Strong Security for Active Networks

S. Murphy, E. Lewis, R. Puga, R. Watson and R. Yee

Presenter: Jianhong Xia
10/08/2002
How Strong Security Is

- End-End authentication and integrity protection
- Authorization information carried by active packet itself.
 - Enforcement of each node’s authorization policy
 - End user controls over access of its own state
 - Node policy takes precedence over active code policy
Outline

- Background
- Security Requirements
- Trust Model/Challenges
- SANTS
 - Components
 - Authentication
 - Authorization
- Security Architecture
- Conclusion
Active Networks Security

--- from S. Murphy’s slides

Active Packet ➔ Active Network Node ➔ New Active Packet
Background

- Features of Active Network
 - Rapid deployment of new network services
 - Complex computations to be performed on packets
- But, Security Concerns
 - Network operators
 - End users
Active Networks Node Architecture

--- from S. Murphy’s slides

- Active Applications
- Execution Environments
- NodeOS

EE1

In-channels

Out-channels

Persistent store

XXX
Security Requirements

- Need to protect
 - End users, Active Node, EE, Active Code/Domain

- End User’s security concerns
 - authenticity, integrity and confidentiality

- Active Node/EE’s security concerns
 - authorization of use of its services and resources
 - integrity and confidentiality of its own state

- Active Code’s security concerns
 - access to its services and sharable persistent states
Trust Model — End User Viewpoint

- Would rather not trust active nodes, EEs and other active codes
- So, End-End Cryptographic protections
 - Protect its own data from active node and EE
 - But limit the network services in active node
- Expected Features
 - Enable end users to choose trusted nodes/EEs
 - Avoid transmitting the packet to untrusted nodes/EEs
Trust Model --- Node Viewpoint

- Would rather not trust EEs, active codes, arriving packets
- Control over the allocation of resources and privileges to an EE’s domain
- Balance the trust it holds in an EE
- Control the threat from active code
- Countering clogging attacks from arriving packets is another research area.
Trust Model — EE Viewpoint

- Would rather not trust active codes and arriving packets
- Control the threat from active codes
- Rely on the node to enforce the EE’s policy governing acceptance of arriving packets
Trust Model --- Active Code Viewpoint

- Would rather not trust Active node, EEs and other active codes
- Active code must trust the nodes and EE’s on/in which it executes
- Avoid those it does not trust
- Enforce its policy to avoid potential attacks from other active codes
Protection Techniques

Two Approaches

Language based
- Limit the possible actions of programs
- Low cost technique with a large payoff

Authorization based
- Associate a principal with each request for an action
- Enforce a policy that states which principals are permitted to perform which actions
Authentication Challenges

- Identification of the principal itself in active networks
 - Multiple and varying principal identities or attributes
- Choice of an authentication mechanism
 - Hop-Hop protections
 - Symmetric/Asymmetric techniques
SANTS

- Security ANTS
- Prototype a secure active network
 - Authorization enforcement
 - nodes, EE's and active code
 - Integrity protection
 - packets
 - Distributed authentication mechanism
 - Retrieval of identities and attributes
 - Dynamic assignment of attributes
Components

Authentication
- X.509v3 certificates
- DNSSEC
- Java Crypto API
- KeyNote policy system

Authorization
- Java 2 security features, class loader
- A separation between EE and Node Classes
- A shared data capability, Bulletin Board
Authentication

- Hop-Hop
 - HMAC-SHA1 integrity protection
- End-End
 - Digital signature for authentication and integrity protection
Authentication Issues

General Crypto Protected Packet

- Header
- Identity
- Payload
- Protection

SANTS Protected Packet

- Header
- Credential(s)
- Static (code & data)
- Digital signature
- Variable data
- Hop-hop integrity
SANTS Authentication

- Strong End-End Authentication
 - Digital Signatures
 - Protection applies to static areas only

- Hop-Hop Integrity
 - HMAC-SHA1
 - Protection Applies to entire packet

- Distributed Security Infrastructure
 - X.509 Certificates stored in DNS CERT records
 - Access uses DNSSEC
SANTS Authorization

Authorization Control at the NodeOS Level

- Policy Manager in the NodeOS
- Policy manager exposed
 - To EE
 - To Active Packet

Authorization Based on Security Attributes

- Carried in X.509 Certificates
Bulletin Board

- Active packet travel through the network encountering different administration with their own policies.
- EE provides a Bulletin Board shared data service to incoming active code.
Security Architecture

Includes:

- Naming
- Packet Format
- Policy Language
- Security Support System
- Enforcement Architecture
Security Architecture

- Components should be placed in NodeOS
- Domain creation NodeOS call must include an authentication policy and an access control policy.
Security Processing in NodeOS

- Receive packet
- Verify hop-hop integrity
- Assign packet to existing domain
- Extract credential list
- Check credentials authenticity according to authentication policy for the domain
- Check credentials against access control policy for domain
- Deliver entire packet to the domain, including the credentials, authentication protection fields, etc
Security processing in the EE

- Receive a packet including credentials
- Create a sub-domain, providing
 - security context parameters
 - access control and authentication policies
- Modify
 - access control policy,
 - authentication policy
 - security context
- Add or remove cryptographic protections to user data
Conclusion

+SANTS does provide strong security
- Fine Grained Authorization
- Strong End-End Authentication
- Dynamic Policies

- Too Complicated, is it worthy to apply?