
Interoperability of Active 
Networks

Presented By
Ramshankar



Active Networking…revisited

• Dynamic deployment of programs to 
process particular packet subflows within 
the network
– Data plane – processing data subflows e.g., 

adaptive recoding of video
– Control plane – e.g., dynamic installation of 

flow-specific control/signalling/ management 
algorithms



Standard Architecture

• Active Applications (AAs)
– Fundamental unit of network programming

• Execution Environments (EEs)
– Environment for AA execution

• Node Operating System (NodeOS)



Organization of this talk

• Part1: Introduction to ABone Testbed
• Part2: NodeOS Interface
• Parting thoughts



Part 1: ABONE Testbed

• Share facilities
• Extend research into realistic network 

environments
• Enable research collaborations
• Share tool development and software 

maintenance overhead
• Create a teaching plan



AN Node Architecture

• EE installed in a node by/under 
management control

• AAs are dynamically deployed and may be 
transient or persistent

• Model: 1 NodeOS, a few EEs, many AAs
in each active node 

• Kernel boundary not necessarily fixed 



Model

Node OS
Node OS

Node OS

EE

EE
EE
AA

AA

AA

User Space

Kernel

ABone Unix node

E.g. ASP EE, ANTS EE E.g. PLAN, SENCOMM E.g. CANES



The ABone Architecture

• Abone:
– Wide-area testbed
– Nodes: diverse distributed OS platforms
– Links: Internet overlays, plus dedicated links in 

DARPA’s CAIRN testbed
– AA/EE/nodeOS architecture 

• AN researchers remotely install and manage 
EEs on locally administered nodes

• Client site accesses central site for registry.



Architecture Topologies

• Creating and using a Virtual EE topology
– Allocate nodes
– Build/allocate accounts on these nodes
– Generate and install configuration files on Nodes
– Start the EEs on the nodes
– Monitor topology
– Launch an AA to run the experiment



ABone Software Components

• Each ABone node has:
– ABCd (Anetd): Remote EE management daemon

• Load and launch an EE (Java or C) in a specific file 
subspace

• Terminate, restart, configure and monitor EE

– Netiod: Network I/O daemon
• Runs as root for kernel filtering
• Provides uniform interface across Unix platforms

• Client side
– ABCd (Anetd) client and ABoneShell interface

• Central site
– Web-based registry program



Interoperability

• A small number of EE are implemented 
universally among all nodes

• EEs differ across nodes depending on OS
• AAs are implemented to use at least one of 

these EEs
• This way,

– A distributed set of OS specific EEs
– AAs that run using at least one of them
– Services are hence distributed among a number of 

nodes and a high utilization of network processing is 
possible



Part 2: NodeOS Interface

• A multilayer model with 3 layers
– AA, EE, NodeOS

• Or a multilayer model with 2 layers
– AA, NodeOS

NodeOS

EE

AATop

Middle

Lowest

Programming model 
like POSIX



NodeOS Interface

• Option1: 
– Multiple languages can be supported 
– Any single language can be ported to 

many node types

• Option 2:
– A language runtime system directly on 

hardware, like in some JavaOS

The working group upholds option 1 and justifies separation into two layers



Architecture Components 



Broad Goals for EE and OS

• NodeOS:
– Multiplex node’s resources among various 

packet flows

• EE:
– Offer AA a sufficiently rich, high-level 

programming environment



Elaboration of Goals

• For NodeOS interface
– Primary role:

• Support packet forwarding

– Secondary role:
• Arbitrary computations on select packets

• So,
– Packet processing, accounting for resource usage 

and admission control are done on a per flow basis
– Different granularities for packet flows

• Port-port, host-host, per application
=> Interface cannot prescribe single direction of flow



Elaboration of Goals

• Account for specific capabilities provided to each 
EE and hence AA

• Packets requiring minimal processing should 
incur minimal overhead
– For e.g. Non-active IP

• Ability for EE to extend OS
• Use of standardized facilities for specific 

requirements
– POSIX



Abstractions

• 5 Primary abstractions
– Thread Pool: For computation
– Memory Pool: For temporary storage
– Channels: For communication
– Files: For permanent storage
– Domain: For aggregating control and 

scheduling of the other four abstractions



Domain

• Role:
– Accounting 
– Admission Control
– Scheduling

• Domain has,
– Thread pool (translates to CPU cycles)

• for computation by EE

– Memory pool (temporary storage)
• I/O buffers that queue messages on a domain’s channel

– Channels: inChan and OutChan

EE

NodeOS

in
C
ha

n outC
han

Domain



Domain

• Encapsulates resources used by both 
NodeOS and EE for a packet flow

• Could be created like processes: in 
context of another
– Hierarchy with NodeOS as root

NodeOS

Domain A Domain B

inChan outChan
inChan outChan Domain C Domain D

EE

EE specific
levels



Domain Hierarchy

• Allows for easy domain termination
• Domain can be terminated

– By itself
– Parent domain

• Resources go back to NodeOS
• Parent uses a handler and clears a dying 

child’s resources
Hierarchy does nothing to each domain’s requirements.



Thread

• Abstraction for computation by a domain
• A thread pool is assigned to each domain 

during domain creation
– Information maintained:

• Max number of threads in a pool
• Scheduler used
• and so on



Thread pools

• Threads run end-end
– Enables packet forwarding
– Threads cuts across NodeOS into EE as 

domain does

• Special system threads are available
– For e.g. Global garbage collection
– Use POSIX style constructs like conditional 

signal, waits



Thread Pools

• “Data driven”
– Threads in the pool are data driven entities with no need for 

explicit identities
– Termination, creation are NodeOS specific
– Only activation is performed for each before assigning to a pool

for a domain

• Pools only for accounting purposes
– Easy reclamation of a terminating domain’s pool of threads



Memory Pools

• Primary abstraction for soft state storage
• Packet buffers
• Holds EE specific state
• Share memory between domains
• Domain to memory pool is a many-one 

mapping
Enable EE to manage memory themselves



Memory Pool

• Sharing data between domains means
– Shared data has to be present even after one 

of the domains terminate
– All data references should be checked before 

domain termination

• Pool simplify this process by
– Not reclaiming shared memory pages



Memory Resources

• Assignment is EE’s job and not NodeOS
– Performed during domain creation

• Resource consumption is watched by NodeOS
and EE are provided a grace time for cleanup 
over-utilization
– “Callback” function for each memory pool

• Invoked by NodeOS to access EE using this pool to clean up
• Domain is terminated if cleanup is not performed in a timely 

fashion
Memory pools are implemented independently and not in a hierarchical manner
Pools are only for accounting purposes. 
Their potential for security and protected domians are unexplored



Channels

• Primary abstraction for communication flow
• For inChan domain specifies

– Arriving packets
– Buffer pool to queue packets
– A function to handle the packets

• The handler is used to execute this packet in the context of 
the domain’s thread pool

• For OutChan domain specifies
• Where packets are to be delivered
• How much link bandwidth the channel is allowed to consume 

(guaranteed to get) as present in [17]



Channels

• Cut-through channels
– Receive and transmit packets
– EE calls a convenience function with all 

arguments used by inChan and outChan

NodeOS

EE

in
Ch

an

outChancutChan



Channels

• Packets are resolved by using addressing 
information and a demux key

• “Anchored”
– inChan for incoming flow
– outChan for outgoing flow

• “Cut-through”
– No packet processing and only forwarding



Revisiting Design Goals

• Domain encapsulates resources for a flow
• Channel specifies 

– Packets belonging to flow and 
– Function applied to flow

• Cut-through channels directly forward 
packets



Other Abstractions

• File: 
– Loosely follow POSIX 1003.1
– Hierarchical name space

• Name space: 
– Distinct view of a persistent file system at a directory 

chosen at configuration time

• Event:
– Domain can schedule an asynchronous event in the 

future



Other Abstractions

• Heap:
– Memory management

• Packet:
– Encapsulate data that flow thro channel

• Time:
– EE get time calls


