
Interoperability of Active 
Networks

Presented By
Ramshankar



Active Networking…revisited

• Dynamic deployment of programs to 
process particular packet subflows within 
the network
– Data plane – processing data subflows e.g., 

adaptive recoding of video
– Control plane – e.g., dynamic installation of 

flow-specific control/signalling/ management 
algorithms



Standard Architecture

• Active Applications (AAs)
– Fundamental unit of network programming

• Execution Environments (EEs)
– Environment for AA execution

• Node Operating System (NodeOS)



Organization of this talk

• Part1: Introduction to ABone Testbed
• Part2: NodeOS Interface
• Parting thoughts



Part 1: ABONE Testbed

• Share facilities
• Extend research into realistic network 

environments
• Enable research collaborations
• Share tool development and software 

maintenance overhead
• Create a teaching plan



AN Node Architecture

• EE installed in a node by/under 
management control

• AAs are dynamically deployed and may be 
transient or persistent

• Model: 1 NodeOS, a few EEs, many AAs
in each active node 

• Kernel boundary not necessarily fixed 
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The ABone Architecture

• Abone:
– Wide-area testbed
– Nodes: diverse distributed OS platforms
– Links: Internet overlays, plus dedicated links in 

DARPA’s CAIRN testbed
– AA/EE/nodeOS architecture 

• AN researchers remotely install and manage 
EEs on locally administered nodes

• Client site accesses central site for registry.



Architecture Topologies

• Creating and using a Virtual EE topology
– Allocate nodes
– Build/allocate accounts on these nodes
– Generate and install configuration files on Nodes
– Start the EEs on the nodes
– Monitor topology
– Launch an AA to run the experiment



ABone Software Components

• Each ABone node has:
– ABCd (Anetd): Remote EE management daemon

• Load and launch an EE (Java or C) in a specific file 
subspace

• Terminate, restart, configure and monitor EE

– Netiod: Network I/O daemon
• Runs as root for kernel filtering
• Provides uniform interface across Unix platforms

• Client side
– ABCd (Anetd) client and ABoneShell interface

• Central site
– Web-based registry program



Interoperability

• A small number of EE are implemented 
universally among all nodes

• EEs differ across nodes depending on OS
• AAs are implemented to use at least one of 

these EEs
• This way,

– A distributed set of OS specific EEs
– AAs that run using at least one of them
– Services are hence distributed among a number of 

nodes and a high utilization of network processing is 
possible



Part 2: NodeOS Interface

• A multilayer model with 3 layers
– AA, EE, NodeOS

• Or a multilayer model with 2 layers
– AA, NodeOS
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NodeOS Interface

• Option1: 
– Multiple languages can be supported 
– Any single language can be ported to 

many node types

• Option 2:
– A language runtime system directly on 

hardware, like in some JavaOS

The working group upholds option 1 and justifies separation into two layers



Architecture Components 



Broad Goals for EE and OS

• NodeOS:
– Multiplex node’s resources among various 

packet flows

• EE:
– Offer AA a sufficiently rich, high-level 

programming environment



Elaboration of Goals

• For NodeOS interface
– Primary role:

• Support packet forwarding

– Secondary role:
• Arbitrary computations on select packets

• So,
– Packet processing, accounting for resource usage 

and admission control are done on a per flow basis
– Different granularities for packet flows

• Port-port, host-host, per application
=> Interface cannot prescribe single direction of flow



Elaboration of Goals

• Account for specific capabilities provided to each 
EE and hence AA

• Packets requiring minimal processing should 
incur minimal overhead
– For e.g. Non-active IP

• Ability for EE to extend OS
• Use of standardized facilities for specific 

requirements
– POSIX



Abstractions

• 5 Primary abstractions
– Thread Pool: For computation
– Memory Pool: For temporary storage
– Channels: For communication
– Files: For permanent storage
– Domain: For aggregating control and 

scheduling of the other four abstractions



Domain

• Role:
– Accounting 
– Admission Control
– Scheduling

• Domain has,
– Thread pool (translates to CPU cycles)

• for computation by EE

– Memory pool (temporary storage)
• I/O buffers that queue messages on a domain’s channel

– Channels: inChan and OutChan

EE

NodeOS

in
C
ha

n outC
han

Domain



Domain

• Encapsulates resources used by both 
NodeOS and EE for a packet flow

• Could be created like processes: in 
context of another
– Hierarchy with NodeOS as root
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Domain Hierarchy

• Allows for easy domain termination
• Domain can be terminated

– By itself
– Parent domain

• Resources go back to NodeOS
• Parent uses a handler and clears a dying 

child’s resources
Hierarchy does nothing to each domain’s requirements.



Thread

• Abstraction for computation by a domain
• A thread pool is assigned to each domain 

during domain creation
– Information maintained:

• Max number of threads in a pool
• Scheduler used
• and so on



Thread pools

• Threads run end-end
– Enables packet forwarding
– Threads cuts across NodeOS into EE as 

domain does

• Special system threads are available
– For e.g. Global garbage collection
– Use POSIX style constructs like conditional 

signal, waits



Thread Pools

• “Data driven”
– Threads in the pool are data driven entities with no need for 

explicit identities
– Termination, creation are NodeOS specific
– Only activation is performed for each before assigning to a pool

for a domain

• Pools only for accounting purposes
– Easy reclamation of a terminating domain’s pool of threads



Memory Pools

• Primary abstraction for soft state storage
• Packet buffers
• Holds EE specific state
• Share memory between domains
• Domain to memory pool is a many-one 

mapping
Enable EE to manage memory themselves



Memory Pool

• Sharing data between domains means
– Shared data has to be present even after one 

of the domains terminate
– All data references should be checked before 

domain termination

• Pool simplify this process by
– Not reclaiming shared memory pages



Memory Resources

• Assignment is EE’s job and not NodeOS
– Performed during domain creation

• Resource consumption is watched by NodeOS
and EE are provided a grace time for cleanup 
over-utilization
– “Callback” function for each memory pool

• Invoked by NodeOS to access EE using this pool to clean up
• Domain is terminated if cleanup is not performed in a timely 

fashion
Memory pools are implemented independently and not in a hierarchical manner
Pools are only for accounting purposes. 
Their potential for security and protected domians are unexplored



Channels

• Primary abstraction for communication flow
• For inChan domain specifies

– Arriving packets
– Buffer pool to queue packets
– A function to handle the packets

• The handler is used to execute this packet in the context of 
the domain’s thread pool

• For OutChan domain specifies
• Where packets are to be delivered
• How much link bandwidth the channel is allowed to consume 

(guaranteed to get) as present in [17]



Channels

• Cut-through channels
– Receive and transmit packets
– EE calls a convenience function with all 

arguments used by inChan and outChan
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Channels

• Packets are resolved by using addressing 
information and a demux key

• “Anchored”
– inChan for incoming flow
– outChan for outgoing flow

• “Cut-through”
– No packet processing and only forwarding



Revisiting Design Goals

• Domain encapsulates resources for a flow
• Channel specifies 

– Packets belonging to flow and 
– Function applied to flow

• Cut-through channels directly forward 
packets



Other Abstractions

• File: 
– Loosely follow POSIX 1003.1
– Hierarchical name space

• Name space: 
– Distinct view of a persistent file system at a directory 

chosen at configuration time

• Event:
– Domain can schedule an asynchronous event in the 

future



Other Abstractions

• Heap:
– Memory management

• Packet:
– Encapsulate data that flow thro channel

• Time:
– EE get time calls


