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1 Introduction

This document defines the interface to the operating system running on each node (router) in an
active network. A companion document describes the overall architecture of an active network [7].
That document identifies three layers of code running on each active node. At the lowest level,
an underlying operating system (NodeOS) multiplexes the node’s communication, memory, and
computational resources among the various packet flows that traverse the node. At the next level,
one or more execution environments (EE) define a particular programming model for writing active
applications. To date, several EEs have been defined, including ANTS [16, 15], PLAN [1, 5], and
CANES [3]. At the topmost level are the active applications (AA) themselves.

The goal of active networks is to make the network as programmable as possible, while retaining
enough common interfaces so that active applications injected into the network can run on as many
nodes as possible. In this context, it is not obvious where to draw the line between the EEs and the
NodeOS. One answer is that there is no line: a single layer implements all the services required by
the active applications. This is analogous to implementing a language runtime system directly on
the hardware, as some JavaOSs have done. However, separating the OS from the runtime system
makes it easier for a single node to support multiple languages. It also makes it easier to port any
single language to many node types. This is exactly the rationale for defining a common NodeOS
interface.

Deciding to separate the NodeOS and the EEs is only the first step; the second step is to decide
where the EE/NodeOS boundary should be drawn. Generally speaking, the NodeOS is responsible
for multiplexing the node’s resources among various packet flows, while the EE’s role is to offer
AAs a sufficiently high-level programming environment. This is loosely analogous to the distinction
between an exokernel and an OS library [8]. Beyond this general goal, the NodeOS interface is
influenced by the following three high-level design goals:

1. The interface’s primary role is to support packet forwarding, as opposed to running arbi-
trary computations. As a consequence, the interface is designed around the idea of network
packet flows [4]: packet processing, accounting for resource usage, and admission control
are all done on a per-flow basis. Also, because network flows can be defined at different
granularities—e.g., port-to-port, host-to-host, per-application—the interface cannot prescribe
a single definition of a flow.

2. We do not assume that all implementations of the NodeOS interface will export exactly the
same feature set—some implementations will have special capabilities that EEs (and AAs)
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may want to take advantage of. The interface should allow access to these advanced features.
One important feature is the hardware’s ability to forward certain kinds of packets (e.g., non-
active IP) at very high speeds. To paraphrase, packets that require minimal processing should
incur minimal overhead. A second feature is the ability to extend the underlying OS itself,
i.e., extensibility is not reserved for the EEs that run on top of the interface. The NodeOS
interface must allow EEs to exploit these extensions, but for reasons of simplicity, efficiency,
and breadth of acceptable implementations, the NodeOS need not provide a means for an EE
to extend the NodeOS directly. Exactly how a particular OS is extended is an OS-specific
issue.

3. Whenever the NodeOS requires a mechanism that is not particularly unique to active net-
works, the NodeOS interface should borrow from established interfaces, such as POSIX.

In addition to these high-level design goals, specific details of the interface were influenced by our
experience with three different NodeOS implementations [11].

2 Abstractions

The NodeOS interface defines five primary abstractions: thread pools, memory pools, channels,
files, and domains. The first four encapsulate a system’s four types of resources: computation,
memory, communication, and persistent storage. The fifth abstraction, the domain, is used to ag-
gregate control and scheduling of the other four abstractions. This section motivates and describes
these five primary abstractions explaining the relationships among them in detail, and mentions the
other abstractions that the NodeOS provides: events, the heap, packets and time.

2.1 Domains

The domain is the primary abstraction for accounting, admission control, and scheduling in the sys-
tem. Domains directly follow from our first design decision: each domain contains the resources
needed to carry a particular packet flow. A domain typically contains the following resources (Fig-
ure 1): a set of channels on which messages are received and sent, a thread pool, and is associated
with a particular memory pool. Active packets arrive on an input channel (inChan), are processed
by the EE using threads and memory allocated to the domain (dotted arc), and are then transmitted
on an output channel (outChan).

Note that a channel consumes not only network bandwidth, but also CPU cycles and memory
buffers. The threads that shepherd messages across the domain’s channels come from the domain’s
thread pool and the cycles they consume are charged to that pool. Similarly, the I/O buffers used
to queue messages on a domain’s channels are allocated from (and charged to) the domain’s mem-
ory pool. In other words, one can think of a domain as encapsulating resources used across both
the NodeOS and an EE on behalf of a packet flow, similar to resource containers [2] and Scout
paths [13]. A domain is not strictly a “user level” entity like a Unix process.

A given domain is created in the context of an existing domain, making it natural to organize
domains in a hierarchy, with the root domain corresponding to the NodeOS itself. Figure 2 shows
a representative domain hierarchy, where the second level of the hierarchy corresponds to EEs and
domains at lower levels are EE-specific. In this example, the EE implemented in Domain A has
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Figure 1: A domain consists of channels, memory, and threads needed for EE-specific processing.

chosen to implement independent packet flows in their own domains (Domain C through Z), while
the EE running in Domain B aggregates all packets on a single set of channel, memory, and thread
resources. The advantage of using domains that correspond to fine-grained packet flows—as is
the case with the EE contained in Domain A—is that the NodeOS is able to allocate and schedule
resources on a per-flow basis. (Domain A also has its own channels, which might carry EE control
packets that belong to no specific sub-flow.)

...
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Figure 2: Domain hierarchy.

The domain hierarchy is used solely to constrain domain termination. A domain can be ter-
minated by the domain itself, by the parent domain that created it, or by the NodeOS because the
domain has violated some resource usage policy. Domain termination causes the domain and all its
children to terminate, the domain’s parent to be notified, and all resources belonging to the termi-
nated domains are returned to the NodeOS.

Each parent domain contains a handler that is invoked just before a child domain is terminated
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by the NodeOS. This “imminent termination” handler allows the parent domain (generally running
the EE) to reconcile any state it may have associated with the dying domain and free any resources
it may have allocated on the child domain’s behalf. The handler is invoked in the context of a thread
in the parent domain; thus the parent domain pays for cleaning up an errant child domain. The
handler is given a small, fixed amount of time to complete its cleanup. If the thread exceeds this
limit, it, and the domain in which it runs, are terminated.

In contrast to many hierarchical resource systems (e.g., stride CPU schedulers [14]), the domain
hierarchy is independent of resource allocation. That is, each domain is allocated resources ac-
cording to credentials presented to the NodeOS at domain creation; resources given a child domain
are not deducted from the parent’s allocation, and resources belonging to a child domain are not
returned to the parent domain when the child terminates. This design was based on the observation
that requiring resources to be allocated in the same hierarchical manner as domains results is an
overly restrictive resource model. For example, suppose an ANTS EE runs in a domain and creates
new (sub)domains in response to incoming code capsules. These new domains should be given re-
sources based solely on their credentials. They should not be restricted to some subset of the ANTS
EE’s resources, which they would be if resources followed the domain hierarchy.

2.2 Thread Pool

The thread pool is the primary abstraction for computation. Each domain contains a single thread
pool that is initialized when the domain is created. Several parameters are specified when creating
a thread pool, including the maximum number of threads in the pool, the scheduler to be used, the
cycle rate at which the pool is allowed to consume the CPU, the maximum length of time a thread
can execute between yields, the stack size for each thread, and so on.

Because of our decision to tailor the interface to support packet forwarding, threads execute
“end-to-end”; that is, to forward a packet they typically execute input channel code, EE-specific
code, and output channel code. Since a given domain cuts across the NodeOS and an EE, threads
must also cut across the NodeOS/EE boundary (at least logically). This makes it possible to do
end-to-end accounting for resource usage. Note that from the perspective of the NodeOS interface,
this means that the thread pool primarily exists for accounting purposes. Whether or not a given
NodeOS pre-allocates the specified number of threads is an implementation issue. Moreover, even if
the NodeOS does pre-allocate threads, these threads may not be able to handle all computation that
takes place on behalf of the thread pool; for example, they may not be allowed to run in supervisor
mode. Any thread running on behalf of the thread pool, no matter how its implemented, is charged
to the pool.

The fact that a thread pool is initialized when a domain is created, and threads run end-to-end,
has two implications. First, there is no explicit operation for creating threads. Instead, threads in the
pool are implicitly activated, and scheduled to run, in response to certain events, such as message
arrival, timers firing, and kernel exceptions. Second, there is no explicit operation for terminating
a thread. Should a thread misbehave—e.g., run beyond its CPU limit—the entire domain is ter-
minated. This is necessary since it is likely that a thread running in an EE has already executed
channel-specific code, and killing the thread might leave the channel in an inconsistent state.

As just described, threads are short-lived, “data driven” entities with no need for explicit identi-
ties. While this is sufficient for many environments, we expect some EEs to require “system” threads
that are long-lived and not associated with any particular packet flow. For example, a JVM-based
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EE might have a global garbage collection thread that, when it runs, needs to first stop all other
threads until it is done. To support these environments, the API defines a small set of pthread-
inspired operations for explicit thread manipulation: sending an interrupt, blocking and unblocking
interrupts, changing a scheduler-interpreted priority value, and attaching thread-specific data.

2.3 Memory Pool

The memory pool is the primary abstraction for memory. It is used to implement packet buffers
(see Section 2.4) and hold EE-specific state. A memory pool combines the memory resources for
one or more domains, making those resources available to all threads associated with the domains.
Adding domains to a pool increases the available resources while removing domains decreases the
resources. The amount of resources that an individual domain can contribute to a pool is either
embodied directly in the domain’s credentials or explicitly associated with the domain at creation
time. The many-to-one mapping of domains to memory pools accommodates EEs that want or need
to manage memory resources themselves.

To see this, consider an alternative approach in which the NodeOS enforces memory limits at
domain granularity. In such a model, destroying a domain would require freeing the specific pages
of memory that were explicitly allocated to that domain. Unfortunately, this approach is too fine-
grained for a JVM-based EE in which sharing memory between domains is common. This would
tightly constrain what the JVM could place in those pages. Though the JVM could easily ensure that
objects created by a domain were placed in the correct memory, those objects could have incoming
and outgoing references from/to objects in other domains. A domain’s memory might also contain
JITed code that is shared with other domains. Either of these situations could cause problems when
the domain is destroyed and the memory freed. Attempting to avoid these scenarios or cleaning
up after them is problematic. In contrast, in the mempool-based model, the JVM would still create
domains as necessary, but the memory resources associated with each domain could be combined in
a single mempool which the NodeOS would monitor. Although destroying a domain still requires
reclaiming pages of memory from the JVM, it gives the JVM some flexibility in choosing which
pages it will return. Note that per-domain limits can still be enforced, they are just enforced by the
EE now rather than the NodeOS.

Memory pools have an associated callback function that is invoked by the NodeOS whenever
the resource limits of the pool have been exceeded (either by a new allocation or by removing a
domain from the pool). The callback function is registered when a memory pool is created by an
EE. The NodeOS relies on the EE to release memory when asked; i.e., the NodeOS detects when a
pool is over limit and performs a callback to the EE to remedy the situation. If the EE does not free
memory in a timely manner, the NodeOS terminates all the domains associated with the pool. The
rationale for these semantics is similar to that for domain termination give above: the EE is given a
chance to clean up gracefully, but the NodeOS has fallback authority.

Allocation from memory pools is performed via a familiar malloc-style interface. While the
granularity of memory allocation and accounting is implementation specific, there are no granularity
constraints on the visible interface. A more complicated mmap-style interface was considered, but
has been deferred to a future version of the specification.

Memory pools are independent, having no explicit or implicit relationship with other pools. A
hierarchical arrangement, allowing constrained sharing, was considered but has been deferred to a
future version of the specification.
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Finally note that memory pools are primarily for resource accounting. Their relationship to to
protection domains or address spaces is undefined. For example, an implementation may choose to
place all memory pools in the same address space or it might map memory pools one-to-one with
unique address spaces.

2.4 Channels

Channels are the primary abstraction for communication flows. Domains create channels to send,
receive, and forward packets. Some channels are anchored in an EE; anchored channels are used to
send packets between the execution environment and the underlying communication substrate. An-
chored channels are further characterized as being either incoming (inChan) or outgoing (outChan).
Other channels are cut-through (cutChan), meaning that they forward packets through the active
node—from an input device to an output device—without being intercepted and processed by an
EE. Clearly, channels play a central role in supporting our flow-oriented design. We crystallize this
role at the end of this subsection; first we describe the various types of channels in more detail.

When creating an inChan, a domain must specify several things: (1) which arriving packets
are to be delivered on this channel; (2) a buffer pool that queues packets waiting to be processed
by the channel; and (3) a function to handle the packets. Packets to be delivered are described by a
protocol specification string, an address specification string, and a demultiplexing (demux) key. The
buffer pool is created out of the domain’s memory pool. The packet handler is passed the packet
being delivered, and is executed in the context of the owning domain’s thread pool.

When creating an outChan, the domain must specify (1) where the packets are to be delivered
and (2) how much link bandwidth the channel is allowed to consume (guaranteed to get). Packet
delivery is specified through a protocol specification string coupled with an address specification
string. The link bandwidth is described with an RSVP-like QoS spec [17].

Cut-through channels both receive and transmit packets. A cutChan can be created by concate-
nating an existing inChan to an existing outChan. A convenience function allows an EE to create
a cutChan from scratch by giving all the arguments required to create an inChan/outChan pair.
Cut-through channels, like input and output channels, are contained within some domain. That is,
the processor cycles and memory used by a cutChan are charged to the containing domain’s thread
and memory pools, respectively. Figure 3 illustrates an example use of cut-through channels, in
which “data” packets might be forwarded though the cut-through channel inside the NodeOS, while
“control” packets continue to be delivered to the EE on an input channel, processed by the EE, and
sent on an output channel.

The protocol specifications for inChans and outChans refer to the corresponding protocol mod-
ules built into the NodeOS. For example, “ipv4”, “udp”, or “anep”. Components of the protocol
specification string are separated by the ’/’ character. Included at one end of a protocol specifi-
cation is the interface on which packets arrive or depart. Thus, a minimal specification is “if”
(for all interfaces) or “ifN” where N is the identifier of a specific virtual interface. For example
“if0/ipv4/udp/anep” specifies incoming ANEP packets tunneled through IP version 4 on an inChan,
while “ipv4/if” specifies outgoing IPv4 packets on an outChan. cutChan protocol specification
strings have an identical syntax with the insertion of a ’�’ symbol to denote the transition from
incoming packet processing to outgoing packet processing; for example, “ipv4/udp�udp/ipv4”.

The address specification string defines destination addressing information (e.g., the destination
UDP port number). The format of the address is specific to the highest level protocol in the protocol
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Figure 3: A domain with a cut-through channel.

specification (e.g., describing UDP addresses).
Simply specifying the protocol and addressing information is insufficient when an EE wants to

demultiplex multiple packet flows out of a single protocol, such as a single UDP port. The demux
key passed to the inChan specifies a set of 4-tuples: offset, length, value, mask. These tuples
are compared in the obvious way to the payload of the protocol — payload being the non-header
portion of the packet for a given protocol specification. For example, with a raw “if” specification,
the payload is everything after the physical headers; with an “if/ipv4/udp” specification the payload
is the UDP payload. Convenience functions are provided for creating filters that match well-known
headers.

Note that demux keys and protocol specifications logically overlap. The difference lies in how
NodeOS processes the packets. For example, an EE can receive UDP port 1973 packets by creating
an inChan with a protocol of “if0” and demux key that matches the appropriate IP and UDP header
bits, or by creating an inChan with a protocol of “if0/ipv4/udp”. The important and critical distinc-
tion is that the former case will not catch fragments at all, while the latter will perform reassembly
and deliver complete UDP packets. Additionally, the former will provide the IP and UDP headers
as part of the received packet whereas the latter will not.

We conclude our description of channels by revisiting our design goals. First, it is correct to view
channels and domains as collectively supporting a flow-centric model: the domain encapsulates the
resources that are applied to a flow, while the channel specifies what packets belong to the flow and
what function is to be applied to the flow. The packets that belong to the flow are specified with a
combination of addressing information and demux key, while the function that is to be applied to
the flow is specified with a combination of protocol module names, such as “if0/ipv4/udp” and the
handler function.

Second, cut-through channels are primarily motivated by the desire to allow the NodeOS to
forward packets without EE or AA involvement. Notice that a cutChan might correspond to a
standard forwarding path that the NodeOS implements very efficiently, perhaps even in hardware,
but it might also correspond to a forwarding path that includes an OS-specific extension. In the
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former case, the EE that creates the cutChan is able to control the channel’s behavior, similar to
the control allowed by APIs defined for programmable networks [6, 9]. In the latter case, the EE
that creates the cutChan is able to name the extension (for example, “if0/ipv4/extension/if1”) and
specify parameters according to a standard interface. However, exactly how this extension gets
loaded and its interface to the rest of the kernel is an OS-specific issue; the NodeOS interface does
not prescribe how this happens. In other words, cut-through channels allow EEs to exploit both
performance and extensibility capabilities of the NodeOS.

2.5 Files

Files are provided to support persistent storage and coarse-grained sharing of data. The file system
interface loosely follows the POSIX 1003.1 specification, and is intended to provide a hierarchical
namespace to EEs that wish to store data using a file oriented interface. While not every NodeOS
will have the ability to provide persistent storage, each NodeOS is encouraged to provide non-
persistent storage based on the proposed interface.

We consider access control to be outside the scope of the NodeOS spec at this time. There are
several interface calls that take an Access Control Descriptor argument, partly because their POSIX
counterparts take a mode argument. This argument has been changed to an an ACDdatatype, which
only the NodeOS can operate on. This datatype is not yet defined.

2.5.1 Name Space

Each EE sees a distinct view of the persistent filesystem, rooted at a directory chosen at configura-
tion time. In other words, “/” for the ANTS EE will be rooted at /ANTS, which implies that the only
files that can be accessed by the ANTS EE reside in /ANTS. This insulates EEs from each other
with respect to the persistent filesystem namespace. EE filesharing is not provided at this time.

However, in order to accommodate environments for which EE file sharing is desirable, future
versions will provide an interface to allow EEs to access the entire namespace. This interface will
most likely be either a function of NodeOS configuration parameters, or perhaps the security and
resource credentials with which the EE is instantiated.

2.6 Other Abstractions

Apart from the five primary abstractions outlined above, the NodeOS API needs to provide abstrac-
tions for events, the heap, packets and time to the EE. The event abstraction allows a Domain to
schedule an asynchronous event in the future, to be handled by a specific event handler. On behalf
of an EE, the domain can schedule, detach and cancel the event.

The NodeOS also implements a heap for memory management, and provides the EE with an
interface to allocate and free memory to and from the heap. This allows EEs to delegate memory
management to the NodeOS if they so desire.

A packet encapsulates the data that traverses a channel. Packets are essentially a buffer-like
structure built for fast adding and deleting of headers. Each packet is associated with only one
domain for its lifetime.

EEs need some notion of time. Hence the NodeOS needs to provide a time as an abstraction to
enables the EE to access the time of day, as viewed by the NodeOS.
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2.7 Abstraction Summary

Four of the primary abstractions, the thread pools, memory pools, channels and files, encapsulate
a system’s four types of resources: computation, memory, communication, and persistent storage,
respectively. The fifth abstraction, the domain, aggregates‘ control and scheduling of the other
four abstractions. However, semantically, a particular domain does not necessarily subsume the
instantiations of each of the other abstractions, or all of their components. Rather, its relationship to
the other abstractions is is summarized in Figure 4, where we observe many-to-one, one-to-one and
one-to-many mappings.

Domain � ��
�� Memory Pool

Domain ���
�� Thread Pool

Domain ���
�� Channel

Domain � ��
�� File Name Space

Figure 4: Relationship of Domains to the Memory, Thread, Channel and Persistent Storage Abstractions

A domain is the abstraction that contains the resources to carry a particular packet flow. Domains
are created and terminated by domain creation and domain termination functions, respectively. Do-
mains are organized hierarchically with respect to the creations and termination of its children. This
is in contrast to domain resource allocation, which is non-hierarchical. Rather, a child domain is al-
located memory, threads and channels based solely on the child’s credentials, and upon termination,
these resources are not returned to the parent domain.

The domain’s many-to-one relationship with the primary memory abstraction, the memory pool,
highlights the fact that EE domains may share memory. Memory pools are also organized hierar-
chically in terms of access control, and are created and terminated by memory pool creation and
termination functions, respectively.

Each domain has a unique thread pool, the primary abstraction for computation. This one-to-one
relationship is further emphasized by the fact that thread pools are created and terminated solely by
means of domain creation domain termination funtions, respectively. Threads are expected to log-
ically execute end-to-end, from handling incoming packets, to sending outgoing packets. Between
the two, the thread my cross to the EE for further processing, or remain within the NodeOS if the
cut-through path was invoked.

An EE may decide to create (or destroy) any number of channels within one domain, by invoking
the channel creation (or channel termination) functions. Channels can be incoming – inChans,
outgoing – outChans, or cut-through – cutChans.

Files are the primary abstraction for persistent storage, and are created and removed in the usual
way, via file open and file unlink operations, respectively. The file system is hierarchical, as most file
systems are, and loosely follows the POSIX 1003.1 specification. Any number of domains within
the same EE may access the same file namespace. Sharing the name space across EEs is currently
not allowed.

The NodeOS provides additional “auxiliary” abstractions: events, to enable asynchronous schedul-
ing of systems events in the future, a heap for memory management, packets to encapsulate the data
traversing a channel, and the notion of time.
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3 Interface

This section defines the interface for the five primary abstractions: domains, thread pool, memory
pool, channels and files. Furthermore, we define additional miscellaneous interfaces provided by
the NodeOS as abstractions for events, a heap, packets, time, network functions and a mechanism
for bootstrapping the EE.

3.1 Conventions

Before detailing the specifics of the NodeOS API, we present the conventions used in the specifica-
tion.

3.1.1 Symbol Namespaces

Nodeos implementations reserve, at least, the prefixes “an ”, “ani ”, “nodeos ”, “AN ”, and
“NODEOS ” for visible symbols. Each implementation will probably reserve more prefixes. For
example, the Moab implementation additionally reserves “moab ” and “ oskit ”.

All publicly visible symbols in the C function namespace, the C type namespace, and the C
preprocessor macro namespace will fall within these defined prefixes.

3.1.2 A Word on Notation

To improve readability, this document employs four different style fonts in the text, for type names,
variable names, function names and constants. Additionally, yet another style is used to highlight
snippets of C code.

Type names are styled in an upright sans serif. This applies to standard C types and NodeOS types.
For example, int, void *, an Domain, an Error.

Variable names are in sans serif italics. Examples are domain, mem, lock .

Function names have a boldface sans serif font. an domainCreate, an mempoolFree are
some examples.

Constants are in small caps sans serif, with AN DOMAIN SIZE and AN MUTEX SIZE, being some
examples.

Fragments of code look as follows:

typedef struct an_FooSpec {
int field1;
an_Object field2;

} * an_FooSpec;
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3.1.3 Specifications and Objects

There are two kinds of structure involved in NodeOS API calls, specifications and objects. All
the specifications have “Spec” in the type name, all other structures are objects. Specifications
are structures with visible, well-defined fields. Objects are opaque structures. The most important
distinction is that, from the perspective of the NodeOS, the lifetime of a specification is a single API
call, while the lifetime of an object is from its explicit creation, via an API “create” call, until its
explicit destruction, via an API “destroy” call. Note that standard C parameters, such as char * or
void *, are not part of this convention.

As a result of these semantics, which are further clarified below, objects can be subcomponents
of a specification, but specifications cannot be subcomponents of objects.

From the EE’s perspective, it must ensure that the specification and any storage referenced by
the specification are not mutated or reclaimed until the NodeOS API function returns. This enables
the EE to pass the same specification to multiple APIs calls simultaneously.

From the perspective of the NodeOS, when a reference to a specification is passed as a parameter
to a NodeOS API function, the NodeOS may freely access the specification and any storage that is
referenced directly or indirectly by the specification. For example, if the specification contains a
“char *” to a null-terminated string, the NodeOS may access the string storage. The documented
fields of the specification structure will not be modified by the NodeOS; this guarantees that when
the NodeOS API function returns, the EE will be able to locate pointers to storage that it placed into
the specification, and which also enables the EE to pass it to multiple API calls at the same time.
After a NodeOS API function returns, the NodeOS will retain no references to any specification
or its subparts, except references that exist because either (1) a subcomponent is an object, or (2)
the specification or one of its subcomponents is currently involved in another currently-running
NodeOS API function call.

For example, when creating a domain object via an domainCreate, consider the an Domain
parameter and the an ThreadPoolSpec parameter. The domain parameter is an opaque object,
whose memory cannot be reused until the domain is destroyed. The an ThreadPoolSpec param-
eter’s memory, however, can be reused immediately after the an domainCreate function returns.

3.1.4 Arguments to the API Function Calls

There are four types of arguments passed to the functions of the API:

1. standard C types, such as void *, char *

2. pointers to functions, such as void (*f)(void * arg), or an NotifyFunc

3. objects, such as an Domain

4. specifications, such as an ThreadPoolSpec

It is noteworthy that as arguments to an API call, or the entity returned by a function, both spec-
ifications and objects are passed by reference, as pointer type arguments. A template for declaring
a specification type and an opaque object type is shown below.
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typedef struct an_GenericSpec {
type1 t1;
type2 t2;

...

} * an_GenericTypeSpec;

typedef struct an_GenericObject {
type1 t1;
type2 t2;

...

} * an_GenericTypeObject;

The similarity in how both specification and object types are defined is intentional. The differ-
ence lies not in how they are defined, but rather in where they are defined. Specification structures
need to be defined in the EE, and are therefore explicitly defined in this document. Object structurs,
on the other hand, are defined in the NodeOS, since they need to remain implementation dependent
and as such opaque to the API. This necessitates the EE to declare a pointer type of the form

typedef struct an_GenericObject * an_GenericTypeObject

in order to make API calls with objects as arguments. Such an arrangement provides three advan-
tages. First, this allows for a set of portable header files, shared among all EEs, where all object
pointer types are declared. 1 Second, this preserves the opaqueness of the objects from the EE’s
standpoint, thus allowing for different implementations of the NodeOS. And finally, as certain ob-
ject types become better understood, such as an Credentials, migrating them into specifications
would be a simple matter of adding their structure definition to the EEs’ common header files.

3.1.5 Implicit and Explicit Object Allocation

The NodeOS API is designed to support two general patterns of use. The first, and most common,
is a model in which the EE does not care about tracking the memory used by the NodeOS to man-
age objects. Such an EE may pass NULL as the memory argument to all create calls, letting the
NodeOS allocate the memory used to represent the object. These implicitly allocated objects will
be automatically freed by the NodeOS when the corresponding destroy call is made. Furthermore,
in this model the EE does not need to create and destroy threads at all. By specifying the implicit
thread type and providing a “maximum number of threads” value in the thread pool specification
used at domain creation time, thread objects will be automatically allocated and deallocated by the
NodeOS as needed.

In the second model, an EE may wish to explicitly manage the memory used by the NodeOS
for EE-created objects. In this world, the EE will pass an appropriately-sized chunk of memory to

1Such header files would also include constants specifiying the object sizes, as outlined in section 3.1.5.
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all object create calls. The NodeOS will use the provided memory for the object, returning the a
pointer to the object, which is essentially a pointer to that memory as the object handle returned by
the create call. When such an explicitly allocated object is destroyed, the NodeOS will teardown
any internal state associated with the object and stored in the object memory, but will not free the
memory. When creating domains in the explicit-allocation model, the EE should first create thread
objects and pass those objects to the NodeOS in the thread pool specification.

Note that the explicit-memory allocation model has some limitations. First, it is most effective
in an implementation where the EE and NodeOS are tightly coupled (the so-called “trusted EE”
model). If there is a protection boundary between the NodeOS and EE, then the NodeOS will likely
still need to allocate its own private memory to hold the object state and will use the EE-provided
memory to hold a reference to the actual object. Second, there is still memory allocated by the
NodeOS that is not directly visible or controlable by the EE; for example, the actual memory used
to hold packets.

3.2 Domains

an Domain an domainCreate(void * mem, an Credentials c, an ThreadPoolSpec tp, an -
MemPoolSpec vm, an DomainInitFunc initfunc, void * initarg, an DomainTermFunc
termfunc ):

Create a new domain using the specified credentials, thread pool and memory resources.
The new domain is a child of the creating domain in the termination hierarchy. The mem
parameter indicates how the NodeOS should obtain memory for the new object. If not NULL,
mem must point to a block of memory of at least of size AN DOMAIN SIZE. If NULL,
the NodeOS will allocate the memory itself on behalf of the current domain. A pointer to
the resulting object is returned, or NULL if there was an error. The form and meaning of
the credentials are defined by the Security architecture [12, 10]. When the NodeOS has
finished setting up the internal state of the new domain, one of the domain’s threads is used to
asynchronously invoke the provided intialization functions with the single argument initarg.
Since this call is asynchronous, the create call may return before initfunc completes or is even
started. The NodeOS does a synchronous callback to function termfunc in the parent domain
as the first step in a child domain termination. The signature of an DomainTermFuncis
implementation specific but will always include a pointer to the domain being destroyed as
the first argument.

an ThreadPoolSpecand an MemPoolSpecspecify how the thread and memory resources,
respectively, are to be initialized.

typedef struct an_ThreadPoolSpec{
/* description of threads */
enum { AN_TH_IMPLICIT, AN_TH_EXPLICIT } ttype;
union {

/* AN_TH_IMPLICIT */
struct {

int maxthreads;
size_t stacksize;

} im;
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/* AN_TH_EXPLICIT */
struct {

int nthreads;
an_Thread *threads;

} ex;
} threads;

/* scheduler params */
int rate;
an_Timespec slice;
an_Schedule *sched;

} * an_ThreadPoolSpec;

Specifies the number of threads that can run concurrently in the domain and their schedul-
ing parameters. Threads are specified either implicitly (threads.im) as a number of threads
(maxthreads) and a per-thread stack size (stacksize), or explicitly (threads.ex) as a list
of pre-created thread objects (nthreads and threads). Threads in the pool get rate cycles-
per-second of normalized CPU bandwidth and are managed by scheduler sched . The slice
parameter specifies a maximum, in seconds and nanoseconds, of CPU time that threads in
this pool may run before yielding the processor (or exiting); if a thread runs beyond this limit,
the NodeOS will terminate the entire domain. A value of zero specifies no time limit, threads
in this pool will be scheduled preemptively.

typedef struct an_MemPoolSpec{
int nchunks;
an_MemPool pool;

} * an_MemPoolSpec;

Specifies that the domain is associated with memory pool pool and is contributing nchunks
chunks of memory to it. All allocations performed by the NodeOS on bahalf of the domain
are charged to this pool. The chunk size is implemenatation specific, defined in bytes with
the constant AN NODEOS MEMPOOLCHUNK SIZE.

an Error an domainDestroy(an Domain domain ):

Destroy a domain domain and release all of its associated resources, including those held by
children domains. Domain destruction is restricted by the domain hierarchy, that is, domains
can destroy only themselves and their child domains. The per-domain termhandler will be
invoked by the NodeOS on the target domain.

an Domain an domainId(void ):

Returns the current domain ID.

an Error an domainStartThread(an Domain domain, void (*func)(void * arg), void * arg,
an Thread* retval ):

Start one of the domain’s threads at function func with argument arg. If retval is non-zero,
returns the ID of the started thread.
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3.3 Thread Pool

an Thread an threadId(void ):

Returns the current thread ID.

an Error an threadStart(an Thread thread , an Domain domain, void (*func)(void *arg),
void * arg ):

Start a specific thread executing at function func with argument arg in domain domain.

void an threadExit(void ):

Return currently executing thread to the thread pool.

void an threadYield(void ):

Yield the processor from the current thread.

void an threadSleep(const an TimeSpec delay ):

Delay the current thread for at least the given number of seconds and nanoseconds.

void an threadSetData(void * data ):

Set a per-thread pointer for the current thread.

void * an threadGetData(void ):

Return the current thread’s per-thread data pointer. If an threadSetData has not been pre-
viously called for this thread, the result of calling an threadGetData is undefined.

void an threadInterrupt(an Thread thread ):

Interrupt the specified thread and cause it to run an interrupt handler. If that thread is blocked
in an condWait, the interrupt handler is run without waiting for the an Condto be sig-
nalled. If thread thread is engaged in another NodeOS operation, it is unspecified whether the
interrupt handler runs before, during, or after, the nodeos operation.

The interface for setting a thread’s interrupt handler, whether that handler is per-thread, per-
domain, or global to the EE, and how the handler is invoked, are implementation-defined.

Caution: The interrupt routine can elect to terminate the thread, but terminating a
thread executing an upcall from an inChan might leave the inChan in an inconsistent
state.

void an threadBlockInterrupts(void ):

Block interrupts for the current thread. If an threadInterrupt is called for this thread, the
interrupt will be held until it calls an threadUnblockInterrupts (or unblocks interrupts by
some other implementation-defined means). A newly started thread has interrupts unblocked.

void an threadUnblockInterrupts(void ):

Unblock interrupts for the current thread. If an threadInterrupt was previously called for
this thread while its interrupts were blocked, that interrupt is delivered before an threadUnblock-
Interrupts returns to its caller. It is unspecified whether posting multiple interrupts while
blocked results in receiving multiple interrupts when unblocked, or just one.
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an Error an threadSetPrio(an Thread t , int priority ):

Set the given thread’s priority to the given value. Individual threads parameterize this policy
with a single integer priority value. Although called a priority, the parameter has scheduler-
specific semantics.

an Error an threadGetPrio(an Thread t , u int32 t * retval ):

Get the priority associated with the given thread.

To provide synchronization between threads within a single domain hierarchy, two familiar
abstractions are provided, mutual-exclusion locks and condition variables.

an Mutex an mutexCreate(void * mem ):

Create a new an Mutex object that can be used within this domain. The mem parameter
indicates how the NodeOS should obtain memory for the new object. If not NULL, mem
must point to a block of memory of at least of size AN MUTEX SIZE. If NULL, the NodeOS
will allocate the memory itself on behalf of the current domain. A pointer to the resulting
object is returned, or NULL if there was an error. The new mutex is initially unlocked.

an Error an mutex(Destroy ):an Mutex lock

Destroy the given an Mutex object. This call will unlock the an Mutex as well as removing
its internal state.

an Error an mutex(Lock ):an Mutex lock

Lock a mutex, blocking until it becomes available. Note that this thread might not run inter-
rupt handlers until after it succeeds in acquiring the lock.

an Error an mutex(TryLock ):an Mutex lock

Attempt to lock the mutex. Returns no error if successful, or some error value if another
thread already holds the lock.

Error values need to be defined.

an Error an mutex(Unlock ):an Mutex lock

Unlock a mutex previously locked by the calling thread.

an Cond an condCreate(void * mem ):

Initialize a new an Cond object that can be used within this domain The mem parameter
indicates how the NodeOS should obtain memory for the new object. If not NULL, mem
must point to a block of memory of at least of size AN COND SIZE. If NULL, the NodeOS
will allocate the memory itself on behalf of the current domain. A pointer to the resulting
object is returned, or NULL if there was an error.

an Error an condDestroy(an Cond condvar ):

Destroy the given an Cond object. Destroying an an Cond object with waiting threads will
return an error.
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an Error an condWait(an Cond condvar , an Mutex mutex ):

The calling thread must hold the given mutex lock. Release the lock, and wait until an -
condSignal or an condBroadcast is called on this an Cond object. On return, the mu-
tex lock is again held. There may be spurious wakeups. If an threadInterrupt is called on
this thread while it is blocked in an condWait, the interrupt handler runs and then the thread
resumes its block (or perhaps sees a spurious wakeup).

an Error an condSignal(an Cond condvar ):

If any threads are blocked in an condWait on this an Cond object, wake one of them.

an Error an condBroadcast(an Cond condvar ):

If any threads are blocked in an condWait on this an Cond object, wake all of them.

3.4 Memory Pool

an MemPool an mempoolId(void ):

Get the mempool associated with the current thread’s domain.

an MemPool an mempoolCreate(void * mem, an MemPool parent , an MemPoolFull call-
back ):

Create a new mempool with no associated domains. The mem parameter indicates how
the NodeOS should obtain memory for the new object. If not NULL, mem must point to
a block of memory of at least of size AN MEMPOOL SIZE. If NULL, the NodeOS will
allocate the memory itself on behalf of the current domain. A pointer to the resulting object
is returned, or NULL if there was an error. The parent parameter is reserved for future use,
and should be NULL. The callback routine is invoked whenever the NodeOS detects that
the indicated pool is over its memory limit. Parameters to the callback function include the
pool, the current memory consumption of the pool (including the amount that puts it over
limit) in AN NODEOS MEMPOOLCHUNK SIZE chunks, and the memory limit of the pool
in chunks. The callback function should use an mempoolFree to free up memory.

an Error an mempoolDestroy(an MemPool pool ):

Destroy a memory pool. The indicated pool must not have any attached domains or the
call will fail. The caller is responsible for freeing the memory occupied by the now defunct
memory pool object.

void an mempoolAlloc(an MemPool pool , an Size size ):

Allocate a chunk of memory of at least the indicated size. The returned memory can be larger
than the requested size if the implementation manages fixed-size chunks (for accounting rea-
sons). Returns NULL if there are insufficient resources in the memory pool (and the pool’s
callback fails to return any).

void an mempoolFree(an MemPool pool , void * mem, an Size size ):

Free a chunk of memory previously allocated with an mempoolAlloc.
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3.5 Channels

3.5.1 Channel Creation

an InChan an inchanCreate(void * mem, an Domain domain, an DemuxKey demuxKey ,
char protospec, char addrspec, an NetSpec netspec, an ChanRecvFunc deliverfunc,
void * deliverarg ):

Creates an input channel. The mem parameter indicates how the NodeOS should obtain
memory for the new object. If not NULL, mem must point to a block of memory of at least of
size AN CHAN SIZE. If NULL, the NodeOS will allocate the memory itself on behalf of the
current domain. A pointer to the resulting object is returned, or NULL if there was an error.
Only packets matching the given demuxkey are handed to the deliver function. Processing
specified by the protocolspec argument is performed on the packet. The demuxkey does
not match against the headers used in the protocol processing. protospec must specify,
at a minimum, an interface on which to receive packets. See Section 3.5.3 for a complete
description of this specification. addrspec specifies the addresses to match. It is a restricted
filter and its format is dependent upon the protocolSpec. See Section 3.5.4 for a description
of this specification.

The netspec parameter is an instance of a an NetSpec, which is used to describe the re-
sources to be associated with a channel.

typedef struct an_netspec {
int maxthreads;
unsigned int bandwidth;
struct {

int npbufs;
anPacketBuffer*pbufs;

} buffers;
} an_netspec_t;

For input channels, the maxthreads field indicates the maximum number of concurrent
threads that can be processing packets and buffers contains an array and count of buffers
used for receiving incoming packets. The bandwidth field is ignored for input channels.

Issue: anPacketBuffer is not yet defined.

When a packet matches the an DemuxKeyand has been processed as indicated by the proto-
col specification, it is delivered to the EE by invoking deliverfunc using a thread scheduled
out of the owning domain’s ThreadPool. deliverarg will be passed verbatim to deliverfunc.
The exact type of an ChanRecvFunc is left to the NodeOS implementation. It should in-
clude at least the deliverarg and a pointer to the packet data.

an OutChan an outchanCreate(void * mem, an Domain domain, char * protospec, char *
addrspec, an NetSpec netspec ):

Create an output channel on which packets can be sent. The mem parameter indicates how
the NodeOS should obtain memory for the new object. If not NULL, mem must point to a
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block of memory of at least of size AN CHAN SIZE. If NULL, the NodeOS will allocate the
memory itself on behalf of the current domain. A pointer to the resulting object is returned,
or NULL if there was an error.

The protospec and addrspec define the processing and headers that are attached to any
packets sent on this channel. The netspec parameter is an instance of a an NetSpec, as
with input channels. For output channels, only the bandwidth field is used to describe the
maximum bandwidth available to the channel.

Issue: The units of the bandwidth parameter are not yet defined.

an CutChan an cutchanSplice(void * mem, an Domain domain, an InChan inchan, an -
OutChan outchan, char * protospec ):

Create a cut-through channel that processes packets from the given inchan and pushes them
through the processing specified by protospec and finally out the given outchan. The mem
parameter indicates how the NodeOS should obtain memory for the new object. If not NULL,
mem must point to a block of memory of at least of size AN CHAN SIZE. If NULL, the
NodeOS will allocate the memory itself on behalf of the current domain. A pointer to the
resulting object is returned, or NULL if there was an error. Resources for cut-through channel
processing are taken from the an NetSpecparameters specified when creating the component
input and output channels.

The protospec tells the NodeOS what sort of processing is done on the packets. E.g.,
“ipv4/udp/magicIn�magicOut/udp/ipv4”. Generally, the inchan and outchan will only con-
tain a single “if” module in their specification and the cutchan will only contain higher level
modules. However, that is not required.

Note that the inchan provided must have its an deliverfunc set to NULL. It is an error to
send packets on an outchan that is associated with a cutchan.

an CutChan an cutchanCreate(void * mem, an Domain domain, an DemuxKey demuxkey ,
char * inprotospec, char * outprotospec, char * inaddrspec, char * outaddrspec, an -
NetSpec netspec ):

A convenience function that is equivalent to creating an inchan, a outchan and splicing them
together. However, no handles on the underlying inchan or outchan are available. Resources
for cut-through channel processing are given in netspec.

3.5.2 Using and Destroying Channels

Issue: we also need to define protocol-specific attributes that active protocols use to get/set param-
eters associated with passive protocols; e.g., report the interface that a given packet arrived
on.

an Error an outchanSend(an OutChan outchan, an Packet packet ):

Sends packet packet on output channel outchan. If the send call returns with no error
indication, then the packet has been commited to the wire; that is, the channel send operation
is synchronous.
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A future version of this specification will include additional interfaces to allow asynchronous
transmission of packets.

an Error an inchanDestroy(an InChan inchan ):

Destroy the given inchan. No more packets will be received. Active invocations of the
channel deliver function are unaffected. If this inchan was attached to a cutchan then the
cutchan must be destroyed first.

an Error an outchanDestroy(an OutChan outchan ):

Destroy the given outchan. No more packets may be sent on this channel. If this outchan
was attached to a cutchan then the cutchan must be destroyed first.

an Error an cutchanDestroy(an CutChan cutchan ):

Destroy the given cutchan. The cutchan must be destroyed before its inchan or outchan
can be destroyed.

3.5.3 Protocol Specification

As outlined in section 2.4, a protocol specification string consists of the individual protocol com-
ponents separated by “/”; for example, “if/ipv4/udp”. Encapsulation is supported; for example,
“if/ipv4/ipv4”. The order (position) of the protocol component composition should make sense;
that is, “if/udp/ip” is illegal, and the an chanCreate function would return NULL for an error. Be-
low are the protocol components that all NodeOS implementations will support, and their definitions
and restrictions.

“if” : any network interface. This refers to a virtual interface to a hardware device provided by the
NodeOS. Generally, only meaningful when combined with higher-level protocol components
since there is no way to specify a meaningful address component when multiple interface
types are present.

“if�” : a specific, also virtual, network interface �, where � � �� �� � � �.

“ipv4” IPv4 level processing (fragmentation, reassembly). Must be preceded by “if[�]/”.

“ipv6” IPv6 level processing (fragmentation, reassembly). Must be preceded by “if[�]/”.

“tcp” : TCP processing (ACKs, timeouts, etc). Must be preceded by “ipv4/” or “ipv6/”.

“udp” : UDP processing. Must be preceded by “ipv4/” or “ipv6/”.

“anepv1” : ANEP version 1 processing. Must be preceded by “if[�]/” or “udp/”.

“” : Every packet. The empty protocol spec is a promiscuous mode receive module. This module
only makes sense on shared media and is only allowed on inChans.
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3.5.4 Address Specification

For each protocol component, the corresponding address format is provided. The “highest-level”
protocol component in a chain determines the address format. As described in section 2.4, this
format is identical for inChans and outChans, and is concatenated twice, with a “�” separator, for
cutChans.

“if” : “�srcmacaddr�:�dstmacaddr�[:�mac-specific-info�]”

Address is a MAC address in hex. Format is specific to the virtual interface device (e.g. for
ethernet, 6 bytes). The optional MAC-specific field could include other, pertinent information
from the link header that could not otherwise be matched by the demuxkey (e.g., for ethernet,
the packet type).

Example 1: “0x0000e45907:0x0015006a00” (the “0x” prefix is optional).

Example 2: “0x0000e45907:0x0015006a00:0x800” matches only ETHERTYPE IP packets.

“ipv4” : “�srcaddr�[:�destaddr�[:�protocol�]]”

�srcaddr� is a dotted quad or hostname. �protocol� is a number between 0 and 256, which
refers to the higher level protocol to which this packet expects to be passed. �destaddr� is a
dotted quad or hostname and must be a name for one of the interfaces on the local host. ’*’
can be used to skip any field. As is the case with IPv4, �destaddr� must be a name for one
of the interfaces on the local host. ’*’ can be used to skip any field.

Example 1: “*:*:localnet” matches all IPv4 packets destined to the “localnet” interface on the
router.

Example 2: “www.cs.utah.edu:*:*” matches all IPv4 packets from www.cs.utah.edu that are
destined to this router.

Example 3: “18.34.100.80” matches all IPv4 packets destined to the receiving router from
this specific (source) address.

“ipv6” : “�srcaddr�[:�destaddr�[:�protocol�]]”

�srcaddr� and �destaddr� are in the form of x :x:x:x:x:x:x:x, where “x” is a hexadecimal
representation of a 16-bit piece of the address, or in the form of x :x:x:x:x:x:d.d.d.d, where
“d” is a decimal digit, and the quad of these decimal digits is of the IPv4 format above. In
essence, the addressing rules from RFC 1884 [] apply, such as dropping consecutive 0s and
replacing the last 32 bits with an IPv4 address.

Example 1: “FEDC:BA98:7654:3210:FEDC:BA98:7654:3210” matches all IPv6 packets des-
tined to the receiving router from this specific (source) address.

Example 2: “::FFFF:128.112.152.6” matches all IPv6 packets from that specific source ad-
dress destined to the receiving router.

Example 3: another example is needed here

�protocol� can only be used if the NextHeader field of the packet’s header, as specified in
the IPv6 RFC 1883 [], is a valid protocol number from the IPv4 Protocol header field.

Example 4: “” another example is needed here
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“udp” : “�srcaddr�[:�srcport�[:�destaddr�[:�destport�]]]”

�srcaddr� and �destaddr� are as in the “ipv[4�6]” spec address format.

�destport� and �srcport� are UDP port identifiers between 0 and 65535.

Example 1: “*:*:*:80” matches all UDP traffic on port 80 destined to this router.

Example 2: “18.34.100.80:*:localnet” matches all UDP traffic destined to this router from a
specific machine that arrives on the ’localnet’ interface of this router.

“tcp” : “�srcaddr�[:�srcport�[:�destaddr�[:�destport�]]]”

�srcaddr� and �destaddr� are as in the “ipv[4�6]” spec address format.

�destport� and �srcport� are TCP port identifiers between 0 and 65535.

Example 1: “*:*:*:80” matches all TCP traffic on port 80 destined to this router.

Example 2: “18.34.100.34:*:localnet” matches all TCP traffic destined to this router from a
specific machine that arrives on the ’localnet’ interface of this router.

“anepv1” : “�typeid�”

�typeid� is a 16-bit integer, as described in the ANEP RFC.

3.5.5 Demultiplex Keys

Demultiplex keys are used to filter incoming packets. See an inchanCreate in Section 2.4. A de-
mux key is logically a set of bytes that must be matched at various offsets in a packet. The NodeOS
provides a clean, high-level interface to allow implementations to make low-level optimizations
transparently.

Demux keys are applied to the payload of a channel packet, after protocol processing has oc-
cured and after the limited filtering of the address specification associated with a channel. For
example, using a demux key to match an ethernet header only makes sense when applied to a “raw”
channel.

Demux keys are built up incrementally using the various an demuxkeyAdd functions. When
adding a demux key “segment,” the offset at which it applies is implied as “immediately after the
preceding segment.” That is, the first segment added is applied to offset zero of each packet’s
payload while the second segment is applied starting length bytes into the payload, where length
is the length of the first demuxkey segment, and so on.

One consequence of using implied offsets is the inability to build up demux keys involving
protocols with variable length fields, that is, protocols where the offset of one field may be given
as a value in the packet itself. Some common cases of variable length protocol data, such as IPv4
options, are handled by specialized an demuxkeyAdd functions as described below.

Providing a more flexible packet filtering mechanism is left to NodeOS implementation specific
extensions and may be standardized in a future revision of the specification. The current, simple
matching scheme of a fixed offset, mask and length provides a “least common denominator” solution
of general applicability and which lends itself to efficient implementations.

Issue: can a demux key be add’ed to after it has been associated with a channel?
Issue: can the same demux key be associated with multiple channels?
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an DemuxKey an demuxkeyCreate( void * mem, an Domain domain ):

Create a new demux key. The mem parameter indicates how the NodeOS should obtain
memory for the new object. If not NULL, mem must point to a block of memory of at least of
size AN DEMUXKEY SIZE. If NULL, the NodeOS will allocate the memory itself on behalf
of the current domain. A pointer to the resulting object is returned, or NULL if there was an
error.

A newly created demux key, without any Add operations applied and when associated with a
channel, will match any packet.

an Error an demuxkeyDestroy(an DemuxKey key ):

Destroy the given demux key. The demux key must not be associated with any channel.

an Error an demuxkeyAdd(an DemuxKey key , u int32 t length, u int8 t * sequence, u int8 t
* mask ):

Define a sequence of bytes that this demux key must match. The sequence will be compared
to the packet at the current payload offset. At most length bytes will be compared. The
sequence defines the array of bytes to compare. If mask is non-NULL, only bits that are
active in the mask will be checked. The mask argument must be at least length bytes.

an Error an demuxkeyAddEth(an DemuxKey key , int flags, u int8 t ethsrc[6] , u int8 t ethdst[6] ,
u int8 t etype ):

A specialized version of an demuxkeyAdd used to construct a demux key segment match-
ing an ethernet header. The flags parameter is used to indicate which of the remaining pa-
rameters are to be matched exactly. If the An DEMUXKEY ETH ANYSADDR flag is not
given, ethsrc contains the ethernet source address to match, otherwise any value is allowed.
If the An DEMUXKEY ETH ANYDADDR flag is not given, ethdst contains the ethernet
destination address to match, otherwise any value is allowed. If the An DEMUXKEY -
ETH ANYETYPE flag is not given, etype contains the ethernet packet type to match, other-
wise any value is allowed.

an Error an demuxkeyAddIPv4(an DemuxKey key , int flags, u int32 t ipsrc, u int32 t ip-
srcmask , u int32 t ipdst , u int32 t ipdstmask , u int8 t protocol ):

A specialized version of an demuxkeyAdd used to construct a demux key segment match-
ing an IPv4 header. Though it only compares against the fixed part of the IP header, it will
correctly skip any IP options so that following key segments will be applied at the correct
offset. This segment does not do a checksum comparison, thus it might match a corrupted
IP packet. The flags parameter is used to indicate which of the remaining parameters are
to be matched exactly. If the An DEMUXKEY IPV4 ANYSADDR flag is not given, ipsrc
and ipsrcmask contain the source address and mask values to use, otherwise any value is al-
lowed. If the An DEMUXKEY IPV4 ANYDADDR flag is not given, ipdst and ipdstmask
contain the destination address and mask values to use, otherwise any value is allowed. If the
An DEMUXKEY IPV4 ANYPROTO flag is not given, protocol contains the protocol type
to match, otherwise any value is allowed.
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an Error an demuxkeyAddUDP(an DemuxKey key , int flags, u int16 t srcport , u int16 t
dstport ):

A specialized version of an demuxkeyAdd used to construct a demux key segment match-
ing a UDP header. This segment does not do a checksum comparison, thus it might match
a corrupted UDP packet. The flags parameter is used to indicate which of the remaining
parameters are to be matched exactly. If the An DEMUXKEY UDP ANYSPORT flag is
not given, srcport contains the source port to match, otherwise any value is allowed. If the
An DEMUXKEY UDP ANYDPORT flag is not given, dstport contains the destination port
to match, otherwise any value is allowed.

an Error an demuxkeyAddTCP(an DemuxKey key , int flags, u int16 t srcport , u int16 t
destport ):

A specialized version of an demuxkeyAdd used to construct a demux key segment match-
ing a TCP header. This segment does not do a checksum comparison, thus it might match a
corrupted TCP packet. The flags parameter is used to indicate which of the remaining pa-
rameters are to be matched exactly. If the An DEMUXKEY TCP ANYSPORT flag is not
given, srcport contains the source port to match, otherwise any value is allowed. If the An -
DEMUXKEY TCP ANYDPORT flag is not given, dstport contains the destination port to
match, otherwise any value is allowed.

an Error an demuxkeyAddANEP(an DemuxKey key , int flags, u int8 t version, u int16 t
protoid ):

A specialized version of an demuxkeyAdd used to construct a demux key segment match-
ing an ANEP header. Though it only compares against the fixed part of the ANEP header,
it will correctly skip any ANEP options so that following key segments will be applied at
the correct offset. The flags parameter is used to indicate which of the remaining parame-
ters are to be matched exactly. If the An DEMUXKEY ANEP ANYVERSION flag is not
given, version contains the version to match, otherwise any value is allowed. If the An -
DEMUXKEY ANEP ANYPROTOID flag is not given, protoid contains the protocol ID to
match, otherwise any value is allowed.

3.6 Filesystem

For the Filesystem specification, the equivalent POSIX section numbers are given where appropri-
ate.

an Error an fileClose(an Domain domain, an File file ):

Close the open file referenced by file. See POSIX Section 6.3.1.

an Error an fileFsync(an Domain domain, an File file ):

Cause all modified data and attributes of file to be moved to permanent storage. See POSIX
Section 6.6.1.

an Error an fileTruncate(an Domain domain, an File file, an Offset length ):

Cause the file referenced by file to be truncated or extended to length. See POSIX Section
5.6.7.
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an Error an fileLseek(an Domain domain, an File file, an Offset offset , an Whence whence ):

Set the seek pointer for the file referenced by file to offset , according to the directive whence.
See POSIX Section 6.5.3. The allowed values of whence are as follows:

AN SEEK SET: Offset is set to var offset bytes.

AN SEEK CUR: Offset is set to its current position plus var offset bytes.

AN SEEK END: Offset is set to the size of the file plus var offset bytes.

an Error an fileMkDir(an Domain domain, const char * path, an ACD acd ):

The directory given by path is created with the access permissions specified by acd . See
POSIX Section 5.4.1.

an Error an fileRead(an Domain domain, an File file, an Size nbytes, void * retval , an -
Size * retlen ):

Read nbytes of data from the file referenced by file into the buffer pointed to by buf . The
actual number of bytes read is returned in retlen. See POSIX Section 6.4.1.

an Error an fileRename(an Domain domain, const char * from, const char * to ): Rename
the file named from to new name var to. See POSIX Section 5.5.3.

an Error an fileWrite(an Domain domain, an File file, an Size length, void * buf , an Size
* retval ):

Write nbytes of data to the file referenced by file from the buffer pointed to by buf . The
actual number of bytes written is returned in retval . See Section POSIX 6.4.2.

an Error an fileUnlink(an Domain domain, const char * path ):

Remove the file named by path from its directory. In a departure from POSIX semantics, if
path is an empty directory, the directory is removed. See Section POSIX 5.5.1.

an Error an fileOpen(an Domain domain, const char * path, an Flag flags, an ACD acd ,
an File ** retval ):

The file specified by path is opened for reading and/or writing, according to the flags argu-
ment. The new file object is returned in the location specified by var file. See POSIX Section
5.3.1. The flags are specified by or’ing an appropriate subset of the following values:

AN O RDONLY: open for reading only

AN O WRONLY: open for writing only

AN O RDWR: open for reading and writing

AN O APPEND: append on each write

AN O CREAT: create file if it does not exist

AN O TRUNC: truncate size to 0

AN O EXCL: error if create and file exists
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an Error an fileStat(an Domain domain, const char * path, an Stat retval ): Obtain infor-
mation about the file named by path, and store that information in the buffer pointed to by
retval . See Section POSIX 5.6.2. The an Statstructure is defined as follows:

typedef struct an_Stat {
struct an_TimeSpec st_atimespec; /* time of last access */
struct an_TimeSpec st_mtimespec; /* time of last

modification */
struct an_TimeSpec st_ctimespec; /* time of last status

change */
an_Mode st_mode; /* inode protection mode */
an_Offset st_size; /* file size, in bytes */

} * an_Stat;
/* st_mode */
#define S_IFDIR 0040000 /* directory */
#define S_IFREG 0100000 /* regular */

Caution: Maintenance of the atime and ctime fields of the stat structure are considered
“optional” (may always return as zero), and are not required to be implemented by the
underlying filesystem.

an Error an fileFstat(an Domain* domain, an File file, an Stat retval ): Obtain information
about the open file referenced by file, and store that information in the buffer pointed to by
retval . Otherwise, f stat behaves identically to the stat function. See POSIX Section 5.6.2.

3.7 Other Abstractions

There are a few other abstractions and library functions that the NodeOS needs to provide.

3.7.1 Events

The Event abstraction allows a Domain to schedule something to occur asynchronously in the future.
Events are handled by event handlers.

typedef void (*an EventHandler)(an Evente, void *arg);

an Error an eventSchedule(EventHandler f , void * arg, u long t , an Event * retval ):

Schedule EventHandler f to occur at least t microseconds in the future.

an Error an eventDetach(an Event e ):

Release the handle on the given event.

an Error an eventCancel(an Event e, an Result * retval ):

Returns one of these values: AN EVENT FINISHED, AN EVENT RUNNING, or AN -
EVENT CANCELED.

an Error an eventIsCanceled(an Event e ): Returns a boolean value that specifies whether or
not the given Event has been canceled.
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3.7.2 Packets

Packets encapsulate the data that traverses a channel. Packets are essentially a buffer-like structure
built for fast adding and deleting of headers.

an Packet an packetCreate(void * mem, an Domain domain, u int8 t * buf , an Size len ):
Create a packet with initial contents contained by buf . The domain designates the domain
the packet will be associated with for its lifetime.

an Error an packetDestroy(an Packet p ): Destroy the named packet.

an Error an packetPush(an Packet p, u int8 t * buf , an Size len ): Push the data contained
in buf onto the front of packet p.

an Error an packetPop(an Packet p, an Size len, u int8 t retval ): Remove the first len of
data from packet p and return them.

an Error an packetDuplicate(an Domain domain, an Packet p, an Packet copy ): Creates
a duplicate of packet p. The domain designates the domain the new packet will be associated
with for its lifetime.

an PacketWalk an packetwalkCreate(void * mem, an Domain domain, an Packet p ): Ini-
tializes context needed to walk (traverse) all the buffers in packet p. If not NULL, the block
of memory pointed to by mem must have size at least AN PACKETWALK SIZE. The do-
main designates the domain to which any memory operations will be charged. Specifically
the context may require memory allocation.

an Error an packetwalkDestroy(an PacketWalk context ): Tears down the PacketWalk con-
text.

an Error an packetwalkNext(an PacketWalk context , an Size retlen, u int8 t ** retval ):
Returns the next data buffer in the Packet associated with the given PacketWalk.

3.7.3 Time

Execution Environments need some notion of time, hence the NodeOS needs to provide a structure
and one function:

typedef struct an_TimeSpec {
uint32_t tv_sec;
uint32_t tv_nsec;

} * an_TimeSpec;

an Error an timeGetTime(an TimeSpec t ): Fills in the current time of day. Though described
in seconds and nanoseconds, the actual granularity of the system’s clock is not specified.
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3.7.4 Miscellaneous Network Functions

There are a few other miscellaneous network-related functions a NodeOS will need to provide to
Execution Environments:

uint32 t an htonl( uint32 t hostlong ): Converts the given hostlong from host byte order to
network byte order.

uint16 t an htons( uint16 t hostshort ): Converts the given hostshort from host byte order
to network byte order.

uint32 t an ntohl( uint32 t netlong ): Converts the given netlong from network byte order to
host byte order.

uint16 t an ntohs( uint32 t netshort ): Converts the given netshort from network byte order
to host byte order.

an ModuleList getModuleInfo( ): Returns information about the available network modules,
including device drivers.

3.7.5 Bootstrapping an Execution Environment

At boot time the NodeOS will create a root domain and call the user provided function an boot from
a thread owned by the root domain. In this manner control is passed to an Execution Environment.

AN ROOTDOMAIN THREADMAX: Macro that defines the maximum number of threads al-
lowed in the root domain.

void an boot(void): Function called by the NodeOS to bootstrap the root execution environment.
This function executes in a thread owned by the root domain.

4 Future Issues

A number of issues were not addressed in the first version of this specification, which we expect
future versions of the interface to incorporate.

For the purpose programming flexibility of the EE, the “event” interface in underspecified. A
richer interface would include upcall functions to prompt for event notification, when a particu-
lar event occurs. Possibly, a mechanism tying channel operations and events would be desirable.
A more fundamental issue would be whether to declare the event as a “first-class” citizen of the
NodeOS interface; that is, should it be one of the primary abstractions? This remains an open
question.

A major issue that needs to be addressed in forthcoming versions is a more explicit mechanism
for authentication and resource allocation. Steve Schwab?

� general pattern matcher?

� new calls for asynchronous channels: the calls would signal/callback on completion
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� A way to specify a variable offset for an demuxkeyMatch would be useful. E.g. to define
offset as the value of the 4-bit quantity starting at bit 4 of the header.

� add the capability to specify demuxing on specific ANEP options

� An API is needed to provide node management. Should it be possible to intercept all packets,
then re-inject them into channels? This is related to the question of allowing a packet to match
multiple channels. A paragraph should be written on this, perhaps referencing BBN.

�

5 Editor’s Address

Comments should be sent to the mailing list:

activenets_nodeos@ittc.ukans.edu

or to the editor:

Larry Peterson
Department of Computer Science
35 Olden Street
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