
A Scalable High-Performance
Active Network Node

D. Decasper, B. Plattner – ETH Zurich
G. Parulkar, S. Choi, J. DeHart, T. Wolf – Washington U

Presented by Jacky Chu

Motivation

n Apply Active Network over gigabits links is a
big challenge.

n Memory bandwidth and processing power of
a microprocessor is the bottleneck for an
active node in Active Network.

n No microprocessors can singled-handedly
solve the problem, and thus an active node
requires to be scalable on both hardware and
software.

Related Work
n MIT

n Capsules – Small fragments of code
n ANTS toolkit – Packets carry pointers

n BBN
n Smart Packets – Extend diagnostic functionality in the network

n Georgia Tech
n Shows self organizing network caching extends network’s capability

n U Penn
n Switchware (switchlet) and uses field programmable gate arrays

n U Arizona
n Scout - fast but not fast suit for high-volume high-bandwidth traffic

n Columbia U
n Netscript – middleware for intermediate network nodes

Proposing a New Architecture

n 3 key components of the architecture
n Hardware of an Active Network Node (ANN)
n NodeOS of ANN
n Execution Environment of ANN

Hardware

Node OS

EE EE EE

Hardware Requirement
n High number of processing elements per router ports

n General purpose CPU and a Field Programmable Gate Arrays on
every port on backplane

n CPU does majority active functions, while FPGA takes care
performance-critical functions

n Tight coupling between engine and network
n Network traffic is flow-oriented and burst of packets share common

forwarding properties
n Majority of non-active packets allow cut-through with CPU

intervention

n Scalability
n Evenly distribute computation over processing unit (CPU + FPGA)

Hardware for ANN Overview

ANPE – Active Node
Processing Elements

n ANNs are interconnected through ANPE
n ANPE are connected to the ATM backplane via ATM

port interconnect controller (APIC)
n Number of ANPE per ANN is configurable
n Backplane is scalable
n Load-sharing algorithm distribute load by

configuring APIC in each ANPE
n Data flow can be routed between ANPE, sharing or

pipelining the process on packets

ANPE Details

n APIC – ATM host-network interface, two ATM
ports and a built-in PCI bus interface,
implementing VC switching (allow load-
sharing and cut-through IP traffics).

n CPU runs NodeOS (optimized NetBSD)
n FPGA can be programmed by CPU on the fly
n Packet can go into either CPU or FPGA

Redundancy Provides Scalability

ANN

ANPE Card ANPE Card ANPE Card

ANPE ANPE ANPE

Active Process IP Cut-through

CPU FPGA

ANN Software Infrastructure

Node OS
n Execution Environment (EE) runs on top on NodeOS,

example:
n ANTS, Smart Packets, SwitchWare
n DAN – Distributed Code Caching for Active Network

n Code blocks implementing application-specific network
functions are Active Plugins.

n Active Plugins can create object instances.
n API enter() is called to pass packet to instance.
n API exit() is called by instance when finished

processing packet.
n Designed to favor DAN architecture while compatible to

other EEs

Object Daisy Chain

n 1st packet of a flow will cause plugin to create
instances while the subsequence packets
won’t.

n If a packet is needed to process by multiple
instances, in each instance’s exit() will call
method enter() of the next instance.

n Chains are labeled by a Selector
n Last element of a chain is a Packet Scheduler

that send packet back to the network.

Object Daisy Chain

Node OS Components

n Device Drivers (DD)
n Standard NetBSD on send and receive packets.
n exception on using packet scheduling instead of

using packet queue.
n If packet contains a selector, it goes to Selector

Dispatcher instead of the IP stack.

Node OS Components

n Packet Classifier (PC)
n For packets without selector
n Every new flow has a flow record
n Classified by src and des {IP, port} and protocol
n Tags all incoming packets with flow index (FIX)

n contains MBUF and points to flow record

n Plugins can access the flow record by FIX

Node OS Components

n Selector Dispatcher (SD)
n Scans packet for selector
n Use selector to find FIX
n Stores a pointer to the first instance of the chain

n Packet Scheduler (PS)
n Can use both Deficit Round Robin or

Hierarchical Fair Service Curves for scheduling
packets

Node OS Components

n Resource Controller (RC)
n Responsible for fair CPU time sharing
n Implements selection of a queue
n RC in an ANN exchanges information with each other

over a reserved VC to provide input for the load-sharing
algorithm

n Also keep tracks of memory consumption on per-
instance basis

n Can deny additional memory demanded by greedy
instance

Node OS Components

n Plugin Control Unit (PCU)
n Manages plugins
n Forwards control path messages,

n E.g. instance creation, registration information

n Plugin Manager (PM)
n User-space utility to configure system
n Provide interface to kernel space components

Distributed Code Cache for
Active Network (DAN)

n A combination of capsule and programmable
switch solution

n Capsule code => Reference to active plugins
n Reference of unknown code is downloaded

from a code server
n Code fragments are dynamically linked and

executes like native code on node
n Cryptography techniques are used for

security to replace slow VM

DAN Mechanics
n Packets consist of sequence of IDs of functions and input

parameters
n Demultiplexing packet to obtain the unique identifier (e.g.

0x0800 for IPV4)
n Hardware interface where packet arrive determines first

function
n Last function (set) implemented in application
n Function ID act as pointer to code fragment
n Each function has option of not calling the next function

n E.g. Forward packet to next hop w/o error detection

n Code fragments (plugins) are acquired from Code Server

Code Downloading Example
ANN receives
connection
setup request
and forwards it
to video server

Video server
replies with a
packet referencing
a function for
congestion control
for video

Code not present
in ANN and
contact code
server for plugins

ANN receives
plugin and
dynamically
links it and
possibly apply
data to
congestion
function

Security

n Active plugins are digitally signed by
developers.

n Code Server serves as trusted, well-known
node for the plugins and send authenticates
plugin before sending.

n ANN only stores authenticated plugins.
n ANN can check plugin sources and developer

before installation and running.

Minimizing Code Download
Delay

n Download only happens once on first occurrence of a new
function ID

n Probe Packet – Sent from server and down the packet path
to each node to initiate download at each node (Parallelism).

n Optimal Code Server arrangement – Code servers should be
close to ANN by using hierarchy similar to DNS servers.

n Administrator to select or find unicast address of a code
server.

n Data server can also maintain a database of active plugins.

User Level Policies

n Acceptance Policy
n Administrator is allowed to deny plugin even if plugin is

trusted.

n Caching Policy
n Timeout duration should be set by administrator to

decide when a plugin expires.
n Timeout can be set to infinite for non-expirable plugin.
n Possibly treakable caching scheme (?)

Integration

n Integration by inserting new function ID at different
layer.

n Data Link Layer
n Use Link Layer Control SNAP field

n Network Layer
n Use IP option, IPv6 option field is more extensible than

IPv4
n Transport Layer

n Function ID to replace or in addition to TCP/UDP function
ID

DAN Execution Environment

DAN EE Components

n Active Function Dispatcher (AFD)
n Scan packet for function ID
n DAN function ID embed in ANEP header (or many other

places)
n Keeps track of all known function ID and a pointer to

corresponding instances per flow.
n Packet with a selector passed directly to first instance and

does not go through AFD.
n For unknown function ID

n contacts Active Plugin Loader
n Enqueue the packet in a dedicated queue
n Proceed with next packet

DAN EE Components

n Active Plugin Loader (APL)
n Dedicated kernel subsystem socket interface (like routed)
n Talks to Policy Controller first and then possible contacts

the plugin database
n If plugin locally available, loads into subsystem
n If not, contacts plugin requester to send request to code

server.
n If received plugin is verified and valid at the Security

Gateway, loads into subsystem and stored by Plugin
Database Controller.

DAN EE Components

n Policy Controller (PC)
n Maintain policy as previously described.

n Security Gateway (SG)
n Maintains a database of public keys
n Implements full RSA public-key encryption using RSAREF library.
n Library provides MD5 one way hash as RSA public key encryption.

n ANN receives {{Plugin}MD5}Priv.Deve and {Plugin}
n Gets Pub.Deve and get {Plugin}MD5 and calculates MD5({Plugin}) and see if
n {Plugin}MD5 =? MD5({Plugin})

n Security extension to DNS can be avoid by using IP address directly(?)
n Or can use IPv6’s IP security
n Or associate DNS by public/private key scheme.

DAN EE Components

n Plugin Database Controller (PDC)
n Administers local database for active plugins.
n Database can be any database architecture and controller

will be implemented to interface.
n Store all plugin information, including keys.

n Plugin Requester (PR)
n Responsible for requesting plugins and replying.
n Request can be multicast, unicast or anycast.
n And of TCP/UDP.
n When using UDP, loss of active plugin request will cause

those requesting active packet to drop.

Other Components

n Code Server
n Can be of any architecture as long as being able

to interface with requesting Plugin Requesters.

n Plugin Packages, contains
n Code for 1+ active functions
n Developer’s digital signature
n Code server authentication information
n Configuration information, e.g. Expiration time

Conclusion

n This paper proposed a complete hardware, OS
and to software architectual basis for an ANN.

n All parts are designed with scalablility in mind.
n Packets and plugins code fragments of most

fundamental parts allowing application to be
flexible and most importantly, scalable with
the underlying hardware and OS architecture.

END

Hardware for ANN Overview

ANN – Consist of one ATM backplane

ANPE Card

ANPE

ANPE

APIC

CPU

Cache

BI

Memory

FPGA

ANN Software Infrastructure

Object Daisy Chain

Selector dispatcher

Selector X
Instance 1
entry()
exit()
struct state (…)

Code

Instance 2
entry()
exit()
struct state (…)

Code

Packet Scheduler

