Interoperabllity of Active
Networks

Presented By
Ramshankar

Active Networking...revisited

 Dynamic deployment of programs to
process particular packet subflows within
the network

— Data plane — processing data subflows e.g.,
adaptive recoding of video

— Control plane — e.g., dynamic installation of
flow-specific control/signalling/ management
algorithms

Standard Architecture

* Active Applications (AAs)
— Fundamental unit of network programming

e Execution Environments (EES)
— Environment for AA execution

 Node Operating System (NodeOS)

Organization of this talk

 Partl: Introduction to ABone Testbed
e Part2: NodeOS Interface
e Parting thoughts

Part 1: ABONE Testbed

Share facilities

Extend research into realistic network
environments

Enable research collaborations

Share tool development and software
maintenance overhead

Create a teaching plan

AN Node Architecture

EE Installed in a node by/under
management control

AAs are dynamically deployed and may be
transient or persistent

Model
IN eac

Kerne

. 1 NodeQOS, a few EEs, many AAs

N active node

boundary not necessarily fixed

Model

ABone Unix node

User Space

Kernel

E.g. ASP EE, ANTS EE E.g. PLAN, SENCOMM E.g. CANES

The ABone Architecture

 Abone:
— Wide-area testbed
— Nodes: diverse distributed OS platforms

— Links: Internet overlays, plus dedicated links in
DARPA’s CAIRN testbed

— AA/EE/nodeQOS architecture

* AN researchers remotely install and manage
EEs on locally administered nodes

e Client site accesses central site for registry.

Architecture Topologies

e Creating and using a Virtual EE topology
— Allocate nodes
— Build/allocate accounts on these nodes
— Generate and install configuration files on Nodes
— Start the EEs on the nodes
— Monitor topology
— Launch an AA to run the experiment

ABone Software Components

e Each ABone node has:

— ABCd (Anetd): Remote EE management daemon

e Load and launch an EE (Java or C) in a specific file
subspace

e Terminate, restart, configure and monitor EE

— Netiod: Network 1/O daemon
* Runs as root for kernel filtering
e Provides uniform interface across Unix platforms

e Client side
— ABCd (Anetd) client and ABoneShell interface

o Central site
— Web-based registry program

Interoperabllity

A small number of EE are implemented
universally among all nodes

EEs differ across nodes depending on OS

AAs are implemented to use at least one of
these EEs

This way,
— A distributed set of OS specific EEs
— AAs that run using at least one of them

— Services are hence distributed among a number of
nodes and a high utilization of network processing is
possible

Part 2: NodeOS Interface

A multilayer model with 3 layers
— AA, EE, NodeOS

e Or a multilayer model with 2 layers

— AA, NodeOS
Top AA
Middle EE

Lowest

NodeOS

Programming model
like POSIX

NodeOS Interface

e Optionl:
— Multiple languages can be supported

— Any single language can be ported to
many node types

e Option 2:

— A language runtime system directly on
hardware, like in some JavaOS

The working group upholds option 1 and justifies separation into two layers

Architecture Components

Active
Application

Execution

Environmenis

A

¥

Node OS]

EE 1

IR/

| @

EE 2

channels

IPv6

Mgmit
EE

security
enforcemt O
engineg

policy DB

Broad Goals for EE and OS

e NodeOS:

— Multiplex node’s resources among various
packet flows

e EE:

— Offer AA a sufficiently rich, high-level
programming environment

Elaboration of Goals

e For NodeOS interface

— Primary role:
e Support packet forwarding

— Secondary role:
 Arbitrary computations on select packets

¢ S0,
— Packet processing, accounting for resource usage
and admission control are done on a per flow basis

— Different granularities for packet flows

« Port-port, host-host, per application
=> Interface cannot prescribe single direction of flow

Elaboration of Goals

Account for specific capabilities provided to each
EE and hence AA

Packets requiring minimal processing should
iIncur minimal overhead
— For e.g. Non-active IP

Ability for EE to extend OS

Use of standardized facllities for specific
requirements

— POSIX

Abstractions

e 5 Primary abstractions
— Thread Pool: For computation
— Memory Pool: For temporary storage
— Channels: For communication
— Files: For permanent storage

— Domain: For aggregating control and
scheduling of the other four abstractions

Domain

° ROle: Domain
— Accounting EE
— Admission Control
— Scheduling NodeOS =1

e Domain has,

— Thread pool (translates to CPU cycCies)
« for computation by EE

— Memory pool (temporary storage)
 |/O buffers that queue messages on a domain’s channel
— Channels: iInChan and OutChan

Domain

 Encapsulates resources used by both
NodeOS and EE for a packet flow

 Could be created like processes: In
context of another
— Hierarchy with NodeOS as root

NodeOS

EE D{\D'B
e

EE specific

levels inChan outChan pomain ¢ Domain D inChan outChan

Domain Hierarchy

» Allows for easy domain termination
« Domain can be terminated

— By Itself

— Parent domain
 Resources go back to NodeOS

e Parent uses a handler and clears a dying
child’s resources
Hierarchy does nothing to each domain’s requirements.

Thread

e Abstraction for computation by a domain

* A thread pool is assigned to each domain
during domain creation
— Information maintained:
 Max number of threads in a pool

e Scheduler used
e and so on

Thread pools

 Threads run end-end
— Enables packet forwarding

— Threads cuts across NodeOS into EE as
domain does

o Special system threads are available
— For e.g. Global garbage collection

— Use POSIX style constructs like conditional
signal, walts

Thread Pools

« “Data driven”

— Threads in the pool are data driven entities with no need for
explicit identities
— Termination, creation are NodeOS specific

— Only activation is performed for each before assigning to a pool
for a domain

* Pools only for accounting purposes
— Easy reclamation of a terminating domain’s pool of threads

Memory Pools

* Primary abstraction for soft state storage
* Packet buffers

 Holds EE specific state

e Share memory between domains

 Domain to memory pool Is a many-one
mapping

Enable EE to manage memory themselves

Memory Pool

e Sharing data between domains means

— Shared data has to be present even after one
of the domains terminate

— All data references should be checked before
domain termination

* Pool simplify this process by
— Not reclaiming shared memory pages

Memory Resources

« Assignment is EE’s job and not NodeOS
— Performed during domain creation

e Resource consumption is watched by NodeOS
and EE are provided a grace time for cleanup
over-utilization

— “Callback” function for each memory pool
* Invoked by NodeOS to access EE using this pool to clean up

 Domain is terminated if cleanup is not performed in a timely
fashion

Memory pools are implemented independently and not in a hierarchical manner
Pools are only for accounting purposes.
Their potential for security and protected domians are unexplored

Channels

* Primary abstraction for communication flow

« For iInChan domain specifies
— Arriving packets
— Buffer pool to queue packets

— A function to handle the packets

 The handler is used to execute this packet in the context of
the domain’s thread pool

e For OutChan domain specifies

 Where packets are to be delivered

« How much link bandwidth the channel is allowed to consume
(guaranteed to get) as present in [17]

Channels

e Cut-through channels
— Recelve and transmit packets

— EE calls a convenience function with all
arguments used by inChan and outChan

/ | EE
NodeQOS
o
cutChan

inChan
ueuw

Channels

 Packets are resolved by using addressing
information and a demux key

e “Anchored”
—InChan for incoming flow
— outChan for outgoing flow

e “Cut-through”
— No packet processing and only forwarding

Revisiting Design Goals

 Domain encapsulates resources for a flow

 Channel specifies
— Packets belonging to flow and
— Function applied to flow

o Cut-through channels directly forward
packets

Other Abstractions

e File:
— Loosely follow POSIX 1003.1
— Hierarchical name space

« Name space:

— Distinct view of a persistent file system at a directory
chosen at configuration time

e Event:

— Domain can schedule an asynchronous event in the
future

Other Abstractions

e Heap:

— Memory management
« Packet:

— Encapsulate data that flow thro channel
e Time:

— EE get time calls

