CommBench

--- A Telecommunications Benchmark For Network Processors

> ECE 697J Active Networks Presenter: Jianhong Xia 11/14/2002

Outline

- Motivation
- CommBench
- Data & Tools
- Characteristics
- Examples
- Summary

Motivation

- New requirements push network processors
- How to evaluate and select chips
- SPEC is designed for workstations/PCs
 - not focusing on defined I/O
 - not considering packet size
 - not considering performance
- CommBench
 - streaming data flow
 - packet-based processing task

CommBench

- Benchmark Applications
 - HPA (Header-Processing Applications)
 - per-packet basis
 - independent of size and type of the packet payload
 - RTR, FRAG, DRR, TCP
 - PPA (Payload-Processing Applications)
 - access/modify the content of a packet
 - typically executed on a stream of packets
 - CAST, ZIP, REED, JPEG

Data & Tools

- All benchmark programs
 - Run on SUN UltraSparc II under SunOS 5.7
 - Compiler is gcc 2.8.1 (O2)
 - Tools
 - Shade and SpixTools for instruction mix
 - Dinero for cache simulation
- Data types for different applications
 - HTML data (plain text)
 - Binary program code
 - JPEG coded image data

Benchmark Characteristics

- Compare to SPEC
 - Code and kernel size
 - Computational complexity
 - Instruction frequency
 - Cache performance

Characteristics --- Code and Kernel Size

- Static code size
 - an order of magnitude smaller than SPEC

Benchmark	Code Size C lines	Code size object bytes
CommBench	5,750	97,000
SPEC	48,700	678,000

- Dynamic kernel
 - much smaller than SPEC

Benchmark	Instr. at least once	Instr. for 99%	Instr. for 90%
CommBench	3,430	500	275
SPEC	35,700	9,700	3,390

Characteristics --- Computational Complexity

- Computational Complexity
 - Respect to the number and size of processed packets
 - Based on the # of instructions
- Definition of N_{a,l}
 - # of instructions per byte for application a on a packet of length l

HPA a	N _{a,64}	N _{a,576}	N _{a,1536}	PPA a	N _{a,¥} (enc)	$N_{a,Y}$ (dec)
ТСР	10.3	1.2	0.4	REED	603	1052
FRAG	7.7	0.9	0.3	ZIP	226	35
DRR	4.1	0.5	0.2	CAST	104	104
RTR	2.1	0.2	0.1	JPEG	81	60

11/14/2002

ECE697J 2002 UMASS

Characteristics --- Instruction Frequency

- Instruction Frequency
 - Almost the same as SPEC (not shown here)

НРА	%	PPA	%
load	27	add/sub	22
cond. branch	18	load	18
compare	18	cond. branch	13
add/sub	13	shift	13
store	6	compare	12
logic	6	logic	11
shift	4	store	7
load imm.	2	load imm.	1
jmpl	1	save/restore	1

For CommBench only

- Instruction mixes are different for HPA & PPA
- Indicate that network processors must deal with both streaming and header processing applications

11/14/2002

Characteristics --- Cache Performance

- Cache Performance
 - Differences are minor (2-way, 4-way, 8-way associative caches)
 - Miss rates are different on each HPA/PPA applications
 - Miss rates decrease with increasing cache size

Design Implications

- Computational Complexity
 - Estimate the computational power of CPU
- Instruction Set Design
 - Optimize the instruction sets
- I/O Requirements for Multi-Processor ASIC
 - Estimate the memory bandwidth

Example 1 --- Computation Complexity

- Requirements of RTR and DRR
 - Link bit rate 1.2Gb/s
 - Packet size is 576 bytes
 - So, computation requirement is
 - $M = (N_{RTR, 576} + N_{DRR, 576}) * R_{Lnk}$
 - = (0.2+0.5) instr/byte * 1.2G/8 bytes/sec
 - = 105 MIPS
- Requirements of on-the-fly CAST encryption
 - Link bit rate 1.2Gb/s
 - Ignore header processing overhead
 - So, computation requirement is
 - $M = N_{CAST, \mathbf{Y}} * R_{Lnk}$
 - = 104 instr./byte * 1.2G/8 bytes/sec
 - = 15,600 MIPS

Example 2 --- Instruction Set Design

- Optimization instruction sets
- Special non-standard instructions

Instr. Pairs	Avg. occurrence	Max. occurrence
ADD-SUBCC	3.55%	11.6%
LD-SUBCC	3.03%	13.0%
LD-LD	2.36%	20.2%
ADD-LDUB	2.07%	4.84%
SLL-LD	2.05%	6.82%
STB-ADD	2.05%	4.65%
LD-ADD	1.85%	5.35%
ADD-Add	1.84%	5.85%

Example 3 --- I/O Requirements

- Multiple network processors
- Estimate the average memory bandwidth for application *a* and cache size *c*
 - mbw_{a,c} = (I_{miss ratea,c} + (D_{miss ratea,c} * %load_a) + %store_a) * clock * line size
- For a = CAST and c = 8k, 400MHz ASIC, the memory bandwidth is
 - mbw_{CAST,8k} = (0.0385+(0.0076 * 0.1985) + 0.0722) * 400 * 10⁶ * 32 bit/sec = 1.4 Gbit/sec

ECE697J 2002 UMASS

Summary

- CommBench supports evaluation and design of telecommunications network processors
- Various characteristics
 - Code and kernel size
 - Computational complexity
 - Instruction frequency
 - Cache performance
- Defined I/O and computational complexity