
Enabling Conferencing Applications on the Internet using
an Overlay Multicast Architecture ∗

Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan and Hui Zhang

Carnegie Mellon University
{yhchu, sanjay, srini+, hzhang}@cs.cmu.edu

ABSTRACT
In response to the serious scalability and deployment con-
cerns with IP Multicast, we and other researchers have ad-
vocated an alternate architecture for supporting group com-
munication applications over the Internet where all multi-
cast functionality is pushed to the edge. We refer to such an
architecture as End System Multicast. While End System
Multicast has several potential advantages, a key concern
is the performance penalty associated with such a design.
While preliminary simulation results conducted in static en-
vironments are promising, they have yet to consider the chal-
lenging performance requirements of real world applications
in a dynamic and heterogeneous Internet environment.
In this paper, we explore how Internet environments and
application requirements can influence End System Multi-
cast design. We explore these issues in the context of audio
and video conferencing: an important class of applications
with stringent performance requirements. We conduct an
extensive evaluation study of schemes for constructing over-
lay networks on a wide-area test-bed of about twenty hosts
distributed around the Internet. Our results demonstrate
that it is important to adapt to both latency and bandwidth
while constructing overlays optimized for conferencing ap-
plications. Further, when relatively simple techniques are
incorporated into current self-organizing protocols to enable
dynamic adaptation to latency and bandwidth, the perfor-
mance benefits are significant. Our results indicate that
End System Multicast is a promising architecture for en-
abling performance-demanding conferencing applications in
a dynamic and heterogeneous Internet environment.

∗This research was sponsored by DARPA under contract
number F30602-99-1-0518, and by NSF under grant num-
bers Career Award NCR-9624979 ANI-9730105, ITR Award
ANI-0085920, and ANI-9814929. Additional support was
provided by Intel. Views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of DARPA, NSF, Intel or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

1. INTRODUCTION
Over the last decade, researchers have studied how group
communication applications like audio and video conferenc-
ing, multi-party games, content distribution, and broadcast-
ing can be supported using IP Multicast[4]. However, over
ten years after its initial proposal, IP Multicast is yet to
be widely deployed due to fundamental concerns related to
scalability, and support for higher layer functionality like
reliability and congestion control. Recently, there has been
a reevaluation by the research community of whether IP is
indeed the right layer to support multicast-routing related
functionality. A growing number of researchers [2, 3, 6, 9]
have advocated an alternate architecture, where all multi-
cast related functionality, including group management and
packet replication, is implemented at end systems. We refer
to such an architecture as End System Multicast. In this
architecture, end systems participating in a multicast group
self-organize into an overlay structure using a completely
distributed protocol. Further, end systems attempt to op-
timize the efficiency of the overlay by adapting to network
dynamics and considering application level performance.
While End System Multicast can have several potential
advantages, a key concern is the performance of such an
approach. While several recent works have demonstrated
that the performance penalty of using overlays can be ac-
ceptably low, these studies have been conducted primarily
using simulation experiments, static metrics and controlled
environments [2, 3, 9]. However, Internet environments, the
target of these overlay architectures, are dynamic, heteroge-
neous and unpredictable. In this paper we focus on a key
question regarding the feasibility of an overlay architecture:
can such an architecture satisfy the demanding end-to-end
performance requirements of real world applications in such
an environment?
We study this question in the context of an important
class of applications: audio and video conferencing. Inter-
net based conferencing applications have received a great
amount of attention in the last decade, during which ex-
cellent tools like vic[10], vat[8] and rat[7] were developed.
Yet, these tools are not ubiquitously deployed today due to
the limited availability of IP Multicast. Conferencing ap-
plications have stringent performance requirements, and are
among the most challenging to support. They not only re-
quire a high sustained throughput between the source and
receivers, but also require low latencies.
In order to meet these performance requirements, we show
that it is necessary for self-organizing protocols to adapt to
both latency and bandwidth metrics. We present techniques
by which such protocols can adapt to dynamic metrics like
available bandwidth and latency, and yet remain resilient to

55

Figure 1: Example of End System Multicast

network noise and inaccuracies inherent in the measurement
of these quantities. We demonstrate our ideas by incorpo-
rating them into Narada, a self-organizing protocol that we
presented in [3]. While we have chosen to use Narada, we
believe that the techniques we present can be incorporated
into other self-organizing protocols. In addition, although
our techniques take advantage of some of the unique char-
acteristics of conferencing applications, we believe that they
could benefit other classes of group communication applica-
tions as well.
We evaluate our techniques by testing the redesigned Nar-
ada protocol on a wide-area test-bed. Our test-bed com-
prises twenty machines that are distributed around North
America, Asia and Europe. Our results demonstrate that
our techniques can provide good performance, both from the
application perspective and from the network perspective.
With our scheme, the end-to-end bandwidth and latency
attained by each receiver along the overlay is comparable
to the bandwidth and latency of the unicast path from the
source to that receiver. Further, when our techniques are in-
corporated into Narada, applications can see improvements
of over 30–40% in both throughput, and latency. Finally,
the costs of our approach can be restricted to 10–15% for
groups of up to twenty members.
The rest of the paper is organized as follows. We be-
gin by providing an overview of End System Multicast and
self-organizing protocols in Section 2. Section 3 presents
important performance issues that self-organizing protocols
need to address to support conferencing applications. Our
techniques for tackling these issues are presented in Section
4. Sections 5, 6 and 7 present our evaluation methodology
and results. Finally, we discuss our results, present related
work, and summarize in Sections 8, 9, and 10.

2. END SYSTEM MULTICAST
In End System Multicast, nodes participating in a multi-
cast group, or proxies that operate on their behalf, organize
themselves into overlay spanning trees for data delivery. The
tree is an overlay in the sense that each link corresponds to
an unicast path between two end systems in the underlying
Internet. For instance, consider Figure 1(a), which depicts
a physical network where R1 and R2 are routers, and A, B,
C and D are end systems. Figure 1(b) shows an overlay tree
rooted at source A, while Figure 1(a) also shows how this
overlay tree maps on to the underlying physical network.
End System Multicast occurs in two distinct architectural
flavors: peer-to-peer architectures and proxy based architec-
tures. In the former, all functionality is pushed to the end
hosts actually participating in the multicast group. In a
proxy based architecture on the other hand, an organization
that provides value added services deploys proxies at strate-
gic locations on the Internet. End hosts attach themselves
to proxies near them and receive data using plain unicast.
The End System Multicast architecture provides several

advantages over IP Multicast. First, it requires absolutely
no network level support for multicast, and all multicast
functionality is pushed to the edge. By avoiding per-group
state in routers, the inherent scaling concerns introduced
by IP Multicast are avoided. Further, deployment is not
an issue, as no change is required to network infrastructure.
Finally, we believe that solutions for supporting higher layer
features such as error, flow and congestion control can be
significantly simplified by deploying application intelligence
at internal splitting points of an overlay tree.
While End System Multicast has several advantages, a
fundamental challenge is providing a method for nodes to
self-organize into an overlay network that efficiently for-
wards multicast packets. There has been a spurt of activity
in the design of self-organizing protocols for End System
Multicast in the last year [2, 3, 6, 9]. These self-organizing
protocols primarily consist of two components: (i) a group
management component; and (ii) an overlay optimization
component. The group management component ensures
that the overlay remains connected in the face of dynamic
group membership and failure of members. The overlay op-
timization component ensures that the quality of the overlay
remains good over time. Overlay optimization involves ob-
taining network information using a variety of techniques
such as active measurements and passive monitoring of per-
formance. As more information is available about the net-
work, or as network conditions change, the overlay can be
modified by the addition of good links and the dropping of
poor links.
Two basic methods have emerged for the construction of
overlay spanning trees for data delivery. One approach is
to construct the tree directly - that is, members explicitly
select their parents from among the members they know.
Yoid [6] and Overcast [9] adopt this approach. An alternate
approach which protocols such as Gossamer [2] and Narada
[3] use, is to construct trees in a two-step process. First they
construct a richer connected graph termed a mesh. Second,
they construct (reverse) shortest path spanning trees of the
mesh, each tree rooted at the corresponding source using
well-known routing algorithms. While in the extreme case,
a mesh could consist of all possible N ∗ (N −1) overlay links
in a group consisting of N members, typically protocols try
to keep the meshes sparse in order to keep the overhead of
routing low. Given that the final spanning trees are con-
structed from among the overlay links present in the mesh,
it becomes important to construct a good quality mesh in
the first place. The reader is referred to [3, 6] for further
discussion of the tree-first and mesh-first approaches.

3. CONFERENCING APPLICATIONS AND
OVERLAY DESIGN

A key feature of End System Multicast is that it enables
application customizable protocols and architectural deci-
sions. In this section, we study the interaction between End
System Multicast and conferencing applications. We begin
by reviewing the following distinguishing characteristics of
conferencing applications:

• Performance requirements: Conferencing applications re-
quire low latencies, and need to sustain high bandwidth
between the source and receivers. In contrast, broadcast-
ing and file transfer applications are primarily interested in
bandwidth, and latency is not a concern.
• Gracefully degradable: Conferencing applications deal with

56

Figure 2: Architectural framework for supporting
conferencing applications

media streams that can tolerate loss through a degradation
in application quality. This is in contrast to file transfer ap-
plications that require reliable data delivery.
• Session lengths: Conferences are generally long lived, last-
ing tens of minutes. In contrast, applications like file trans-
fer and software downloading may be short-lived, lasting for
the duration of the transfer.
• Group characteristics: Conferences usually involve small
groups, consisting of tens to hundreds of participants. Mem-
bership can be dynamic. Again, this is in contrast to ap-
plications like broadcasting, and content delivery that may
deal with much larger group sizes.
• Source transmission patterns: Typically, conferencing ap-
plications have a source that transmits data at a fixed rate.
While any member can be the source, there is usually a
single source at any point in time. In contrast, large scale
broadcasting applications have a single static source through-
out a session.

Several conferencing application features are well suited
to existing End System Multicast techniques. For example,
self-organizing protocols employ self-improving algorithms,
and incrementally produce better overlays by learning net-
work path characteristics and adapting to network dynam-
ics. The small group sizes and long session durations of
conferences match such an approach.
Some aspects of conferencing applications enable relatively
straight-forward application-specific solutions to existing prob-
lems. For example, the graceful degradation of media streams
allows us to build a system that employs a hop-by-hop con-
gestion control protocol. Congestion control on each indi-
vidual overlay link is ensured by running some TCP-friendly
protocol for streaming media applications [1, 5, 14]. An
overlay node adapts to a bandwidth mismatch between the
upstream and downstream links by dropping packets. Fig-
ure 2 shows an example of an overlay tree, where A is the
source. Links A-B and C-D cannot sustain the source rate
of 5 Mbps, and consequently nodes A and C reduce the rate
using some appropriate packet drop policy.
The performance requirements of conferencing applica-
tions are one key aspect that existing End System Multi-
cast systems cannot support. In this paper, we focus on
addressing this key issue by incorporating techniques in self-
organizing protocols to support the following:

• Optimizing for dual metrics: Overlay links need to be
chosen in such a manner as to simultaneously ensure high
bandwidth and low latencies from every source to each re-
ceiver.
• Optimizing for dynamic metrics: Internet latencies and
available bandwidth are dynamic, and the overlay needs to
adapt to long-term variations in path characteristics. Yet, it
needs to be resilient to network noise and inaccuracies that
is inherent in the measurement of these quantities. Frequent
changes to overlay topology could result in instability and
transient performance degradation.

4. CONFERENCING OPTIMIZED OVERLAYS
In this section, we present a set of techniques that help
self-organizing protocols deal with the challenges of support-
ing conferencing applications. While we believe our ideas
can easily be incorporated into all End System Multicast
protocols, we choose to demonstrate them on the Narada
protocol [3]. Narada is a mesh-based protocol, and runs a
distance vector algorithm extended with path information
on top of the mesh. It leverages a DVMRP-like algorithm
for constructing the spanning trees for data delivery. Fur-
ther details of Narada can be found in [3].

4.1 Dealing with dual and dynamic metrics
Constructing an overlay optimized for both latency and
bandwidth can be difficult. In designing heuristics for tack-
ling this problem, we have been motivated by the work done
byWang and Crowcroft [15] in the context of routing on mul-
tiple metrics in the Internet. A first choice is to optimize the
overlay for a single mixed metric that is a function of both
bandwidth and latency. However, it is not clear how this
function can individually reflect the bandwidth and latency
requirements of the application. A second approach is to
treat the two metrics explicitly and with equal importance.
Thus, a change would be made to the overlay if either the
bandwidth or the latency improves as a result of that change.
However, this approach could lead to oscillations when con-
fronted with two conflicting options, one with better latency,
and the other with better bandwidth but poorer latency.
Instead, we consider both bandwidth and latency explicitly,
but prioritize bandwidth over latency. We believe that this
prioritization reflects the application semantics better.
We incorporate this idea in Narada, by choosing multi-
ple routing metrics in the distance vector protocol running
on the mesh - the available bandwidth and the latency of
the overlay link. The routing protocol uses a variant of
the shortest widest path algorithm presented in [15]. Every
member tries to pick the widest (highest bandwidth) path
to every other member. If there are multiple paths with
the same bandwidth, the member picks the shortest (lowest
latency) path among all these.
Both available bandwidth and latency are dynamic in na-
ture, and using them as routing metrics leads to serious
concerns of instability. We deal with the stability concerns
using techniques in the design of the routing metrics de-
scribed below:

• Latency: We filter raw estimates of the overlay link latency
using an exponential smoothing algorithm. The advertised
link latency is left unchanged until the smoothed estimate
differs from the currently advertised latency by a significant
amount.
• Available bandwidth: We filter raw estimates of the avail-
able bandwidth of an overlay link using an exponential smoo-
thing algorithm, to produce a smoothed estimate. Next, in-
stead of using the smoothed estimate as a routing metric,
we define discretized bandwidth levels. The smoothed es-
timate is rounded down to the nearest bandwidth level for
routing purposes. Thus, a mesh link with a smoothed es-
timate of 600 Kbps may be advertised as having a band-
width of 512 Kbps, in a system with levels corresponding
to 512 Kbps and 1024 Kbps. To tackle possible oscillations
if the smoothed estimate is close to a bandwidth level, we
employ a simple hysteresis algorithm. Thus, while we move
down a level immediately when the smoothed estimate falls
below the current level, we move up a level only if the esti-

57

mate significantly exceeds the bandwidth corresponding to
the next level.

Given that conferencing applications often have a fixed
source rate, the largest level in the system is set to the source
rate. Discretization of bandwidth and choice of a maximum
bandwidth level ensure that all overlay links can fall in a
small set of equivalence classes with regard to bandwidth.
This discretized bandwidth metric not only enables greater
stability in routing on the overlays, but also allows latency
to become a determining factor when different links have
similar but not identical bandwidth.
Given a good quality mesh, the mechanisms described
above seek to construct overlay trees that ensure good band-
width and latencies between every source and the recipients.
We retain the basic mechanisms presented in the Narada
protocol to improve the quality of the mesh itself. Mem-
bers probe non-neighbors at random, and may add a new
link to the mesh if the utility gain of adding the link ex-
ceeds a threshold. Members monitor existing links, and
drop them if the cost of dropping the link falls below a
threshold. The utility gain, and cost are computed based
on the number of members to which performance improves
(degrades) in bandwidth and latency if the mesh link were
added (dropped), and the significance of the improvement
(degradation).

4.2 Metric Estimation
In this section, we present details of how we collect raw es-
timates of the latency and bandwidth of overlay links. These
estimates are used by the routing algorithms presented in
Section 4.1. We use different mechanisms for collecting
bandwidth and latency estimates for links in the mesh, and
for links that are not.
Members determine latencies of links in the mesh by peri-
odically (currently every 200 milliseconds) exchanging pack-
ets with their neighbors and estimating the round trip time.
The link latency is assumed to be half the round trip time.
While these measurements turn out to have a low overhead,
we note that when the underlying transport protocol allows,
and there is data flow along a mesh link, we may directly
obtain round trip time estimates by querying the transport
protocol.
We keep bandwidth estimates of links already in the mesh
up to date by passively monitoring the performance of these
links when there is data flow along them. Members periodi-
cally advertise the rates at which they are transferring data
to their neighbors along a mesh link. The neighbor com-
pares this advertised estimate, with an estimate of data it
actually receives along that mesh link. If the rates are com-
parable, it treats the estimate as a lower bound on available
bandwidth. Otherwise, it assumes the rate at which it re-
ceives data is an actual estimate of the bandwidth of the
link.
Bandwidth estimates of links not in the mesh are currently
determined using active end-to-end measurements, which in-
volves transferring data using the underlying transport pro-
tocol for 15 seconds, but at a rate bounded by the maximum
source rate. As active measurements can have a high over-
head, we have adopted simple techniques to minimize the
number of such measurements:

• If a member is receiving poor performance because of con-
gestion on its local access link (for example, a machine be-
hind ADSL, or a modem), this member does not probe any

other member. We currently use a simple heuristic to deter-
mine congestion on a local link: we ping the first hop router
on the member’s path to the Internet, and determine the
local link to be congested if the ping times exceed a thresh-
old. We have found this heuristic to work reasonably well
in many situations.
• Member A conducts an active bandwidth measurement to
member B, only if B itself gets good performance from other
members, and has the potential to improve A’s performance.
A determines the quality of B’s performance to other mem-
bers by examining its routing table which it obtains using
a small number of message exchanges. We find this mecha-
nism helpful in heterogeneous environments, where a good
member can avoid probing a member behind a modem or
ADSL connection. Further, it prevents members who are al-
ready doing well in the overlay from probing other members.

Bandwidth estimates may be outdated due to a change of
network conditions since the last estimate was made, or inac-
curate due to noise inherent in these measurements. To keep
estimates to other members timely, a member may probe
another member for which there has been no bandwidth es-
timate for an extended period of time. Currently, a member
may conduct an active bandwidth measurement to a mesh
neighbor for which there has been no bandwidth estimate in
the last five minutes, and to a non-neighbor for which there
has been no bandwidth estimate in the last twenty minutes.

5. EXPERIMENTAL EVALUATION
Our evaluation seeks to answer the following questions:

• From the application perspective, can End System Multi-
cast meet the bandwidth and latency requirements of con-
ferencing applications in the Internet?
• How critical is it to adapt to network performance metrics
such as bandwidth and latency while constructing overlays?
•What are the network costs and overheads associated with
the self-organizing overlay architectures we consider?

To answer these questions, we examine the performance of
several schemes for constructing overlay networks, described
in Section 5.1. Of these schemes, ours is the only one that
adapts dynamically to both bandwidth and latency. All
other schemes consider only one of these metrics, or none
at all. Section 6 presents detailed results that compare the
performance of our scheme with all other schemes. In Sec-
tion 7, we focus on our scheme and analyze several aspects
pertaining to how it adapts to congestion in the network.
Two important factors affect the performance of a scheme
for constructing overlay networks. These critical factors are
the characteristics of the source application and the degree
of heterogeneity in the host set we consider. Less demanding
applications and more homogeneous environments can make
even a poorly constructed overlay perform adequately.
We consider the performance of the schemes with different
speed constant bit rate (CBR) sources. CBR encodings are
common in conferencing applications, and make our eval-
uation convenient. To study the performance of overlay
schemes in environments with different degrees of hetero-
geneity, we create two groupings of hosts, the Primary Set
and the Extended Set. The Primary Set contains 13 hosts
located at university sites in North America where nodes
are in general well-connected to each other. The Extended
Set contains 20 hosts, and includes a machine behind ADSL,
and hosts in Asia and Europe, in addition to the hosts in

58

the Primary Set. Thus, there is a much greater degree of
variation in bandwidth and latencies of paths between nodes
in the Extended Set.
We conducted several experiments over a period of two
weeks on a wide area test-bed. Our experiments measure
the bandwidth and latency that a overlay provides between
the source and the different clients. We also measure the
network resource usage and overheads incurred by the dif-
ferent overlay schemes. The details of these measurements
are in the sections that will follow. We vary both the source
rate and client set to evaluate how well the schemes operate
in different conditions.

5.1 Schemes for Constructing Overlays
Our schemes for constructing overlays are derived from
the Narada protocol [3], and differ from each other based
on which network metrics they consider. We compare the
following schemes for overlay construction:

• Sequential Unicast: To analyze the efficiency of a scheme
for constructing overlays, we would ideally like to compare
the overlay tree it produces with the “best possible over-
lay tree” for the entire set of group members. We approxi-
mate this by the Sequential Unicast test, which measures the
bandwidth and latency of the unicast path from the source
to each recipient independently (in the absence of other re-
cipients). Thus, Sequential Unicast is not a feasible overlay
at all but a hypothetical construct used for comparison pur-
poses.
• Random: This represents a scheme that produces ran-
dom, but connected overlay trees rooted at the source. This
scheme also helps to validate our evaluation, and addresses
the issue as to whether our machine set is varied enough
that just about any overlay tree yields good performance.
• Prop-Delay-Only: This represents a scheme that builds
overlays based on propagation delay, a static network met-
ric. Measuring propagation delay incurs low overhead, and
overlays optimized for this metric have been shown to yield
reasonably good simulation results [3]. In our evaluation,
we computed the propagation delay of an overlay link by
picking the minimum of several one-way delay estimates.
• Latency-Only and Bandwidth-Only: These two schemes
construct overlays based on a single dynamic metric with
no regard to the other metric. They are primarily used
to highlight the importance of using both bandwidth and
latency in overlay construction.
• Bandwidth-Latency: This represents our proposed scheme
that uses both bandwidth and latency as metrics to con-
struct overlays.

Many of our hosts are on 10 Mbps connections, and we use
source rates as high as 2.4 Mbps. To prevent obviously bad
choices of overlay trees due to saturation of the local link,
schemes that use static network metrics like Prop-Delay-
Only are required to impose static, pre-configured degree
bound restrictions on the overlay trees they construct [3]. In
our evaluation, we try to be give Random and Prop-Delay-
Only the best possible chance to succeed by appropriately
choosing per-host degree bounds based on the bandwidth of
that host’s connection to the Internet. On the other hand,
Bandwidth-Latency, Latency-Only and Bandwidth-Only are
able to adapt to dynamic network metrics. This enables
them to automatically detect and avoid congestion on links
near members, without a pre-configured degree bound.

5.2 Experimental Methodology
The varying nature of Internet performance influences the
relative results of experiments done at different times. Char-
acteristics may change at any time and affect the perfor-
mance of various experiments differently. Ideally, we should
test all schemes for constructing overlays concurrently, so
that they may observe the exact same network conditions.
However, this is not possible, as the simultaneously operat-
ing overlays would interfere with each other. Therefore, we
adopt the following strategy: (i) we interleave experiments
with the various protocol schemes that we compare to elimi-
nate biases due to changes that occur at shorter time scales,
and (ii) we run the same experiment at different times of the
day to eliminate biases due to changes that occur at a longer
time scale. We aggregate the results obtained from several
runs that have been conducted over a two week period.
Every individual experiment is conducted in the following
fashion. Initially, all members join the group at approx-
imately the same time. The source multicasts data at a
constant rate and after four minutes, bandwidth and round-
trip time measurements are collected. Each experiment lasts
for 20 minutes. We adopt the above set-up for all schemes,
except Sequential Unicast. As described in Section 5.1, Se-
quential Unicast determines the bandwidth and latency in-
formation of a unicast path, which we estimate by unicast-
ing data from the source to each receiver for two minutes in
sequence.

5.3 Performance Metrics
We use the following metrics to capture the quality of an
overlay tree:

• Bandwidth: This metric measures the application level
throughput at the receiver, and is an indicator of the quality
of received video.
• Latency: This metric measures the end-to-end delay from
the source to the receivers, as seen by the application. It
includes the propagation and queuing delays of individual
overlay links, as well as queueing delay and processing over-
head at end systems along the path. We ideally wish to
measure the latency of each individual data packet. How-
ever, issues associated with time synchronization of hosts
and clock skew adds noise to our measurements of one-way
delay that is difficult to quantify. Therefore, we choose to
estimate the round trip time (RTT). By RTT, we refer to the
time it takes for a packet to move from the source to a recipi-
ent along a set of overlay links, and back to the source, using
the same set of overlay links but in reverse order. Thus, the
RTT of an overlay path S-A-R is the time taken to traverse
S-A-R-A-S. The RTT measurements include all delays as-
sociated with one way latencies, and are ideally twice the
end-to-end delay.
• Resource Usage: This metric defined in [3] captures the
network resources consumed in the process of delivering data
to all receivers. The resource usage of an overlay tree is the
sum of the costs of its constituent overlay links. The cost of
an overlay link is the sum of the costs of the physical links
that constitute the overlay link. In our evaluation, we as-
sume the cost of a physical link to be the propagation delay
of that link, guided by the intuition that it is more efficient
use of network resources to use shorter links than longer
ones. For example, in Figure 1, the cost (delay) of physical
link R1− R2 is 25, the cost of the overlay link A − C is 27,
and the resource usage of the overlay tree is 31.

59

We define the Normalized Resource Usage of an overlay
tree as the ratio of its resource usage to the resource usage
with IP Multicast. The resource usage with IP Multicast
is the sum of the costs (delays) of the physical links of the
native IP Multicast tree used in delivering data to the re-
ceivers. In our evaluation, we determine the IP Multicast
tree based on the unicast paths from the source to each re-
ceiver. This is the tree that the classical DVMRP protocol
[4] would construct (assuming Internet routing is symmetri-
cal). We derive the physical links of this IP Multicast tree,
as well as the delays of these links, by doing a traceroute
from the source to each receiver.
Bandwidth and latency are metrics of the application level
performance that an overlay provides, while resource usage
is a measure of the network costs incurred. The objective
of our evaluation is to understand the qualities of the over-
lay tree that different schemes create with respect to these
metrics. For a metric such as resource usage, it is easy to
summarize the quality of the overlay produced. However, it
is much more difficult to summarize the latency and band-
width performance that a number of different hosts observe
with a few simple metrics. One approach is to present the
mean bandwidth and latency, averaged across all receivers.
Indeed, we do use this technique in Section 6.1. However,
this does not give us an idea of the distribution of perfor-
mance across different receivers.
A simple approach to summarizing an experiment is to
explicitly specify the bandwidth and latencies that each in-
dividual receiver sees. Although the set of hosts and source
transmission rate are identical, a particular scheme may cre-
ate a different overlay layout for each experimental run.
While an individual host may observe vastly different perfor-
mance across the runs, this does not imply that the various
overlays are of any different quality. Therefore, we need
metrics that capture the performance of the overlay tree as
a whole.
Let us consider how we summarize an experiment with
regard to a particular metric such as bandwidth or latency.
For a set of n receivers, we sort the average metric value of
the various receivers in ascending order, and assign a rank
to each receiver from 1 to n. The worst-performing receiver
is assigned a rank of 1, and the best-performing receiver is
assigned a rank of n. For every rank r, we gather the re-
sults for the receiver with rank r across all experiments, and
compute the mean. Note that the receiver corresponding to
a rank r could vary from experiment to experiment. For
example, the result for rank 1 represents the performance
that the worst performing receiver would receive on average
in any experiment.
In addition to the mean bandwidth or latency for a given
rank, we also calculate the standard deviation of this mea-
sure. Variability in performance may occur due to two rea-
sons. First, it arises due to a variation in quality of overlay
trees that a particular scheme produces across different runs.
For example, a scheme may produce trees where every re-
ceiver gets good performance in a particular run, but many
receivers get bad performance in another run. Second, vari-
ability may also occur due to changes in Internet conditions
(such as time of day effects). Thus, potentially no overlay
may be able to provide good performance at a given time.
However, our results in Section 6 demonstrate that some
schemes are able to keep the standard deviation low. This
indicates that the standard deviation is a reasonable mea-
sure of the variability in performance with a scheme itself.
The metrics above capture the quality of the overlay a

scheme constructs. We use a fourth metric, the Protocol
Overhead, to capture the the overhead incurred by a scheme
while constructing overlays. This metric is defined as the
ratio of the total bytes of non-data traffic that enters the
network to the total bytes of data traffic that enters the
network. The overhead includes control traffic required to
keep the overlay connected, and the probe traffic and active
bandwidth measurements involved in the self-organization
process.

5.4 Implementation Issues
The experiments are conducted using unoptimized code
running at the user level. Implementation overhead and
delays at end systems could potentially be minimized by
pushing parts of the implementation in the kernel, and by
optimizing the code. We have used TFRC [5] as the under-
lying transport protocol on each overlay link, as discussed
in Section 3. TFRC is rate-controlled UDP, and achieves
TCP-friendly bandwidths. It does not suffer delays associ-
ated with TCP such as retransmission delays, and queueing
delays at the sender buffer.

6. EXPERIMENTAL RESULTS
We begin by presenting results in a typical experiment
run in Section 6.1. Section 6.2 provides a detailed compari-
son of various schemes for constructing overlays with regard
to application level performance, and Section 6.3 presents
results related to network costs.

6.1 Results with a Typical Run
The results in this section give us an idea of the dynamic
nature of overlay construction, and how the quality of the
overlay varies with time. Our experiment was conducted on
a week-day afternoon, using the Primary Set of machines
and at a source rate of 1.2 Mbps. The source host is at
UCSB.
Figure 3 plots the mean bandwidth seen by a receiver,
averaged across all receivers, as a function of time. Each
vertical line denotes a change in the overlay tree for the
source UCSB. We observe that it takes about 150 seconds for
the overlay to improve, and for the hosts to start receiving
good bandwidth. After about 150 seconds, and for most of
the session from this time on, the mean bandwidth observed
by a receiver is practically the source rate. This indicates
that all receivers get nearly the full source rate throughout
the session.
Figure 4 plots the mean RTT to a receiver, averaged across
all receivers as a function of time. The mean RTT is about
100 ms after about 150 seconds, and remains lower than this
value almost throughout the session.
Figures 3 and 4 show that in the first few minutes of the
session, the overlay makes many topology changes at very
frequent intervals. As members gather more network in-
formation, the quality of the overlay improves over time,
and there are fewer topology changes. In most of our runs,
we find that the overlay converges to a reasonably stable
structure after about four minutes. Given this, we gather
bandwidth and RTT statistics after four minutes for the rest
of our experiments. We present ideas for how convergence
time may be minimized in the future in Section 8.
The figures above also highlight the adaptive nature of our
scheme. We note that there is a visible dip in bandwidth,
and a sharp peak in RTT at around 460 seconds. An analysis
of our logs indicates that this was because of congestion on
a link in the overlay tree. The overlay is able to adapt

60

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (seconds)

Figure 3: Mean Bandwidth averaged over all re-
ceivers as a function of time.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

R
T

T
 (

m
s)

Time (seconds)

Figure 4: Mean RTT averaged over all receivers as
a function of time.

by making a set of topology changes, as indicated by the
vertical lines immediately following the dip, and recovers in
about 40 seconds.
We now consider how the RTTs to individual receivers
vary during a session. Figure 5 plots the cumulative dis-
tribution of the RTT estimates to every receiver. For each
receiver, there is usually at least one RTT estimate every
second, for the entire duration of the session. Each curve
corresponds to a particular receiver, and each point indicates
the fraction of the RTT estimates to that receiver that have
an RTT lower than a particular value. For all receivers, over
94% of the RTT estimates are less than 200 ms, while over
98% of the RTT estimates are less than 400 ms. Assuming
that one-way latency is one half of the RTT, this indicates
that end-to-end latencies are lower than 100 ms most of the
time, and less than 200 ms almost all the time.

6.2 Comparison of Schemes for Overlays
We present detailed results of our comparisons of several
schemes for constructing overlay trees on the Internet. We

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

C
u

m
u

la
tiv

e
 P

e
rc

e
n

ta
g

e
 (

%
)

RTT (ms)

Figure 5: Cumulative distribution of RTT, one curve
for each receiver.

begin our comparison study with the Primary Set and a
source rate of 1.2 Mbps. Internet paths between most pairs
of hosts in the Primary Set can sustain throughputs of
1.2 Mbps. Thus, this study represents a relatively less het-
erogeneous environment where simpler schemes could poten-
tially work reasonably well. Next, we consider the Primary
Set, but at a source rate of 2.4 Mbps. This environment is
more stressful to our schemes for two reasons. First, fewer
Internet paths in the Primary Set are able to sustain this in-
creased source rate and thus, this represents an environment
with a higher degree of heterogeneity. Second, several hosts
in our test-bed are located behind 10 Mbps connections, and
a poorly constructed overlay can result in congestion near
the host. Thus, schemes that work well at 1.2 Mbps po-
tentially work less well at 2.4 Mbps. Finally, to stress our
scheme Bandwidth-Latency, we consider an extremely het-
erogeneous environment represented by the Extended Set,
and assuming a source rate of 2.4 Mbps. We believe our
choice of source rates is realistic and representative of cur-
rent and emerging high bandwidth video applications.

6.2.1 Primary Set at 1.2 Mbps Source Rate
Figure 6 plots the mean bandwidth against rank for four
different schemes. Each curve corresponds to one scheme,
and each point in the curve corresponds to the mean band-
width that a machine of that rank receives with a particular
scheme, averaged across all runs. The error-bars show the
standard deviation. Thus they do not indicate confidence in
the mean, rather they imply the degree of variability in per-
formance that a particular scheme for constructing overlays
may involve. For example, the worst-performing machine
(rank 1) with the Random scheme, receives a bandwidth of
a little lower than 600 Kbps on average. We use the same
way of presenting data in all our comparison results.1

We wish to make several observations. First, the Se-
quential Unicast test indicates that all but one machine
get close to the source rate, as indicated by one of the top
lines with a dip at rank 1. Second, both Bandwidth-Latency
and Bandwidth-Only are comparable to Sequential Unicast.
They are able to ensure that even the worst-performing ma-

1The curves are slightly offset from each other for clarity of
presentation.

61

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

M
e

a
n

 B
a

n
d

w
id

th
 (

K
b

p
s)

Rank

Sequential Unicast
Bandwidth-Latency

Bandwidth-Only
Random

Figure 6: Mean bandwidth versus rank at 1.2 Mbps
source rate for the Primary Set of machines

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14

M
e

a
n

 R
T

T
 (

m
s)

Rank

Sequential Unicast
Bandwidth-Latency

Bandwidth-Only
Random

Figure 7: Mean RTT versus rank at 1.2 Mbps source
rate for the Primary Set of machines

chine in any run receives 1150 Kbps on average. Further,
these schemes can result in consistently good performance,
as indicated by the small standard deviations. Interestingly,
these schemes result in much better performance for the
worst-performing machine as compared to Sequential Uni-
cast. It turns out this is because of the existence of patholo-
gies in Internet routing. It has been observed that Internet
routing is sub-optimal and there often exists alternate paths
between end system that have better bandwidth and latency
properties than the default paths [12]. Third, the Random
scheme is sub-optimal in bandwidth. On average, the worst-
performing machine with the Random scheme (rank 1) gets
a mean bandwidth of about 600 Kbps. Further, the perfor-
mance of Random can be quite variable as indicated by the
large standard deviation. We believe that this poor perfor-
mance with Random is because of the inherent variability
in Internet path characteristics, even in relatively well con-
nected settings.
Figure 7 plots mean RTT against rank for the same set

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

M
e

a
n

 B
a

n
d

w
id

th
 (

K
b

p
s)

Rank

Sequential Unicast
Bandwidth-Latency

Latency-Only
Prop-Delay-Only

Figure 8: Mean bandwidth versus rank at 2.4 Mbps
source rate for the Primary Set

of experiments. First, the RTT of the unicast paths from
the source to the recipients can be up to about 150 ms,
as indicated by the lowest line corresponding to Sequential
Unicast. Second, Bandwidth-Latency is good at optimizing
the overlay for delay. The worst machine in any run has
an RTT of about 160 ms on average. Third, both Random
and Bandwidth-Only perform considerably worse. While
Random results in an RTT of about 350 ms for the worst
machine on average, Bandwidth-Only results in an RTT of
about 250 ms. Both Bandwidth-Only and Random can have
poor latencies because of suboptimal overlay topologies that
may involve criss-crossing the continent. In addition, Ran-
dom is unable to avoid delays related to congestion, particu-
larly near the participating end hosts, while Bandwidth-Only
may benefit due to some correlation between bandwidth and
delay.
We have also evaluated Prop-Delay-Only and Latency-

Only under this setting, and find that they performs sim-
ilarly to Bandwidth-Latency in RTT, and slightly worse in
bandwidth. We omit the results for clarity. Further, given
the poor performance of Random, even in very simple set-
tings, we do not consider it further in our evaluation.

6.2.2 Primary Set at 2.4 Mbps Source Rate
In this section, we focus on the performance comparison
between Bandwidth-Latency and two delay-based schemes,
Prop-Delay-Only and Latency-Only. Figures 8 and 9 present
the mean bandwidth and RTT against host rank for four dif-
ferent schemes.
First, we observe that the paths from the source to most
receivers can sustain bandwidths of up to 2.4 Mbps, as indi-
cated by the Sequential-Unicast test. Second, Bandwidth-
Latency comes very close to achieving this benchmark, and
can outperform Sequential Unicast for machines with lower
rank. Next, we observe that both Latency-Only and Prop-
Delay-Only perform poorly in bandwidth. For machines of
rank 1–5, Bandwidth-Latency can outperform Prop-Delay-
Only and Latency-Only by over 500 Kbps. While Prop-
Delay-Only and Latency-Only can provide reasonable per-
formance at source rates of 1.2 Mbps, they are unable to
provide good performance in bandwidth at 2.4 Mbps with
the same set of machines.

62

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14

M
e

a
n

 R
T

T
 (

m
s)

Rank

Sequential Unicast
Bandwidth-Latency

Latency-Only
Prop-Delay-Only

Figure 9: Mean RTT versus rank at 2.4 Mbps source
rate for the Primary Set

From the perspective of RTT, we find that Bandwidth-
Latency performs almost indistinguishably from Latency-
Only, and both schemes achieve performance reasonably
close to Sequential Unicast. However, more surprisingly,
Prop-Delay-Only achieves RTTs at least 100 ms more than
Bandwidth-Latency for machines of lower rank, and thus
performs badly even in the RTT metric. This is because
delays in the Internet may often arise due to congestion,
and optimizing purely for propagation delay need not op-
timize the latencies seen by the application. This obser-
vation becomes particularly important in our environment
where many hosts are behind 10 Mbps connections, and
poorly constructed overlays could cause congestion near a
host. While we did use conservative pre-configured degree
bounds recommended in [2, 3, 6], this strategy is not capa-
ble of dealing with dynamic cross-traffic. In contrast, the
dynamic nature of Bandwidth-Latency and Latency-Only
enables them to perform better in such situations.
We have also evaluated Bandwidth-Only in this environ-
ment. We find the bandwidth results are comparable to
Bandwidth-Latency, but the RTT results are worse. Finally,
because of the poor performance of Prop-Delay-Only, our
future evaluation concentrates on Latency-Only while ana-
lyzing the performance of delay based schemes.

6.2.3 Extended Set at 2.4 Mbps Source Rate
Our results so far demonstrate that even in less heteroge-
neous environments such as the Primary Set, good perfor-
mance requires considering both bandwidth and latency as
metrics in overlay construction. To further emphasize the
importance of taking both bandwidth and latency into ac-
count, we consider extremely heterogeneous environments as
represented by the Extended Set. Figures 10 and 11 plot the
bandwidth and RTT against host ranks for the four schemes
of interest.
The Sequential Unicast curves show that there are quite
a few members that have low bandwidth and high laten-
cies from the source, which indicates the heterogeneity in
the set we consider. Even in such a heterogeneous setting,
Bandwidth-Latency is able to achieve a performance close
to the Sequential Unicast test. Apart from the less well-
connected hosts (ranks 1–5), all other members get band-

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 B
a

n
d

w
id

th
 (

K
b

p
s)

Rank

Sequential Unicast
Bandwidth-Latency

Bandwidth-Only
Latency-Only

Figure 10: Mean bandwidth versus rank at 2.4 Mbps
source rate for the Extended Set of machines

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 R
T

T
 (

m
s)

Rank

Sequential Unicast
Bandwidth-Latency

Latency-Only
Bandwidth-Only

Figure 11: Mean RTT versus rank at 2.4 Mbps
source rate for the Extended Set of machines

widths of at least 1.8 Mbps, and see RTTs of less than 250 ms
on average. For ranks 1–5, Bandwidth-Latency is able to
exploit Internet routing pathologies and provide better per-
formance than Sequential Unicast . A particularly striking
example was two machines in Taiwan, only one of which
had good performance to machines in North America. In
our runs, the machine with poorer performance was able
to achieve significantly better performance by connecting to
the other machine in Taiwan.
Next, we observe that Bandwidth-Only results in high
RTT, while Latency-Only performs poorly in bandwidth.
For example, for machines of rank 7, Bandwidth-Latency
can sustain throughputs almost 800 Kbps more than Latency-
Only, and can achieve RTTs more than 100 ms lower than
Bandwidth-Only. Further, Bandwidth-Latency has smaller
standard deviations, which indicates that the overlays it pro-
duces consistently attain good performance in both band-
width and latency. Finally, we observe that Bandwidth-
Latency provides equivalent performance to Bandwidth-Only
in bandwidth, and to Latency-Only in RTT indicating that

63

Experiment Setup Primary Primary Extended
1.2 Mbps 2.4 Mbps 2.4 Mbps

Unicast 2.62 2.62 1.83
Random 2.24 2.05 1.97
Latency-Only 1.39 1.42 1.25
Bandwidth-Only 1.85 1.86 1.51
Bandwidth-Latency 1.49 1.73 1.31
Min-Span 0.85 0.85 0.83

Table 1: Average normalized resource usage of dif-
ferent schemes

optimizing for multiple metrics does not compromise the
performance with respect to any single metric.

6.2.4 Summary of comparison results
We summarize results from our comparison study below:

• Our techniques enable the construction of efficient over-
lays optimized for both bandwidth and latency, as required
by conferencing applications. Even in extremely heteroge-
neous environments, Bandwidth-Latency has performance
comparable to Sequential Unicast, and sometimes performs
better by exploiting Internet pathologies.
• Random overlays do not perform well even in settings with
a small amount of heterogeneity.
• Overlays that adapt to simple static metrics like propa-
gation delay perform quite poorly, not only in bandwidth,
but also in latencies. This is because schemes that use only
static metrics fail to detect and react to network congestion,
resulting in larger queueing delays and higher packet loss.
• Overlays that adapt to latency alone are unable to provide
good bandwidth performance, especially at higher source
rates. Conversely, overlays that adapt to bandwidth alone
are unable to provide good latencies. These results indicate
that latency and bandwidth are not strongly correlated on
the Internet, and it is critical to consider both metrics to
construct overlays optimized for conferencing applications.

6.3 Network Level Metrics
Table 1 compares the mean normalized resource usage
(Section 5.3) of the overlay trees produced by the various
schemes for different environments and source rates. The
values are normalized with respect to the resource usage
with native IP Multicast support, determined as explained
in Section 5.3. Thus, we would like the normalized resource
usage to be as small as possible, with a value of 1.00 rep-
resenting an overlay tree that has the same resource usage
as IP Multicast. Given that the trees constructed by self-
organizing protocols can change over time, we consider the
final tree produced at the end of an experiment. However,
we observe that the overlays produced by these schemes are
reasonably stable after about four minutes.
There are several observations to be made from Table 1.
First, naive degenerated unicast trees which have all recip-
ients rooted at the source, and schemes such as Random
that do not explicitly exploit network information have a
high resource usage. Second, protocols that adapt to band-
width alone (Bandwidth-Only) make less efficient use of net-
work resources compared to protocols such as Bandwidth-
Latency, and Latency-Only which consider delay based met-
rics. Third, the resource usage with Bandwidth-Latency is
a little higher than Latency-Only, which reflects the cost in
adapting to better bandwidth paths. Finally, the resource
usage with Bandwidth-Latency increases with source rate

Experiment Setup Primary Primary Extended
1.2 Mbps 2.4 Mbps 2.4 Mbps

Average Overhead (%) 10.79 11.53 14.20
% of Bandwidth
overhead Probes 92.24 96.03 94.30
due to Other 7.76 3.37 5.70

Table 2: Average overhead with Bandwidth-Latency
and a breakdown of the overhead

(in the Primary Set). This is because it favors higher band-
width paths over lower delay paths at higher source rates.
We have also determined the resource usage of Min-Span,
the minimum spanning tree of the complete graph of all
members, computed by estimating the delays of all links of
the complete graph. Minimum spanning trees are known to
be optimal with respect to resource usage, and as Table 1
shows, have lower resource usage than IP Multicast. This
indicates that an End System Multicast architecture can in-
deed make as efficient, if not better use of network resources
than IP Multicast. However, while minimum spanning trees
are efficient from the network perspective, it is not clear that
they are efficient from the application perspective.
Table 2 summarizes the protocol overhead (Section 5.3)
involved in Bandwidth-Latency, along with a breakdown of
the main factors that contribute to the overhead. We find
that the average overhead is between 10 to 15% across all
settings. This is an indication that even simple heuristics
that we have implemented can keep the overall overhead
low. Further, more than 90% of the overhead is due to
members probing each other for bandwidth. Other sources
of overhead contribute just 3–7% of the overhead. These
include exchange of routing messages between neighbors,
group management algorithms to keep the overlay connected,
and probes to determine the delay and routing state of re-
mote members. This confirms our intuition that techniques
for lowering protocol overhead must focus on reducing costs
of bandwidth probes.
An analysis of our logs reveals that the simple heuristics
introduced in Section 4.2 are able to reduce around 50% of
possible bandwidth probes between pairs of members over
a 20 minute period. Further, in experiments with the Ex-
tended Set, we find that there are no bandwidth probes to
the member behind the ADSL connections. Further, there
are very few probes from a machine in North America to
hosts in Asia and Europe. While the results are encourag-
ing, overhead due to active bandwidth measurements can be
a concern as one considers larger sized groups. We present
some of our ideas for tackling this in Section 8.

7. ADAPTING TO NETWORK DYNAMICS
Section 6 has shown that it is important to adapt to dy-
namic metrics such as bandwidth and latency while con-
structing overlays optimized for conferencing applications.
When network congestion occurs, overlays need to adapt by
making appropriate topology changes in a timely fashion
to ensure good and stable application performance. In this
section, we evaluate how quickly our protocol can adapt to
changes in network conditions, and study the factors that
contribute to adaptation times.
To study these issues, we design a set of experiments on
the Internet where we artificially introduce network conges-
tion on selected links in the overlay tree, and evaluate how
our system responds to these congestion signals. Our study
is conducted using our Bandwidth-Latency overlay scheme.

64

0

500

1000

1500

2000

2500

3000

560 580 600 620 640 660 680 700

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (seconds)

sw
itc

h
 t

o
 U

M
A

S
S

sw
itc

h
 t

o
 U

N
C

in
je

ct
 c

o
n

g
e

st
io

n

lo
w

e
r

e
st

im
a

te
 t

o
 U

C
S

B UDEL

Figure 12: An example demonstrating adaptation to
network congestion in one controlled experiment.

All experiments are conducted using the hosts in the Pri-
mary Set. The source, located at UCSB, sends CBR traffic
at 1.2 Mbps. Ten minutes into the experiment, we randomly
choose a victim from among the receivers, and simulate a
state of congestion on the link between the victim and its
parent in the rest of the experiment. We simulate conges-
tion by randomly dropping 10% of the packets at the parent.
We do not model increased latencies that are typical dur-
ing network congestion. Given that each link in the overlay
tree is congestion-controlled using TFRC, a high loss rate
results in a substantial decrease in the bandwidth perfor-
mance of that link. As a result, the bandwidth received by
the victim drops sharply. Moreover, if the victim is not a
leaf in the overlay tree, all the descendants of the victim
will suffer the same performance degradation in bandwidth.
Given that we are not modeling latency effects of conges-
tion, our experiments evaluate our techniques in adapting
to bandwidth changes alone.
To explain the issues involved in the adaptation process,
we present the behavior of the victim in a particular ex-
periment. Figure 12 plots the bandwidth the victim gets
as a function of time. Each vertical line indicates an event
of interest. In this experiment, a machine at U. Delaware
(UDEL) is the victim. Before congestion is introduced,
UDEL receives data directly from the source UCSB. At time
600, we introduce congestion on the link between UCSB
and UDEL, and UDEL observes a substantial drop in band-
width. After switching parents twice, UDEL starts observ-
ing good performance 43 seconds later. Formally, we con-
sider a receiver to have recovered from congestion when it
continuously receives more than 90% of the stable bandwidth
for 15 seconds. We determine the stable bandwidth of a host
based on the bandwidth it receives right before congestion
is introduced. We define recovery time as the time it takes
for a host to recover, since the onset of congestion.
To gain further insight in the adaptation process of the
protocol, we divide the recovery time into three components
as follows:

• Detection time: This is the duration of time for which
congestion must persist before a victim recognizes this as an
event it should adapt to. In our scheme, we consider conges-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

 (
%

)

Time (seconds)

recovery time
detection time
reaction time

repair time

Figure 13: Cumulative distribution of recovery time
and its components for the victim hosts

tion to have been recognized when the advertised bandwidth
of a link moves down by one discretized level (Section 4.1).
In this experiment, the detection time is 30 seconds.
• Reaction time: This is the amount of time the protocol
takes to make the first parent change after congestion is
detected. In this experiment, UDEL switches to the host
UMASS in 6 seconds.
• Repair time: This is the additional amount of time the
protocol takes to fully recover since the first parent change.
In this experiment, UDEL switches to the host UNC 7 sec-
onds after switching to UMASS.

The detection time captures the time scale at which an
overlay has been designed to adapt to congestion. The re-
action and repair times however measure how quickly our
schemes react given that a decision to adapt has been made.
We now present summary statistics from 60 controlled
experiments. The victims have no descendants in 24 ex-
periments, and an average of 3.1 descendants in the other
experiments.
First we analyze the behavior of the victim hosts alone.
Figure 13 shows the cumulative distribution of each metric
we consider. For most of the cases, recovery time is be-
tween 20 and 45 seconds. Further, the largest contributory
factor is detection time, which is usually between 20 and
35 seconds. In contrast, reaction time and repair time are
relatively short. Narada is a mesh-based protocol running
a distance vector algorithm on the mesh, and two different
mechanisms can contribute to reaction time in Narada. In
most of the cases, the victim chooses another neighbor in
the mesh as its new parent. Thus the reaction time in these
cases depends on the frequency of route exchanges between
neighbors, which currently occur once every ten seconds. In
a few cases however, none of the mesh neighbors may offer a
better path to the source, perhaps because all other neigh-
bors are children of the victim. In such cases the victim
must add a new mesh link to improve performance, and this
process can take longer. Finally, we observe that the repair
time is zero for more than 90% of the cases. This indicates
that typically only a single parent change is involved in the
adaptation process.
Next we analyze the recovery time of the descendant hosts,

65

0

0.2

0.4

0.6

0.8

1

-10 0 10 20 30 40 50 60

C
u

m
u

la
tiv

e
 P

e
rc

e
n

ta
g

e
 (

%
)

Recovery Time (seconds)

victims
descendants

difference

Figure 14: Cumulative recovery time of victims and
their descendants

considering only runs where victims have descendants. We
define difference as the difference in recovery time between
the descendant and its respective victim in the same ex-
periment. A positive difference implies that the descendant
recovers slower than its victim. Figure 14 shows the cumu-
lative distribution of the recovery time of the descendants
and the victims, as well as the difference. We observe that
the recovery time distribution for victims and descendants
exhibit similar trends. Moreover, more than 80% of descen-
dants recover at the same time as their respective victims,
as shown by the difference curve. Further analysis indicates
that about 75% of the descendants recover without a change
of parent. In general, it is desirable to minimize the number
of overlay changes when adapting to network congestion, as
it increase the stability of the overlay structure.
Our results indicate that the detection time is a signifi-
cant fraction of the recovery time. Further, the detection
times are around 20 to 35 seconds. Our design choice has
been motivated by two conflicting concerns. If the overlay
adapts very quickly to congestion that is usually short in
duration, the benefit of adaptation is small and the overlay
could potentially become unstable. However, if the overlay
adapts too slowly, the applications would suffer a perfor-
mance penalty during the transient period. Although we
have found our choice of detection time to work reasonably
well in practice, we believe further studies are needed to de-
termine the proper time scale of adaptation, grounded on a
more rigorous understanding of the characteristics of Inter-
net congestion.

8. DISCUSSION
Our results indicate that End System Multicast can meet
the stringent bandwidth and latency demands of conferenc-
ing applications in heterogeneous and dynamic Internet en-
vironments. Further, to achieve good performance, it is im-
portant that overlays dynamically adapt to both bandwidth
and latency.
This paper exposes three issues that we hope to explore
in the future. First, to construct overlays optimized for con-
ferencing, we employ active end-to-end measurements to es-
timate path bandwidths. While active measurements can
be costly, simple techniques employed in this paper help to

restrict the overhead to about 10–15% for groups as large as
twenty members. However, it is unclear whether the over-
head results scale to larger group sizes. Second, in the ab-
sence of initial network information, self-organizing proto-
cols must take some time to discover network characteris-
tics and converge to efficient overlays. Currently the con-
vergence time is about 4 minutes. While this may be ac-
ceptable in conferencing applications which typically have
a long duration, it may become an issue in other real-time
applications. Finally, our current protocol is designed to
adapt to network congestion on the time scale of tens of
seconds. This design choice is motivated by the inherent
tradeoff between the time scale of adaptation and the sta-
bility of overlay topology. While adaptation at such time
scales may be acceptable when operating in less dynamic
environments, transient degradation of application perfor-
mance may become an important issue in highly dynamic
environments.
As mentioned in Section 2, End System Multicast occurs
in two distinct architectural flavors: peer-to-peer architec-
tures, and proxy based architectures. The discussion in this
paper has centered on End System Multicast in general,
rather than the specific architectural instantiation. How-
ever, we believe that there are opportunities to address these
new issues in an architecture-specific way.
Proxy based architectures can have several advantages.
First, multiple multicast groups may share the same proxy
service, which enables sharing of network performance infor-
mation across groups. Second, proxies are persistent beyond
the lifetime of individual groups. This allows proxies to ex-
ploit past history of network performance. Sharing of net-
work information, and leveraging past history help to reduce
the number of active measurements needed in constructing
overlays. Further, efficient overlays may be quickly created
when new groups are instantiated. A third advantage of
proxy architectures is that they are better provisioned. We
expect that proxy environments have more stable network
performance and can leverage the QoS infrastructure on the
network more easily. Finally, proxies are the natural co-
ordination points for managing (network) resources among
multiple groups that use the proxy service. Thus, when con-
gestion occurs, proxies can allocate more resources to groups
with more stringent performance requirements.
While proxy based architectures can have several advan-
tages, peer-to-peer architectures have the attractive prop-
erty that they are completely distributed and can scale to
support millions of groups. This is because each end host
keeps state only for the small number of groups in which
it actually participates. We are currently investigating a
multi-path data delivery framework targeted at these archi-
tectures, where each recipient gets (potentially redundant)
data from the source along multiple paths, with a fraction
of the data flowing along any given path. This multi-path
framework has the potential to address the new issues raised
in this paper. First, because data is received along multiple
paths, degradation in performance along any individual path
does not radically affect the overall performance seen by the
recipient. This enables robust application level performance
even over shorter time scales. Further, data delivery can be
made even more robust with the use of redundancy and er-
ror correction. Second, the multi-path framework enables a
recipient to monitor the performance of several overlay links
concurrently, including (potentially poor) links for which no
previous bandwidth estimate is available. This in turn mini-
mizes the need for active bandwidth measurements, and can

66

lead to improved performance during the time it takes the
overlay to converge to a good structure.

9. RELATED WORK
Several studies [2, 3, 9, 11] present detailed simulation
results to argue that the performance penalties associated
with an overlay based approach may be low. To our knowl-
edge, this is the first detailed evaluation of self-organizing
overlay protocols in a dynamic and heterogeneous Internet
environment.
Several self-organizing protocols have been proposed re-
cently in an overlay setting. Gossamer [2], Narada [3], Yoid
[6] and most recently, Bayeux [13], have only considered
delay based metrics. Further, they have not addressed im-
portant issues pertaining to the dynamic nature of these
metrics. Overcast [9] is targeted at broadcasting and reli-
able data-delivery applications where delay is not a concern.
Thus, it constructs overlay trees optimized for bandwidth
alone. However, as our results suggest, considering both
bandwidth and delay based metrics could potentially enable
more efficient use of network resources without sacrificing
application performance.
ALMI [11] has advocated a centralized approach to over-
lay multicast where algorithms for group management and
overlay optimization are coordinated at a central point. ALMI
currently optimizes the overlay for network resource usage
by constructing minimum spanning trees. However, while
minimum spanning trees are efficient from the network per-
spective, it is not clear that they can perform well from the
application perspective.

10. SUMMARY
Our results indicate that End System Multicast is a vi-
able architecture for enabling performance demanding audio
and video conferencing applications in dynamic and hetero-
geneous Internet settings. In experiments with our Primary
Set, at source rates of both 1.2 and 2.4 Mbps, most hosts
are able to sustain over 95% of the source rate on average,
and yet achieve latencies of less than 100 ms. In extremely
heterogeneous settings such as the Extended Set, the mean
performance attained by each receiver is comparable to the
performance of the unicast path from the source to that
receiver.
Our results indicate that to achieve good performance
for conferencing applications, it is critical to consider both
bandwidth and latency while constructing overlays. For ex-
ample, in experiments with the Extended Set, Bandwidth-
Latency can provide 50% higher throughput than Latency-
Only, and 30–40% lower latencies than Bandwidth-Only for
several ranks. Protocols that do not consider any network
metrics like Random, or those that consider only static net-
work metrics like Prop-Delay-Only perform much worse.
Our techniques introduce a network overhead of 10–15%
for groups with 20 members. Further, they are designed
to adapt at the time scale of 20–35 seconds. Adaptation
at this time scale may be sufficient in less dynamic envi-
ronments, and in applications which are willing to tolerate
occasional glitches in performance. Indeed, our techniques
worked reasonably well in the realistic Internet environments
we consider. Our future work includes exploring mecha-
nisms for achieving shorter time scale adaptation targeted
at extremely dynamic environments, and mechanisms for
lowering network costs for larger sized groups

ACKNOWLEDGEMENTS
We are deeply grateful to our contacts at over twenty insti-
tutions who gave us guest accounts and tolerated our exper-
iments. Tung Fai Chan and Annie Cheng developed a cool
visualization tool that helped us develop and debug Narada.
We thank Jason Flinn, Jun Gao, Jorjeta Jetcheva and the
anonymous referees for comments that helped improve the
presentation of the paper.

11. REFERENCES
[1] Deepak Bansal and Hari Balakrishnan. Binomial
Congestion Control Algorithms. In Proc. IEEE
INFOCOM, April 2001.

[2] Y. Chawathe. Scattercast: An Architecture for
Internet Broadcast Distribution as an Infrastructure
Service. Fall 2000. Ph.D. thesis.

[3] Y. Chu, S. Rao, and H. Zhang. A Case for End
System Multicast. In Proceedings of ACM Sigmetrics,
June 2000.

[4] S. Deering. Multicast Routing in Internetworks and
Extended Lans. In Proceedings of ACM SIGCOMM,
August 1988.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-Based Congestion Control for Unicast
Applications. In Proceedings of ACM SIGCOMM,
August 2000.

[6] P. Francis. Yoid: Your Own Internet Distribution,
http://www.aciri.org/yoid/. April 2000.

[7] V. Hardman, A. Sasse, M. Handley, and A. Watson.
Reliable audio for use over the Internet. In Proceedings
of INET, June 1995.

[8] V. Jacobson and S. McCanne. Visual audio tool (vat).
http://www-nrg.ee.lbl.gov/vat/

[9] J. Jannotti, D. Gifford, K. L. Johnson, M. F.
Kaashoek, and J. W. O’Toole Jr. Overcast: Reliable
multicasting with an overlay network. In Proceedings
of the Fourth Symposium on Operating System Design
and Implementation (OSDI), October 2000.

[10] S. McCanne and V. Jacobson. vic: A flexible
framework for packet video. In ACM Multimedia,
November 1995.

[11] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel.
ALMI: An Application Level Multicast Infrastructure.
In Proceedings of the 3rd Usenix Symposium on
Internet Technologies & Systems (USITS), March
2001.

[12] S. Savage, A. Collins, E. Hoffman, J.Snell, and
T. Anderson. The end-to-end effects of Internet path
selection. In Proceedings of ACM Sigcomm, August
1999.

[13] S.Q.Zhuang, B.Y.Zhao, A.D.Joseph, R.H.Katz, and
J.D.Kubiatowicz. Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination. In
Proceedings of NOSSDAV, 2001.

[14] W. Tan and A. Zakhor. Real-time Internet video using
error resilient scalable compression and tcp-friendly
transport protocol. In IEEE Trans. Multimedia, Vol.
1, No. 2, June 1999.

[15] Z. Wang and J. Crowcroft. Bandwidth-delay based
routing algorithms. In IEEE GlobeCom, November
1995.

67

