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Abstract

We describe an approach to explore the design space
of architectures of packet processing devices on the sys-
tem level. Our method is specific to the application domain
of network packet processors and is based on (1) models
for packet processing tasks, a specification of the workload
generated by traffic flows, and a description of the feasible
space of architectures involving computation and communi-
cation resources, (2) a measure to characterize the perfor-
mance of network processors under different usage scenar-
ios, (3) a new method to estimate end-to-end packet delays
and queuing memory, taking task scheduling policies and
bus arbitration schemes into account, and (4) an evolution-
ary algorithm for multi-objective design space exploration.
Our method is analytical and is based on a high level of
abstraction, where the goal is to quickly identify interesting
architectures, which may then be subjected to a more de-
tailed evaluation, e.g. using simulation. The feasibility of
our approach is shown by a detailed case study, where the
final output is three candidate architectures, representing
different cost versus performance tradeoffs.

1. Introduction

Network Processors usually consist of multiple process-
ing units such as CPU cores, micro-engines, and dedicated
hardware for compute-intensive tasks such as header pars-
ing, table look-up and encryption/decryption. Together with
these, there are also memory units, caches, interconnec-
tions, and I/O interfaces. Following a system-on-a-chip
(SoC) design method, these resources are put on a single
chip and must interoperate to perform packet processing
tasks at line speed. The process of determining the opti-
mal hardware and software architecture for such processors
is faced with issues involving resource allocation and par-
titioning, and the architecture design should take into ac-
count different packet processing functions, task scheduling
options, information about the packet forms, and the QoS
guarantees that the processor should be able to meet. The

available chip area for putting the different components to-
gether might be restricted, imposing additional constraints.
Further, network processors may be used for many differ-
ent application scenarios such as those arising in backbone
and access networks. Whereas backbone networks can be
characterized by very high throughput demands but rela-
tively simple processing requirements per packet, access
networks show lower throughput demands but high com-
putational requirements for each packet. The architecture
exploration and evaluation of network processors therefore
pose many interesting challenges and involve many trade-
offs and a complex interplay between hardware and soft-
ware.

There are several characteristics which are specific to
the packet processing domain, and these do not arise in
other application areas such as classical digital signal pro-
cessing (although both domains involve the processing of
event streams). The packet processing case is concerned
with the processing of interleaved flows of data packets,
where for each flow a certain sequence of tasks must be ex-
ecuted (so there are usually no recurrent or iterative compu-
tations), the tasks are of high granularity, and they are often
scheduled dynamically at run-time. Due to this difference
with other known target domains for system-level design
space exploration, several new questions arise: How should
packet streams, task structures and hardware and software
resources be appropriately modeled? How can the perfor-
mance of a network processor architecture be determined in
the case of several (possibly conflicting) usage scenarios?
Since the design space can be very large, what kind of strat-
egy should be used to efficiently explore all options and to
obtain a reasonable compromise between various conflict-
ing criteria?

In this paper we present a framework for the design space
exploration of embedded systems operating on such flows
of packets where we address the above issues. The underly-
ing principles of our approach can be outlined as follows:

• Our framework consists of a task and a resource model,
and a real-time calculus [2, 20] for reasoning about
packet flows and their processing. The task model rep-



resents the different packet processing functions such
as header processing, encryption, processing for spe-
cial packets such as voice and video, etc. The re-
source model captures the information about different
available hardware resources, the possible mappings of
packet processing functions to these resources, and the
associated costs. There is also the information about
different flows (such as their burstiness, and long-term
arrival rates), which are specified using their arrival
curves [6] and possible deadlines within which the
packets must be processed.

• The design space exploration is posed as a multi-
objective optimization problem. There are differ-
ent conflicting criteria such as chip area, on-chip
memory requirements, and performance (such as the
throughput and the number of flow classes that can
be supported). The output is a set of different hard-
ware/software architectures representing the different
tradeoffs.

• Given any architecture, the calculus associated with
the framework is used to analytically determine prop-
erties such as delay and throughput experienced by dif-
ferent flows, taking into consideration the underlying
scheduling disciplines at the different resources. An
exploration strategy comes up with possible alterna-
tives from the design space, which are evaluated using
our calculus, and the feedback guides further explo-
ration.

To speedup the exploration, unlike previous approaches
we use several linear approximations in the real-time calcu-
lus, so that the different system properties can be quickly
estimated. We also show how different resources with pos-
sibly different scheduling strategies, and communication re-
sources with different arbitration mechanisms can be com-
bined together to construct a scheduling network, which al-
lows to determine, among other things, the size of shared as
well as per-resource memory. Our multi-objective design
space exploration takes into account the fact that there can
be different scenarios in which the processor may be de-
ployed, and this is modeled in the form of different usage
scenarios. Lastly, the way we allocate the multiple process-
ing units and the memory units, our optimization strategy
also optimizes the load balancing between them.

Related work. Most of the previous work on modeling,
performance evaluation and design space exploration of net-
work processors (such as [5] and [4]) relied on simulation
techniques, where different architectures are simulated and
evaluated using benchmark workloads. The work in [5] and
[4] addresses issues related to identifying appropriate work-
loads and modeling frameworks to aid full system analysis

and evaluation using simulation. An analytical performance
model for network processors was proposed in [21] and [9].
Different network processor architectures can be evaluated
on benchmark workloads using this analytical model. When
the search space being explored is large, it might be too ex-
pensive to evaluate all the alternatives using simulation, or
even by using performance models whose input is a bench-
mark workload. In contrast to these approaches, different
architectures in our framework are evaluated on the basis of
analytical models for both the input traffic (workload) and
the performance of an architecture. Based on these mod-
els we determine bounds on the resource requirements of
a processor architecture (such as memory and cache sizes),
and QoS parameters (such as delay experienced by packets).
The focus here is on a high level of abstraction, where the
goal is to quickly identify interesting architectures which
can be further evaluated (for example by simulation) taking
lower level details into account.

Recent research on packet processors has dealt with task
models [19], task scheduling [15], operation system issues
[14], and packet processor architectures [10, 17]. All of
these issues collectively play a role in different phases of
the design space exploration of such devices, and the rele-
vant ones in the context of our abstraction level have been
considered in this paper.

Our previous attempts to perform system-level design
space exploration of packet processing architectures have
been described in [19] and [18]. In [19] the exploration
is performed by an integer linear program and the estima-
tion of the system properties is limited to very simple mod-
els. The complexity of the underlying optimization problem
prevents the use of this method for realistic design prob-
lems. Moreover, the memory requirements are only ana-
lyzed for a shared memory architecture and the overhead
for communication between computational resources is not
considered at all. [18] overcomes some of these shortcom-
ings and proposes a multiobjective evolutionary algorithm
for the design space exploration, over the use of integer lin-
ear programming. In this paper we extend the work pre-
sented in [18] by firstly modeling communication resources
(such as buses and bus arbitration policies), and secondly al-
lowing for local memories to be associated with processing
resources. We also present here a detailed design problem
and show all the tradeoffs involved.

Related work on the design space exploration of SoC
communication architectures includes [11] (and the refer-
ences therein). However, in contrast to our approach, the
methods used in these papers largely rely on simulation.

The next section formally describes the task and the re-
source structures, following which we describe the frame-
work for analytically evaluating prospective candidate ar-
chitectures in Section 3. Section 4 describes techniques
for the multiobjective design space exploration, and a case
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Figure 1. Representation of arrival curves.

study illustrating our methodology is presented in Section 5.

2 Models for Streams, Tasks, and Resources

In this section we describe models for the workload gen-
erated by packet flows, and task structures associated with
the processing of such flows. We then make use of these
models to describe our network processor architectures.

2.1 Workload generated by Packet Streams

A network processor operates on interleaved streams of
packets which enter the device. In order to determine the
load on the processing device, it is necessary to know the
number of packets arriving per time unit. This informa-
tion can be formalized using arrival curves which allow us
to derive deterministic bounds on the workload. Such ar-
rival curves are commonly used in the networking area for
characterizing traffic flows (see, for instance, the T-SPEC
model [16] of the IETF).

Let R(t) denote the number of packets that have arrived
from a flow f during the time interval [0, t].

Definition 1 (Arrival Curves) For any flow f , the lower
arrival curve αl

f and the upper arrival curve αu
f , satisfy

the relation:

αl(t − s) ≤ R(t) − R(s) ≤ αu(t − s) ∀0 ≤ s ≤ t

αl
f (∆) gives a lower bound on the number of packets that

might arrive from a flow f within any time interval of length
∆. Likewise, αu

f (∆) gives an upper bound on the number of
packets that might arrive from a flow f within any time in-
terval of length ∆. Hence, for all ∆ > 0, αl

f (∆) ≤ αu
f (∆)

and αl
f (0) = αu

f (0) = 0. Therefore, within any time inter-
val of length ∆ ∈ R≥0, the number of packets arriving from
a flow f is greater than or equal to αl

f (∆), and less than or
equal to αu

f (∆).

Arrival curves may be determined from service level
agreements (for example, specified using T-SPECs), by
analysis of the traffic source, or by traffic measurement.
Fig. 1 shows an example of an arrival curve.

All packets belonging to the same flow are processed in
the same way, i.e. a fixed set of tasks are executed on each

packet in a predefined order. This task structure characteriz-
ing packet processing functions can be described as follows.

Definition 2 (Task Structure) Let F be a set of flows and
T be a set of tasks. To each flow f ∈ F there is an asso-
ciated directed acyclic graph G(f) = (V (f), E(f)) with
task nodes V (f) ⊆ T and edges E(f). The tasks t ∈ V (f)
must be executed for each packet of flow f while respecting
the precedence relations in E(f).

Tasks associated with different flows can be combined
into one conditional task graph where depending on the
flow to which a packet belongs, the packet takes different
paths through this graph. See Fig. 12 for an example. Such
tasks are implemented on resources which might be general
CPUs, dedicated processors, etc.

Definition 3 (Deadlines and Requests) To each flow f ∈
F there is associated an end-to-end deadline df , denoting
the maximum time by which any packet of this flow has to
be processed after its arrival. If a task t can be executed
on a resource s, then it creates a “request”, denoting the
processing requirement due to task t processing a packet on
the resource s. For example, this request might represent
the number of processor cycles or instructions required for
processing a packet with the function described by task t.
Therefore, for all possible task to resource bindings there
exist a request w(t, s) ∈ R≥0.

As defined above, the end-to-end deadline df denotes the
maximum allowed time span from the arrival of any packet
from flow f , till the end of the execution of the last task for
that packet.

A network processor may be used in a variety of differ-
ent usage scenarios, having different load conditions and
delay constraints on the processing of packets. These dif-
ferent scenarios might lead to conflicting design objectives
for the network processor. Our design space exploration
scheme presented in this paper takes these conflicting goals
into account and outputs all design tradeoffs (this is shown
in Section 4). The set of packet flows belonging to each
scenario might be different, and they might have different
arrival curves. Additionally, for each scenario, there might
be a different constraint on the memory available in the net-
work processor (i.e. the maximum number of packets that
might be stored in the processor at any point in time), and
there might be different maximum allowable delays asso-
ciated with each flow. These are formally defined in Sec-
tion 4. Until then, unless otherwise mentioned, we assume
that there is only one usage scenario.

2.2 System Architecture

Network processors are usually heterogeneous in nature,
consisting of one or more CPU cores and dedicated process-
ing units. Simple tasks with high data rate requirements
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Figure 2. Example of a physical (left) and log-
ical (right) structure of a network processor
architecture.

are executed on dedicated or application specific instruc-
tion set components, whereas more complicated tasks are
implemented in software running on (homogeneous) multi-
processors. In the later case, run-time scheduling methods
might be used to fairly share the available resources among
packets belonging to the different flows, and also to meet
deadline requirements of real-time flows such as voice or
video (see [3]). Each computation resource might make
use of dedicated local memory such as on-chip embedded
memory. If two neighboring tasks of a task graph are im-
plemented on the same processing resource, then they do
not suffer from any communication overhead. However,
when such tasks are implemented on different resources,
they must communicate using a communication resource
(such as a bus). We would like to point out here that the
task structure defined by Def. 2 may therefore also contain
tasks which represent communication tasks. In contrast to
tasks (such as header processing) where the load is defined
by the number of packets, requests for communication tasks
may be specified in terms of “number of bytes” involved in
the transfer. Also note that the introduction of communica-
tion tasks requires the knowledge of the bindings of tasks to
resources. How this is incorporated into our framework in a
transparent way for the user is described in Section 3.3. Our
consideration of buses and local memories in the architec-
ture exploration allows for more realistic representation of
typical network processors, and generalizes the models pre-
sented in the previous work on this topic [18]. A sketch of a
heterogeneous architecture with different packet processing
paths is shown in Fig. 2 (left part of the figure).

We describe the computation or communication capabil-
ities of resources using service curves. These curves are
similar to the arrival curves and denote the maximum and
minimum possible “service” that can be offered by a re-
source over any time interval of a specified length. For
example, let C(t) denote the number of packets that can
be processed by a resource s during the time interval [0, t].
Then the upper and service curves βu

s and βl
s corresponding
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Figure 3. Representation of service curves.

to this resource satisfy the inequality:

βl
s(t − s) ≤ C(t) − C(s) ≤ βu

s (t − s) ∀0 ≤ s ≤ t

and βl
s(0) = βu

s (0) = 0.

Definition 4 (Service Curves) For any ∆ ∈ R≥0 and any
resource s belonging to a set of available resources S, the
lower service curve βl

s(∆) is a lower bound on the number
of computing/communication units available from resource
s over any time interval of length ∆. Similarly, the upper
service curve βu

s (∆) denotes an upper bound on the number
of computing/communication units available from resource
s over any time interval of length ∆. Therefore, the comput-
ing/communication units available from resource s over any
time interval of length ∆ is always greater than or equal to
βl

s(∆) and less than or equal to βu
s (∆).

Clearly, if a resource is loaded with the execution of cer-
tain tasks, then the available computing power after serving
these tasks will be less than the power originally available;
moreover, the computing power might vary over time inter-
vals, depending on the executing pattern of the tasks. An
example of β l

s(∆) and βu
s (∆) is shown in Fig. 3.

Finally, the set of available resources and the task to re-
source mappings can be formally defined as follows.

Definition 5 (Resources) We define a set of resource types
S. To each type s ∈ S there is associated a relative imple-
mentation cost cost(s) ∈ R≥0 and the number of available
instances inst(s) ∈ Z≥0. To each resource instance there is
associated a finite set of scheduling policies sched(s) which
the component supports, a lower service curve β l

s and an
upper service curve βu

s .

Definition 6 (Task to Resource Mapping) The mapping
relation M ⊆ T × S defines possible mappings of tasks
to resource types, i.e. if (t, s) ∈ M then task t could be
executed on resource type s.

If (t, s) ∈ M , i.e. the task t can be executed on a resource
of type s, then a request w(t, s) ∈ R≥0 is associated with
this mapping (see Def. 3).

Therefore, our model of a feasible system architecture
is based on the following: (1) available resource types in-
cluding their processing or communication capabilities and



performance described by service curves, (2) costs for im-
plementing a resource on the network processor, for exam-
ple this might be the chip area required for the resource,
and finally (3) the scheduling / bus arbitration policies and
associated parameters. The logical structure of a system ar-
chitecture is shown in Fig. 2 (on the right hand side of the
figure). Here we see that the processing components have
associated memories which store packets which are wait-
ing for the next task to be executed on them. A scheduling
policy associated with the processing component selects a
packet and starts the execution. The processing of the cur-
rent packet may be preempted in favor of a task for process-
ing another packet. After the execution of a task, a packet
may be reinserted into the input queue of the current re-
source, to be processed by the next task which also exe-
cutes on the same resource. Alternatively, the packet may
be redistributed to another resource using a bus. Without
restricting the applicability of our approach, we limit the
description of suitable architectures to a single bus in order
to simplify the explanation.

3 Analysis using a Scheduling Network

Although we have chosen a particularly simple cost
model, it is not obvious how to determine for any resource,
the maximum number of stored packets in it waiting to be
processed at any point in time. Neither is it clear how to
determine the maximum end-to-end delays experienced by
the packets, since all packet flows share common resources.
The computation time for a task t depends on its request
w(t, s), on the available processing power of the resource,
i.e. βl

s and βu
s , and on the scheduling policy applied. In ad-

dition, as the packets may flow from one resource to the next
one, there may be intermediate bursts and packet jams, mak-
ing the computations of the packet delays and the memory
requirements non-trivial. Interestingly, we show that there
exists a computationally efficient method to derive prov-
ably correct bounds on the end-to-end delays of packets and
the required memory for each computation and communi-
cation.

We exploit the fact that characteristic chains of tasks are
executed for each packet flow and that all the flows are pro-
cessed independently of each other. Based on this knowl-
edge we construct a scheduling network, where the real-
time calculus (based on arrival and service curves) is ap-
plied from node to node in order to derive deterministic
bounds. Note that the execution of constant chains of tasks
is one of the major characteristics in the network processing
domain which cannot be found in any other domains (such
as digital signal processing).

The basis for the determination of end-to-end delays and
memory requirements is the description of packet flows in
communication networks using a network calculus (see [6]

for an introduction). Recently, this approach has been re-
formulated in an algebraic setting in [2]. In [20], a com-
parable approach has been used to describe the behavior of
processing resources.

3.1 Building Blocks of the Scheduling Network

The basic idea behind our performance estimation (such
as end-to-end delays experienced by packets when pro-
cessed by a given architecture, and memory requirements
of the architecture assuming a set of input traffic flows)
is the provision for a network theoretic view of the sys-
tem architecture. More precisely, packet flows and resource
streams flow through a network of processing and commu-
nication resource nodes and thereby adapt their (output) ar-
rival curves (of the packet flows) and (remaining) service
curves (of the resources) respectively. Inputs to a network
node are the arrival curves of packet flows and the service
curves of the corresponding resource that the node is repre-
senting. The outputs describe the resulting arrival curves of
the processed packet flows and the remaining service curves
of the (partly) used resource. These resulting arrival and
service curves can then serve as inputs to other nodes of the
scheduling network. As an example, see Figure 16, which
is explained in details later.

In order to understand the basic concept, let us first de-
scribe a very simple example of such a node, namely the
preemptive processing of packets from one flow by a single
processing resource. Following the discussion of Fig. 2, a
packet memory is attached to a processing resource which
stores those packets that have to wait for being processed.
In [19], the following theorem has been derived which de-
scribes the processing of a packet flow in terms of the al-
ready defined arrival and service curves.

Theorem 1 Given a packet flow described by the arrival
curves αl and αu and a resource stream described by the
service curves βl and βu. Then the following expressions
bound the arrival curve of the processed packet flow and
the remaining service of the resource node. αl′ and αu′

denotes the lower and the upper arrival curve respectively
of the processed flow, and β l′ and βu′ denotes the lower and
upper remaining service curve respectively of the resource
node.

αl′(∆) = inf
0≤u≤∆

{
αl(u) + βl(∆ − u)

}
(1)

αu′(∆) = inf
0≤u≤∆

{sup
v≥0

{
αu(u + v) − βl(v)

}
+βu(∆ − u), βu(∆)} (2)

βl′(∆) = sup
0≤u≤∆

{
βl(u) − αu(u)

}
(3)
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Figure 4. Remaining service and resulting ar-
rival curve according to Theorem 1.

βu′(∆) = sup
0≤u≤∆

{
βu(u) − αl(u)

}
(4)

Note that the arrival curve as used above describes
bounds on the computing request and not on the number
of packets. In Fig. 4, an example for remaining arrival and
service curves is given. As we deal with packet flows in the
system architecture, we need to convert packets to their cor-
responding computing requests. Given bounds on a packet
flows of the form [αl, αu] we can determine bounds on the
related computing requests

[αl, αu] = [wαl, wαu] (5)

considering the request w for each packet (representing the
processing requirement for a packet). The notation [α l, αu]
represents the fact that αl and αu are lower and upper curves
of the same flow.

The conversion for the output flow is more involved, as
we usually suppose that a next component can start process-
ing after the whole packet has arrived:

[αl′, αu′] = [�αl′/w�, �αu′/w�] (6)

The whole transformation is depicted in Fig. 5.

3.2 Scheduling Policies

In this section we describe how to extend the calculation
of the resulting processed arrival curves (for packet flows)
and the remaining service curves (for resource flows), to
the case involving multiple flows and resources. As packets
from several flows arrive at a resource, they are served in
an order determined by the scheduling policy. The resulting
arrival curves and remaining service curves are dependent
on this scheduling policy. First we give the results for the
preemptive version of Fixed Priority Scheduling, and then
for the Generalized Processor Sharing scheduling.

],[ ul ��

Eqn.(5) Eqn.(6)Eqn.(1-4)

],[ ul �� ]','[ ul ��

]','[ ul ��

],[ ul ��

]','[ ul ��

Figure 5. Block diagram showing the transfor-
mation of packet flows and resource streams
by a processing device. The dotted arrows
represent the resource flow, the others show
the flow of packets (or the corresponding re-
quests).

3.2.1 Fixed Priority Scheduling

For the fixed priority scheme, let us assume that there is a
set of flows f1, . . . , fn, and a resource s which serves these
flows in the order of decreasing priority. Flow f1 has the
highest priority and flow fn the lowest. For each packet of
the flow fi, a task ti must be executed on the resource s
and this creates a demand (or request) equal to w(t i, s) on
s. We denote w(ti, s) by wi in short. With each flow fi

is associated its upper and lower (packet) arrival curves αu
i

and αl
i. For the resource s, the flow fi is served using the

upper and lower service curves βu
i and βl

i respectively. The
resource s in its unloaded state is described by the service
curves βu and βl.

Because of the fixed priority scheme, the resource s
serves the flows in the order of decreasing priority, and the
resulting arrival curves of the flows and the remaining ser-
vice curve of the resource is computed according to Theo-
rem 1. In order to have compatible units, we need first to
multiply the arrival curves with the demand for each task,
namely wi. Correspondingly, the flow leaving the resource
must be divided by wi. If the subsequent units which use the
outgoing packets flowing out of s can start processing only
after the whole task has been finished, then we need to ap-
ply the floor/ceiling-function to the outgoing flows (depend-
ing on whether it is the lower or the upper curve). There-
fore, the outgoing arrival curves are transformed according
to αu

i
′(∆) = �αu

i
′(∆)/wi� and αl

i
′
(∆) = �αl

i
′(∆)/wi�.

The curves obtained provide the correct bounds as one can
show that �a� − �b� ≤ �a − b� and �a� − �b� ≥ �a − b�.
In addition to the relations shown in Theorem 1 that have
to be applied for all indices 1 ≤ i ≤ n, we have the fol-
lowing additional equations describing how to obtain β u

i ,
βl

i (1 < i ≤ n) from βu
1 and βl

1 as a result of the fixed pri-
ority scheduling. These equations along with the equations
for scaling as described above can be given as follows.

αu
i (∆) = wi · αu

i (∆) , αl
i(∆) = wi · αl

i(∆)
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Figure 6. Representation of fixed priority pre-
emptive scheduling of packet flows on a sin-
gle processing resource. Flow 2 has a smaller
priority than flow 1.

αu
i
′(∆) = �αu

i (∆)/wi� , αl
i

′
(∆) = �αl

i(∆)/wi�

βu
1 (∆) = βu(∆) , βu

i (∆) = βu
i−1

′(∆) ∀1 < i ≤ n

βu′(∆) = βu
n
′(∆)

βl
1(∆) = βl(∆) , βl

i(∆) = βl
i−1

′
(∆) ∀1 < i ≤ n

βl′(∆) = βl
n

′
(∆)

Figure 6 shows an example of fixed priority scheduling
using two flows and one resource. Finally, note that the
remaining service curves β ′ from the resource s (after it
has processed the flows f1, . . . , fn) can be used to service
other flows, using possibly a different scheduling scheme,
in an hierarchical manner. The processed flows with the
resulting (packet) arrival curves αu

i
′ and αl

i
′

can now enter
other resource nodes which are responsible for executing
other tasks t ∈ T or for performing communication tasks.
In a later section we show how these results can be used to
estimate the delay experienced by packets and the memory
requirements of the resource s to hold waiting packets.

3.2.2 Generalized Processor Sharing (GPS)

As a second example we consider proportional share
scheduling (GPS) [13]. In this case, with each flow f i

(1 ≤ i ≤ n) there is an associated weight φi with∑
1≤i≤n φi = 1. A flow fi receives a share φi/

∑
j∈J(t) φj

of the total available service given by β from the resource
node. J(t) is the set of indices of flows which are back-
logged at time t. Here as well each flow is processed ac-
cording to the model described in Theorem 1 and illustrated
in Figure 5.

If the arrival curves associated with a flow fi are given
by αu

i and αl
i, and a task ti executing on packets of this

flow makes a demand wi on the resource, then we have the
following scaled arrival curves as before.

αu
i (∆) = wi · αu

i (∆) , αl
i(∆) = wi · αl

i(∆)
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Figure 7. Deriving the resulting arrival curves
and remaining service curves under the gen-
eralized processor sharing (GPS) scheduling
discipline. Here two flows are scheduled on
a single processing/communication resource

αu
i
′(∆) = �αu

i (∆)/wi� , αl
i

′
(∆) = �αl

i(∆)/wi�

Since a flow fi is served using a service curve propor-
tional to φi of the original service curve corresponding to
the resource, we can obtain the following bounds.

βl
i(∆) = φi ·βl(∆) , βu

i (∆) = βu(∆) ∀1 ≤ i ≤ n
(7)

The remaining service curve after processing the packet
flows can be given in accordance with Theorem 1.

βl′(∆) = sup
0≤u≤∆

{βl(u) −
∑

1≤i≤n

αu
i (u)} (8)

βu′(∆) = sup
0≤u≤∆

{βu(u) −
∑

1≤i≤n

αl
i(u)} (9)

Figure 7 shows an example with two flows. The case of
non-preemptive scheduling can be handled by shifting the
service curves βl

i(∆) appropriately, i.e. by replacing them
with βl

i(∆ − wmax) when ∆ ≥ wmax and by βl
i(∆) when

∆ ≤ wmax where wmax = max{wi : 1 ≤ i ≤ n}. Here
wmax might represent the processing time of a packet.

Similar techniques can be used to describe other schedul-
ing algorithms such as First-Come-First-Served or Earliest
Deadline First. However, as pointed out in [2], the problem
of determining accurate bounds for these scheduling disci-
plines is still an area of research.

3.3 Scheduling Network Construction

The scheduling network which enables the computation
of performance parameters such as the end-to-end delays of



packets and the memory requirements of the network pro-
cessor, is constructed using the data from the specifications
given in Section 2. These consist of a specification of the
input packet flows, the processing functions associated with
each flow (Section 2.1), and a specification of the system
architecture, such as the types of the different processing
and communication resources available (Section 2.2). In
order to simplify the explanation, we restrict ourselves to
the use of a fixed priority scheduling policy for all resource
types, i.e. sched(s) = {fixedPriority} for all resource
types s ∈ S. The basic idea is that the parameters describ-
ing the packet flows (i.e. the upper and lower arrival curves)
pass from one resource to the next, and in the process get
modified. Here the order is determined by the precedence
relations in E(f) in the task structure (see Def. 2), and the
binding of tasks to resources. The parameters describing
the resource flows (i.e. the capabilities of the resources de-
scribed by the upper and lower service curves) also pass
through the network and in the process get modified. The
order here is determined by the priorities assigned to the
packet flows (in the case of fixed priority scheduling) and
the precedence relations in the task graph.

Definition 7 (System Architecture) The allocation of re-
sources can be described by the function alloc(s) ∈ Z≥0,
which denotes the number of allocated instances of resource
type s. The binding of a task t ∈ T to a resource is specified
by a relation B ⊆ T ×S×Z≥0, i.e. if b = (t, s, i) ∈ B with
1 ≤ i ≤ alloc(s) then task t is executed on the ith instance
of resource type s. The fixed priority scheduling policy is
described by a function prio(f) ∈ Z≥0 which associates a
priority to each stream f in a usage scenario.

Note that a system architecture is described not only by
the type and the number of resource components, but also
by the binding of the tasks to these components. This map-
ping may depend on the flow in which the task is active and
on the scenario (see Section 2.1) under which the system
architecture is evaluated.

In the target architecture, on the one hand it is possible
to have dedicated hardware modules for certain tasks with
the resulting architecture being heterogeneous. On the other
hand, we may have parallel resource instances of the same
type (i.e. alloc(s) > 1) which may process a complete
packet flow.

Now, we can describe the construction of a scheduling
network for a given scenario. Note that in general we will
have different scheduling networks for each usage scenario
as the tasks, flows, and priorities might be different. As-
suming that the user only specifies computation tasks since
the definition of communication tasks mapped to communi-
cation resources requires the knowledge of a valid binding
of the computation tasks on resources, a preparation step

is required to introduce communication into our scheduling
network. Again, we limit our description to a single bus.

• (Preparation to include communication) For all flows
f and all task dependencies (ti, tj) ∈ E(f), if ti and
tj are not bound to the same resource instance, add a
communication task tc to V (f) and the edges (ti, tc),
(tc, tj) to E(f). Remove edge (ti, tj) from E(f) and
bind tc to the communication resource sc ∈ S.

• Include in the scheduling network one source resource
node and one target resource node for each allocated
instance of resource type s ∈ S. Include in the
scheduling network one source packet node and one
target packet node for each flow f present in the sce-
nario.

• Construct an ordered set of tuples Tf which contains
(t, f) for all flows f in the scenario and for all tasks t ∈
V (f) in this flow. Order these tuples according to the
priorities of the corresponding flows and according to
the precedence relations E(f). For each tuple (t, f) in
Tf , add a scheduling node corresponding to that shown
in Fig. 5 to the scheduling network.

• For all flows f in the scenario we add the following
connections to the scheduling network:

For all task dependencies (ti, tj) ∈ E(f) the packet
flow output of scheduling node (ti, f) is connected to
the packet flow input of (tj , f).

For each resource instance of any type s ∈ S, consider
the scheduling nodes (t, f) where the task t is bound
to that instance of s. If (ti, f) precedes (tj , f) in the
ordered set Tf , then connect the resource stream output
of (ti, f) to the resource stream input of (tj , f).

As a result of applying this algorithm we get a scheduling
network for a scenario containing source and target nodes
for the different packet flows and resource streams, as well
as scheduling nodes which represent the computations de-
scribed in Fig. 5. An example scheduling network is given
in Fig. 16.

Given the arrival curves for all the packet flows in the
source nodes (i.e. [αl

f , αu
f ] for all flows f in a scenario), and

the initial service curves for the allocated resource instances
(i.e. [βl

s,i, β
u
s,i] for resource type s with 1 ≤ i ≤ alloc(s)

allocated resources), we can determine the properties of all
internal packet streams and resource flows in terms of their
arrival and service curves. Now, it only remains to be seen
how we can determine the end-to-end delays of the packets
and the necessary memory required to hold packets waiting
to be served.



3.4 System Properties

In order to estimate the properties of a system architec-
ture for a network processor, we need bounds on the end-to-
end delays experienced by the packets being processed and
bounds on the memory requirements of the processor. Us-
ing well known results from the area of communication net-
works (see e.g. [6]), the bounds derived in Theorem 1 can
be used to determine the maximum delays of the packets
and the necessary memory required to store waiting pack-
ets.

delay ≤ sup
u≥0

{
inf{τ ≥ 0 : αu(u) ≤ βl(u + τ)}

}
(10)

backlog ≤ sup
u≥0

{αu(u) − βl(u)} (11)

In other words, the delay can be bounded by the maximal
horizontal distance between the curves αu and βl whereas
the backlog is bounded by the maximal vertical distance be-
tween them.

In the case of the scheduling network constructed above,
we need to know which curves to use in the inequalities
(10) and (11). The upper arrival curve is that of an incom-
ing packet flow, i.e. αu

f of the flow f being investigated
in the current scenario. The service curve β l to be used
in the inequalities (10) and (11) is the accumulated curve
of all scheduling nodes through which the packets of flow
f pass in the current scenario. As described in e.g. [2],
this quantity can be determined through an iterated convo-
lution. To this end, let us suppose that the packets of flow
f pass through scheduling nodes p1, ..., pm which have the
lower service curves β l

1, ..., β
l
m at their resource stream in-

puts. Then βl in (10) and (11) can be determined using the
following recursion:

β
l

1 = βl
1 (12)

β
l

i+1 = inf
0≤u≤∆

{
β

l

i(u) + βl
i+1(∆ − u)

}
∀i > 1 (13)

βl = β
l

m+1 (14)

As a result, using the scheduling network described
above we can compute bounds on delay which gives the
maximum delay experienced by packets of a flow f , and the
maximum shared memory backlog required by the flow. If
we are interested in the memory requirements for an imple-
mentation with separate local memories as shown in Fig. 2,
we can generate the accumulated service curves for all se-
quences of tasks which are implemented on the same re-
source instance. There are several special cases, where we
can make use of an accumulated service curve to determine
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Figure 8. Simple representation of upper and
lower curves.

tighter bounds, compared to independently deriving mem-
ory requirements for each node. For instance, suppose that
a packet flow is processed first on a general-purpose compo-
nent. For a certain task the flow is then delegated to a more
specialized unit. After being processed on that dedicated re-
source instance, the flow returns to the former component.
An analysis using the accumulated service curve over all
processing steps, including the ones on the specialized unit,
may derive tighter memory bounds for the general-purpose
component than two independent analyses of the first and
the second visit of the flow at that resource. We will not
describe all the subcases here since the form of the equa-
tions (10) to (14) is not affected.

The memory requirements derived by an analysis of the
communication resources must be assigned to the corre-
sponding sending task (and therefore to the resource in-
stance bound to that task). This memory requirement is
visualized as an output queue before the communication re-
source in Fig. 2.

3.5 Piecewise Linear Approximation

Clearly, the equations used in Theorem 1 are expensive
to compute. It may also be noted that this set of equa-
tions has to be computed for all the scheduling nodes in
a scheduling network. Moreover, when the design space
exploration is based on schemes like evolutionary multiob-
jective algorithms (see [7]), the performance of many can-
didate system architectures need to be estimated, and there
might be several usage scenarios per system architecture.

To overcome this computational bottleneck, we propose
a piecewise linear approximation of all arrival and service
curves. Based on this, all the equations in Theorem 1 can be
efficiently computed using symbolic techniques. We only
describe the basic concepts here and give a few simple ex-
amples. Fig. 8 shows how the arrival and service curves
look like when each curve is approximated by a combina-
tion of two line segments.
In this case, we can write:



γu(∆) = min{ru∆, qu + su∆}
γl(∆) = max{rl∆, ql + sl∆}

where,

qu ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu = 0
ql ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql = 0

As a shorthand notation we denote curves γ u and γl by the
tuples U(q, r, s) and L(q, r, s), respectively. An example
of a piecewise linear approximation of the remaining lower
service curve β l′(∆) in Theorem 1 is given next.

Theorem 2 Given arrival curves and service curves αu =
U(qα, rα, sα), βl = L(qβ, rβ , sβ). Then the remaining
lower service curve can be approximated by the curve

βl′ = L(q, r, s)

where q =
{

qβ − qα if sα ≤ sβ

0 if sα > sβ

r = max{rβ − rα, 0}
s = max{sβ − sα, 0}

Proof. To see that L(q, r, s) is a valid lower curve for the
remaining service curve, it may be shown that

L(q, r, s)(∆) ≤ sup
0≤u≤∆

{βl(u) − αu(u)}.

Note that βl(∆) − αu(∆) and also sup0≤u≤∆{βl(u) −
αu(u)} are convex, since β l and αu are convex and concave
respectively. Therefore, a valid lower bound can be deter-
mined by considering the two cases, ∆ → 0 and ∆ → ∞.
If ∆ → 0, we have

sup
0≤u≤∆

{βl(u) − αu(u)} = sup
0≤u≤∆

{rβu − rαu}

and therefore r =
{

rβ − rα if rβ > rα

0 otherwise

If ∆ → ∞ and sβ > sα then

sup
0≤u≤∆

{βl(u)−αu(u)} = sup
0≤u≤∆

{qβ + sβu− qα − sαu}.

and therefore s =
{

sβ − sα if sβ > sα

0 otherwise

q =
{

qβ − qα if sβ > sα

0 otherwise.

�
All the remaining equations on the curves can similarly

be symbolically evaluated, including those which determine
bounds on the delay and the backlog. Using these approxi-
mations, even for realistic task and processor specifications,
hundreds of architectures can be evaluated within a few sec-
onds of CPU time.
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Figure 9. Improved approximation of upper
and lower curves.

3.6 Improved Approximations

In this section we show that it is possible to obtain im-
proved approximations of the remaining arrival and service
curves, by approximating these curves using three line seg-
ments instead of two as in Section 3.5. The resulting cal-
culations however become more involved in this case. Fig-
ure 9 shows the resulting arrival and service curves. This
allows us to exactly model an arrival curve in the form of a
T-SPEC [16]. In the case of an arrival curve, qu

1 may repre-
sent the maximum possible workload involved in process-
ing a single packet, ru can be interpreted as the burst rate
and su the long term arrival rate. In the case of communica-
tion resources, qu

1 represents the maximum size of a packet.
The upper and the lower curves in this case can be writ-

ten as:

γu(∆) = min{qu
1 + ru∆, qu

2 + su∆}
γl(∆) = max{ql

2 + sl∆, ql
1 + rl∆, 0}

where,

qu
2 ≥ qu

1 ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu
1 = qu

2

ql
2 ≤ ql

1 ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql
1 = ql

2

The values of pu and pl
1, p

l
2 (see Fig. 9) can be calculated

as:

pu =
{ qu

2 −qu
1

ru−su if ru > su

0 if ru = su

pl
1 =

{
− qu

1
rl if rl > 0

0 if rl = 0
, pl

2 =

{
ql
2−ql

1
rl−sl if rl < sl

pl
1 if rl = sl

We denote the curves γu and γl in this case by
U(q1, q2, r, s) and L(q1, q2, r, s) respectively.

Theorem 3 Given the upper arrival and lower ser-
vice curves αu = U(q1α, q2α, rα, sα) and βl =



L(q1β, q2β , rβ , sβ) respectively, the approximate remaining
service curve βl′ = L(q1, q2, r, s) can be given by the fol-
lowing four cases.

1: There exists a ∆′ > 0, such that q2β + sβ∆′ = q2α +
sα∆′, and for all ∆ < ∆′, αu(∆) > βl(∆). In this
case, r = 0, s = sβ − sα and q1 = 0, q2 = q2β − q2α

2: There exists a ∆′ > 0, such that q1β + rβ∆′ = q2α +
sα∆′, and for all ∆ < ∆′, αu(∆) > βl(∆). In this
case, r = rβ − sα, s = sβ − sα and q1 = q1β −
q2α, q2 = q2β − q2α

3: There exists a ∆′ > 0, such that q1β + rβ∆′ = q1α +
rα∆′, and for all ∆ < ∆′, αu(∆) > βl(∆). In this
case, r = rβ − rα, s = sβ − sα and q1 = q1β −
q1α, q2 = q2β − q2α

4: There exists a ∆′ > 0, such that q2β + sβ∆′ = q1α +
rα∆′, and for all ∆ < ∆′, αu(∆) > βl(∆). In this
case, r = sβ − rα, s = sβ − sα and q1 = q2β −
q1α, q2 = q2β − q2α

If αu(∆) ≥ βl(∆) for all ∆ ≥ 0 then r = s = 0 and
q1 = q2 = 0

Proof. To prove that β l′ = L(q1, q2, r, s) is a valid
lower remaining service curve, we shall as before show
that L(q1, q2, r, s)(∆) ≤ sup0≤u≤∆{βl(u) − αu(u)} for
all ∆ ≥ 0.

Firstly, it may be noted that β l(∆) and αu(∆) are con-
vex and concave respectively. Therefore, β l(∆) − αu(∆)
and sup0≤u≤∆{βl(u) − αu(u)} are convex. However, in
contrast to our approximations with two segments in Sec-
tion 3.5, here we have to consider four different cases.

Case 1 is when the last segment of β l(∆) intersects the
last segment of αu(∆), at say ∆ = ∆′ (see Figure 10(a)).
Therefore, for all ∆ < ∆′, βl(∆) < αu(∆). Hence,
sup0≤u≤∆{βl(u)−αu(u)} ≤ 0 for all ∆ ≤ ∆′, and there-
fore r = 0 and q1 = 0. When ∆ → ∞, sup0≤u≤∆{βl(u)−
αu(u)} = sup0≤u≤∆{q2β + sβu− q2α − sαu}. Therefore,
we have s = sβ − sα and q2 = q2β − q2α.

Case 2 is when the middle segment of β l(∆) inter-
sects the last segment of αu(∆). If this intersection is at
∆ = ∆′, then for all ∆ < ∆′, βl(∆) < αu(∆) and
sup0≤u≤∆{βl(u) − αu(u)} ≤ 0 for all ∆ ≤ ∆′. This case
is shown in Figure 10(b). Clearly, r = rβ−sα, s = sβ−sα,
q1 = q1β − q2α and q2 = q2β − q2α.

Case 3 is when the middle segment of β l(∆) intersects
the middle segment of αu(∆) (see Figure 10(c)). In this
case, sup0≤u≤∆{βl(u) − αu(u)} is made up of four linear
segments. But we approximate it using L(q1, q2, r, s)(∆),
which is made up of three segments. There can be two
possible subcases, the first is when p2β ≥ pα (as shown
in Figure 10(c)), and the second is when p2β < pα. If
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Figure 10. Approximate remaining lower ser-
vice curves. Figures (a), (b), (c) and (d) rep-
resent the cases 1, 2, 3 and 4 respectively in
Theorem 3

βl(∆) and αu(∆) intersect at ∆′, then the four segments
that make up sup0≤u≤∆{βl(u)−αu(u)} span the intervals
∆ ∈ [0, ∆′), [∆′, pα), [pα, p2β), [p2β,∞) (as shown in Fig-
ure 10(c)) or ∆ ∈ [0, ∆′), [∆′, p2β), [p2β , pα), [pα,∞) (in
the case when p2β < pα). To obtain L(q1, q2, r, s)(∆), we
neglect the segment of sup0≤u≤∆{βl(u) − αu(u)} corre-
sponding to the interval [pα, p2β) in Figure 10(c) and the
interval [p2β , pα) when p2β < pα, and instead approximate
this segment by the segments preceding and following it. It
may be noted that L(q1, q2, r, s)(∆) is a valid lower curve,
since L(q1, q2, r, s)(∆) ≤ sup0≤u≤∆{βl(u) − αu(u)} for
all ∆ ≥ 0. Therefore, r = rβ − rα, s = sβ − sα,
q1 = q1β − q1α, q2 = q2β − q2α.

Case 4 is when the last segment of β l(∆) intersects the
middle segment of αu(∆) (see Figure 10(d)). It can be seen
that r = sβ−rα, q1 = q2β−q1α, and as before, s = sβ−sα

and q2 = q2β − q2α.

Lastly, if βl(∆) ≤ αu(∆) for all ∆ ≥ 0, then
sup0≤u≤∆{βl(u) − αu(u)} ≤ 0 for all ∆ ≥ 0. Hence,
r = s = 0 and q1 = q2 = 0. �

The approximations for all the remaining curves can be
derived on the basis of similar techniques, and hence we
omit them here.



4 Multiobjective Design Space Exploration

There are several possibilities for exploring the design
space, one of which is a branch and bound search algorithm
where the problem is specified in the form of integer linear
equations (see [12]). For complicated examples where the
design space can be very large, it is possible to use evolu-
tionary search techniques (see [1]), and this is the approach
we describe here.

As already mentioned, we are faced with a number of
conflicting objectives trading cost against performance, and
there are also conflicts arising from the different usage sce-
narios of the processor. We illustrate this in the case study,
which involves tradeoffs between the performance ψ b in
several different usage scenarios b ∈ B and the cost of the
system architecture. Recall from Section 2.1 that a usage
scenario is defined by a certain set of flows F and by associ-
ated deadlines df . As a consequence, the binding of task to
resource instances and the memory requirements may vary
from scenario to scenario.

Definition 8 (Cost Measure) The system cost is defined by
the sum of costs for all allocated resource instances.

cost =
∑
s∈S

alloc(s)cost(s) (15)

Definition 9 (Performance Measure) Given a system ar-
chitecture as defined in Def. 7, its performance under a sce-
nario b ∈ B is defined by a scaling parameter ψb which is
the largest possible scaling of packet input flows according
to [ψbα

l
f , ψbα

u
f ] for all flows f which are part of scenario b

such that the constraints on end-to-end delays and memory
can still be satisfied. In other words, given the scenario b,
after the scaling we still have have delay ≤ df for all flows
f and

∑
f∈F backlog ≤ m(b) for a given shared memory

constraint m(b).

As described in Section 3.4, we may also perform a refined
per-instance memory analysis for each resource so that the
(possibly weighted) sum of the local memories must be less
or equal to the memory constraint m(b).

The basic approach is shown in Fig. 11. The evolution-
ary multiobjective optimizer determines a feasible binding,
allocation, and scheduling strategy based on the cost of the
system architecture and the performance for each usage sce-
nario. Based on this information, a scheduling graph is con-
structed for each usage scenario which enables the compu-
tation of the corresponding memory and delay properties.
Then, the packet rates of the input streams are maximized
until the delay and memory constraints as specified are vi-
olated. The corresponding scaling factors ψb of the input
streams for each scenario b ∈ B and the cost of system ar-
chitecture cost form the objective vector v = (v0, ..., vk−1),
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Figure 11. Basic concept for the design space
exploration of packet processing systems.

using v0 = cost and vi = 1/ψbi for all bi ∈ B, i > 0 to
formulate a minimization problem. The goal is to determine
implementations with pareto-optimal [8] objective vectors.
The architectures associated with pareto-optimal objective
vectors represent the tradeoffs in the network processor de-
sign.

Definition 10 (Pareto-optimal) Given a set V of k-
dimensional vectors v ∈ R

k. A vector v ∈ V dominates
a vector g ∈ V if for all elements 0 ≤ i < k we have
vi ≤ gi and for at least one element, say l, we have vl < gl.
A vector is called Pareto-optimal if it is not dominated by
any other vector in V .

As can be seen, there are two optimization loops in-
volved. The inner loop locally maximizes the throughput
of the network processor in each scenario under the given
memory and delay constraints. The outer loop performs the
multiobjective design space exploration.

We have used a widely used evolutionary multiobjective
optimizer SPEA2 (see [7, 8]) and incorporated some do-
main specific knowledge into the search process. The opti-
mizer iteratively generates new system architectures based
on the already known set. These new solutions are then
evaluated for their objective vector and fed into the opti-
mizer to guide further search. It may be noted that due
to the heuristic nature of the search procedure, no state-
ments about the optimality of the final set of solutions can
be made. However, there is experimental evidence, that the
solutions found are close to the optimum even for realistic
problem complexities.
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5 Case study

The purpose of this section is to give a complete de-
sign space exploration example. For the specification, we
use the following set of traffic flows F = {NRT Forward,
RT Send, RT Recv, NRT Encrypt, NRT Decrypt} and
there are 25 computation tasks, i.e. |T | = 25. The task
graph with its dependencies is visualized in Fig. 12.

Our goal is to optimize a network processor looking at
two different scenarios. In the first usage scenario, we
have just the flow NRT Forward to model a forwarding
functionality in the network backbone, whereas in the sec-
ond scenario all the flows in F are present, representing an
access network environment with an increased per-packet
processing requirement. We use eight different resource
types with S = {Classifier, PowerPC, ARM9, µEngine,
CheckSum, Cipher, DSP, LookUp}. Each type has dif-
ferent computational capabilities and these are represented
in the form of the mapping relation M (see Def. 6). A
part of this specification is represented in Fig. 13, including
an example for the implementation cost cost(s), the num-
ber of instances inst(s) of a resource type, and a request
w(t, s) of a task. There are general-purpose resources like
an ARM9 CPU which is able to perform all kinds of tasks,
and very specialized ones like the classifier that can only
handle a single task. The initial service curves are simply
set to βl(∆) = βu(∆) = c · ∆, c ∈ R>0, for computation
and communication resources, reflecting the fact that the re-
sources are fully available for the processing of the tasks.

It should now be obvious to the reader, why the appli-
cation of an evolutionary optimizer is advantageous for our
setting. Looking at the access network scenario and consid-
ering all possible bindings of our task graph in Fig. 12 to dif-
ferent resource types, we will have more than 425 ·5! > 1017

possible design points, assuming that all of the 25 tasks can
at least be executed on the four general-purpose resource
types (ARM9, PowerPC, µEngine, DSP) with varying re-
quests. The factor 5! takes the choice of priorities for the
five traffic streams into account. Note that this rough es-
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Figure 13. Graphical representation of a part
of the mapping of tasks to resources.

timate does not even include the option to allocate several
instances per resource type or several communication re-
sources.

Using an evolutionary optimization algorithm, Fig. 14
shows the final population of a design space exploration run
after 300 generations of a population of 100 system archi-
tectures. This optimization takes less than 30 minutes to run
on a Sun Ultra 10. Most parts of our software are written
in Java, including the graphical editor for the specification
of tasks, resources, and bindings, and the operators in evo-
lutionary algorithm such as mutation, crossover, and repair
operators. The evolutionary optimizer is written in C++.
Each dot in Figure 14 represents a pareto-optimal system
architecture. Each architecture includes (a) the set of al-
located resources, (b) the binding of tasks to resource in-
stances for each scenario, and (c) the scheduling priorities
for each scenario. The three-dimensional design space is
defined by the costs of resource allocations and the perfor-
mance factors ψ for our two scenarios (backbone and access
networks) which are bound by either the end-to-end dead-
lines associated with the streams or the maximum mem-
ory constraints (see Def. 9). For visualization purposes we
transformed the cost values cost by cost := costmax−cost
(where costmax is the maximum cost value in the popula-
tion) to have cheap solutions on top of the hill.

In this example we can recognize two distinct regions of
solutions. The region on the left includes solutions which
are in particular good for the network backbone whereas
the region in the middle shows designs that can be used for
both usage scenarios. Note that there are no solutions in the
region on the right since architectures which show good per-
formance for access networks must also inherently perform
well for the backbone, because the flows for the backbone
scenario are also included in the access network scenario.
A major characteristic of the region in the middle is that al-
locations contained in this area require an expensive cipher
unit to cope with the diverse set of flows in the access net-
work scenario. Solutions in the left region however do not
use a cipher component.
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The allocations for three selected pareto-optimal design
points are sketched in Fig. 15 to show an example of the
tradeoffs involved in a network processor design. A higher
average utilization of a resource is denoted by a darker col-
oring in the figure. We bounded the exploration to a single
communication instance where each allocation had a choice
between two different bus types. The designs b) and c) in
particular optimize the performance for one of the two us-
age scenarios at the same (moderate) costs, whereas design
a) performs even slightly better in both scenarios at more
than double the cost. Depending on the targeted application
domain, each of the solutions might be meaningful. Design
b) which performs well for the access network scenario re-
quires a relatively expensive cipher unit to cope with en-
cryption and decryption. Design c) which is aimed for IP
forwarding in backbone networks, can however tradeoff the
cost for an unnecessary cipher unit to allocate more general-
purpose computing power at the same cost. Finally, design
a) is well-suited for both scenarios and therefore requires an
extensive allocation of resources which actually is a mix-
ture of the allocations for the designs b) and c). Note that
all tasks which are bound to the relatively cheap CheckSum
resource in the designs b) and c) are now bound to unex-
ploited ARM resources in design a).

Due to space limitations we do not discuss the exact pa-
rameters for modeling our traffic streams, the costs, and the
requests of tasks. For the same reason, we do not provide
quantitative results for the memory consumption, but de-
scribe qualitative memory requirements. Design c) aimed

BUS

DSP

CheckSum

Cipher
bb

ARM9

BUS

DSP

CheckSum ARM9

cc

ARM9

DSP

BUS

DSP
aa

DSP

ARM9ARM9 ARM9

CipherPowerPC

Figure 15. Examples for Pareto-optimal re-
source allocations taken from Fig. 14. Darker
coloring means higher average utilization.

for the network backbone needs most of the memory for two
resource instances only. About 60% of the memory space
defined by the memory constraint (see Def. 9) is given to the
DSP instance with the higher average load and the remain-
ing 40% are allocated to one ARM instance (again the one
with the higher load value). Compared with that, design b)
targeted to access networks reverses the memory consump-
tion by allocating one quarter of the memory space for the
DSP, two thirds for the ARM, and the remaining 8% for the
cipher unit. For the expensive design a), no simple mem-
ory consumption pattern can be recognized. If a network
processor according to design a) is alternately used for both
scenarios (which would be a rather unlikely case), it would
be interesting to note that the memory constraint must only
be increased by 17.5% to accommodate for each resource
instance the maximum required memory area of both the
scenarios.

The performance of the allocation and the memory con-
sumption are determined using our analytical approach
based on the scheduling network. An example is given in
Fig. 16 for design b), looking at a decryption traffic stream.
Besides the order in which arrival and service curves are de-
rived, we also recognize the allocation of resources and the
binding of tasks to resources in the network.

6. Future Work
We have presented a new approach towards the modeling

and design space exploration of network processor architec-
tures. Our method is based on a very high level of abstrac-
tion where the goal is to quickly identify interesting regions
of the design space. There is, however, scope for taking into
account several additional details which we have not con-
sidered in this paper. For example, all the memory units we
have considered here are assumed to be embedded in some
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processing resource and are all of the same type. How-
ever, for high performance settings, such as in backbone
networks, network processors use several different types of
memory units such as SRAMS (for storing lookup tables,
for instance), DRAMS, and also embedded memory of the
kind that was considered here. Modeling this will improve
the accuracy of our results.

We are also in the process of investigating the feasibility
of our approach to more elaborate and realistic examples
and towards this we are collaborating with IBM Research
Zürich for realistic input data and traffic flows.
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