
Strong Security for Active Networks
S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee

Abstract—
Active networks are an exciting development in network-

ing services in which the infrastructure provides customiz-
able network services to packets. These custom network ser-
vices can be deployed by the user inside the packets them-
selves. Furthermore, the custom network services require
that the infrastructure perform much more sophisticated
operations on packets than the traditional forwarding. Con-
sequently, there are heightened concerns from users and net-
work operators about security. This paper discusses security
requirements and issues in active networks with respect to
authentication and authorization in a node. We describe
our prototype implementation of a solution to those issues.
We go on to describe a security architecture derived from
our experience and relate our prototype to the architecture.

Keywords—active networks, authorization, authentication.

I. Introduction

Active networks have been in development for the last
half decade [1]. This is a promising new technology which
has two primary features: it permits rapid deployment of
new network services and it provides for complex computa-
tions to be performed on packets within the infrastructure.
The ability to deploy new services can even be granted to
the user and tied to the transmission of user packets. The
infrastructure computation can modify or generate packets
on the fly.
However, both these features of active networks heighten

security concerns of clients of the technology. Network op-
erators have concerns about allowing arbitrary code, par-
ticularly arbitrary code supplied by end users, to execute
in their nodes. Users have concerns about the effect of the
infrastructure computations on the data they are transmit-
ting through the network.
Despite significant energy devoted to security research

in active networks [2], [3], [4], [5], [6], [7], [8], the issues
of security are by no means solved. This paper attempts
to describe the security requirements in active networks
and the challenges of meeting those requirements (Section
2). We describe our own implementation of a solution to
a subset of those challenges (Section 3). We present a se-
curity architecture that is suggested by our solution and
relate that architecture to our implementation (Section 4).
We finish with a description of some related work and a

S. Murphy, E. Lewis and R.Watson are affiliated with
NAI Labs at Network Associates in Glenwood, MD,
sandy,lewis,rwatson@tislabs.com. R. Puga is affiliated with
MyCIO.com in Glenwood, MD, rpuga@mycio.com. Richard
Yee is affiliated with Sun Microsystems, in El Segundo, CA,
richard.yee@west.sun.com.
This work was supported by Defense Advanced Research Projects

Agency (DARPA) under contracts N66001-97-C-8514 (Secure Active
Network Prototypes) and N66001-98-D-8508 (New Cryptographic
Techniques for Active Networks), using the Space and Naval Warfare
Systems Center (SPAWARSYSCEN) as the contracting and technical
agent.

summary of the results.

II. Security Requirements and Challenges

A. Active network description

An active network transmits active packets which con-
tain active code or references to code. An active node ex-
tracts or retrieves the code and executes the code in the
node with the packet as input. The result of the execution
can be a modification of the state of the node, a modi-
fication of the packet, or the transmission of one or more
packets. Legacy packets may be forwarded as before or may
themselves be the recipient of custom network services.
The DARPA Active Network community has defined an

architecture for an active node [10] that depicts a node
as comprising a NodeOS and one or more Execution En-
vironments. The Execution Environments (EE’s) provide
a programming interface or virtual machine that can be
programmed or controlled by the active packets.
The NodeOS interface document [9], [11] of the commu-

nity describes the resource abstractions of an active node
operating system as thread pools (computation), memory
pools (memory), channels (communication), files (persis-
tent storage) and domains.1 Domains are the primary ab-
straction for resource management and are allocated a set
of channels on which messages are transmitted, a memory
pool and a thread pool. Channels are the primary abstrac-
tion for communication of packets into and out of the node.
Some channels are anchored in an EE, with packets arriving
on an in-channel and transmitted on an out-channel. Pack-
ets are assigned to an in-channel on the basis of a packet
filter key provided in the creation of the domain. Chan-
nels not anchored in an EE are cut-through channels and
involve no processing of active code. A cut-through chan-
nel can be created by a domain running in an EE from an
existing in-channel and out-channel and continues to draw
on the resource limits (e.g., memory, bandwidth) of the
creating domain.
A domain may create a subdomain at any time. The

principal assigned to a domain is established at creation
time and governs the activities of the domain thereafter.
The node begins operation with one or more domains as-
signed to EE’s. An EE is permitted to start subdomains
with more explicit packet filters when and as it wishes.
Therefore, the EE makes its own decision as to whether
the active code in a packet will run as part of the EE’s
domain, with the EE’s principal privileges and resources,
or in its own separate domain, with the packet’s principal
privileges and separately allocated resources.

1“Domains” were termed “flows” in earlier publications within the
active network community. The term was changed because of the
possible confusion of semantics with the usual use of “flow” in net-
working.

10-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

The active packet arrives, is assigned by the node to a
in-channel of a domain (either anchored in a EE or a cut-
through channel) and is processed. If the active packet
processing occurs in an EE, then the active code executes
with access to the EE services and resources. The EE in-
terface might pass the NodeOS interface through to the ac-
tive code or might replace or augment that interface with
its own services. The processing results in active pack-
ets being transmitted on an out-channel. The transmitted
packets might be forwarded input packets, modified input
packets, or newly inserted packets. The processing of the
packet might also result in persistent changes in the node
state.
Active packets can be transmitted through the Inter-

net by using the Active Network Encapsulation Protocol
(ANEP). ANEP provides its own header format which in-
cludes a Type ID field that identifies the EE to which the
packet should be transferred. The ANEP header also pro-
vides for options defined as type-length-value fields. Op-
tions defined in the ANEP protocol include source, desti-
nation, integrity and end-end authentication.

B. Security requirements

¿From the description of the active network, one can see
that there are many entities in an active network that have
assets that they would want to protect. The end user at the
source and destination, the active node itself, the execution
environments and the active code/domain all have security
concerns.
The end user retains the traditional concerns about the

authenticity, integrity, and confidentiality of the packet’s
payload data as it traverses the network. As the active code
may create persistent state in the active nodes it traverses,
the end user will have the same concerns about data created
in the infrastructure as well as concerns over access to that
data.
The active node’s security concerns are likely to be con-

centrated on authorization of use of the node’s services and
resources, in order to maintain availability of use. It will,
of course, also be concerned about the integrity and confi-
dentiality of its own state. The EE has the same concerns
for its own services, resources and state.
The active code (standing as proxy to the end user who

launched the packet) has security concerns that are related
to access to its services (e.g., access to the domain in which
it is executing) and access to sharable persistent state it
creates.

C. Trust model

End User Viewpoint. The end user would rather not
have to trust all active nodes, execution environments, and
other active code in the active network. Therefore, it must
view the nodes, EE’s and other active code/domains as
potential threat sources.
Baring results from certain research areas regarding mo-

bile agents (running on untrusted hosts), there are few ways
to assure the end user that its data will be protected from
attacks (exposure, unauthorized use or modification, etc.)

by the node or the EE in which its packets are processed in
the clear. The end user may apply end-end cryptographic
protections against these attacks and not make the node
or EE privy to the cryptography, so that the data is not
in the clear in the node. While end-end cryptographic pro-
tections limit the damage that the node or EE can cause
to the data, they do limit the network services that can
be performed for the packet. The only other assurance the
end user has that it can be protected against attacks by
the node or EE comes from an ability to direct the active
code to avoid transmitting the packet to untrusted nodes
or execution environments. This presupposes that the end
user has some method of identifying nodes and EE’s that
are trusted and authenticating the nodes and EE’s the ac-
tive packet encounters, and that the packet transmission
will be under the exclusive control of the active code.
The picture for protection against unauthorized access or

use attacks on the end user’s data from other active code/
domains in the infrastructure is a bit more reassuring. The
(trusted) node and EE can provide enforcement of the end
user’s authorization policy, as long as they have the ability
to authenticate the principals associated with each active
code/domain and are provided the end user’s policy.
Node Viewpoint. The node has its own view of the

threat sources in the active network. It should not be nec-
essary for the node to completely trust the EE’s it executes.
It would certainly be unwise to architect the system so that
it must trust the active code it runs or the end users who
generate packets. Therefore, the node would view the EE’s,
the active code, and the arriving packets as potential threat
sources.
Because the node architecture grants the EE the right

to start subdomains if and when it wants, requests from
the EE for NodeOS services might be intended to provide
services for a packet not assigned by the EE to a subdo-
main. Such a request will be judged by the node on the
basis of the privileges granted to the EE’s domain. The
NodeOS must trust the EE to properly use its own priv-
ileges on behalf of active code that is not assigned to a
subdomain. That is, the NodeOS must trust that the EE
is adhering to the node authorization policy in requesting
NodeOS services on behalf of an active code.
Because the node has control over the allocation of re-

sources and privileges to an EE’s domain, it has the op-
portunity to mitigate the possible damage from an EE. It
can balance the trust it holds in an EE with a judicious
allocation of resources and privileges. Fully trusted EE’s
might be provided with more resources and more powerful
privileges than less trusted EE’s.
The threat from active code can be controlled because

the node has the opportunity to enforce its own authoriza-
tion policy for the actions of any domain. Finally, counter-
ing clogging attacks from arriving packets is a research area
of its own. In short, protection against clogging attacks
requires that the node’s neighbors cooperate with traffic
limits and that the node establish traffic limits with its
neighbors that in the aggregate do not exceed its capacity.
EE Viewpoint. The EE sees the same threats from

20-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

active code and arriving packets as the node sees. It has
the same opportunities to control the threat from active
code by enforcing its own policy governing access by active
code. The EE can rely on the node to enforce the EE’s pol-
icy governing acceptance of arriving packets, as long as its
required authentication of the packets is within the capa-
bilities of the node, i.e., does not require some EE specific
authentication mechanisms, and the node is provided with
the EE’s policy. The EE sees potential attacks from other
EE’s through shared persistent state or access to its ser-
vices. As these access methods must be provided by the
NodeOS, the EE must rely on the node to enforce the EE’s
policy.
Active Code Viewpoint. The active code itself would

rather not have to trust all the nodes, EE’s and other ac-
tive code in the network. Unfortunately, it is in the same
situation regarding trust in the node and EEs in which it
runs as the end user is. The active code must trust the
nodes and EE’s on/in which it executes and avoid those it
does not trust.
The active code sees potential attacks from other active

code through access to shared persistent state or services.
These access methods are provided by the EE and so the
active code can rely on the EE to enforce its policy.
Protection Techniques. The active network commu-

nity employs two ways of ensuring that possible attacks
are avoided. The first is to limit the possible actions to
those that would be safe for any entity in the system to
perform. These are language based approaches, involving
type-safe and namespace limiting languages. This is a low
cost technique with a large payoff.
But it is not always possible to eliminate dangerous ac-

tivities entirely. There will be some actions that some, but
not all, entities should be permitted to perform. The sec-
ond class of techniques associates a principal with each re-
quest for an action and enforces a policy that states which
principals are permitted to perform which actions. These
are authorization based approaches.
In our work we have concentrated on authorization en-

forcement to protect active networks and the authentica-
tion to support authorization enforcement.

D. Authentication Challenges

Some of the most challenging aspects of securing active
networks concern the authentication support for authoriza-
tion. Authorization decisions require the authentication of
the entity making a request. Authentication normally im-
plies the use of cryptographic techniques. But the appli-
cation of existing cryptographic techniques to the active
networks environment presents certain challenges.
First, the identification of the principal itself in active

networks is challenging. Existing Internet interactions are
typically client/server, where the explicit individual iden-
tity of the client and server are important. The Internet
community has begun to move away from explicit individ-
ual identities to attribute based identities (X.509 Attribute
Certificates, KeyNote and PolicyMaker, etc). Even so, the
client and server have a common understanding of the iden-

tities or attributes that are important.
In active networks, the aspects of the principal’s iden-

tity that are important may change radically as the packet
traverses the network. Within the end user’s enterprise
network, the individual’s identity or company role may be
important. But beyond the immediate network of the end
users, it is not likely that the individual identity of the end
user will be important. Aggregate security attributes will
be more likely to be used, which may be labels, groups, etc.
Furthermore, the aggregate attributes may themselves dif-
fer in different domains. The first level ISP may have a
local identification of the principal and attributes. The
second level ISP that transits the packet may only be in-
terested in authenticating that the traffic came from by
a peer. Consequently, there may be multiple and varying
principal identities or attributes that are important.
Second, the choice of an authentication mechanism

presents challenges in active networks. Existing mecha-
nisms for providing authentication protection of a packet
are rooted in the existing Internet paradigm of client and
server based communication (e.g., IPSEC, TLS, Kerberos,
IKE, even API’s such as GSSAPI). These will not be suf-
ficient in an active network environment where the packet
needs to be authenticated at source and destination and
potentially every node in between. The existing solutions
can be used hop-hop in the path but that provides little in
the way of end source authentication. If all nodes in the
active networks can be trusted and the edge node correctly
identifies the end source, then hop-hop protection provides
sufficient authentication. However, experience in the Inter-
net (e.g., wide-spread Internet outages caused by one faulty
router) has provided ample proof that it would be folly to
trust all nodes as a set. Existing solutions can also be
used to set up multiple security associations, one between
the end user and each node on the path. The latency and
bandwidth requirements to establish each association and
multiply protect the packet would be prohibitive.
Even though hop-hop protections do not provide strong

end-end authentication, hop-hop integrity protections are
still important. Integrity protection between neighboring
active nodes provides protection against attacks from out-
siders, and should include protection against replay, mod-
ification and spoofing. This first level of protection is par-
ticularly important in neighbor to neighbor exchanges or
signalling.
When hop-hop protections do not provide sufficient

end-end authentication of the principal associated with a
packet, we can employ end-end protections. However, the
use of end-end cryptographic techniques is also a challenge
in active networks. Symmetric techniques could be used if a
key associated with the principal could be installed at each
node of the packet’s path through the network. The packet
modifications at each node could be protected anew with
the shared key. However, this has a similar trust drawback
as using hop-hop protection: every node on the path must
be implicitly trusted. Also, the assurance of authenticity
of the principal, derived from the shared key, is diluted if
the key is not unique to the principal and the path. For

30-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

the strongest assurance, each new communication would
require key distribution or agreement among the nodes of
the path. This expensive operation would be unsuitable for
a datagram model of communication and would motivate
not only a connection oriented model for communication
but a virtual circuit model, where all packets in a flow of
packets are protected by the same key and transit the same
nodes.
Asymmetric techniques (i.e., digital signatures) can op-

erate in a datagram model but have difficulty protecting
packets that change. Signing a packet with a digital signa-
ture provides a cryptographic association from the signer
to every potential verifier of the future. Therefore, au-
thentication by digital signature is suited for a datagram
model of communication, where the packet may decide in
route what nodes it will visit. The digital signature pro-
tection provides the strong end source authentication that
we wanted. However, the asymmetric private key that is
used to produce the signature should be kept secret by
the signer to maintain the security features of a digital
signature. This means that the private key would not be
known to the infrastructure nodes that process the packets.
Consequently, infrastructure nodes cannot produce a new
end source signature if the packet is modified in transit. It
might be possible to have each modifying node sign just the
modifications it makes, but such a scheme produces mas-
sive packet growth. Finally, the performance issues with
asymmetric cryptographic techniques in terms of both per-
formance and bandwidth are well known.

III. SANTS

We choose as our problem to prototype a secure active
network that could provide authorization enforcement to
the nodes, EE’s and active code and integrity protection
to the packet, with a distributed authentication mechanism
that provided for retrieval of identities and attributes in a
wide area network and dynamic assignment of attributes
to a packet as it traversed the network.

A. Components

We created an execution environment supporting strong
security by extending the MIT ANTS Execution Environ-
ment [13]. Our implementation, called SANTS for Secure
ANTS, adds the following to ANTS:
• X.509v3 certificates
• DNSSEC for storage of the credentials
• Java Crypto API and Java Cryptographic Extensions
crypto provider
• Keynote policy system
• Java 2 security features
• a separation between EE and Node classes
• a shared data capability, which we called BulletinBoard
We used the X.509v3 certificates as our globally unique

principal credentials. We used some standard fields of the
X.509v3 (like the organization field in the distinguished
name) as security attributes. X.509v3 certificates also can
include extensions that provide a mechanism to store at-
tributes that are not represented in the standard fields.

The Java Cryptographic Extensions package was used to
apply and check the cryptographic protections.
We stored our certificates in DNS CERT records, pro-

tected by the DNSSEC security features [12]. This pro-
vides a secure distributed storage and retrieval mechanism
for the certificates. Each certificate can be located by the
fully qualified domain name of its CERT record. Therefore,
we included in each certificate the fully qualified domain
name of its issuer’s certificate, to aid in distributed certifi-
cate chain processing. Consequently, as an active packet
traverses the network, it is always possible to locate the
certificates needed to fully verify the certificate signatures.
We used the Keynote policy system both as a ubiquitous

policy language and as a policy evaluator. This allowed the
end users to include their own authorization policies (e.g.,
for state created in the infrastructure) in the active packets
they create, and expect that the NodeOS and EE in each
node could understand and enforce that policy.
We used the concept of permission objects and protec-

tion domains of the Java 2 Security Architecture to pro-
vide the authorization policy enforcement. Active code was
loaded with a class loader which we constructed. The class
loader created the protection domain for the active code
with a permission object containing the credentials associ-
ated with the active packet. The permission object implies
method made a call to the Keynote policy evaluation en-
gine. Methods that needed to be protected called the Java
2 Access Controller to inspect the stack and ensure every
protection domain on the stack was authorized to perform
the method.2

We built a shared data capability because we were in-
terested in exploring the issues associated with creating
shared data in the infrastructure. Consequently, the Bul-
letinBoard feature is not sophisticated, but exhibits the
abilities that we wished to protect, i.e., to create and ac-
cess items. This feature was used in an application based on
work in the University of Pennsylvania Switchware project,
called Flow Based Adaptive Routing. In this application,
“scouts” are sent out to find a best path through the net-
work. The scouts flood themselves through the network,
posting hints in the Bulletin Board of the best path found.
In our adaption, the scouts also carry policies (expressed in
Keynote) that govern access to their BulletinBoard items.
The policies are based on the attributes carried in the
X.509 certificates, such as the role or organization of the
requester.

B. Authentication

As a first level of protection of the active network, we
used HMAC-SHA1 integrity protection between each pair
of neighboring nodes. This would prevent spoofed packets
and modification of packets between neighbors.

2The Java 2 protection domain associates permissions with code,
rather than with the execution of the code. Our implementation,
then, means executions of the same code by different principals re-
sult in multiple copies of the code. The Java Authentication and
Authorization Service (JAAS) associates principals with a thread,
but was made public too soon before the end of the development of
this prototype to be incorporated.

40-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

We decided to use the digital signature form of end-end
authentication and integrity protection. To support the
ability to provide multiple principal attributes and iden-
tifiers to the packet for use in different domains as the
packet transits the network, we added a credential option
field to the packet that contains a list of credentials refer-
ences. Each reference is the globally unique X.509 identifier
(issuer distinguished name and serial number) as well as a
hint of the CERT location in the form of a fully qualified
domain name. We also added an option to contain the dig-
ital signatures associated with the credentials referenced.
The digital signatures are independent, that is, one signa-
ture does not cover the other signatures. Our intent was
that the credentials should be authorized independently as
well, so that if one credential carried attributes that au-
thorized a service, then the request for the service would
succeed.
We modified the packet format to separate the payload

into a static area (covered by the authentication protection)
and a variable area. The classic ANTS packet contains a
header and the data payload. Some fields of the header are
modified in each node, such as a network resource bound
that is decremented by each node (much like a TTL). Some
fields remain static throughout the packet’s travels, such as
the MD5 hash identifier of the active code. The static area
of our packet includes the static portions of the EE header,
in particular the code identifier, and the static portions of
the data payload. The variable area of our packet includes
the variable fields of the EE header and the variable por-
tions of the data payload. Note that there is no provision
for the active code to itself be modified in transit. Given
that the variable area of our packet is integrity protected
only by the hop-hop integrity protection, we felt that the
user-supplied active code could provide additional integrity
assurance through customized integrity checks of the vari-
able data. We therefore prohibit variation in the active
code itself, so that the user’s checks could be ensured to
remain intact.
The resultant format is:

ANEP header
Credential Field (list of credentials)
Static Payload (EE header and Data)
Origination Signatures (each signature covers

two previous fields)
Varying Payload (EE header and Data)
Original ANEP Options (i.e., Source Identifier

Destination Identifier,
Integrity Checksum, or
N/N Authentication)

Hop Integrity (covers everything)

On arrival, the credential references are extracted from
the packet. The associated X.509v3 certificates are re-
trieved from DNSSEC and their signatures verified (both
the DNSSEC signature of the CERT record and the certifi-
cate signature). This might require the recursive retrieval
of certificates associated with the issuer of the certificate.
When the certificate and the certificate chain have been

checked, the packet signature can be verified. If all this
succeeds, the packet is authenticated.

C. Authorization

In our prototype we added authorization enforcement
checks in the node services, the EE services and in the
access functions to the BulletinBoard shared state.
The authorization developed for the prototype is based

on the Java 2 security architecture, with modification to
support the special needs of the active network environ-
ment. The Java 2 security architecture performs authoriza-
tion checks by combining stack inspection and a protection
domain associated with every executing class. Each class is
provided a protection domain by its class loader. The pro-
tection domain contains a permission object holding the
class’s granted permissions. Any protected object specifies
the required permissions that must be held by a caller and
then calls the Access Controller. The Access Controller
checks the required permissions against the granted per-
missions stored in the protection domain of every class on
the execution call stack. This stack inspection enforces
an intersection of permissions, so that active code cannot
circumvent protections by calling a class in a protection
domain with greater permissions than it holds itself. We
also benefit from the namespace controls and type safety
in Java, in that the protection domain is non-forgeable and
not modifiable by the loaded class.
When a SANTS ClassLoader is called upon to load ac-

tive code, it binds the active code class to a SANTS Pro-
tectionDomain object that contains exactly one SANTS
permission object. This SANTS permission object is in-
stantiated and initialized with a credential set belonging
to the principals associated with the SANTS ClassLoader.
In turn, whenever the SANTS permission object is called
upon by the AccessController to render an access decision,
it consults the SANTS policy engine, currently Keynote, to
determine whether the requested resource access is implied
by the Keynote access policy. If any of the principals are
authorized according to the policy, the access succeeds. To
summarize, any Java class loaded by a particular SANTS
ClassLoader will be explicitly bound to that ClassLoader’s
associated principals via the ProtectionDomain, and it will
have authorizations based upon the Keynote access policy.
In our implementation we explored the problem of com-

position of multiple policies. It is always the case that
policies can be provided by different sources (e.g., national,
company, and local policies). In active networks, the prob-
lem is exacerbated by the fact that the end user’s policies
carried in the active code travel through the network en-
countering different administrations with their own poli-
cies. In our implementation, the EE provides a Bullet-
inBoard shared data service to incoming active code. The
active code carries a policy stating the authorizations for
access to its BulletinBoard items. But the EE may have
its own policy governing access to the shared data. We
enforced a mandatory access control so that the EE pol-
icy superseded any more lenient policy established by the
active code, while permitting the active code to restrict

50-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

access in cases where the EE granted access.
We found it difficult to express the composition of the

policies within Keynote. We found it necessary to call
Keynote twice within the enforcement decision and then
perform the composition (conjunction) of the two policy
evaluations. We expect that more complex compositions
of policy should be possible and should be represented in a
meta-policy language. Further work in this area is needed.

IV. A Security Architecture

¿From this experience, we believe that an active network
security architecture would include:
Naming Globally unique credentials that represent
aggregate security attributes (e.g., X.509v3 certificates)
Packet Format A packet format that provides for
• a separation between portions of the packet that are
covered by the authentication protection and those
that are not

• a list of the appropriate credentials or references
• a list of authentication protections that
bind those credentials to the packet

• hop-hop integrity protection between neighbors
Policy Language A ubiquitous policy language for the
statement of authorization policy for node, EE or end user
(e.g., Keynote).
Security Support System to include
• a cryptographic engine (e.g., JCE)
• a credential system (e.g., DNSSEC):
global storage: a distributed secure system for the

storage, retrieval and/or dissemination, and
revocation of credentials

local storage: an engine for storage, receipt and/or
retrieval, validation and revocation of local copies
of credentials

• a key management system (e.g., the Java Keystore):
generation, retrieval, exchange, agreement, etc. of keys;
storage, retrieval, format translation, removal, etc., of

keys
• a policy management system:
store, retrieve, revoke, etc. policy components

Enforcement Architecture to include:
• a non-forgeable security context (e.g., protection
domain)

• a mechanism for binding a security context to an
execution (e.g., class loader)

• an enforcement engine (e.g., AccessController)
• a policy evaluation engine (e.g., Keynote)
The components of the architecture that can be of com-

mon use should be placed in the NodeOS layer with access
to the functions through the NodeOS API. This means that
the entire security support system should be placed in the
NodeOS layer. Communication to and from off-site loca-
tions (e.g., for the retrieval of keys or credentials) could
be native to the NodeOS or could be through a Security-
Management EE, allowing the security communication to
take advantage of the powerful features of active networks.
Note that each EE could have its own customized version
of the security architecture, if needed for its own unique

requirements.
The authentication handling should occur in the NodeOS

so that access to cut-through channels can be authorized
according to the correct domain and so that the EE is
not clogged with un-authorized packets. But some EE’s
may choose to process all packets within their own domain
resources, i.e., not create subdomains. All EE destined
packets would be assigned to the EE domain but would re-
tain their end user principal credentials and authentication
protections. We suggest (but did not implement) that the
creation of a new domain should include an access control
policy controlling which principals should be allowed to ac-
cess that domain, with a generous EE’s policy permitting
access to anyone. If the EE feels that it is under a clog-
ging attack, it could restrict that policy. So there must
be NodeOS API calls to modify a domain’s access control
policy. A special exception should be allowed to packets
destined for a generous EE (one with an “anyone” access
policy) so that authentication in that case can be skipped.
Some modifications are needed to the NodeOS API to

support the security processing. The domain creation
NodeOS call must include an authentication policy and an
access control policy. There must be a NodeOS API call
permitting a domain to modify its access control policy or
its authentication policy. There must be access to all the
NodeOS layer security support system from the EE. And,
finally, a call is needed to permit a domain to activate or
deactivate certain credentials in its security context. Work
is ongoing in the Active Network community to modify the
NodeOS API. Existing API’s for cryptography, authoriza-
tion, authentication, etc., may be adopted. It is not clear
that existing API’s for authentication, which are rooted in
the existing Internet paradigm of end-end client to server
communications, will be completely suitable for active net-
works.
The security processing in the NodeOS would follow the

following sequence of actions:
• receive packet
• verify hop-hop integrity
• assign packet to existing domain
• extract credential list
• check credentials authenticity according to authentica-
tion policy for the domain
• check credentials against access control policy for domain
• deliver entire packet to the domain, including the cre-
dentials, authentication protection fields, etc.
The security processing in the EE would include (not

necessarily in sequence):
• receive a packet including credentials
• create a subdomain, providing the security context pa-
rameters for the domain (e.g., the credentials to be associ-
ated with the domain) and the access control and authen-
tication policies for the domain
• modify the access control policy of a domain, the au-
thentication policy of a domain or the security context of
a domain
• add or remove cryptographic protections to user data

60-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

V. Related Work And Conclusion

The Switchware project’s approach to security [2], [3],
[8] is two-fold. First, their language for active code, called
PLAN, has restricted functionality to “safe” functions that
are defined as being available to anyone . In particular, the
language is guaranteed to terminate and there are no fea-
tures for inter-packet communication. Hence, many PLAN
packets have no need for authentication. PLAN does have
the ability to call local services called “switchlets” and some
of those switchlets are privileged. Packet are granted ac-
cess to a thinned interface of the available switchlets. Those
that need to call privileged services must authenticate the
principal associated with the packet and the authenticated
identity is bound non-forgeably to the packet thread. Then
the privileged service is added to their service symbol ta-
ble and the privileged service can authorize access based
on the authenticated identity. They mention use of digital
signatures or HMAC-SHA1 (based on a shared key nego-
tiated between the principal and the node) for authentica-
tion. They do not discuss how they identify the principal’s
key for the digital signature in the packet or how they ne-
gotiate shared secrets for a packet that traverses multiple
nodes. Neither do they address the problems of authen-
ticating packets that are modified in transit. Mechanisms
to remove services from the symbol table when access is
no longer authorized are not described. In some languages
such revocation is difficult, such as revoking access to an
object in Java once an reference to the object has been
supplied.
Seraphim [4], [5] uses active capabilities that compute

the authorization decision. These active capabilities can
be carried in the packet or retrieved from a policy server
by the local policy engine or by a stub active capability.
Active capabilities are executable code and are executed
within an evaluation engine in the node. This provides
a flexible mechanism for distributing policy and express-
ing policy with the full power of an executable language.
While there are references to a “principal” associated with
the packet and to authenticating that principal based on
X.509 certificates and a PKI, there is no mention of how the
packet signatures are generated or verified. There is also no
mention of how the active capability is bound to the packet
so as to preclude cut-and-paste attacks. As the paper [5]
mentions specifically that the code is backwards compat-
ible with the ANTS code, which does not include cryp-
tographic authentication, the provision for cryptographic
authentication (particularly of portions of the packet that
ANTS changes in route) is not clear. Finally, composition
of policies from different sources (e.g., active capabilities in
the packet plus active capabilities from local policy servers)
is not mentioned.
In SANTS we have provided a worked example of a flex-

ible mechanism for providing strong security in an active
network. SANTS provides strong end to end authentica-
tion and integrity protection and per service authorization
of access. SANTS allows for the inclusion of authorization
information in the active packet itself so that the packet can
cross multiple administrative domains and still be properly

controlled. SANTS provides enforcement of each individ-
ual node’s authorization policy for access to its services
and resources, providing the nodes with the assurance that
their assets can be protected. Through global credential
identifiers and a ubiquitous policy language, SANTS pro-
vides for end user control over authorization of access to
its created state in the network. This assures the end user
that its data and service can be protected according to its
wishes. SANTS also provides that the node policy will take
precedence over the active code policy, assuring the node
that data can be protected according to its wishes even in
the face of lenient policies from the visiting active code.
We believe that this effort, besides providing a worked

example of a security solution, also has exposed important
security issues regarding the protection of active networks.

Acknowledgments

The authors would like to acknowledge the valuable sug-
gestions of the anonymous reviewers.

References

[1] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden, “A survey of active
network research,” IEEE Communications Magazine, vol. 35,
no. 1, pp. 80–86, January 1997.

[2] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis,
and Jonathan M. Smith, “Security in active networks,” in Se-
cure Internet Programming: Issues in Distributed and Mobile
Object Systems, Jan Vitek and Christian Damsgaard Jensen,
Eds., vol. 1603 of Lecture Notes in Computer Science State-of-
the-Art. Springer-Verlag Inc., New York, NY, USA, 1999.

[3] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis,
and Jonathan M. Smith, “Safety and security of programmable
network infrastructures,” IEEE Communications Magazine, is-
sue on Programmable Networks, vol. 36, no. 10, pp. 84–92, Oc-
tober 1998.

[4] Zhaoyu Liu, Roy H. Campbell, and M. Dennis Mickunas, “Se-
curing the node of an active network,” in Active Middleware Ser-
vices, Salim Hariri, Craig Lee, and Cauligi Raghavendra, Eds.
Kluwer Academic Publishers, Boston, MA, September 2000.

[5] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad
Naldurg, and Seung Yi, “Seraphim: Dynamic interoperable se-
curity architecture for active networks,” in IEEE OPENARCH
2000, Tel-Aviv, Israel, March 2000.

[6] J.M. Smith, K.L. Calvert, S.L. Murphy, H.K. Orman, and L.L.
Peterson, “Activating networks: a progress report,” Computer,
vol. 32, no. 4, pp. 32–41, April 1999.

[7] AN Security Working Group, “Security architec-
ture for active nets,” July 1998, available online at
ftp://ftp.tislabs.com/pub/activenets/ secrarch2.ps.

[8] Michael Hicks and Angelos D. Keromytis, “A Secure PLAN,”
in Proceedings of the First International Working Confer-
ence on Active Networks (IWAN ’99). July 1999, vol. 1653
of Lecture Notes in Computer Science, pp. 307–314, Springer-
Verlag, available online at http://www.cis.upenn.edu/ switch-
ware/papers/secureplan.ps.

[9] AN Node OS Working Group, “NodeOS interface
specification,” January 2000, available online at
http://www.cs.princeton.edu/nsg/papers/nodeos.ps.

[10] K.L. Calvert, “Architectural framework for active networks,
version 1.0,” University of Kentucky, July 1999, available on-
line at http://www.cc.gatech.edu/projects/canes/papers /arch-
1-0.ps.gz.

[11] Larry Peterson, Yitzchak Gottlieb, Mike Hibler, Patrick Tull-
mann, Jay Lepreau, Stephen Schwab, Hrishikesh Dandekar, An-
drew Purtell, and John Hartman, “An OS interface for active
routers,” IEEE Journal on Selected Areas of Communications,
to appear 2001.

[12] D. Eastlake, “Domain name system security extensions,” RFC
2535, IBM, March 1999.

70-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

[13] D.J. Wetherall, J.V. Guttag, and D.L. Tennenhouse, “ANTS:
a toolkit for building and dynamically deploying network proto-
cols,” in Open Architectures and Network Programming 1998,
San Francisco, CA, April 1998, pp. 117–129, IEEE.

80-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

