Course Summary and Conclusions

ECE 697J December 12th, 2002

Active Networks

- Processing inside the network
- Dynamic deployment of code
- Support for new services/applications
- Issues:
 - Functionality
 - Performance
 - Safety and security
 - Usefulness
 - Scalability
- Concepts of active networks are in use today

Network Processors

- Infrastructure for processing network traffic
- Very different from workstation processors
- Exploit parallelism in network workloads
- System-On-A-Chip:
 - Multiprocessor
 - On-chip memory
 - Coprocessors
 - I/O oriented
- Many different designs in market
- Still area of research

"Highlights"

ECE 6

A Conceived Modus Operandi

- Packets can be replaced with active Capsules
 - Capsules have code embedded in them so that they are executed at each node they traverse
- These mini-programs incorporate within them the user data also, a la in PostScript code
- Each node may have predefined program methods that may be dynamically invoked by the capsules

N-1

Ν

Part 1: Smart Packets

(International)

Hardware for ANN Overview

End-to-end recovery latency

Fig. 2. ARM tradeoff between caching of fresh multicast data and latency (random loss, group size 100, 1000 nodes, degree 4). All non-leaf nodes in multicast tree are active; caching of repair packets is enabled at all nodes.

Architecture Components

Resource Bound

Figure 5: Resource Cube

Authentication Issues

General Crypto Protected Packet

Darwin Node Software Architecture

End System Multicast

The dumb network Smart end points

Layering Model for Two Processing Sites

Architectural view

Characteristics --- Computational Complexity

Computational Complexity

- Respect to the number and size of processed packets
- Based on the # of instructions

Definition of N _a							
HPA a	N_a, <u>64</u>		N Natisan	C	por byto	for the state of t	
ТСР	10.3			S	REED		1052
FRAG	_{7.} 9n	a paci	ket _{o.} or	le	ngtpip	226	35
DRR	4.1	0.5	0.2		CAST	104	104
RTR	2.1	0.2	0.1		JPEG	81	60

Scheduler II

- Separate traffic classes
 - Multiple queues
- Process queues individually
- Schedule among queues for output port
- Process assignment:
 - I: READ + CLASSIFY + ENQUEUE
 - O: SELECT + DEQUEUE + WRITE
 - F: FORWARDING

Figure 1: Supporting Differentiated Service

DHP Architecture

- The hardware processing element of PP is implemented in DHP.
 - Hardware Plugins Dynamically Reconfigurable Components ECE697J – Advanced Topics in Computer Networks
 Infrastructure – Station Computer Networks th components

Cisco Toaster

Arrival/Service Curve Transformation

IPv6 Forwarding (ATM)

Thank You!

- Thanks for taking this course.
- Thanks for presenting papers.
- Thanks for developing projects.
- Thanks for participating in class discussions.

I hope you found this course interesting and you learned about the concepts and systems in this exciting area of networking research.

