Smart Packets: Applying Active Networks to
Network Management
BEVERLY SCHWARTZ, ALDEN W. JACKSON, W. TIMOTHY STRAYER,

WENYI ZHOU, R. DENNIS ROCKWELL, and CRAIG PARTRIDGE
BBN Technologies

Smart Packets is an Active Networks project focusing on applying active networks technology to
network management and monitoring. Messages in active networks are programs that are exe-
cuted at nodes on the path to one or more target hosts. Smart Packets programs are written in
a tightly-encoded, safe language specifically designed to support network management and avoid
dangerous constructs and accesses. Smart Packets improves the management of large complex
networks by (1) moving management decision points closer to the node being managed, (2) tar-
geting specific aspects of the node for information rather than exhaustive collection via polling,
and (3) abstracting the management concepts to language constructs, allowing nimble network
control.

This paper introduces Smart Packets and describes the Smart Packets architecture, the packet
formats, the language and its design goals, and security considerations.

Categories and Subject Descriptors: C.2.1 [Computer Communications Network]: Network
Architecture and Design

1. INTRODUCTION

Active Networks [Tennenhouse and Wetherall 1996; Wetherall and Tennenhouse
1996; Bhattacharjee et al. 1996; Tennenhouse et al. 1997] is a framework within
which users inject programs contained in messages into a network capable of per-
forming computations and manipulations on behalf of the user. Nodes along the
network receive these messages, execute the programs within, and (possibly) re-
turn values or forward the messages along to other nodes. The Active Networks
Program is a DARPA-sponsored research program seeking to sharply increase the
programmability of computer networks and network components. The program
seeks to increase user and application control over how packets are handled, and to
increase the flexibility of computer networks and the ability to upgrade them.

A major motivation behind Active Networks was the theory that there is an
exponential growth of computing power in the network suggested by Moore’s Law,
which states that the speed of electronic components doubles every 18 months.
Unfortunately, in most parts of the Internet, the traffic growth rates far exceed the
growth rate of Moore’s Law. As a result, there is typically less effective computing
power per packet every year.

Authors’ address: BBN Technologies, 10 Moulton St, Cambridge MA 02138
This work was sponsored by the Defense Advanced Research Projects Agency and issued by the
NCCOSC under contract N66001-96-C-8517.

2 . Beverly Schwartz et. al.

1.1 Why Do Active Network Management?

There are places, however, where Moore’s Law is winning. One place is network
management and monitoring. The average device is not generating, processing or
receiving drastically more network management traffic than it was a year or two
ago. We can hope, therefore, that there is more per-device processing power avail-
able for network management than there was in the past, especially since modern
router architectures tend to place network management functions on a distinct
processor [Partridge et al. 1998].

At the same time, the exponential growth of the Internet is overwhelming man-
agement centers. Currently, network management is achieved by having manage-
ment stations routinely poll the managed devices [Rose 1994; Stallings 1996] looking
for anomalies [Paxson 1997b]. As the number and complexity of nodes increase,
management centers become points of implosion, inundated with large amounts
of redundant information when components are in the same state they were in
previously. This passive network solution does not scale and is not cost effec-
tive. Furthermore, a component can suffer multiple state changes in less than one
round-trip time and, indeed, can oscillate per packet [Paxson 1997a]. It is essential
that network management employ techniques that require less communication and
permit more effective action on the managed node itself.

Smart Packets seeks to exploit the increase in processing power within the con-
trol side of the router to help provide network management. Smart Packets puts
active networks technology into the management of the network to make managed
nodes programmable. Management centers can then send programs to the man-
aged nodes. This approach has three advantages. First, the information content
returned to the management center can be tailored (in real-time) to the current
interests of the center, thus reducing the back traffic as well as the amount of data
requiring examination. Second, many of the management rules employed at the
management center can now be embodied in programs which, when sent to man-
aged nodes, automatically identify and correct problems without requiring further
intervention from the management center. Third, Smart Packets shortens the mon-
itoring and control loop—measurements and control operations are taken during a
single packet’s traversal of the network, rather than through a series of set and get
operations from a management station.

The Smart Packets architecture consists of four parts: (1) a specification for smart
packet formats and their encapsulation into some network data delivery service, (2)
the specification of a high level language, its assembly language, and a compressed
encoding representing that portion of a smart packet that gets executed, (3) a vir-
tual machine resident in each networking element to provide a context for executing
the program within the smart packet, and (4) a security architecture.

1.2 Prior Work

Earlier projects have attempted to put a programming language into a network
management system. In the late 1980’s, the High-level Entity Management System
(HEMS) [Partridge and Trewitt 1988] used a query language [Trewitt and Partridge
1988] tuned to the monitoring and control of network entities. While the HEMS
query language provides insight into methods to request and modify host data,

Smart Packets for Active Networks . 3

it does not meet our needs. The language is really an extended database query
language, designed to extract large amounts of data from a node. It does not allow
general programming. It gives the packet no control over where it is sent, and
places no limits on the size of a query. The current Internet network management
standard, the Simple Network Management Protocol [Davin et al. 1987; Case et al.
1990], was developed as a competitor to HEMS and because of concerns about
complexity chose to put each extraction operation in a separate packet.

More recently, a set of platform-independent programming languages, most no-
tably Java [Gosling et al. 1996; Arnold and Gosling 1997], PLAN [Hicks et al. 1998]
and CAML [Leroy 1996a; Leroy and Mauny 1993; Leroy 1996b], have been cre-
ated. These program languages are designed to be transmitted across the network,
between machines. However, if the HEMS language was too simple, the newer
languages are too rich for reasons discussed in more detail in section 4.1.

2. SYSTEM ARCHITECTURE

The Smart Packets project is designed to demonstrate that network management
is a fruitful target for exploiting active networks technology. As a result, there is
a temptation to provide the richest and most flexible programmable environment
possible. At the same time, we are concerned that if we made the environment too
rich we could still overload the computing power of the managed node and, further,
create an environment so rich that it would be hard to secure.

In our attempts to balance these concerns, we made two important design de-
cisions. First, there should be no new persistent state in routers across packets.
Keeping persistent state in network nodes, especially routers, is expensive and cre-
ates management and consistency problems. Consequently, programs sent in smart
packets must be completely self contained. This goal implies the transport service
should be connectionless; even fragmentation of the smart packet is not permitted.
The Smart Packets programming language must be able to express meaningful
programs in under 1 Kbyte in length.

Second, there should be a virtual machine used to provide surety of safety while
executing the programs carried in smart packets. Remote execution of code is
dangerous, so to mitigate the possibility of damage to the executing host, an insular
environment is established where operations are controlled. The language that is
interpreted by the virtual machine is also designed to avoid dangerous (and for
network management, superfluous) features, like file system access and memory
management.

Figure 1 shows the Smart Packets system architecture. User-written network
management and monitoring programs generate smart packets—encapsulated in
Active Network Encapsulation Protocol (ANEP) [Alexander et al. 1997] frames—
and give them to the ANEP Daemon process. The daemon injects the smart packet
into the network, where the smart packet is sent in either an end-to-end or a hop-
by-hop mode. In end-to-end mode, the program is executed only at the destination.
In hop-by-hop mode, the program is executed at the source, destination, and all
hops in between. The program can contain directives to send results to the source
from any host it is executed on. Directives also exist to exclude program execution
at the source and destination nodes.

The ANEP Daemon process has two responsibilities: it is the injection and recep-

4 . Beverly Schwartz et. al.

- CE—
HOST ROUTER HOST

o] o] o]

Y Network | | ANEP
| Management” Sjpe | Daemon/
| Program \l—l/ Virtud

Machine

Fig. 1. IP and ANEP encapsulation

tion point for smart packets, and it also contains the virtual machine for executing
the programs received. The virtual machine provides a clean, safe context with a
well-defined, securable interface into the rest of the system.

3. TRANSMISSION OF SMART PACKETS

A smart packet consists of a Smart Packets header followed by payload. The smart
packet is encapsulated within an ANEP packet which, in turn, is carried within
IPv4, IPv6, or, in some Active Networks testbed situations, UDP.

3.1 Transmission Issues

One challenge in implementing Smart Packets is that IP does not have a notion of a
datagram whose contents are processed at intermediate nodes. An IP router simply
examines the datagram header and forwards the datagram. For a smart packet,
however, the router must process the contents of the datagram before forwarding it.
As a further complication, the router should examine the contents of the datagram
only if the router supports Smart Packets. Otherwise, the router should pass the
datagram through.

We achieved this goal by modifying an IP option—Router Alert [Katz 1997;
Partridge and Jackson 1999]—to achieve the desired behavior. Based on a tag in
the option, and possibly an examination of some of the higher-layer headers, the
router can determine if it should process the datagram contents. If the router
doesn’t support Active Networks, it ignores the option and forwards the datagram.
If the router supports Active Networks, it examines the ANEP message, learns the
message is a Smart Packets packet and, if the router supports Smart Packets, it
processes the packet.

3.2 Packet Format

Smart packets contain either a program, resulting data, or messages wrapped within
a common Smart Packets header and encapsulated within ANEP. Figure 2 shows
the format of a smart packet. The Smart Packets header has four fields: version
number, type, context and sequence number. The version number is used to identify

Smart Packets for Active Networks . 5

language upgrades and packet format changes. The type field identifies the message
as one of four types: a Program Packet, a Data Packet, an Error Packet, or a
Message Packet.

Bit0 8 16 24
o % |RP Header
=9 outer Alert option
Ver Flags TypelD
Header Length Packet Length
%% : Source |dentifier
<I. Destination Identifier
Integrity Checksum
: Authentication Option
| Ver [Type| Context | Sequence Number
g % Smart Packet Payload '
g

Fig. 2. A smart packet with IP and ANEP encapsulation

The Program Packet carries the code to be executed at the appropriate hosts.
The Data Packet carries the results of the execution back to the originating network
management program. The Message Packet carries informational messages rather
than executable code. Error Packets return error conditions if the transport of a
Program Packet or the execution of its code encounters exceptions. Only Program
Packets use the IP Router Alert option.

The context field holds a value that identifies the originator of the smart packet.
The context value is generated by the ANEP Daemon for each client, and is unique
for each client within a particular host. The value is placed into outgoing Program
Packets. As Program Packets traverse the network and generate one or more re-
sponses (Data, Error, and Message Packets), the context value is used to identify
the client to which the responses must be delivered.

The sequence number field holds a value that is used to differentiate between
messages from the same context. This value allows a client to match response
packets with injected programs. Like the context field value, response packets echo
the sequence number value of the Program Packet.

3.3 Encapsulation

The Active Networks Encapsulation Protocol was developed for the DARPA Active
Networks Program to facilitate portability and interoperability with other Active
Networks projects. Smart packets are encapsulated within ANEP packets.

The layout of an ANEP Header is shown in the middle of Figure 2. Smart packets
use four optional features of ANEP: the source address, the destination address,
the checksum (which computes an IP checksum over the entire ANEP header and
payload), and the authentication option.

6 . Beverly Schwartz et. al.

ANEP Option Header .
ID Type | Sig Type |Cert Type| ID Len
SigLen | CertLen| Payload Length
: ID
Signature
Certificate

Authentication
Option

Fig. 3. ANEP Authentication Option

The authentication option, modified from that proposed by Spatscheck [Spatscheck
1997], is shown in Figure 3. It identifies the sender of the message, includes a digital
signature over the entire ANEP header and selected portions of the smart packet,
and contains a public-key certificate.

The ANEP option header is common header for all ANEP options. It holds fields
that identify the option type, any sub-type information needed to parse the option,
and the length of the option:

(1) The ID field holds an IPv4 or IPv6 address, identified by the ID type and length
fields. The value of the ID field is identical to the value in the source address
field of the ANEP source address option.

(2) The signature field holds a digital signature, identified by the signature type
and length fields. The valid types of digital signature algorithms for smart
packets are either DSA over SHA-1 or RSA over MD5.

(3) The certificate field holds an X.509 public-key certificate [Housley et al. 1999],
identified by the certificate type and length fields. The certificate holds the
value of the IPv4 or IPv6 address in its Subject Alternative Name extension
field.

(4) The payload field holds the length of the data in the ANEP message that is
covered by the data in the signature field.

The use of the authentication option is discussed in section 7.

4. PROGRAMMING LANGUAGES

We developed two programming languages in support of Smart Packets. The
first language, Sprocket, is a high-level language much like C, but with security-
threatening constructs such as pointers removed, and network and network man-
agement features such as built-in types for MIB access and packets added. The
second language, Spanner, is a CISC assembly language. Sprocket programs are
compiled into Spanner code which, in turn, is assembled into a compact machine-
independent binary encoding that is placed into Program Packets. Sprocket and
Spanner are equivalent languages; the difference is that tighter programs can be
written in hand-optimized Spanner code.

4.1 Language Issues

Spanner is designed to yield very small encoded programs. Since each program
stands alone, the strength of Spanner depends on its ability to fit as much code into

Smart Packets for Active Networks . 7

a packet as possible. The practical limit on program size is 1 Kbyte, or roughly
an Ethernet frame less headers and authentication data. Meaningful programs
include those able to perform networking functions and MIB information retrieval,
operations normal to network management. The language provides these complex
concepts as primitives.

The language is designed for safety—a program must not be allowed to do harm
to a host or router past the limit of its authorization. (For the rest of this section,
we will use the generic term node for a host or router). To this end, the language
does not include file system access or general system calls. Yet, a Smart Packets
program has to be able to manipulate the node (through MIB variables and other
parameters) as well as manipulate its own packet’s contents (through filling in the
data area in the packet, and the generation of new packets).

After surveying a large set of current programming languages, none were found
that could encode more than a trivial program in a compact, platform-independent
encoding. To illustrate the comparisons of code sizes, a recursive function for com-
puting Fibonacci numbers was written and compiled into the byte code represen-
tation offered by several languages. All implementations used the same algorithm,
shown in Figure 4, which is described in Abelson, Sussman, and Sussman [Abelson
et al. 1985]. Table 1 shows the size of the resulting compiled byte code representa-
tions.

(define (fib n) (fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))

Fig. 4. Scheme source to compute Fibonacci numbers

Language Size (bytes)
Emacs Lisp (v19.34) 617
Java 370
OCAML (v1.03) 294
Sprocket 91
Spanner (hand optimized) 51

Table 1. Relative sizes of byte codes for Fibonacci function

The byte code file from Emacs Lisp includes comments and additional error
checking code. Stripping the comments and the added code reduces the byte code
to a reasonable 139 bytes. Objective CAML (OCAML v1.03), a functional pro-
gramming language related to ML, produces a byte code file of 294 bytes. OCAML
is strongly typed and features automatic memory management and incremental
garbage collection. Nevertheless, the support for functions written in C, both user
level and system calls, appeared to be awkward to extend, and it is advantageous

8 . Beverly Schwartz et. al.

for Smart Packet programs to use existing C-based methods to monitor system
resources.

The concerns about Java are more subtle. Javais a very rich language, with many
primitives such as file access and GUI manipulation that Smart Packets neither
needs nor wants. Yet Java lacks features such as MIB access that Smart Packets
needs. Today, most of these problems could be solved using Java’s Native Interface
(JNI) [Liang 1999] but the JNI was still under development when we selected the
Smart Packets language. Other concerns about Java are that the Java Virtual
Machine Language is based on a RISC architecture, and so trades increased code
size for speed (exactly the reverse of the desired Smart Packets tradeoff), and that
Java Virtual Machine would have to be modified to support Smart Packet’s security
requirements (e.g., counting instructions and memory allocation restrictions).

4.2 Sprocket

Sprocket was designed to be both as familiar and as simple as possible without
leaving out desired functionality. Sprocket is based on C’s grammar and keywords,
but with the removal of constructs unnecessary for Smart Packets use, including
enumerations, typedefs, structures, and unions. Sprocket includes C++-style com-
ments and declarations anywhere within the scope. Parameters to functions can be
passed by value or by reference.

C primitive types like int, short, and char have been replaced with types that
explicitly indicate the type size and sign, and include sizes up to 128 bits. Floating
point values can be either 32 or 64 bits wide. There are built-in types for arrays,
strings, and lists. In addition, four new complex types are included as base types:
a packet type, an address type, a smart packet identifier type, and a MIB context
type. Address and packet are abstract types, since Sprocket can work in several
routing environments (IPv4, IPv6, and the Active Networks testbed). The contents
of the address and packet types automatically take the appropriate environment-
specific form. Since most (if not all) routing environments use the same attributes
(e.g., source address, destination address), these abstract types include methods to
manipulate these concepts (e.g., “get source address,” “set destination address”).

Sprocket’s complex types have operations that can be performed on instances of
that type. Sprocket uses C++ member function syntax to call these operations.
For instance, the packet type has an operation send. The syntax to call the send
function on an instance pkt is pkt.send().

There are self-referential operations, that is, operations on the Program Packet
itself, for retrieving header information. These operations are useful for recording
how the smart packet is acted upon as it transits the network. These operations are
not associated with a type; the object on which these methods operate is assumed.
Additional operations control the loading and unloading of data, called baggage,
also carried in this Program Packet.

There are also operations for retrieving node MIB information, through both
general queries to the MIB and short-cut primitives. Many of these short-cut
primitives deal with the often-retrieved data on the interface devices. The general
queries allow a user to navigate a MIB database and to retrieve data using SNMP-
style operations (e.g., get, get next, set).

Figure 5 shows a small Sprocket Program. This program gets the number of

Smart Packets for Active Networks . 9

main() {

/* variable declarations:
* addr: for getting addresses later in the code
* pkt: a packet which will be sent to the originating node
* num_interfaces: contains the number of interface devices
* num_addr: contains number of addresses for an interface
* index: a loop index */

array of address addr;

packet pkt;

unsigned16 num_interfaces = num_ifaces();

unsigned8 num_addr;

unsignedl16 index;

/* put the number of interfaces into pkt’s data area */
pkt.data_append(num_interfaces);

/* find out information about each of the interface devices
* on the node */
for (index = 1; index <= num_interfaces; i++) {

/% determine the number of addresses for the interface; it
% could be more than one if there are alias addresses */
num_addr = num_addresses(index);

/* only need to get addresses if the interface has some */
if (num_addr > 0) {

/* set array size to number of addresses and get the
* addresses */

addr.set_size_of_dimensions (num_addr);

get_addresses (addr) ;

}

/* put the following info in pkt’s data area:
* the interface device number
* the addresses (if there are any)
* the mtu */

pkt.data_append(index) ;

if (num_addr) pkt.data_append(addr);

pkt.data_append(get_iface_mtu(index));
}

/* send the packet to the originating node */
pkt.send();
}

Fig. 5. Example Sprocket Program

interface devices, and, for each device, gets all of the addresses associated with that
device (this will be especially useful with IPv6, where devices can routinely have
multiple addresses) and the MTU for the device. This information is put into a
packet and sent back to the originating node.

The num_ifaces() call in the declaration section of the program in Figure 5 is
an example of a MIB query that is a primitive. We can also get the number of
interfaces through the general MIB query primitives. Figure 6 illustrates how to
access the number of interfaces through general MIB queries.

4.3 Spanner

Spanner is the assembly language for Smart Packets. Spanner reflects a stack-based
CISC architecture that differs from traditional assembly languages in two important
ways: Spanner has declared variables, and has no access to memory, so storage is

10 . Beverly Schwartz et. al.

/* the following is equivalent to
* unsignedl6 num_interfaces = num_ifaces(); */
mib m; // declare a MIB context (initialized to MIB-II)
m.down(2,1); // append ".2.1" to the MIB address

// (this MIB address is for number of interfaces)
unsigned16 num_interfaces = m.getn_unsigned32();

// perform a get_next (which gets num ifaces)

Fig. 6. Example use of General MIB Query Primitives

either on the stack or in variables.

Variable declarations are probably the most novel feature of Spanner. Assemblers
traditionally do not declare variables, but simply label (and possibly initialize) por-
tions of memory. Since the virtual machine does not have general purpose memory,
variables must be created explicitly. Furthermore, the virtual machine needs to
know type information to enforce type safety. It is more efficient to explicitly state
the variable type once, and expect the virtual machine to keep track of the type,
than to have to encode the type information with every use of the variable.

Spanner’s types correspond directly to the types in Sprocket, and almost all
primitives in Sprocket have direct equivalents to operations in Spanner (some are
redundant). There are about 200 such operations. The result of the operation may
or may not be pushed on the stack, according to the default for the operation and
the programmer’s override of the default. Operations to manipulate the stack are
also provided, including popping an item off the stack, pushing a value on the stack,
and pushing a reference to a variable on the stack. Most Spanner operations affect
the virtual machine’s condition code as well.

Spanner operations generally map directly to primitives in Sprocket. Spanner
does the appropriate automatic type promotion when necessary. Spanner has op-
erations that perform on arrays, lists, strings, addresses, smart packet identifiers
(spid), packets, and MIB contexts. For each of these operations, there is a cor-
responding primitive in Sprocket—using the C++ member function syntax as de-
scribed above—which operates on an instance of an array, list, a string, an address,
a spid, a packet, or a MIB context. There are also operations that provide direct
access to the information about the packet the Spanner program arrives within,
such as getting source and destination address and appending data to the end of
the baggage area.

Spanner provides branch operations—branch if the condition code is set, branch
if the condition code is cleared, and branch unconditionally. The Sprocket compiler
uses these operations to implement flow control. Spanner also provides support for
subroutines: there are jump to and return from operators.

Spanner also provides primitives for sending Data and Message Packets back to
the source of the program. Since Spanner programs are designed to be executed on
each router along a path, when using the router alert IP option, the program itself
can control how, when, and whether its delivery is continued to the next node. It
can continue delivery along the default path, or choose which interface or interfaces
to continue delivery from. A Spanner program can also choose to terminate delivery
while en route.

Smart Packets for Active Networks . 11

4.3.1 Syntaz. Spanner syntax is similar in form to assembly language syntax:
a Spanner command is on a single line, and only one command per line. Each
line starts with an operation and is followed by arguments. The major difference
between Spanner and most assembly languages is that type information is embedded
in the operations.

To give a feel for Spanner, the program in Figure 7 is the Spanner equivalent of
the Sprocket program example in Figure 5.

decl-addr-arr-np ‘%addresses
; an array for getting addresses
decl-pkt %pkt ; declare a packet and put it on
; the stack the packet will be
; sent back to the program source
put the number of interfaces
on the stack
papp @ & ; take the num IFs from the stack
; and put them in the packet (@ and
; & indicate arguments on the stack;
; @ says to remove the argument
; after the operation, & says to
; leave it on the stack)

niface

decl-ul6 %index #1 ; declare a counter and initialize
; to 1
$loop: 1t & & ; test if we’ve looked at all IFs;

; leave both num IFs and the
reference to the variable index
on the stack

brt $done ; if we’ve looked at all IFs,
branch to $done

put the IF device number into

; the packet’s data area

papp hpkt &

naddr & ; get the number of addresses
; for the IF
ne0 & ; see if there are any addresses

brt $do_addresses
pop

bru $skip_addresses

$do_addresses:

sdim %addresses @

gaddr & &
papp hpkt @

$skip_addresses:

mtu &
papp Jpkt @
ainc-np &

there are addresses, go to
process them

get rid of the number of
addresses from stack

skip over address processing

set array to the number of
addresses

get addresses

put addresses into the packet’s
data area

get the mtu for the interface
put the mtu into the packet
increment %index, the IF counter

bru $loop ; jump back to the beginning of
; the loop
$done: send %pkt ; send the packet back to the
; source
cont ; continue delivery of this

Fig. 7.

Example

program

Spanner Program which encodes to 54 bytes.

12 . Beverly Schwartz et. al.

5. VIRTUAL MACHINE

The virtual machine executes the Spanner code in Program Packets. When a Pro-
gram Packet arrives at a node, the daemon authenticates the identity of the sender,
verifies the data origin and data integrity, and checks if the sender is authorized to
run the smart packet’s program. Then an instance of the virtual machine is instan-
tiated (literally, the daemon forks and the child process runs the virtual machine)
and the code within the packet is executed.

5.1 Virtual Machine Issues

There are many ways to implement virtual machines [Lindholm and Yellin 1997;
Lampson and Redell 1980; Redell et al. 1980]. The critical issues tend to be the
richness of the virtual machines’s feature set and security. These features tend to
dictate the expense and complexity of the virtual machine implementation.

In the Smart Packets system, security was vital but the required feature set was
relatively simple. As a result, we were able to implement a small virtual machine.

5.2 Virtual Machine Implementation

The Spanner virtual machine has a stack-based CISC architecture with the following
components: variable sets to store local variables (and one for global variables), a
stack which is used for instruction arguments and results, a condition code for
reporting results of operations, and frames for executing subroutines.

For each instruction in the program, the virtual machine extracts and examines
the 2-byte opcode and, based on the opcode, extracts the rest of the instruction data
(variable identifiers and literals). The arguments are resolved with actual values
in either the local variable set, the global variable set, or the stack. After type
checking, the instruction is executed, the condition code is modified as dictated by
the instruction, and, if indicated by the opcode, the result is pushed on the stack.

A variable declaration instruction is a declaration opcode (which contains the
variable type) followed by a variable identifier and, optionally, by an initial value
for the variable. The variable’s identifier, type and value are added to a variable
set. When a declaration is executed in a subroutine, then the variable is added to
the subroutine frame’s local variable set, otherwise it is added to the global variable
set.

The virtual machine condition code is either set or cleared. Branch instructions
use the condition code to decide whether or not to branch based on the state of the
code. Most instructions modify the condition code. If the result of the instruction
is a non-zero value, the condition code is set, otherwise it is cleared. The boolean
value of the condition code can be pushed on the stack with a Spanner operation.

The stack contains references to variables and value-type pairs that result from
operations. The stack is used when resolving instruction arguments and as a place
to put results. Hand-tuned Spanner programs can be made significantly more
compact by making use of the stack rather than referencing variables. Figure 7 is
an example of a program that uses the stack to this end.

Spanner includes subroutines. When a subroutine is called, a subroutine frame is
created and the stack is marked. During execution of the subroutine, stack accesses
are not allowed across the stack marker. The frame contains a variable set local
to the subroutine, the address to return to, the return type of the subroutine, and

Smart Packets for Active Networks . 13

an indicator as to whether or not the return value should be pushed on the stack.
Upon returning from the subroutine, all stack entries above the stack marker will
be removed, and the subroutine frame is destroyed. When a variable is used in an
instruction within a subroutine, the virtual machine first looks in the local variable
set; if the variable is not found, the virtual machine looks in the global variable set.

The virtual machine evaluates conservatively. If it does not know how to handle
a situation, it quits execution and sends an Error Packet back to the source of the
program. Examples of error conditions are: not recognizing an opcode, insufficient
entries in the stack for an instruction, receiving a return instruction when the virtual
machine does not think it is in a subroutine.

As part of the security architecture, the virtual machine is made aware of resource
limits such as maximum number of instructions to be executed, and how much
memory can be used, and privileges such as whether access to MIB sets is allowed.
These resource limits are set within the daemon upon startup, and are passed to
the virtual machine when it initializes. The virtual machine counts the number of
instructions executed and monitors the amount of memory the program is using,
and if one of these values exceed the limits imposed by the daemon, the program
will terminate and an Error Packet is sent back to the originating host.

5.3 Limiting The Performance Impact of Smart Packets

The Smart Packets virtual machine resides on the router’s control processor, not
in the router’s main forwarding path [Partridge et al. 1998]. As a result, Smart
Packets have no impact on the router’s forwarding speed. Their only impact is on
the router’s ability to perform control functions.

Two features limit the impact of Smart Packets on control performance. First,
most routers have operating systems that can prioritize tasks. So the Smart Packets’
virtual machine can be run at a low priority, to protect more vital functions, such as
routing table management. Second, Smart Packets have no persistent state. At no
point are resources on the control processor being held in anticipation of receiving
another smart packet. So there’s no penalty for discarding a smart packet in cases
of overload. (One can contrast this freedom to discard with stateful protocols,
where discarding a packet may actually increase load, by causing state to linger
longer).

6. SECURITY

The correct operation of the network requires that individual routers not be diverted
from their primary task of forwarding packets. Smart Packets represents a potential
threat to network operation, because smart packets contain executable code than
can cause routers to malfunction in a number of ways, from consuming processing
resources to changing a router’s configuration.

Our security architecture uses four mechanisms to limit the potential damage
that smart packets can cause. First, we limit who can produce a smart packet.
Second, we provide a data origin authentication service for each smart packet, i.e.,
verifying the identity of the packet sender and then verifying that the sender is
authorized to send smart packets. Third, we provide a data integrity service for
each smart packet, i.e., verifying each received smart packet has not been changed
in an unauthorized or accidental manner while en route. Fourth, we restrict certain

14 . Beverly Schwartz et. al.

particularly risky operations to programs sent by authorized senders.

There are two major challenges in implementing this security architecture. First,
the smart packets mutate in flight. Data can be added or deleted from the baggage
area of a smart packet at every hop. Second, the amount of information required
to check the data authenticity and data integrity of a smart packet is large with
respect to the overall packet size. If we wish to preserve the idea that each smart
packet stands alone and creates no long term state in routers, we must carry this
information with each Smart Packet.

6.1 Authentication and Authorization

The Smart Packets security architecture has two components, authentication and
authorization. Using an ANEP authentication option, the packet’s origin can be
authenticated and the integrity of its data verified. The authentication option
specifies the entity that signed the datagram, the type of signature contained, the
type of certificate contained, and the lengths of the signature, the certificate, and
the data in the payload field that is signed.

Authorization of the actions contained in the smart packet message is the second
phase of the security architecture. There are two major elements of authorization:
(1) the control of Management Information Base (MIB) access, which includes
MIB views and read/write authorization, and (2) runtime environment limits in
the virtual machine, such as the maximum number of packets sent per invocation,
the maximum amount of memory that can be allocated, or the maximum number
of instructions that can be executed per invocation.

Access to MIB information is defined in a manner complimentary to SNMPv3,
reducing the management overhead of both systems. Smart Packets maps MIB
access controls to those defined for SNMPv3’s View-based Access Control Model
(VACM) [Wihnen et al. 1998], allowing one access mechanism to define access for
both smart packets and for SNMPv3 messages. The collection of management
information accessible by a SNMP entity is bound to a SNMP context. Smart
Packets requires its own context for proper separation of the name spaces within the
SNMP agent. Within a particular SNMP context, multiple SNMP group names can
be identified. MIB access rights, i.e., views available and read/write authorizations,
are bound to each SNMP group name. The SNMP group name to be used for an
authenticated sender, along with the values of the runtime environment limits for
this sender, are set via keywords in a per-node managed database.

The user identity, obtained by the authentication component, is used to obtain
the resource limits for the program in the database. The limits are set in the virtual
machine, and the virtual machine enforces limits on host resources and access to
privileged instructions. The remainder of this section describes how Smart Packets
implements authentication.

An authenticated smart packet carries a X.509 public-key certificate identifying
the sender of the smart packet. A digital signature, created with either DSA over
SHA1 or RSA over MD5 (as decribed in [Schneier 1996], among others), is used
to verify the data integrity of the parts of the smart packet that are not changed
en route by intermediate routers, mainly the program, but also other non-changing
fields that are necessary for correct interpretation of the packet. Use of a digital
signature prevents the malicious tampering of these parts of the packet.

Smart Packets for Active Networks . 15

Selecting which data in the smart packet is to be covered by the authentication
information is a crucial issue. The authentication information not only verifies the
origin of the smart packet, but also verifies the data integrity of the packet. One
choice is for the authentication data to cover only the smart packet, but doing so
leaves the ANEP header unprotected by the integrity check. Covering the entire
ANEP packet is not possible, because some parts of the smart packet, specifically
the baggage and the packet length field in the ANEP header, can change from hop
to hop, causing the cryptographic data integrity check to fail.

We use a modified authentication option in the ANEP header to carry a digital
signature over the entire ANEP header and the entire smart packet, except the
zeroed packet length field in the ANEP header and any baggage at the end of the
smart packet. This solution trades off exposing the entire packet length against
signing the packet on each hop. The smart packet header includes the original
length of the packet (before the addition of any baggage) and the authentication
option includes the lengths of the both the ANEP header and the original smart
packet. Both sets of length fields are covered by the data carried in the authen-
tication option. Since the program and the length fields to find it are covered,
tampering with the program will cause the data integrity check to fail.

Nevertheless, this mechanism does not give full end-to—end protection of the
entire smart packet. Since the baggage and ANEP packet length fields are not
protected, vulnerabilities exist with using the baggage area of a smart packet. The
baggage area can be rewritten or deleted, or phony baggage can be added to the
packet. However, these vulnerabilities are mitigated by the fact that the smart
packet is conservatively interpreted in a virtual machine. An interpretation error
stops program execution and signals an error packet.

If IPsec [Kent and Atkinson 1998] tunnels exist between the routers, the smart
packets are additionally protected en route on a hop by hop basis. A wire-tapping
attack in this environment has a much lower probability of success.

Upon receipt of a smart packet, the following processing is performed:

(1) If an authentication option is not present in the ANEP message, the message
cannot be authenticated and so it is authorized with the minimal access rights
of the “anyone” entry in the authorization database, if present.

(2) If the authentication option is present, the public-key certificate is validated.
The validation process requires the public key of the certificate issuer.

(3) The signature of the entire ANEP message is verified with the following ex-
ceptions: the ANEP packet length field is zeroed and the baggage area of the
smart packet program is not included.

(4) If the authentication fails, the packet is discarded. If the authentication cannot
be completed, e.g., because of certificate validation timeout, the packet is for-
warded. If the verification succeeds, the packet proceeds to the authorization
phase.

(5) The identity contained in the certificate is used to search the authorization
database for access rights. The database entry identifies any restrictions or
privileges that the program should have.

Programs whose authenticated sender identity does not match a specific database
entry are run in a virtual machine with privileges and resources set to “anyone,” the

16 . Beverly Schwartz et. al.

default for messages without an authentication option. We believe that this access is
both useful and necessary as a smart packet can replicate unauthenticated services
available today, e.g., traceroute. Yet all access may be denied at the discretion of
local security policy. In this situation, the packet is still forwarded.

6.2 Concerns about Certificates

Implementing the services as described above raises concern on the size of the
certificate in relation to the size of the entire smart packet. For example, the length
of an X.509 certificate (identified for use in the ANEP specification) containing a
1 Kbit key is approximately 400 bytes. Summing the sizes of the IP, ANEP, and
smart packet headers and the certificate and subtracting from the size of a maximum
length IP datagram over Ethernet leaves approximately 1024 bytes for the smart
packet program, any initializing arguments, and the baggage.

Another concern is the time and resources needed to validate the certificate.
Many of the techniques that reduce the time needed to process the certificate re-
quire additional certificates in the message. These techniques have their limits for
use with Smart Packets. For example, if three certificates are included in the au-
thentication information, only 200 bytes are left for the program. That is enough
for some useful programs, like the one in Figure 5, but is still very limiting. On
the other hand, there is a tradeoff between the time and computation costs to au-
thenticate a program performing a limited operation, e.g., tracing a route, versus
the security cost of just running the program. For this reason, unauthenticated
programs are allowed access, albeit in a resource limited environment.

Other possible approaches are to send the certificates ahead of the smart packet
or have the certificates requested after the arrival of the smart packet. These
approaches work, but have the unfortunate downside of creating cross-packet state,
something we have tried to avoid. While there is state retained in the per-node
database, this state is static and is maintained outside the execution environment.
Furthermore, it does not require rendezvous between two or more smart packets
for correct operation.

7. EXPERIENCE

As part of the Smart Packets effort, we installed Smart Packets on the CAIRN
testbed shown in Figure 8. We then ran several small test programs through the
network. A few of those programs are discussed here and compared with the existing
alternative methods for getting the same information.

The program shown in Figure 5 finds all the interfaces on each router and, for
each interface, extracts the interface IP address and MTU. Currently, the only way
to retrieve this information from a router in a standard fashion is via SNMP. SNMP
requires that, for each interface, we send two separate SNMP GET messages and
get two replies, to learn the the MTU and address for the interface. The Smart
Packets program requires just one Program packet and one Data packet in reply
for the entire system.

Another interesting toy program is a round-trip traceroute. The classic traceroute
program traces the hops in a one way path by sending a series of IP packets with
progressively higher TTLs and reading the ICMP TIME_EXCEEDED response
messages returned by routers along the path [Jacobson and Deering 1997]. This

Smart Packets for Active Networks . 17

140.173.1.49

BBN MIT

140.173.1.50

140.173.4.30

140.173.4.29 140.173.6.58

— " >|DARPA
ISIE jolt

140.173.6.57

38.245.76.50
38.245.76.57,

140.173.1.77

ISIEkonajs— |
SAIC

140.173.1.78

Fig. 8. The CAIRN Testbed

trace method requires two packets to be sent for each hop in the path, and requires
traceroute programs at both ends of a connection to get a round-trip path.

A single Smart Packets Program Packet forwarded along the path and back can
achieve the same effect. The program simply adds the address of each hop to the
storage within the packet and, to protect against failure at the next hop, sends a
report of the packet’s progress back to the source. So, for instance, the traceroute
from BBN to DARPA caused the following six Data Packets to be returned.

1. 140.173.1.50

2. 140.173.1.50 140.173.4.29

3. 140.173.1.50 140.173.4.29 140.173.6.58

4. 140.173.1.50 140.173.4.29 140.173.6.58 140.173.6.57
5. 140.173.1.50 140.173.4.29 140.173.6.58 140.173.6.57

140.173.4.30
. 140.173.1.50 140.173.4.29 140.173.6.58 140.173.6.57
140.173.4.30 140.173.1.49

(=]

Traditional traceroute would have sent roughly twice as many packets.

8. LESSONS LEARNED

Over the course of the Smart Packets effort, we learned quite a few lessons. Several
came out of our original design decisions, and others came from the nature of an
active network. A few of the more general lessons are detailed below.

8.1 Statelessness is a two-edged sword

One of our early design decisions was to prohibit persistent execution state across
packets. This eliminates the need to design and implement services to manage and
check the consistency of the retained state, allowing us to greatly simplify our im-
plementation. Also, the design of Smart Packets to operate over a connectionless
transport service and to prohibit fragmentation further reduces the operating sys-
tem overhead needed support Smart Packets. A potentially more important result
is that since the Smart Packets program must fit inside a single datagram, a pro-
gram either arrives complete or not. In situations where a network is experiencing

18 . Beverly Schwartz et. al.

a large number of packet drops, using connectionless transport can offer benefit
over connection-based transport.

Nevertheless, not supporting persistent state affected other design decisions, such
as the maximum packet size, how to support the delivery of certificates in the
security architecture, and the inability to leave hints to other smart packets.

8.2 Compact encoding proved valuable

The design of the compact machine-independent binary encoding of Smart Packets
programs helped greatly to relax the constraints imposed by the decisions to use a
connectionless transport and prohibit fragmentation. The encoding allows simple
programs to be tiny, while complex programs are still small enough to fit inside a
single packet.

8.3 IP is less extensible than we believed

For active networks technology to co-exist in the current Internet, it must be able
to interact with both active and non-active nodes. Using IP as the internetwork-
ing protocol under ANEP allows Smart Packets to use the existing infrastructure
without needlessly replicating existing services. The IP Router Alert option allows
smart packets to pass though non-active nodes without disturbing them. Only
routers that support Smart Packets capture and evaluate them. Another benefit of
this architecture is that smart packets can discover the Smart Packets-aware nodes
along the network path, minimizing the need to design complicated routing overlays
or use source routing.

During the course of the effort, we learned that many routers and firewalls are
configured to drop any packet with IP options set, prohibiting the passage of smart
packets. Since the IP Router Alert option is mandated with the use of other pro-
tocols (e.g., RSVP), Smart Packets is not the only service denied by these systems.

8.4 Security is challenging when data mutates in flight

The security goals of Smart Packets, combined with the ability of the packet to
change en route and not having a priori knowledge of the evaluating nodes, makes
for a challenging problem. There are well known digital signature mechanisms
to protect the header and data fields of a packet, if the packet’s contents do not
change en route to the destination. While is it straightforward to compute a digital
signature on a packet, this mechanism can not be used to provide end-to—end
protection for data appended in the baggage field of a smart packet, because the
baggage may be changed from hop to hop.

Our design, to provide data integrity and data origin authentication services to
the smart packet, attempts to balance the need to protect the program code while
allowing parts of the packet to change en route. As a result, there is not end—to—end
protection of the entire smart packet.

Some programs, such as those that characterize paths or trace routes, may need
to visit a node more than once for correct operation. The security goals could be
interpreted to necessitate the implementation of non-windowing anti-replay meth-
ods that prohibit this behavior, thus greatly reducing the potential functionality of
active code in networks.

In general, getting the security correct for active networks appears to be more

Smart Packets for Active Networks . 19

difficult than getting security correct for non-active networks.

9. CONCLUSION

In 1987, when work on SNMP was first starting, several people, most notably
Dave Mills, suggested doing useful management activities within one programmable
packet. There are clear advantages to a powerful, yet constrained, programmable
mechanism for network node management and control.

Active networks technology is convincingly well-suited for network management.
There is (finally) enough compute power in the control side of routers and other
managed nodes that the added load of executing asynchronous programs is no
longer prohibitive. Polling, the current technique for network management, is like
playing Twenty Questions. Placing intelligence on the node provides more efficient
communication and faster discovery of targeted network events.

Implementing most of the pieces of Smart Packets, with security being the major
exception, was straightforward. The compact encoding allowed us to express com-
plex ideas in a very small space, and we believe this scheme is an improvement over
the approach taken in HEMS. The language provides general purpose MIB naviga-
tion and data retrieval methods—which is what SNMP does—but Smart Packets
can perform complex operations on these data at the site of the data—which is far
more powerful. Finally, having control over our virtual machine architecture has
made it far easier to enforce bounds and limits.

Smart Packets is designed as a network management tool. We are experimenting
with integrating this technology into real network management centers responsible
for operational networks. While we have laid the foundation for security, there is
still work remaining in building an infrastructure compact enough to fit in smart
packets, strong enough to allow remote control, and flexible enough to allow remote
authorization and delegation.

REFERENCES

ABELSON, H., SUSSMAN, G., AND SUSSMAN, J. 1985. Structure and Interpretation of Com-
puter Programs. McGraw-Hill.

ALEXANDER, D. S., BRADEN, B., GUNTER, C. A., JACKSON, A. W., KEROMYTIS, A. D,
MINDEN, G. J., AND WETHERALL, D. 1997. Active Network Encapsulation Protocol
(ANEP). http://www.cis.upenn.edu/ switchware/ ANEP /docs/ANEP.txt.

ARNOLD, K. AND GOSLING, J. 1997. The Java Programming Language. Addison-Wesley.

BHATTACHARJEE, S., CALVERT, K. L., AND ZEGURA, E. W. 1996. On active networking and
congestion. Technical Report GIT-CC-96/02, Georgia Institute of Technology, College of
Computing.

CASE, J. D., FEDOR, M., SCHOFFSTALL, M. L., AND DAvVIN, C. 1990. Simple network man-
agement protocol. IETF Network Working Group RFC 1157 (May).

DaviIN, J., CASE, J. D., FEDOR, M., AND SCHOFFSTALL, M. L. 1987. Simple gateway mon-
itoring protocol. IETF Network Working Group RFC 1028 (November).

GOSLING, J., Joy, B., AND STEELE, G. L. 1996. The Java Language Specification. Addison-
Wesley.

Hicks, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., AND NETTLES, S. 1998. PLAN:
A Packet Language for Active Networks. In Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming Languages (1998), pp. 86-93. ACM.

HousLEy, R., FOrRD, W., PoLK, W., AND SoLO, D. 1999. Internet x.509 public key infras-
tructure certificate and crl profile. IETF Network Working Group RFC 2459 (January).

20 . Beverly Schwartz et. al.

JACOBSON, V. AND DEERING, S. 1997. Traceroute(8). UNIX Manual Page.

Katz, D. 1997. IP Router Alert Option. RFC 2113 (February), IETF.

KENT, S. AND ATKINSON, R. 1998. Security architecture for the internet protocol. IETF
Network Working Group RFC 2401 (November).

LAampsoN, B. AND REDELL, D. 1980. Experience with processes and monitors in mesa.
CACM 23, 2 (April), 105-117.

LEROY, X. 1996a. A modular module system. Research report 2866 (April), INRIA.

LEROY, X. 1996b. The Objective Caml System. http://pauillac.inria.fr/ocaml/: INRIA.

LeEroy, X. AND MAUNY, M. 1993. Dynamics in ML. Journal of Functional Program-
ming 3, 4, 431-463.

LIANG, S. 1999. The Java Native Interface: Programmer’s Guide andSpecification (Java
Series). Addison-Wesley.

LinpHOLM, T. AND YELLIN, F. 1997. The Java Virtual Machine Specification. Addison
Wesley.

PARTRIDGE, C., CARVEY, P., BURGESS, E., CASTINEYRA, 1., CLARKE, T., GRAHAM, L., HATH-
AWAY, M., HErMAN, P., KiINnG, A., KoHALwMmi, S., MA, T., McALLEN, J., MENDEz, T.,
MILLIKEN, W., PETTYJOHN, R., ROKOSZ, J., SEEGER, J., SOLLINS, M., STORCH, S., To-
BER, B., TROXEL, G., WAITZMAN, D., AND WINTERBLE, S. 1998. A Fifty Gigabit Per
Second IP Router. IEEE/ACM Trans. on Networking.

PARTRIDGE, C. AND JACKSON, A. W. 1999. IPv6 Router Alert Option. RFC 2711 (October),
IETF.

PARTRIDGE, C. AND TREWITT, G. 1988. The High-Level Entity Management System. IEEE
Network Magazine.

Paxson, V. 1997a. End-to-end internet packet dynamics. ACM Computer Communication
Review 27, 4 (October), 139-152.

PaxsoN, V. 1997b. End-to-end routing behavior in the internet. IEEE/ACM Trans. on
Networking 5, 5, 601-615.

REDELL, D., DALAL, Y., HORSLEY, T., LAUER, H., LyncH, W., McJoNES, P., MURRAY, H., AND
PUrceELL, S. C. 1980. Pilot: An operating system for a personal computer. CACM 23, 2
(April), 81-92.

RoSE, M. T. 1994. The Simple Book: an introducton to internet management (2nd ed.).
Prentice-Hall.

SCHNEIER, B. 1996. Applied Cryptography (2nd ed.). John Wiley & Sons.

SPATSCHECK, O. 1997. IP signature header. DARPA Active Networks Secutity Mailing List,
http://www.ittc.ukans.edu/ “ansecure/.

STALLINGS, W. 1996. SNMP, SNMPuv2, and RMON: practical network management (2nd
ed.).

TENNENHOUSE, D., SMITH, J., SINCOSKIE, D., WETHERALL, D., AND MINDEN, G. 1997. A
survey of active network research. IEEE Communications Magazine 35, 80—86.

TENNENHOUSE, D. L. AND WETHERALL, D. J. 1996. Towards and active network architec-
ture. ACM Computer Commaunication Review 26, 2 (April).

TREWITT, G. AND PARTRIDGE, C. 1988. HEMS Monitoring and Control Language. RFC
1023 (November), IETF.

WETHERALL, D. J. AND TENNENHOUSE, D. L. 1996. The ACTIVE IP option. In Proc. of
the 7th ACM SIGOPS European Workshop (September 1996). ACM.

WIHNEN, B., PRESUHN, R., AND MCCLOGHRIE, K. 1998. View-based Access Control Model
(VACM) for the Simple Network Management Protocol (SNMP). IETF Network Working
Group RFC 2275 (January).

ACKNOWLEDGMENTS

The authors are grateful to the following people for ideas and stimulating discus-
sions: Matt Condell, Steve Kent, Charlie Lynn, David Mankins, Linsey O’Brien,

Smart Packets for Active Networks . 21

Luis Sanchez, Robert Shirey, Greg Troxel, and John Zao. The authors also ex-
press our gratitude to the anonymous TOCS reviewers for insightful comments and
constructive criticism.

