A Methodology and Simulator for the Study of Network Processors

ECE 697J November 26th, 2002

Introduction

- Why do we want to simulate a system?
- What should we simulate in an NP?

Simulation

- Cheaper than building hardware
- Get understanding of
 - Behavior
 - Performance
 - Timing
- Explore configurations that are not feasible today
 - Next generations CMOS
 - Scalability

NP Simulation

- What to simulate?
 - Depends.
- Examples:
 - Processors
 - Network traffic
 - Memory subsystem
 - Switching fabric
- Combination of all: full system simulator
 - Paper calls it "holistic"
- Other approaches: only components
 - E.g., CommBench is "mircorarchitect's approach"

Component Network Simulator

Traces

- Network traffic that is fed to simulator
- Real traces:
 - Collected on real networks
 - Usually hard to obtain
- Synthetic traces:
 - Generated by network model
 - Can be scaled nicely
 - Do not contain packet payload
 - Usually based on traffic self-similarity

Cisco Toaster

Cisco Toaster

- 16 VLIW processors
 - ISA "optimized for network processing": lookups, bit level ops, ...
- Each column executes same code
 - Phase-shifted to avoid memory conflicts
- Memory system
 - 12kB instruction memory
 - 64 byte data cache
 - On-chip memory for "context"
 - Column-memory: 16kB on-chip, 256MB off-chip

Simulator Implementation

- C++ classes representing different Toaster components:
 - Cores, columns, buffers, memories
- Processors:
 - Count cycles and simulates stalls
- Memories:
 - Detailed modeling of memory transaction
- Paper claims "real-time simulator"

DiffServ Application

- Several classes of flows
 - WRR scheduler
- Main issues:
 - Constraint cycle budget (why?)
 - Deterministic behavior
- Make sure serviceable item can be found quickly

Results

- 100000 packets of 21 flows
- Measured delay and jitter
- Ideal memory system:
 - Delay: 2-18 ms
 - Jitter: 5-10 ms
- Real memory system:
 - Delay: 3-28ms
 - Jitter: 6-19ms
- Input rate definition is unclear:
 - How can 21 flows have 500+Mbps on four OC12 ports?

Summary

- Simulators are useful
 - Allows to experiment with architectures and applications
- Difficult to find balance between details and architecture-independence
- Simulations need to be described in detail to be meaningful

Next Class

- Design Space Exploration
 - Evaluation architectures analytically not with simulations.

