop Addresses

Used with the deposit and examine commands. These two states define the beginning and end
points of an interval in which the thread latency is measured (see the state definition for
fx.stat.thread_latency).

Format: {chipname}.fx.art.thread_latency_start_addr
{chipname}.fx.art.thread_latency_stop_addr

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

art Constant that specifies this is a model artifact state.

thread_latency_start_addr
An address in the specified Microengine control store that indicates the
starting point for measuring the thread latency.

thread_latency_stop_addr
An address in the specified Microengine control store that indicates the
end point for measuring the thread latency.

Example: > f0.art.thread_start_addr = uaddr(f0.ctl.ustore, "label1#");

> f0.art.thread_stop_addr = uaddr(f0.ctl.ustore, "label2#");

> goto /s label2#

> ex f0.stat.thread_latency

Set a beginning point at label1# and an end point at label2#. Go to the
end point and display the thread latency.
Development Tools User’s Guide A-35

Intel® IXP1200 Network Processor Family
Transactor States
A.4.8 Time Slice

Used with the examine command. Displays time slice information for a specified thread. A time
slice starts when a thread starts and ends when the thread is put to sleep.

Format: {chipname}.fx.stat.time_slice_threadx

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

time_slice_threadx
Specifies the time slice thread. Valid names are:

• time_slice_thread0 Thread 0.

• time_slice_thread1 Thread 1.

• time_slice_thread2 Thread 2.

• time_slice_thread3 Thread 3.

Example: > ex f0.stat.time_slice_thread0

A.4.9 Time Slice Thread Idle

Used with the examine command. Displays the amount of time during which a specified thread is
idle during a time slice. A time slice starts when a thread starts and ends when the thread is put to
sleep.

Format: {chipname}.fx.stat.time_slice_threadx_idle

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

fx The Microengine number, where x indicates the number and valid
Microengine numbers are 0 through 5 (e.g., f0 for Microengine 0).

stat Constant that specifies this is a model statistic.

time_slice_threadx_idle
Specifies the time slice idle thread. Valid names are:

• time_slice_thread0_idle Thread 0.

• time_slice_thread1_idle Thread 1.

• time_slice_thread2_idle Thread 2.

• time_slice_thread3_idle Thread 3.

Example: > ex f0.stat.time_slice_thread0_idle
A-36 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.10 SDRAM Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for SDRAM.

Format: {chipname}.dc.stat.bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

dc Constant that specifies this state refers to SDRAM.

stat Constant that specifies this is a model statistic.

bandwidth Specifies that this statistic relates to bandwidth data.

Example: > ex dc.stat.bandwidth

dc.stat.bandwidth:statistics collector: "SDRAM Bandwidth

Distribution for dc"

samples = 20; min = 0; ave = 1; max = 3; data units =

sdram cycles

read cycles: 8 (40%) *************

write cycles: 0 (0%)

rd->wr dead cycles: 0 (0%)

idle cycles: 12 (60%) *********************

A.4.11 SDRAM Even Bank Queue Fullness

Used with the examine command. Displays fullness statistics for the SDRAM even bank queue.

Format: {chipname}.dc.stat.even_bank_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

dc Constant that specifies this state refers to SDRAM.

stat Constant that specifies this is a model statistic.

even_bank_queue_fullness
Specifies that this statistic relates to even bank queue fullness.

Example: > ex dc.stat.even_bank_queue_fullness

dc.stat.even_bank_queue_fullness:statistics collector:

"SDRAM Even Bank Queue Fullness Statistics for dc; queue size

= 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|
Development Tools User’s Guide A-37

Intel® IXP1200 Network Processor Family
Transactor States
A.4.12 SDRAM Odd Bank Queue Fullness

Used with the examine command. Displays fullness statistics for the SDRAM odd bank queue.

Format: {chipname}.dc.stat.odd_bank_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

dc Constant that specifies this state refers to SDRAM.

stat Constant that specifies this is a model statistic.

odd_bank_queue_fullness
Specifies that this statistic relates to odd bank queue fullness.

Example: > ex dc.stat.odd_bank_queue_fullness

dc.stat.odd_bank_queue_fullness:statistics collector:

"SDRAM Odd Bank Queue Fullness Statistics for dc; queue size

= 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|

A.4.13 SDRAM Order Queue Fullness

Used with the examine command. Displays fullness statistics for the SDRAM order queue.

Format: {chipname}.dc.stat.order_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

dc Constant that specifies this state refers to SDRAM.

stat Constant that specifies this is a model statistic.

order_queue_fullness
Specifies that this statistic relates to order queue fullness.

Example: > ex dc.stat.order_queue_fullness

dc.stat.order_queue_fullness:statistics collector: "SDRAM

Order Queue Fullness Statistics for dc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|
A-38 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.14 SDRAM Priority Queue Fullness

Used with the examine command. Displays fullness statistics for the SDRAM priority queue.

Format: {chipname}.dc.stat.priority_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

dc Constant that specifies this state refers to SDRAM.

stat Constant that specifies this is a model statistic.

priority_queue_fullness
Specifies that this statistic relates to priority queue fullness.

Example: > ex dc.stat.priority_queue_fullness

dc.stat.priority_queue_fullness:statistics collector:

"SDRAM Priority Queue Fullness Statistics for dc; queue size

= 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|

A.4.15 SRAM Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for SRAM.

Format: {chipname}.sc.stat.bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

bandwidth Specifies that this statistic relates to bandwidth data.

Example: > ex sc.stat.bandwidth

sc.stat.bandwidth:statistics collector: "SRAM Bandwidth

Distribution for sc"

samples = 20; min = 0; ave = 1; max = 3; data units = sram

cycles

read cycles: 8 (40%) **************

write cycles: 0 (0%)

rd->wr dead cycles: 0 (0%)

idle cycles: 12 (60%) ***********************
Development Tools User’s Guide A-39

Intel® IXP1200 Network Processor Family
Transactor States
A.4.16 SRAM Order Queue Fullness

Used with the examine command. Displays fullness statistics for the SRAM order queue.

Format: {chipname}.sc.stat.order_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

order_queue_fullness
Specifies that this statistic relates to order queue fullness.

Example: > ex sc.stat.order_queue_fullness

sc.stat.order_queue_fullness:statistics collector: "SRAM

Order Queue Fullness Statistics for sc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|

A.4.17 SRAM Priority Queue Fullness

Used with the examine command. Displays fullness statistics for the SRAM priority queue.

Format: {chipname}.sc.stat.priority_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

priority_queue_fullness
Specifies that this statistic relates to priority queue fullness.

Example: > ex sc.stat.priority_queue_fullness

sc.stat.priority_queue_fullness:statistics collector: "SRAM

Priority Queue Fullness Statistics for sc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|
A-40 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.18 SRAM Read Lock Queue Fullness

Used with the examine command. Displays fullness statistics for the SRAM read lock queue.

Format: {chipname}.sc.stat.rd_lk_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

rd_lk_queue_fullness
Specifies that this statistic relates to read lock queue fullness.

Example: > ex sc.stat.rd_lk_queue_fullness

sc.stat.rd_lk_queue_fullness:statistics collector: "SRAM

Read Lock Queue Fullness Statistics for sc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|

A.4.19 SRAM Read Queue Fullness

Used with the examine command. Displays fullness statistics for the SRAM read queue.

Format: {chipname}.sc.stat.read_queue_fullness

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

read_queue_fullness
Specifies that this statistic relates to read queue fullness.

Example: > ex sc.stat.read_queue_fullness

sc.stat.read_queue_fullness:statistics collector: "SRAM

Read Queue Fullness Statistics for sc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|
Development Tools User’s Guide A-41

Intel® IXP1200 Network Processor Family
Transactor States
A.4.20 SRAM State Machine Distribution

Used with the examine command. Displays state machine distribution statistics for SRAM.

Format: {chipname}.sc.stat.state_machine_dist

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

state_machine_dist
Specifies that this statistic relates to state machine distribution.

Example: > ex sc.stat.state_machine_dist

sc.stat.state_machine_dist:statistics collector: "SRAM

State Machine Distribution Statistics for sc; queue size = 16"

samples = 20; min = 0; ave = 0; max = 0; data units =

queue entries

sample distrib | 20|

percent |100%|

cumul percent |100%|

queue entries | 0|

A.4.21 Command Bus Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for the command bus.

Format: {chipname}.sc.stat.cmd_bus_bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

sc Constant that specifies this state refers to SRAM.

stat Constant that specifies this is a model statistic.

cmd_bus_bandwidth
Specifies that this statistic relates to the command bus bandwidth.

Example: > ex sc.stat.cmd_bus_bandwidth

stat.cmd_bus_bandwidth:statistics collector: "Reference

Packet Bandwidth Distribution for chip "" "

samples = 60; min = 0; ave = 0; max = 2; data units = fbox

cycles

no refs: 45 (75%) *****************************

SDRAM refs: 0 (0%)

SRAM refs: 15 (25%) ************

SRAM_CSR refs: 0 (0%)

PCI refs: 0 (0%)

FBI refs: 0 (0%)

Scratch-Pad refs: 0 (0%)
A-42 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.22 SBUS Pull Bus Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for the SBUS pull bus.

Format: {chipname}.stat.sbus_pull_bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

stat Constant that specifies this is a model statistic.

sbus_pull_bandwidth
Specifies that this statistic relates to the SBUS pull bus bandwidth.

Example: > ex stat.sbus_pull_bandwidth

stat.sbus_pull_bandwidth:statistics collector: "SRAM data
pull bus bandwidth distribution for chip "" "

 samples = 60; min = 15; ave = 23; max = 31; data units
= fbox cycles

SRAM <- Fbox 0 data: 0 (0%)

SRAM <- Fbox 1 data: 0 (0%)

SRAM <- Fbox 2 data: 0 (0%)

SRAM <- Fbox 3 data: 0 (0%)

SRAM <- Fbox 4 data: 0 (0%)

SRAM <- Fbox 5 data: 0 (0%)

SRAM <- FBI data: 0 (0%)

SRAM <- Fbox 0 CSR data: 0 (0%)

SRAM <- Fbox 1 CSR data: 0 (0%)

SRAM <- Fbox 2 CSR data: 0 (0%)

SRAM <- Fbox 3 CSR data: 0 (0%)

SRAM <- Fbox 4 CSR data: 0 (0%)

SRAM <- Fbox 5 CSR data: 0 (0%)

SRAM <- no xfer: 30 (50%) ***********************

FBI <- Fbox 0 data: 0 (0%)

FBI <- Fbox 1 data: 0 (0%)

FBI <- Fbox 2 data: 0 (0%)

FBI <- Fbox 3 data: 0 (0%)

FBI <- Fbox 4 data: 0 (0%)

FBI <- Fbox 5 data: 0 (0%)

FBI <- FBI data: 0 (0%)

FBI <- Fbox 0 CSR data: 0 (0%)

FBI <- Fbox 1 CSR data: 0 (0%)

FBI <- Fbox 2 CSR data: 0 (0%)

FBI <- Fbox 3 CSR data: 0 (0%)

FBI <- Fbox 4 CSR data: 0 (0%)

FBI <- Fbox 5 CSR data: 0 (0%)

FBI <- no xfer: 30 (50%) ***********************
Development Tools User’s Guide A-43

Intel® IXP1200 Network Processor Family
Transactor States
A.4.23 SBUS Push Bus Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for the SBUS push
bus.

Format: {chipname}.stat.sbus_push_bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

stat Constant that specifies this is a model statistic.

sbus_push_bandwidth
Specifies that this statistic relates to the SBUS push bus bandwidth.

Example: > ex stat.sbus_push_bandwidth

stat.sbus_push_bandwidth:statistics collector: "SRAM data
push bus bandwidth distribution for chip "" "

 samples = 60; min = 15; ave = 23; max = 31; data units
= fbox cycles

SRAM <- Fbox 0 data: 0 (0%)

SRAM <- Fbox 1 data: 0 (0%)

SRAM <- Fbox 2 data: 0 (0%)

SRAM <- Fbox 3 data: 0 (0%)

SRAM <- Fbox 4 data: 0 (0%)

SRAM <- Fbox 5 data: 0 (0%)

SRAM <- FBI data: 0 (0%)

SRAM <- Fbox 0 CSR data: 0 (0%)

SRAM <- Fbox 1 CSR data: 0 (0%)

SRAM <- Fbox 2 CSR data: 0 (0%)

SRAM <- Fbox 3 CSR data: 0 (0%)

SRAM <- Fbox 4 CSR data: 0 (0%)

SRAM <- Fbox 5 CSR data: 0 (0%)

SRAM <- no xfer: 30 (50%) ***********************

FBI <- Fbox 0 data: 0 (0%)

FBI <- Fbox 1 data: 0 (0%)

FBI <- Fbox 2 data: 0 (0%)

FBI <- Fbox 3 data: 0 (0%)

FBI <- Fbox 4 data: 0 (0%)

FBI <- Fbox 5 data: 0 (0%)

FBI <- FBI data: 0 (0%)

FBI <- Fbox 0 CSR data: 0 (0%)

FBI <- Fbox 1 CSR data: 0 (0%)

FBI <- Fbox 2 CSR data: 0 (0%)

FBI <- Fbox 3 CSR data: 0 (0%)

FBI <- Fbox 4 CSR data: 0 (0%)

FBI <- Fbox 5 CSR data: 0 (0%)

FBI <- no xfer: 30 (50%) ***********************
A-44 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Transactor States
A.4.24 SDRAM Pull Bus Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for the SDRAM pull
bus.

Format: {chipname}.stat.sdram_pull_bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

stat Constant that specifies this is a model statistic.

sdram_pull_bandwidth
Specifies that this statistic relates to the SDRAM pull bus bandwidth.

Example: > ex stat.sdram_pull_bandwidth

stat.sdram_pull_data_bandwidth:statistics collector: "SDRAM
pull data bus bandwidth distribution for chip "" "

 samples = 60; min = 7; ave = 7; max = 7; data units =
fbox cycles

SDRAM <- Fbox 0 data: 0 (0%)

SDRAM <- Fbox 1 data: 0 (0%)

SDRAM <- Fbox 2 data: 0 (0%)

SDRAM <- Fbox 3 data: 0 (0%)

SDRAM <- Fbox 4 data: 0 (0%)

SDRAM <- Fbox 5 data: 0 (0%)

SDRAM <- R-fifo data: 0 (0%)

SDRAM <- no xfer: 60 (100%)*************************
Development Tools User’s Guide A-45

Intel® IXP1200 Network Processor Family
Transactor States
A.4.25 SDRAM Push Bus Bandwidth

Used with the examine command. Displays bandwidth distribution statistics for the SDRAM push
bus.

Format: {chipname}.stat.sdram_push_bandwidth

chipname An optional chip name that is meaningful only if the chip has been
instantiated with a name.

stat Constant that specifies this is a model statistic.

sdram_pull_bandwidth
Specifies that this statistic relates to the SDRAM push bus bandwidth.

Example: > ex stat.sdram_push_bandwidth

stat.sdram_push_data_bandwidth:statistics collector: "SDRAM
push data bus bandwidth distribution for chip "" "

 samples = 60; min = 7; ave = 7; max = 7; data units =
fbox cycles

SDRAM <- Fbox 0 data: 0 (0%)

SDRAM <- Fbox 1 data: 0 (0%)

SDRAM <- Fbox 2 data: 0 (0%)

SDRAM <- Fbox 3 data: 0 (0%)

SDRAM <- Fbox 4 data: 0 (0%)

SDRAM <- Fbox 5 data: 0 (0%)

SDRAM <- R-fifo data: 0 (0%)

SDRAM <- no xfer: 60 (100%)*************************
A-46 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench Shortcuts B

B.1 Introduction

In the Developer Workbench there are at least three ways to initiate an action:

• A menu command

• A keyboard shortcut

• A toolbar button

The following tables summarize most these tools.

Table B-3. Developer Workbench Shortcuts—Files

Button Keyboard Menu Action Reference

CTRL+N File, New Create new file. Section 2.7.1.

CTRL+O File, Open Open a file. Section 2.7.2.

CTRL+S File, Save Save a file. Section 2.7.4.

ALT+F+A File, Save As Save copy of file. Section 2.7.5.

ALT+F+L File, Save All Save all open files. Section 2.7.6.

ALT+F+U File, Print Setup Set up the printer
properties. Section 2.7.8.1.

ALT+F+I File, Print Preview View the file to be
printed. Section 2.7.8.2.

CTRL+P File, Print Print file in active
window. Section 2.7.8.3.

ALT+F+F File, Recent Files Select from the four most
recently opened files. Section 2.7.2.

ALT+F+C
File, Close, or

WIndow, Close
Close the active window. Section 2.7.3.
Development Tools User’s Guide B-1

Intel® IXP1200 Network Processor Family
Developer Workbench Shortcuts
Table B-4. Developer Workbench Shortcuts—Projects

Button Keyboard Menu Action Reference

ALT+F+W File, New Project Create a new project. Section 2.4.1.

ALT+F+R File, Open Project Open a project. Section 2.4.2.

ALT+F+V File, Save Project Save project. Section 2.4.3

ALT+F+E File, Close Project Close a project. Section 2.4.4.

ALT+P+I
Project, Insert
Assembler Source
Files

Insert Assembler source
files into a project. Section 2.7.9.1.

Project, Insert
Compiler Source Files

Insert Compiler source
files into a project. Section 2.7.9.1.

ALT+P+S Project, Insert Script
Files

Insert script files into a
project. Section 2.7.9.1.

ALT+P+U Project, Update
Dependencies

Update project
dependencies. Section 2.8.1.

ALT+P+C Project, System
Configuration

Specify system
configuration. Section 2.5.

Table B-5. Developer Workbench Shortcuts—Edit (Sheet 1 of 2)

Button Keyboard Menu Action Reference

CTRL+Z Edit, Undo Undo. Section 2.7.10.

CTRL+Y Edit, Redo Redo. Section 2.7.10.

CTRL+X Edit, Cut Cut. Section 2.7.10.

CTRL+C Edit, Copy Copy selected text. Section 2.7.10.

CTRL+V Edit, Paste Paste. Section 2.7.10.

DELETE DELETE key Delete. Section 2.7.10.

CTRL+A Edit, Select All Select all text in the file. Section 2.7.10.

CTRL+F Edit, Find Find text in a text file. Section 2.7.10.
B-2 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench Shortcuts
CTRL+SHIFT+F Find next. Section 2.7.10.

ALT+E+I Edit, Find in Files Find in text files. Section 2.7.12.

CTRL+H Edit, Replace

In the Replace dialog
box, replace the items
currently selected in the
file with the text in the
Replace with box.

Section 2.7.10.

Table B-6. Developer Workbench Shortcuts—Bookmarks

Button Keyboard Menu Action Reference

CTRL+F2 Edit, Bookmark,
Insert/Remove

Insert/Remove
bookmark. Section 2.7.11.

F2 Edit, Bookmark, Go
To Next Go to the next bookmark. Section 2.7.11.

SHIFT+F2 Edit, Bookmark, Go
To Previous

Go to previous
bookmark. Section 2.7.11.

CTRL+SHIFT+F2 Edit, Bookmark, Clear
All Clear all bookmarks. Section 2.7.11.

Table B-5. Developer Workbench Shortcuts—Edit (Sheet 2 of 2)

Button Keyboard Menu Action Reference

Table B-7. Developer Workbench Shortcuts—Breakpoints

Button Keyboard Menu Action Reference

F9 Debug, Breakpoint,
Insert/Remove

Insert/Remove
breakpoint.

Section 2.11.10.3,
Section 2.11.17.2.

CTRL+F9 Debug, Breakpoint,
Enable/Disable Toggle enable/disable. Section 2.11.10.4.

ALT+D+B+D Debug, Breakpoint,
Disable All

Disable all breakpoints in
active document. Section 2.11.10.4.

ALT+D+B+A Debug, Breakpoint,
Enable All

Enable all breakpoints in
the active document. Section 2.11.10.4.

ALT+D+B+R Debug, Breakpoint,
Remove All

Remove all breakpoints
from the active
document.

Section 2.11.10.3.
Development Tools User’s Guide B-3

Intel® IXP1200 Network Processor Family
Developer Workbench Shortcuts
Table B-8. Developer Workbench Shortcuts—Builds

Button Keyboard Menu Action Reference

CTRL+F7 Build, Assemble Invoke the Assembler. Section 2.8.3.

CTRL+SHIFT+F7 Build, Compile Compile. Section 2.9.3.

F7 Build, Build Link. Section 2.10.

ALT+F7 Build, Rebuild Rebuild. Section 2.10.

Table B-9. Developer Workbench Shortcuts—Debug

Button Keyboard Menu Action Reference

F12 Debug, Start
Debugging Start debugging. Section 2.11.1.

CTRL+F12 Debug, Stop
Debugging Stop debugging. Section 2.11.1.

F4 Go to next error/tag.

Section 2.7.11,
Section 2.7.12,
Section 2.8.4,
Section 2.9.4.

SHIFT+F4 Go to previous error/tag.
Section 2.7.11,
Section 2.8.4,
Section 2.9.4.

Table B-10. Developer Workbench Shortcuts—Run Control (Sheet 1 of 2)

Button Keyboard Menu Action Reference

F5 Debug, Run Control,
Go Start simulation. Section 2.11.8.10,

Section 2.11.9.2.

SHIFT+F5 Debug, Run Control,
Stop Stop simulation. Section 2.11.8.10,

Section 2.11.9.2.

F10 Debug, Run Control,
Step Over Step over. Section 2.11.8.3.

F11 Debug, Run Control,
Step Into

Step into (Compiler
thread only). Section 2.11.8.4.

SHIFT+F11 Debug, Run Control,
Step Out

Step out (Compiler
thread only). Section 2.11.8.5.
B-4 Development Tools User’s Guide

Intel® IXP1200 Network Processor Family
Developer Workbench Shortcuts
CTRL+F10 Debug, Run Control,
Run To Cursor Run to cursor. Section 2.11.7.5.

SHIFT+F10 Debug, Run Control,
Step Microengines Step Microengines. Section 2.11.8.2.

CTRL+SHIFT+F12 Debug, Run Control,
Reset Reset. Section 2.11.8.11,

Section 2.11.9.4.

Table B-10. Developer Workbench Shortcuts—Run Control (Sheet 2 of 2)

Button Keyboard Menu Action Reference

Table B-11. Developer Workbench Shortcuts—View

Button Keyboard Menu Action Reference

CTRL+F6 Window, <filename> Make next window
active. Section 2.3.2.

ALT+V+O View, Output Window Toggle visibility of Output
window. Section 2.3.2.

ALT+V+D+C View, Debug Window,
Command Line

Toggle visibility of
Command Line window. Section 2.11.5.

ALT+V+D+D View, Debug Window,
Data Watch

Toggle visibility of Data
Watch window. Section 2.11.12.

ALT+V+D+M View, Debug Window,
Memory Watch

Toggle visibility of
Memory Watch window. Section 2.11.13

ALT+V+D+H View, Debug Window,
History

Toggle visibility of History
window. Section 2.11.16.

ALT+V+D+T View, Debug Window,
Thread Status

Toggle visibility of Thread
Status window. Section 2.11.18.

ALT+V+D+Q View, Debug Window,
Queue Status

Toggle visibility of Queue
Status window. Section 2.11.17.

ALT+V+D+I View, Debug Window,
IX Bus Status

Toggle visibility of IX Bus
Status window. Section 2.11.23.4.

ALT+V+D+R View, Debug Window,
Run Control

Toggle visibility of Run
Control window. Section 2.11.8.
Development Tools User’s Guide B-5

	Intel® IXP1200 Network Processor Family
	Introduction 1
	1.1 About this Document
	1.2 Related Documents

	Developer Workbench 2
	2.1 Overview
	2.2 Getting Help
	2.3 About the Graphical User Interface (GUI)
	2.3.1 About Windows, Toolbars, and Menus
	2.3.2 Hiding and Showing Windows and Toolbars
	2.3.3 Customizing Toolbars and Menus
	2.3.3.1 Creating Toolbars
	2.3.3.2 Renaming Toolbars
	2.3.3.3 Deleting Toolbars
	2.3.3.4 Adding and Removing Toolbar Buttons and Controls
	2.3.3.5 Customizing Menus
	2.3.3.6 Returning to Default Toolbar Settings

	2.3.4 GUI Toolbar Configurations

	2.4 About Projects
	2.4.1 Creating a New Project
	2.4.2 Opening a Project
	2.4.3 Saving a Project
	2.4.4 Closing a Project

	2.5 Configuring the System
	2.5.1 Modifying the Chip Configuration
	2.5.1.1 Selecting Chip Type
	2.5.1.2 Selecting Clock Frequencies

	2.5.2 Modifying the Memory Configuration
	2.5.2.1 Changing the SDRAM Configuration
	2.5.2.2 Changing the SRAM Configuration
	2.5.2.3 Changing the Boot ROM Configuration
	2.5.2.4 Changing the Slow Port Configuration

	2.5.3 Modifying the IX Bus Interface Configuration
	2.5.3.1 Programming the Ready Bus Sequencer
	2.5.3.2 Configuring Autopush

	2.5.4 Modifying the PCI Interface Configuration
	2.5.4.1 About PCI Configuration
	2.5.4.2 About PCI Configuration Space

	2.5.5 Modifying the IX Bus Configuration
	2.5.5.1 Customizing Buses for Multichip Configuration

	2.6 About the Project Workspace
	2.6.1 About FileView
	2.6.2 About ThreadView
	2.6.2.1 Expanding and Collapsing Thread Trees
	2.6.2.2 Renaming a Thread

	2.6.3 About InfoView

	2.7 Working with Files
	2.7.1 Creating New Files
	2.7.2 Opening Files
	2.7.3 Closing Files
	2.7.4 Saving Files
	2.7.5 Saving Copies of Files
	2.7.6 Saving All Files at Once
	2.7.7 Working With File Windows
	2.7.8 Printing Files
	2.7.8.1 Setting Up the Printer
	2.7.8.2 Previewing the Printed File
	2.7.8.3 Printing the File

	2.7.9 Inserting Into and Removing Files from a Project
	2.7.9.1 Inserting Files Into a Project
	2.7.9.2 Removing Files From a Project

	2.7.10 Editing Files
	2.7.11 Bookmarks and Errors/Tags
	2.7.12 About Find In Files
	2.7.13 About Fonts and Syntax Coloring
	2.7.14 About Macros

	2.8 About the Assembler
	2.8.1 About Root Files and Dependencies
	2.8.2 Selecting Assembler Build Settings
	2.8.2.1 Specifying Additional Include Directories
	2.8.2.2 Specifying Processor Revision Range
	2.8.2.3 Specifying Assembler Options

	2.8.3 Invoking the Assembler
	2.8.4 About Assembly Errors

	2.9 About the Microengine C Compiler
	2.9.1 Adding C Source Files to Your Project
	2.9.2 Selecting Compiler Build Settings
	2.9.2.1 Selecting the Compiler Include Paths
	2.9.2.2 Selecting the target .list file
	2.9.2.3 Deleting a Target .list File
	2.9.2.4 Selecting C Source Files to Compile
	2.9.2.5 Removing C Source Files to Compile
	2.9.2.6 Selecting Compile Options
	2.9.2.7 Edit/Override
	2.9.2.8 Saving Build Settings

	2.9.3 Invoking the Compiler
	2.9.4 Compilation Errors

	2.10 About the Linker
	2.10.1 Customizing a Build Configuration
	2.10.2 Changing Linker Settings

	2.11 Debugging
	2.11.1 Starting and Stopping the Debugger
	2.11.2 Changing Simulation Options
	2.11.2.1 Marking Instructions
	2.11.2.2 Changing the Colors for Execution State
	2.11.2.3 Initializing Simulation Startup Options
	2.11.2.4 Setting the Simulation Step Unit
	2.11.2.5 Tagging Memory
	2.11.2.6 Enabling StrongARM* Core Model
	2.11.2.7 Enabling the PCI Interface
	2.11.2.8 Enabling the PCI Transactor
	2.11.2.9 Enabling IX Bus Device Simulation

	2.11.3 Exporting the Startup Script
	2.11.4 About Hardware Options
	2.11.4.1 Specifying Hardware Startup Options
	2.11.4.2 Specifying MAC Port Control

	2.11.5 About the Command Line Interface
	2.11.6 About Command Scripts
	2.11.7 About Thread Windows
	2.11.7.1 Controlling Thread Window Activation
	2.11.7.2 About Thread Window Controls
	2.11.7.3 Tracking the Active Thread
	2.11.7.4 Toggling Views (compiled threads only)
	2.11.7.5 Running to Cursor
	2.11.7.6 Activating Thread Windows
	2.11.7.7 Displaying, Expanding, and Collapsing Macros (assembled threads only)
	2.11.7.8 Displaying and Hiding Instruction Addresses
	2.11.7.9 About Instruction Markers
	2.11.7.10 Viewing Instruction Execution in the Thread Window

	2.11.8 About Run Control—Simulation Mode
	2.11.8.1 Single Stepping
	2.11.8.2 Stepping Microengines
	2.11.8.3 Stepping Over
	2.11.8.4 Stepping Into (compiled threads only)
	2.11.8.5 Stepping Out (compiled threads only)
	2.11.8.6 Executing Multiple Cycles
	2.11.8.7 Running to a Specific Cycle
	2.11.8.8 Running to a Label or Microword Address
	2.11.8.9 Running Indefinitely
	2.11.8.10 Stopping Execution
	2.11.8.11 Resetting the Simulation

	2.11.9 About Run Control—Hardware Mode
	2.11.9.1 About Hopping
	2.11.9.2 Running Indefinitely
	2.11.9.3 Stopping Execution
	2.11.9.4 Resetting the Hardware

	2.11.10 About Breakpoints
	2.11.10.1 Setting Breakpoints in Hardware Mode
	2.11.10.2 About Breakpoint Markers
	2.11.10.3 Inserting and Removing Breakpoints
	2.11.10.4 Enabling and Disabling Breakpoints
	2.11.10.5 Changing Breakpoint Properties

	2.11.11 Displaying Register Contents
	2.11.12 About Data Watch
	2.11.12.1 Data Watches in C Thread Windows
	2.11.12.2 Entering a New Data Watch
	2.11.12.3 Watching Control and Status Registers and Pins
	2.11.12.4 Watching General Purpose and Transfer Registers
	2.11.12.5 Deleting a Data Watch
	2.11.12.6 Changing a Data Watch
	2.11.12.7 Changing the Data Watch Radix
	2.11.12.8 Depositing Data
	2.11.12.9 Breaking on Data Changes

	2.11.13 About Memory Watch
	2.11.13.1 Entering a New Memory Watch
	2.11.13.2 Adding a Memory Watch
	2.11.13.3 Deleting a Memory Watch
	2.11.13.4 Changing a Memory Watch
	2.11.13.5 Changing the Memory Watch Address Radix
	2.11.13.6 Changing the Memory Watch Value Radix
	2.11.13.7 Depositing Memory Data

	2.11.14 About Execution Coverage
	2.11.14.1 Changing Execution Count Ranges and Colors
	2.11.14.2 Displaying and Hiding Instruction Addresses
	2.11.14.3 About Instruction Markers
	2.11.14.4 Miscellaneous Controls
	2.11.14.5 Scaling the Bar Graph
	2.11.14.6 Resetting Execution Counts

	2.11.15 About Performance Statistics
	2.11.15.1 Displaying Statistics
	2.11.15.2 Resetting Statistics

	2.11.16 About Thread and Queue History
	2.11.16.1 Displaying the History Window
	2.11.16.2 Scaling the Display
	2.11.16.3 Displaying Thread History Lines
	2.11.16.4 Displaying Code Labels
	2.11.16.5 About Reference History
	2.11.16.6 Displaying References
	2.11.16.7 Changing Thread History Colors
	2.11.16.8 Displaying the History Legend
	2.11.16.9 Tracing Instruction Execution
	2.11.16.10 About Queue History
	2.11.16.11 About History Collecting

	2.11.17 About Queue Status
	2.11.17.1 About Queue Status History
	2.11.17.2 Setting Queue Breakpoints

	2.11.18 About Thread Status
	2.11.19 About IX Bus Device Simulation
	2.11.19.1 Configuring IX Bus Devices

	2.11.20 About Data Streams
	2.11.20.1 Creating and Editing a Data Stream
	2.11.20.2 Deleting a Data Stream
	2.11.20.3 Importing a Data Stream
	2.11.20.4 Copying a Data Stream
	2.11.20.5 Assigning an IX Bus Device Port

	2.11.21 Creating and Editing Different Data Streams Types
	2.11.21.1 Creating and Editing an ATM Data Stream
	2.11.21.2 Creating and Editing a Custom Ethernet IP Data Stream
	2.11.21.3 Creating and Editing an Ethernet IP Data Stream
	2.11.21.4 Creating and Editing an Ethernet TCP/IP Data Stream
	2.11.21.5 Creating and Editing a PPP TCP/IP Data Stream
	2.11.21.6 Creating an IP Packet Pool
	2.11.21.7 Specifying a Custom Header
	2.11.21.8 Specifying an Ethernet Header
	2.11.21.9 Specifying an IP Header
	2.11.21.10 Specifying a TCP Header
	2.11.21.11 Specifying a PPP Header
	2.11.21.12 Specifying a Data Payload
	2.11.21.13 Specifying Frame Size
	2.11.21.14 Assigning I/O to Device Ports

	2.11.22 About Network Traffic Simulation DLLs
	2.11.23 About IX Bus Device Simulation Options
	2.11.23.1 About Miscellaneous Options
	2.11.23.2 About Logging
	2.11.23.3 About Stop Control
	2.11.23.4 About the IX Bus Device Status Window

	2.11.24 About Debug Configuration
	2.11.24.1 Setting Up Local Simulation with No Foreign Model
	2.11.24.2 Setting Up Local Simulation with Local Foreign Model
	2.11.24.3 Setting Up Local Simulation with Remote Foreign Model
	2.11.24.4 Installing PortMapper
	2.11.24.5 Setting up Hardware Debug

	2.12 Running in Batch Mode
	2.13 An Exercise in Using the Workbench

	Assembler 3
	3.1 Assembly Process
	3.1.1 Command Line Arguments
	3.1.2 Assembler Steps
	3.1.3 Case Sensitivity
	3.1.4 Assembler Optimizations
	3.1.5 Processor Revision

	Microengine C Compiler 4
	4.1 The Command Line
	4.2 Supported Compilations
	4.3 Supported Option Switches
	4.4 Compiler Steps
	4.5 Case Sensitivity

	Linker 5
	5.1 About the Linker
	5.1.1 Configuration and Data Accessed by the Linker
	5.1.2 Shared Address Update (Flow)

	5.2 Microengine Image Linker (UCLD)
	5.3 Generating a Microengine Application
	5.4 Syntax Definitions
	5.4.1 Image Name Definition
	5.4.2 Import Variable Definition
	5.4.3 Microengine Assignment
	5.4.4 Thread Type Definition
	5.4.5 Code Entry Point Definition
	5.4.6 Export Function Definition

	5.5 Examples
	5.5.1 Uca Source File (*.uc) Example
	5.5.2 Uca Output File (*.list) Example

	5.6 Microcode Object File (UOF) Format
	5.6.1 FileChunkId Type: UOF_OBJS
	5.6.2 UOF ObjId Types: UOF_STRT, UOF_GTID, and UOF_IMAG
	5.6.3 FileChunkId Type: DBG_OBJS
	5.6.4 DBG ChunkId Types: DBG_STRT, DBG_IMAG

	Transactor 6
	6.1 Overview
	6.2 Invoking the Transactor
	6.3 Command Interface
	6.4 IXP1200 Transactor Commands
	6.4.1 @
	6.4.2 bank_analysis
	6.4.3 chip
	6.4.4 close
	6.4.5 config
	6.4.6 connect
	6.4.7 debug
	6.4.8 #define
	6.4.9 deposit
	6.4.10 #elifdef
	6.4.11 #else
	6.4.12 #endif
	6.4.13 examine
	6.4.14 exit
	6.4.15 fbox
	6.4.16 go_clk_domain
	6.4.17 go
	6.4.18 goto
	6.4.19 help
	6.4.20 #ifdef
	6.4.21 #ifndef
	6.4.22 init
	6.4.23 load_bin_file
	6.4.24 load_list_file
	6.4.25 load_uc
	6.4.26 load_uof_file
	6.4.27 log
	6.4.28 mem_init
	6.4.29 path
	6.4.30 restore
	6.4.31 return
	6.4.32 save
	6.4.33 set_clk_freq
	6.4.34 sim_reset
	6.4.35 statistics
	6.4.36 time
	6.4.37 trace
	6.4.38 ubreak
	6.4.39 uca
	6.4.40 #undef
	6.4.41 version
	6.4.42 watch

	6.5 C Interpreter
	6.5.1 Macros
	6.5.2 Predefined C Functions
	6.5.2.1 add_bus_client(bus_name, client_name)
	6.5.2.2 alloc_array(array_state_name, struct_name, array_length)
	6.5.2.3 alloc_list(array_state_name, struct_name, list_length, flink_spec, blink_spec)
	6.5.2.4 amba_add_req(chip_name, write, addr, size, burst_size, num_prior_blank_cycles [, data...])
	6.5.2.5 cmd(quoted_cmd_string)
	6.5.2.6 env_var(char *environment_variable)
	6.5.2.7 field(state_name, field_msb, field_lsb)
	6.5.2.8 field_insert(state_name, insertion_data, field_msb, field_lsb)
	6.5.2.9 fprintf(file_name, fmt, ...)
	6.5.2.10 gui()
	6.5.2.11 pcit_add_req(slave_nbr, cmd, address, byte, burst, delay, data...)
	6.5.2.12 pcit_set_slave_addr(slave_nbr, start, len)
	6.5.2.13 pcit_slave_read(slave_nbr, io_space, address)
	6.5.2.14 pcit_slave_write(slave_nbr, io_space, address, data, byte_en)
	6.5.2.15 printf(const char *format, ...)
	6.5.2.16 rand(bound1, bound2)
	6.5.2.17 rec_error(fmt, ...)
	6.5.2.18 seed()
	6.5.2.19 set_bus_validity_checks(bus, min_dead_cyc_wrn_thrsh, min_dead_cyc_err_thrsh max_dead_cyc...
	6.5.2.20 srand(number)
	6.5.2.21 state_type(var_name)
	6.5.2.22 system(char *shell_cmd)
	6.5.2.23 uaddr(control_store_state, label_name)
	6.5.2.24 uninitialized()
	6.5.2.25 valid_elements(array_state_name)

	6.6 Debugging
	6.6.1 Reporting of Debugging Information
	6.6.2 Common Execution Pipeline Stage Format
	6.6.2.1 Execution Pipeline Stage 4 - Write the Result
	6.6.2.2 Execution Pipeline Stage 3 - Perform ALU Shift, Decode Instruction
	6.6.2.3 Execution Pipeline Stage 2 - Look Up Operands
	6.6.2.4 Execution Pipeline Stage 1 - Decode Instruction
	6.6.2.5 Execution Pipeline Stage 0 - Read Instruction

	6.6.3 Memory Tagging
	6.6.4 Watch
	6.6.5 Breakpoints
	6.6.6 Save and Restore
	6.6.7 Logging A Simulation Session

	6.7 Transactor Command Script Files
	6.7.1 Example Command Script File

	6.8 Enabling the StrongARM Core
	6.9 Simulation Switches
	6.9.1 sim.error_count
	6.9.2 sim.error_handle_mode
	6.9.3 sim.core_clk_cycle
	6.9.4 sim.core_clk_freq
	6.9.5 sim.core_clk_period
	6.9.6 sim.fbus_clk_cycle
	6.9.7 sim.fbus_clk_freq
	6.9.8 sim.fbus_clk_period
	6.9.9 sim.goto_and_ubreak_key_on_p1
	6.9.10 sim.halt
	6.9.11 sim.pci_clk_cycle
	6.9.12 sim.pci_clk_freq
	6.9.13 sim.pci_clk_period
	6.9.14 sim.post_sim_exec_order
	6.9.15 sim.prune_prefix_comments
	6.9.16 sim.silent
	6.9.17 sim.time

	Foreign Model Simulation Extensions 7
	7.1 Overview
	7.2 Integrating Foreign Models with the Transactor
	7.2.1 Foreign Model Dynamic-Link Library (DLL)
	7.2.2 Integrated Executable (Integrated Transactor and Foreign Model)
	7.2.3 Remote Foreign Model Executable

	7.3 Simulating StrongARM Core Applications
	7.3.1 Using the Hardware Abstraction Layer (HAL)
	7.3.2 Determining IOSTYLE
	7.3.3 Coding Considerations
	7.3.4 Accessing Foreign Model Functions from the C Interpreter
	7.3.5 Building the Application

	7.4 Simulating IX Bus Devices
	7.5 Sample Code
	7.5.1 Creating A Foreign Model DLL Used with the Developer Workbench
	7.5.1.1 DLL Sample Code

	7.5.2 Creating A Remote Foreign Model - Local Foreign Model Layer
	7.5.2.1 Sample Code

	7.5.3 Creating a Remote Foreign Model - Remote Foreign Model Layer
	7.5.3.1 Sample Code

	Transactor States A
	A.1 About States
	A.1.1 State Definition Format
	A.1.2 Display Formats for Statistics States

	A.2 Hardware States
	A.2.1 Microengine GPR or Transfer Register
	A.2.2 Microengine Control Store
	A.2.3 Microengine Condition Codes
	A.2.4 Microengine Microstore Data Registers
	A.2.5 Microengine Microstore Address Registers
	A.2.6 Microengine Thread Program Counter Register
	A.2.7 Enabled Thread Wake Up Signals
	A.2.8 Active Thread Wake Up Signals
	A.2.9 Transmit and Receive FIFOs
	A.2.10 FBI CSRs
	A.2.11 FBI Scratchpad Memory
	A.2.12 SRAM
	A.2.13 SRAM Push/Pop Registers
	A.2.14 SDRAM

	A.3 Simulation States
	A.3.1 Specify Microengine(s) for GOTO
	A.3.2 Specify Thread(s) for GOTO
	A.3.3 Report Core Clock Cycles
	A.3.4 Core Clock Frequency
	A.3.5 Core Clock Period
	A.3.6 Report FBus Clock Cycles
	A.3.7 FBus Clock Frequency
	A.3.8 FBus Clock Period
	A.3.9 Report PCI Clock Cycles
	A.3.10 PCI Clock Frequency
	A.3.11 PCI Clock Period
	A.3.12 Execution Order
	A.3.13 Report Error Count
	A.3.14 Error Handle Mode
	A.3.15 Stop Simulation on P1 or P3
	A.3.16 Halt Simulation
	A.3.17 Suppress Comments
	A.3.18 Suppress Debug Information
	A.3.19 Report Simulation Time
	A.3.20 Specify Debug Verbosity Level
	A.3.21 Specify Reported Execution Stages
	A.3.22 Chip Version
	A.3.23 Suppressing Outstanding Signal Errors or Warnings

	A.4 Statistics States
	A.4.1 Compute Cycles
	A.4.2 SDRAM Read Latency
	A.4.3 SRAM Read Latency
	A.4.4 SRAM Read Lock Latency
	A.4.5 Thread PC During Idle Cycle
	A.4.6 Thread Latency
	A.4.7 Thread Latency Start and Stop Addresses
	A.4.8 Time Slice
	A.4.9 Time Slice Thread Idle
	A.4.10 SDRAM Bandwidth
	A.4.11 SDRAM Even Bank Queue Fullness
	A.4.12 SDRAM Odd Bank Queue Fullness
	A.4.13 SDRAM Order Queue Fullness
	A.4.14 SDRAM Priority Queue Fullness
	A.4.15 SRAM Bandwidth
	A.4.16 SRAM Order Queue Fullness
	A.4.17 SRAM Priority Queue Fullness
	A.4.18 SRAM Read Lock Queue Fullness
	A.4.19 SRAM Read Queue Fullness
	A.4.20 SRAM State Machine Distribution
	A.4.21 Command Bus Bandwidth
	A.4.22 SBUS Pull Bus Bandwidth
	A.4.23 SBUS Push Bus Bandwidth
	A.4.24 SDRAM Pull Bus Bandwidth
	A.4.25 SDRAM Push Bus Bandwidth

	Developer Workbench Shortcuts B
	B.1 Introduction

