

Smart Packets: Applying Active Networks to Network Management

Beverly Schwartz et. al. BBN Technologies

Presented by Jinghua Hu 09/17/2002

ECE697J, UMASS Amherst

Outline

- Introduction
- Smart Packets System Architecture
- Descriptions of Major Components
 - Smart Packets Formats/Encapsulation
 - Programming Languages
 - Virtual Machine
 - Security Considerations
- Discussions

Introduction

Concept of Active Networks

- capsules carrying user injected programs
- active nodes performing computations

Goals of this paper

- Apply active networks to network management
- Architecture descriptions, design and implementation

Network Management Review

Components

- Management stations
- Managed objects/devices
- Network Management Protocol
- Management Information Base (MIB)

SNMP Review

SNMP

- Management station exchanges data/control with managed devices by polling/trapping
- SNMP PDU type
 - GetRequest
 - SetRequest
 - Response
 - InformRequest

Motivation

- More per-device processing power available for network management
- Polling from management stations is not efficient in large scale networks
- Thinking about applying Active NetworksProgrammable managed nodes

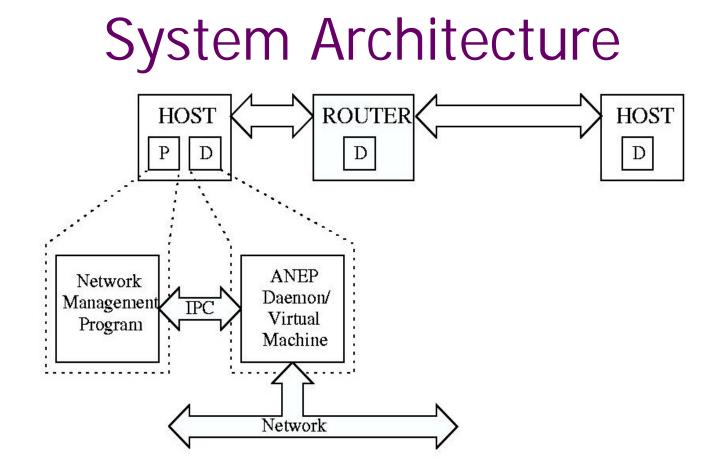


Fig. 1. IP and ANEP encapsulation

ECE697J, UMASS Amherst

ANEP Daemon

- ANEP: Active Network Encapsulation Protocol
- ANEP Daemon
 - Injection point for smart packets
 - Reception point for smart packets
 - Performing execution of the received programs on virtual machine

Smart Packets Project

- Four Major Components
 - a specification for smart packet formats
 - a specification for programming languages
 - a virtual machine
 - a security architecture
- Control Con
 - No persistent state
 - Program contained in a single packet

Part 1: Smart Packets

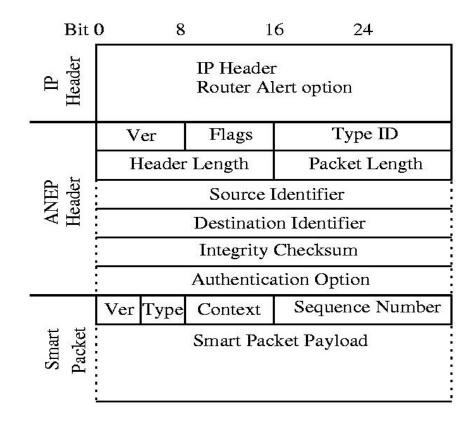


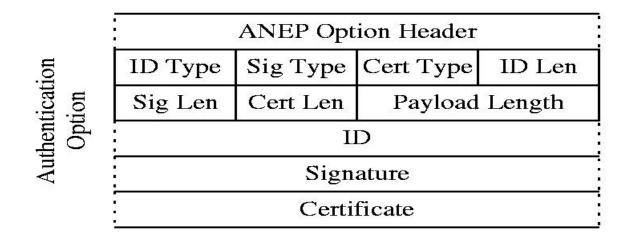
Fig. 2. A smart packet with IP and ANEP encapsulation

ECE697J, UMASS Amherst

Smart Packet Formats

Header

- Version
- Type
 - program packet (needs IP Router Alert Option)
 - data packet
 - error packet
 - message packet
- Context: identifier for clients
- Sequence number


Smart Packet Formats

Payload

- Carrying program/data/error/message
- Baggage area
 - Allowing loading/unloading of data
 - NOT protected

ANEP encapsulation

ANEP headerANEP authentication option

Fig. 3. ANEP Authentication Option

ECE697J, UMASS Amherst

Summary of part 1

- A Smart Packet (header+payload) is encapsulated within an ANEP packet and then carried within IP
- Need to set "Router Alert" option in IP header

Part 2: Programming Languages

Language Design Issues

- Compact code size
- Safety
- Mobility
- Support of special data types and operations for network management

Sprocket

C++ style language

removal of unnecessary constructs

- new features such as built-in types for packet, address, identifier and MIB added
- support operations such as getting address, sending packet, retrieving header, querying MIB information, etc

Spanner

- Stack-based CISC Assembly Language
 - multi-clock complex instructions
 - compact code size
 - variable declarations
 - no access to memory
 - data stored either in variables or stack
 - branch and flow control
 - subroutines

Summary of part 2

- Statelessness favors compact code size
- High-level Language: SprocketAssembly Language: Spanner
- Sprocket and Spanner are equivalent, while Spanner allows hand-optimization for a more compact size

Part 3: Virtual Machine

- Control Con
 - feature set
 - security

When a Program packet arrives, Daemon will

- authenticate the sender identity
- verify the data origin and data integrity
- check if sender is authorized to run the program
- fork a child process to run the virtual machine

Virtual Machine Implementation

- Spanner Virtual Machine
 - stack-based CISC architecture
 - conservatively handling of errors
 - aware of resource limits
 - resides on router's control processor
 - Imited impact on router performance

Summary of part 3

Virtual Machine is designed based on considerations of feature set, security and performance impact.

Part 4: Security Considerations

- Smart Packets: a security threat?
- Mechanisms to limit the threats:
 - Imit on the creator of smart packet
 - authentication/authorization on data origin
 - data integrity check
 - restrict risky operations only to programs sent by authorized senders

Authentication/Authorization

- Public-key certificate for sender identification
- Digital signature for data integrity protection
 - protect ANEP header and entire smart packet, except ANEP packet length field and baggage of smart packet
- SNMPv3 Access Control database for authorization check

Summary of part 4

Security issues addressed in the design
authentication/authorization

Security challenges remain

- part of the original packets is not protected
- Iarge certificates size vs. limited packet size
- computation costs of verifying certificates

Experiences

Examples

- Retrieval of interface address and MTU
 - SNMP: two GET messages and two Response
 - Smart Packets: one Program packet and one Data packet
- Traceroute
- Testbed experiments show that Smart packets network enables more efficient communications

Summary

Contributions

- Design and development of Smart Packets project
- Programmable nodes provide more efficient communications and faster delivery of targeted network events
- Lessons Learned
 - Statelessness is a double-edged sword
 - Compact codes are valuable
 - IP is less extensible than believed
 - Security is challenging

References

- Kurose and Ross, Network Management. Computer Networks, Chap 8.
- RISC Architecture, <u>http://cse.stanford.edu/class/sophomore-college/projects-00/risc/risccisc/</u>
- Beverly Schwartz, Technical Memos, <u>http://www.ir.bbn.com/~bschwart/</u>