
An Active Router Architecture for Multicast Video Distribution

Ralph Keller, Sumi Choi, Marcel Dasen, Dan Decasper, George Fankhauser, Bernhard Plattner
[keller|dasen|gfa|plattner]@tik.ee.ethz.ch [syc1|dan]@arl.wustl.edu

Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
Applied Research Laboratory, Washington University, St. Louis MO, USA
Abstract -- Video distribution over the Internet poses many
challenges. Due to the best-effort nature of today’s public data
networks, end system applications cannot rely on either band-
width or delay guarantees. We designed and implemented a proto-
type of a multicast video distribution architecture involving
knowledgeable active routers, a scalable video codec based on
wavelet transformation, and a high-performance video scaling
algorithm implemented as a router plugin. The plugin scales the
video with an average overhead of only 22 µs per video datagram
and is installed on-the-fly on the routers after the sender starts
transmitting video for the first time. Through experiments on our
test network, we show that we can dramatically improve the video
quality on the receivers (up to 15 dB PSNR) by scaling the video
on the routers to almost any target bandwidth. The target band-
width is evaluated by the router solely based on monitoring of the
load situation of the router’s downstream links and can be
adjusted within 50 ms.

I. INTRODUCTION

Delivering real-time video over the Internet is very desirable
because numerous applications like video conferencing, video-
on-demand, and video broadcast require it. Generally speaking,
we can distinguish between four types of video distribution
schemes for the Internet: adaptive versus non-adaptive, and
point-to-point (unicast) versus point-to-multipoint (multicast)
schemes.

Non-adaptive schemes rely on a fixed bandwidth provided
by the network usually through a reservation made ahead of
time. These schemes typically use relatively simple video cod-
ers and decoders (codecs), but depend on a service from the
network (the ability to reserve bandwidth and guaranteed delay
bounds), which is not available in most parts of the Internet
today, and may not be available in the foreseeable future.

Adaptive schemes employ codecs, which try to compensate
for packet loss in the network by extensive buffering and pre-
evaluation of the network service quality on the receiver, and
employ receiver feedback to adapt the video output rate to the
network load. While buffering of multiple seconds of video
works well for video-on-demand (VoD) applications, it is not
suited for interactive applications like teleconferencing. The
main problem with receiver feedback is latency: by the time
the sender receives the information about a desired rate, it
might already be outdated due to the fact that the load of the
network has changed.

In the point-to-point case, video streams are sent from a
sender to only one receiver. In the point-to-multipoint case,
packets are passed to a group of receivers which can poten-
tially be very large (e.g., for a live broadcast of an important
event). In this case, especially with a set of receivers on links

with heterogeneous bandwidth, sending feedback to the sender
does not work well for two additional reasons compared to the
point-to-point case: First, the sender must adapt to the slowest
receiver which penalizes faster receivers, and second, severe
scalability problems (feedback implosion) occur if the receiver
group is large. Therefore, the most popular approach for point-
to-multipoint video distribution over the Internet is layered
multicast [15], where the sender distributes the video over mul-
tiple layers instead of one, as in the unicast case. The individ-
ual layers are sent out on different multicast addresses and a
receiver can subscribe or unsubscribe to a layer depending on
whether it wants to increase or reduce the total bandwidth it
receives and therefore increase or reduce the quality of the
video. The receiver’s feedback goes to an upstream router
instead of the sender. The decision about joining or leaving
multicast groups is made on the receiver by observing the link
over time and performing so called “join experiments”, which
can take several seconds. After determining whether a layer
should be subscribed or unsubscribed, an IGMP message is
sent to the router, which again can take several hundred milli-
seconds. Thus, this scheme is suboptimal under frequent
changes in link load. Unfortunately, typical Internet traffic
tends to produce such patterns [21].

Ideally, the decision about whether or not to forward a video
datagram for both the point-to-point as well as the point-to-
multipoint case should be made by the router itself, based on
the observation of its link load, without requiring any feedback
from the receiver. Adaptation of multimedia traffic is called
media scaling, and the router implementing video scaling is
called media gateway. Media scaling does not exclude sophisti-
cated receiver-based adaptation and loss compensations
schemes – in fact, it can complement them in an incredibly
powerful fashion.

We identify three important key requirements for a feasible
implementation of a video gateway:

• Router architecture: The number of proposed video
encoding and decoding schemes is already large and it is
unlikely that this will change in the future. Further,
changes and modifications to these schemes are frequent.
For these reasons it is crucial that a scaling algorithm can
be deployed automatically and on-demand to routers
implementing video gateway functionality. The router
must be on-the-fly extensible to perform the scaling with-
out service interruption. Packet processing in an environ-
ment where routers are programmable is called active
networking [26].

• Video Codec: The video codec must allow fine-grained
scaling of the video to optimally adapt to a large range of

target bandwidths and traffic patterns. Most video scaling
gateways proposed and analyzed in the literature use
MPEG [18] video codecs. However, the problem with
MPEG is that due to its architecture it allows for only a
very limited number of adaptation levels.

• Scaling algorithm: The scaling algorithm must allow for
a highly efficient implementation. While it would be
tempting to convert video on the fly by changing from one
encoding scheme to another on the gateway (transcoding),
a simple calculation1 demonstrates that it is not feasible to
implement transcoding with today’s line card processors
and hardware architectures for any reasonably high data
rate. At this point, all a video gateway can do is selectively
drop or forward packets, and even this decision must be
implemented in a very efficient way for links of megabit
speed and faster.

In this paper, we describe a running prototype of an innova-
tive video scaling architecture. It improves video quality of
real-time unicast and multicast video as seen by the receiver by
up to 15 dB PSNR compared to best-effort forwarding; it
addresses all three key requirements as follows: First, we run
our innovative Active Router Plugins [9] software architecture
on the router. Active Router Plugins allows for on-demand
downloading and installation of a kernel plugin on the router
on occurrence of a plugin identifier in a video datagram. Sec-
ond, we use a wavelet-based, adaptive video codec called
WaveVideo [11], which supports up to 50 scaling levels com-
pared to only three levels offered by MPEG. Third, we
designed and implemented a video scaling algorithm which is
capable of fine-tuning the video to the desired rate provided by
the router based on momentary link load patterns by perform-
ing a simple table lookup, and which executes in 22 µs on our
prototype PC-based hardware.

In Section II, we briefly describe the Active Router Plugins
software architecture and its most important properties. In Sec-
tion III, we describe how we designed and implemented our
video coding and scaling algorithm on the Active Router Plu-
gins software framework. In Section IV, we evaluate our
implementation. In Section V, we present related work. In Sec-
tion VI, we conclude this paper by summarizing the most
important results, and briefly mention future work.

II. THE ACTIVE ROUTER PLUGINS ARCHITECTURE

As we pointed out in the previous section, we believe that it
is very important to automatically deploy any type of applica-
tion-specific processing to routers (active networking). In this
section, we will briefly describe our Active Router Plugins
software architecture and its application to WaveVideo scaling.
The architecture was introduced in [8] and [9].

Router plugins are code modules, which implement specific
datagram processing functionality like encryption, congestion

control, reliable multicast or, as we show in this paper, Wave-
Video scaling. We extend the regular IP forwarding loop on our
router to look for special headers between the IP header and the
UDP or TCP header, which reference plugins2. If such a header
is found, the packet is passed to the referenced plugin prior to
being forwarded. If the referenced plugin is not present on the
system, it is downloaded from a so called code server over the
network and automatically installed in the kernel. We call this
on-demand downloading of plugins Distributed Code Caching
for Active Networks (DAN) [9].

A WaveVideo datagram as seen by our router is depicted in
Figure 1. After the IP header, we insert an Active Networking

Encapsulation Protocol Version 2 [1] header, which is the
active networking community’s standard header to precede
active networking payload. The ANEP header can be inserted
either by the end system or by a specifically configured gate-
way near the sender. Similarly, it is removed either by another
gateway near the receiver, by the receiver’s kernel, or by the
video application running on the receiver. For our experiments
described in Section IV, we insert the ANEP header in the
sender’s kernel using a special plugin and remove it in the
receivers kernel, which makes active processing completely
transparent to the end system application.

ANEP’s type ID field indicates that a DAN header follows
the ANEP header. The DAN header is specific to our Active
Router Plugins environment. ANEP’s next header field points
to UDP. The DAN header essentially identifies the plugin to
perform the video scaling. It carries a WaveVideo-specific tag,
which is used by the scaling algorithm to decide whether or not
to forward the packet based on the current load situation of the
outgoing link (as explained in more detail in Section III). After
the ANEP/DAN part follows the regular UDP header and the
video data as UDP payload.

Before we explain how such a packet is processed on our
kernel, we introduce the most important components of the
Active Router Plugins kernel implemented in the NetBSD
Unix system (Figure 2):

• Device Drivers/Layer 2 processing (DD): the DDs are
standard device drivers implementing network hardware-
specific send and receive functions. They pass packets to
the Packet Classifier for flow classification before passing
them to the IP stack.

• Packet Classifier (PC): The PC caches flow-specific
1. At 155 Mbits/s OC-3 speed a router can spend only 26 µs to
receive, process, and forward a packet (assuming an average size of
500 bytes) – clearly not long enough for any kind of sophisticated
transcoding, except when implemented in custom hardware, which
would mean loss of flexibility.

2. Note that this scheme is compatible with non-active routers. They
simply forward an active packet like any IP datagram.

Figure 1: WaveVideo datagrams

Type ID (86)Version (2) Flags

32 bits

ANEP Header Length (2) ANEP Packet Length

0x8002001

Reserved Length (12)

WaveVideo TAG

ANEP

DAN

Version (1)

IPv4 header

Next Header

Source Port Destination Port

UDP checksumUDP length UDP

WaveVideo Data

information (e.g., the route) and makes this information
available to plugins.

• Packet Scheduler (PS): Our PS is an implementation of
the popular Deficit Round Robin (DRR) [25] scheduler,
which provides fair services to an arbitrarily large number
of best-effort traffic flows.

• Plugin Control Unit (PCU): the PCU provides a commu-
nication mechanism for plugins to receive messages from
user space as well as from other plugins.

• Active Function Dispatcher (AFD): the AFD scans a
packet for plugin identifiers and passes it to the corre-
sponding plugin. In case of a previously unseen plugin
identifier (e.g., when the router receives our WaveVideo
packet for the first time), the AFD sends a request for the
new plugin to the Active Plugin Loader.

• Active Plugin Loader (APL): the APL is the central
module of the Plugin Management (PMGNT) and acts as
an interface between the kernel and the rest of the
PMGNT. It forwards requests from the kernel to other plu-
gin management modules and vice versa.

• Policy Controller (PoC): the PoC deals with policy rules
set by the router’s administrator. The APL calls the PoC
for checking the validity of a request for a plugin.

• Security Gateway (SG): the SG maintains RSA public
keys of well known code servers. It provides a method for
authenticating a plugin by comparing the signature
received from a code server and its MD5 hash signed by
the public key of the code server.

• Plugin Database Controller (PDC): the PDC manages a
database of plugins. It maintains local copies of plugins
downloaded from code servers, so that subsequent
requests from the kernel for plugins (for example after a
restart of the router) can be answered using local copies
instead of sending requests to code servers.

• Plugin Requester (PR): the PR is responsible for request-
ing plugins from code servers, and to process replies to
such requests.

Given the short descriptions of each module, the data path

for processing of a WaveVideo packet looks as follows:
As the WaveVideo packet enters the device driver, it is sent

through the packet classifier, IP input processing, and ANEP
header processing to the AFD. The AFD looks up the plugin
identifier and passes the packet to our WaveVideo plugin. The
WaveVideo plugin either forwards the packet by passing it on
to the packet scheduler, or drops it as described in Section III.
In case the AFD sees an unknown plugin identifier, it sends a
request for the WaveVideo plugin to the APL and forwards the
packet in this case without scaling the video stream. When the
APL receives the plugin request, it makes a call to the PR to
download the plugin from a code server. As the plugin arrives
at the PR, it is passed to the APL. The APL checks with the PC
for policies and with the SG for authentication. If the plugin is
accepted, the PDC creates a local copy, while the APL down-
loads it to the PCU. As the plugin registers itself with the PCU,
the AFD passes subsequent WaveVideo packets to the plugin
for scaling.

Currently, the Active Router Plugins software architecture is
implemented on a Pentium PC with three ATM network inter-
faces and an Ethernet card acting as a router, which we call
Active Network Node (ANN). We are currently working on a
more sophisticated version of the ANN as described in [8],
which consists of an ATM switch fabric with 8 ports and active
line cards on every port, which we call Active Network Pro-
cessing Elements (ANPEs). The ANPEs consists of a custom
1.2 Gbit/s ATM host adapter chip, a Pentium CPU, a large
FPGA that can implement active processing in hardware, and
up to two gigabytes of DRAM. The Active Router Plugins
software architecture running on the ANPEs is identical to that
running on the prototype PC, which makes the results pre-
sented in this paper comparable to what we expect to see on the
next generation ANN.

In the next section, we first take a closer look at different
video encoding schemes before we present our innovative,
adaptive WaveVideo codec. We will show how a video can be
scaled on a knowledgeable gateway router and how we imple-
mented scaling on our Active Network Node.

III. MULTICAST VIDEO DISTRIBUTION USING A NETWORK OF
ANNS

A. Video Encoding Schemes

The method used to encode individual pixels of the video
frames into network packets is central to video scaling. In this
section, we elaborate on various encoding schemes and illus-
trate, how scaling can be performed efficiently.

In general, scaling of video can be performed in spatial and
temporal space, the later being 2D, including color. Spatial
scaling means decreasing the resolution while temporal scaling
means modifying the frame rate. Color scaling allows for
reduction of color which can go as far as turning a colored
video into a grayscale or black and white video. Only a few
codecs allow efficient scaling. For example, coding in YCbCr
color space makes adaptation in the color space very simple: a
grey scale video can be generated by only decoding the lumi-
nance (Y) channel. However, adaptation of compressed video

Figure 2: Active Router Plugins Systems

IP

Packet Classifier
(PC)

Packet Scheduler
(PS)

Network Device Driver (DD)

Active
Function

Dispatcher
(AFD)

IPv4/v6
forwarding

RSVPd/
routed

U
se

r
S

p
ac

e
K

er
n

el

Active Plugin Loader (APL)

Plugin DB
Controller

(PDC)

Security
Gateway

(SG)

Plugin
Requester

(PR)

Policy
Controller

(PoC)

Policy
RulesPlugin DB Key DB

Class X Class Y

Instances

Plugin Management

Plugin Control Unit
(PCU)

is problematic, since compression reduces redundancy and a
lot of computation is required to access the pixel information.
This is especially true for schemes using motion vectors to
compensate for motion in the temporal space. The problem is
resolved by compression in different layers whereas each layer
possesses well defined properties. Receivers select specific
layers to receive the desired video quality.

The most popular video standards for the Internet are pro-
posed by the Motion Picture Expert Group called MPEG, and
the technically similar ITU-T derivative for video telephony
H.263 [20]. MPEG consists of a family of codecs for various
applications. MPEG-1 has been designed for videodisk play-
back and does not offer adaptation. MPEG-2 offers scalability
with respect to Signal-to-Noise Ratio (SNR), spatial and tem-
poral space. SNR scaling refers to the fact that visual quality
can be adapted other than by resolution reduction. Small
changes in the picture are smoothed out, which is not immedi-
ately visible to the human eye, but greatly improves the com-
pression rate. MPEG-4 [19] is a new standard targeted at video
conferencing. It has to be seen as a meta standard defining a
framework for various encoding schemes. As a baseline it
includes H.263 like encoding, which is a standard for low
bitrate communication using multiples of 64 Kbit/s channels.
Technically, H.263 belongs to the same family of codecs as
MPEG. Both use discrete cosine transformation (DCT) and
similar motion prediction and compensation.

However, formats like MPEG and H.263 make scaling a
computation-intensive task since specific quality features (such
as the DCT and motion coefficients) cannot be easily extracted
from a video stream. Partial decompression and buffering of
frames is required to perform video scaling. The standard
stream formats were neither designed for scaling nor loss toler-
ance (see [10] for a discussion of a loss-tolerant H.263 ver-
sion), thus lack important features. Since high-performance
scaling is a crucial requirement, we favor a wavelet-based
approach called WaveVideo featuring a simple difference-
based temporal encoding.

B. WaveVideo Encoding

WaveVideo [7], [11] encodes single video frames by first
transforming the color channels from the spatial to the fre-
quency domain and then quantizing and compressing the deco-
rrelated output. A two-dimensional wavelet transform (WT) is
applied to the image, which is implemented and approximated
using iterated discrete-time filters. This 2D-process splits an
image into a low-frequency (LL) and three high-frequency
subbands (HL, LH, HH) and is repeated recursively on the LL-
subband at each level of the transformation. For luminance (Y)
and color difference (CbCr) channels a tree consisting of low-
and high-frequency subbands is generated (Figure 3).

Once an image has been transformed into frequency space,
the correlation contained in typical natural pictures is dissolved
and the actual compression step introducing loss by quantiza-
tion of the high frequency coefficients is performed. Usually,
transformed images have a large number of zero-coefficients
and only decorrelated features are represented by nonzero val-

ues. Statistical analysis of coefficient distributions manifests
that not only zero values, but small values in general dominate
the transformed image.

The quantized and entropy-coded (i.e., run-length encoded)
leaves of the tree shown in Figure 3 are finally assembled into
datagrams with a tag describing the packet’s video content, an
ANEP/DAN header, and the standard UDP header (see net-
work format in Figure 1).

The applied compression and channel coding schemes make
WaveVideo suitable for environments with high packet losses
such as heavily congested Internet links and wireless commu-
nication [16]. Independently of the use of video gateways in
the network, the WaveVideo decoder running on the receiver
tries to conceal packet losses in two ways:

1. The loss of high-frequency wavelet-coded coefficients
results in a smooth degradation of the whole image area.
No artifacts like missing blocks or wrongly colored blocks
(which can be noticed using MPEG under heavy loss) are
visible.

2. If packets containing low-frequency parts are lost, a cach-
ing algorithm (LL-cache) supplies a previous version of
the missing low-frequency coefficient.

More and more products are using wavelet-based codecs
implementing proprietary coding formats, especially for scal-
able streaming over the Internet. Further, several upcoming
open standards will be based on this method as well (e.g.,
JPEG 2000 [14], MPEG-4 [19]).

C. Video Stream Scaling

The active network node can apply two different schemes to
scale the video stream to a lower transmission rate: It can either
reduce the frame rate or the image quality of individual frames.
Dropping complete image frames is simple to implement since
the node has to examine only the sequence number of a frame.
However, frame rate filtering has to take into account that fil-
ters can be cascaded and that packets have been eliminated by
upstream routers. Thus, to create an equidistant spacing of
video frames, the node has to buffer outgoing frames and for-

LHHL HH

RGB

Y

Cr

LL

LL LL

LL

Cb

LHHL HHLHHL HH

LHHL HH

HL LH HH Quantized and encoded
high-frequency subbands

LL
Low-frequency subbands;
only smallest size is encoded

Figure 3: Hierarchical decomposition of video images

ward them at a constant rate.
The second approach reduces the image quality by eliminat-

ing high-frequency parts from the video stream. This scheme
drops packets from high-frequency subbands at deep transfor-
mation levels first, since these coefficients result in only a
slight degradation of the image, perceivable by a minor loss of
details. Contrary, low-frequency parts are forwarded with the
highest priority to ensure the overall consistency of the image.

Eliminating high-frequency parts from the video allows scal-
ing the stream by approximately a factor of 50 (depending on
the frame size of the video): for example, a small-sized Quarter
Common Intermediate Format (QCIF) video frame has four
wavelet transformation levels for the luminance channel (Y)
and three transformation levels for the chrominance channels
(CbCr). Each transformation level contains three high-fre-
quency parts (HL, LH, HH). Having four transformation lev-
els, there are potentially 12 high-frequency parts to eliminate
from the Y-channel and 9 high-frequency parts from the Cb-
and Cr-channels. All in all, this allows to adapt the video
stream from full-quality frames consisting of 33 segments to
just three low-frequency segments per frame. Using this
scheme, an average sample video stream can be scaled from
2.6 Mbit/s down to a minimum of about 50 Kbit/s.

D. Implementing Video Scaling

Besides providing a high level of scalability, WaveVideo
stream adaptation can be implemented efficiently by labeling
each individual network packet with a tag. The tag describes
the frame’s content such as the corresponding frequency sub-
band, color channel, and depth in the wavelet tree (Figure 4).

The tag allows for reduction of the stream’s bandwidth by
selectively dropping packets belonging to a particular quality
set. In our case, we define a quality set such that the transmit-
ted output stream does not exceed an upper bandwidth limit. In
other words, we want to prevent the packet scheduler from ran-
domly dropping packets to ensure that datagrams containing
low-frequency coefficients (which define the overall image)
reach the video sink even under congestion. Our scheme con-
tinuously monitors the forwarded video stream and periodi-
cally adapts the quality profile to fit the bandwidth assigned by
the packet scheduler. Thus, if the forwarded bandwidth is
higher than the bandwidth that the scheduler can guarantee, we
modify the quality profile such that more high-frequency parts
are eliminated from the video stream. Similarly, we include
more high-frequency coefficients into the profile if the filtered
video stream falls below the limit set by the scheduler. With a
profile update period of 50 ms, the WaveVideo plugin can
quickly respond to both fluctuations in the available link band-

width and variations in the video stream encoding.
This scheme can be implemented in a very simple and effi-

cient way using a quality profile encoded as a boolean lookup
table with 128 (=27) entries to hold all combinations of color
channel, recursion depth, and subband (see Figure 4, whereas
the sequence number is not used).

Thus, if a packet is transiting through the node, we use 7 bits
from the tag as an index into the quality profile table and
lookup the entry: if the value is set, the node forwards the
packet, otherwise it drops it. Modifying the quality profile is
simple: to add or remove high-frequency coefficients from the
forwarded video stream, we simply set or reset the correspond-
ing table entries, beginning with coefficients at deep recursion
levels. In summary, the overhead imposed by scaling the video
stream is just a table lookup. As we will show in the next sec-
tion, both operations can be executed very fast.

IV. EVALUATION

A. Test Network Setup

We evaluate our architecture and implementation using a test
network of end systems and ANNs illustrated in Figure 5. We

use two routers running our Active Router Plugins kernel. The
video source (S) multicasts the video to three destinations (D1,
D2, and D3). Receiver D1 is not affected by cross traffic at all,
therefore displaying a disturbance free video in all test cases.
D2 and D3 are exposed to cross traffic: the link between R2
and D2 is shared by the video and one cross traffic stream,
whereas the link to D3 is shared by the video and two cross
traffic streams. Thus, D2 is moderately congested and D3
heavily congested. For all of our experiments we use two test
videos: Akiyo, a low-motion sequence, which requires 1.3
Mbit/s in average, and Foreman, with a higher degree of
motion, requiring 2.6 Mbit/s. Both videos are lossless encoded
with QCIF resolution at 12 frames/s. To bring the routers’
downstream links into a congested state by the cross traffic, we
restrict the respective ATM link rate to 3 Mbit/s using hard-
ware pacing by the ATM card3. The routers run an implemen-
tation of the Deficit Round Robin (DRR) [25] packet
scheduler, which assigns an equal share of the available band-
width to each flow. Thus, when the link is shared with one

Figure 4: Bit layout of the network tag

16 bits

co
lo

r
ch

an
ne

l

re
cu

rs
io

n
d

ep
th

su
bb

an
d

fr
am

e
se

qu
en

ce
n

um
be

r

u
nu

se
d

1 2 3 2 8

index

Figure 5: Test Network Setup

Cross
Traffic 1

Video
Source

Video
Display

Video
Display

Video
Display

Active
Router

Cross
Traffic 2

S

D1

D3

D2

R1 R2

3 Mbps 3 Mbps

Active
Router

competing cross traffic flow, the video flow will get 1.5 Mbit/s.
With two concurrently active cross traffic flows, the video gets
1 Mbit/s. If the bandwidth provided by the packet scheduler to
the video flow is insufficient and no scaling is active, the
packet scheduler drops the oldest packets (plain-queueing)
from the video flow queue.

B. Scaling Performance

We measured the scaling performance of our WaveVideo
plugin on R2, which is a Pentium II PC running at 300 MHz.
We use the Pentium’s processor clock register (TSC) which is
incremented by every cycle and allows for very accurate mea-
surements.

The scaling algorithm requires approximately 6700 cycles or
22 µs per video datagram. Thus, we can scale 45,000 packets
per second. Given the average WaveVideo packet size of
820 Bytes as observed with our test sequences, we could scale
at a rate of 360 Mbits/s4.

C. Plugin Download Time

In [9] we showed that a 100 KBytes plugin requires approxi-
mately 500 ms to download from a code server connected one
hop away from the active router including security checks and
installation on the router. 100 KBytes corresponds roughly to
the size of our scaling plugin. To download the plugin from a
transatlantic site 22 hops away representing a worst case sce-
nario, the router takes approximately 4 seconds for the same
procedure. Since we can download the plugins almost parallel
to both routers, the complete download sequence does not take
longer than 4 seconds and is much faster if the code server is
closer. During the download time, the video is viewable on the
receivers, although in bad quality for those receivers on
heavily congested links. Note that the download of the plugins
is only required the very first time routers process a Wave-
Video packet.

D. Video Quality Measurements

We compared the received test sequences with the original
videos used for encoding and calculated the mean square error
(in PSNR) for the luminance channel (the color channels fol-
low the same behavior). The results are shown in Figure 6.
Knowledgeable packet dropping in congested situations clearly
demonstrates its benefits: On D2, which is only moderately
congested, the video quality almost always follows the PSNR
of the lossless video. Also, visual results are very good. How-
ever, plain-queueing exhibits quality losses of more than 10 dB
which are perceivable by either disturbing artifacts or a general
fuzziness.

On D3, which is heavily congested by two cross traffic

3. We measure at such a low rate only because the WaveVideo coder
and decoder on the end systems are not capable of handling video
streams with a peak bandwidth higher than 3 Mbits/s when running
on a standard PC without custom hardware support. Note that this
does not affect the relative improvement in PSNR as demonstrated
in this section and that we can scale the video at much higher rates
on the routers as shown in Section IV.B
4. These numbers do not take into account the time the packet
spends in the rest of the kernel forwarding loop nor the time it
spends on the network interface card and to cross the PCI bus.

Figure 6: Video quality measurements using the Foreman test sequence on the receivers D2 (moderately congested) and D3 (heavily congested)

5

10

15

20

25

30

35

40

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
S

N
R

 [d
B

]

Time [us]

Multicast, Foreman at D2 (QCIF, 240 frames)

Lossless
Active queueing
Plain queueing

5

10

15

20

25

30

35

40

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
S

N
R

 [d
B

]

Time [us]

Multicast, Foreman at D3 (QCIF, 240 frames)

Lossless
Active queueing
Plain queueing

streams, the situation is even worse. Congestion is so high that
the Foreman video sequence with a high degree of motion is no
longer usable when applying plain queuing on the router. Also,
the LL-cache is no longer helpful due to high losses of low fre-
quency parts of the video. During several seconds, the video is
almost unrecognizable. In contrast, using active queueing, the
receiver shows almost undisturbed video playback. Subjective,
visual results show some minor artifacts (little spikes due to
motion blur, or small jumps on camera moves), but otherwise
an intact video.

Figure 7 shows two representative video frames that were
taken from the test setup5.

Akiyo is a low-motion test sequence. It is used here to dem-
onstrate the static image degradation incurred by packet losses
on the network. As we can see, the plain-dropped video of
Akiyo shows a general fuzziness, smoothed and blurred edges.
Looking at the actively scaled version of the video, transmitted
at the same bandwidth, a minor degradation in high-frequency
details is observable but the general definition is close to the
losslessly decoded video.

Looking at the Foreman test sequence, the same explanation
applies. However, due to the higher degree of motion, the
video without scaling support suffers not only from loss of def-
inition, it also shows motion-blur artifacts. The same video,
transmitted under the same conditions with scaling support,

shows still a little motion artifact (right side of the foreman’s
ear) but is otherwise almost perfectly decoded.

E. Fast Reaction to Congestion

One major advantage of our video scaling architecture is the
fact that nodes have local knowledge about the load situation.
Because the WaveVideo plugin can directly interact with the
packet scheduler, it can immediately react to congestion. To
demonstrate the node’s ability to quickly respond to an over-
load situation, we inject cross traffic bursts and measure the
video quality perceived at the receiver. When cross traffic is
active, the DRR scheduler assigns the cross traffic an equal
share of the link bandwidth, thus limiting the available band-
width for the video flow to 1.5 Mbit/s. Figure 8 depicts the
quality of the received video streams (top), the loss in video
quality due to less available bandwidth (middle), and the burst
periods (bottom).

The quality of the plain-queued video stream suffers PSNR
drops of 5-10 dB whenever the cross traffic is active, disturb-
ing the video seriously. Further, the video quality does not
recover until the burst is finished, making the video defective
for the complete duration of the burst. On the other hand,
active video scaling follows closely the video quality of the
original video with only minor falls right after the cross traffic
is turned on. As soon as the WaveVideo plugin discovers a
decline in bandwidth (which is in the worst-case the 50 ms pro-
file update period), it scales the video to the new available

5. The videos analyzed in this section can be downloaded from
http://www.tik.ee.ethz.ch/~keller/wvinfocom/

Figure 7: Representative sample frames from the test sequences Akiyo (top row) and Foreman (bottom row) under three different conditions. Both
frames are shown in the losslessly decoded version, the received video without scaling support (i.e., plain-queued packets), and the received video
with scaling support (from left to right).

bandwidth. Doing so, the video stream quality recovers rapidly
to a level very close to the original video stream showing no
disturbing artifacts during the bursts.

To further demonstrate that quality is indeed gained by
active dropping, we analyze the received frequency subbands
at the receivers. Figure 9 depicts a histogram of the subband
distribution on D2, whereas routers are exposed to cross traffic
bursts. Our test sequence consists of 33 subbands. The lowest-
frequency subband (containing the most crucial image infor-
mation) is shown at the bottom of the graph and the highest fre-
quency subband is displayed on top. The gray level of each cell
indicates how many times a specific subband was received dur-
ing a period of 8 frames: if a cell is white, the subband was
never received at all, and if a cell is completely black, the sub-
band was present in all the last 8 frames. Active dropping now
clearly shows its benefits: during burst activity, plain-dropping
shows a random distribution of the frequency subbands, for-
warding all subbands with a more or less equal probability and
thus not taking into account the frequency subband. On the
other hand, active dropping ensures that low-frequency sub-
bands (which are crucial for the general image definition) are
always forwarded to the receivers.

V. RELATED WORK

A. Programmable Router Software Platforms

Most of the better known active network research efforts like
ANTS [27], SwitchWare [2], and Scout [17] would conceptu-
ally allow the implementation of a video scaling gateway. Two
potential problems arise: First, the architecture must provide a
way to automatically install the WaveVideo-specific code mod-
ule which implements the video scaling. Second, the architec-

Figure 8: Impact on video quality due to periodic 1 second bursts measured in PSNR (top), PSNR difference to the original video (middle), and cross
traffic activity (bottom).

0

5

10

15

20

25

30

35

40

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
S

N
R

 [d
B

]

Time [us]

Foreman, QCIF, 240 Frames

Lossless
Active queueing
Plain queueing

-20

-15

-10

-5

0

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
S

N
R

 [d
B

]

Time [us]

PSNR loss, Foreman, QCIF

Active queueing
Plain queueing

0

500

1000

1500

2000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

B
an

dw
id

th
 [k

bp
s]

Time [us]

Cross traffic bandwidth

Figure 9: Distribution of received frequency subbands at D2 for plain-
dropping (top) and active dropping (bottom) when exposed to bursty cross
traffic.

ture must provide a reasonably high-performance data path.
ANTS allows automatic installation of code modules (it loads
them from the upstream node), but its Java-based implementa-
tion running in user space of an off-the-shelf Unix operating
system makes it questionable whether its provides sufficient
performance. Joust [12] tightly couples a Java virtual machine
to the Scout OS and delivers up to three times better perfor-
mance than ANTS, but the forwarding loop is still an order of
magnitude slower than a pure kernel-based implementation.

Both Scout and SwitchWare offer extensible kernels, but to
the best of our knowledge both do not support the ability to
download kernel code modules in-band and on-the-fly.

B. Video Coding Schemes

Compression schemes have been proposed which do not
apply block-based DCT and motion compensation against
blocking artifacts occurring at high compression ratios.
Schemes based on wavelet transformation are inherently adap-
tive due to their hierarchal decomposition of the source data.
Blocking artifacts are almost nonexisting with wavelet trans-
formation, but images tend to be blurred at high compression
ratios. The theoretical foundations of wavelet-based image
coding are discussed in [3] and [28]. For video encoding com-
putational efficiency is a primary concern. WaveVideo uses
integer-based filtering for calculating the wavelet transform as
described in [5].

Efficient channel coding of quantized coefficients is an
important issue for video coding. Besides the well known algo-
rithms using run length encoding (RLE), huffman, or arith-
metic coders and combinations thereof, Shapiro [24] proposed
an optimal scheme called zero trees for coding and adaptation
of the coefficients. Due to the higher computational efficiency,
WaveVideo applies a modified RLE-based coding of the wave-
let coefficients.

C. Video Scaling

Various papers have proposed ways for scaling motion com-
pensated DCT-based schemes. Yeadon [29] measures the com-
putational complexity of video scaling in the network for
scaling in spatial, temporal, and color space. Furthermore, he
explores fine-grained rate adaptation and requantization (SNR
scaling) by means of transcoding. Rowe et al. [22] use
transcoding in the Continuous Media Toolkit developed at
U.C. Berkeley. Transcoding requires partial or full decompres-
sion and recompression of video and is generally performed on
the application layer. Since their gateway supports only DCT-
based schemes, partial decompression is required. Scaling in
these systems is performed in temporal space using frame
dropping without first decompressing the frames. However,
some state must be kept in the nodes to account for the interde-
pendency of the I-, B-, and P-frames. Scaling is very limited by
the fact that I-frames account for about 60% of the streams and
dropping them would render a full group of pictures (GOP)
undecodable. Requantization to scale in the spatial direction
requires undoing and then redoing entropy encoding to modify
DCT coefficients. The same applies to color scaling, which can

be achieved by requantization of the color channel.
Scaling is particularly important in the context of multicast-

ing to heterogeneous receivers: McCanne et al. [15] describe a
scheme called receiver-driven layered multicast that uses IP
multicast and RTP [23] to transmit different layers of video.
Receivers subscribe to a quality set by performing join experi-
ments where they monitor their network link and add or drop
layers according to the load on the link. The main advantage of
this scheme is that it does not require changes in the network
infrastructure (assuming the network does support IP multi-
cast). However, sending layers on different network channels
has disadvantages. Fine-grained adaptation, as offered by
WaveVideo, requires up to hundreds of channels. Multiplexing
and synchronizing such a high number of independent chan-
nels requires significant computing power on the end system
and many of today’s operating systems do not even support
that many open channels. Senders connected to media gate-
ways overcome these disadvantages by sending all layers in a
single channel. For efficient association of network packets
with video layers, only a simple tag is needed, adding only
insignificant overhead to the aggregated volume of the video
flow, far less than for example an RTP header used for syn-
chronization.

Bhattacharjee et al. [4] show that adaptations in the network
for multicast video are superior to either source or receiver
adaptation. Contrary to the active network approach, scaling by
transmitting different layers in independent streams has also
been explored. Hoffman and Speer [13] describe an approach
based on a temporal hierarchy created by multiple rates of
motion JPEG (MJPEG) video streams. Receivers can apply an
aggressive strategy by subscribing to all layers and by drop-
ping some afterwards. One major drawback of this approach is
the lack of scalability to large receiver groups and long
response time to bandwidth fluctuations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe our implementation of an innova-
tive active video scaling architecture that allows for on-
demand deployment of executable code in the form of plugins.
Plugins are retrieved from a nearby code server and installed in
the router’s kernel after the sender starts transmitting video for
the first time. Since plugin code runs in kernel space, this
scheme is highly efficient making it suitable for data path
applications with link rates of up to 100 Mbits/s.

To demonstrate the applicability of our architecture for
applications requiring bandwidth in the order of several Mbits
per second such as multipoint video distribution, we designed
and implemented a scalable video codec based on wavelet
transformation, and a high-performance video scaling algo-
rithm executing as a plugin on the router. The plugin adapts the
video stream to fit the momentary network load. If an output
link is congested, the video stream is lowered to the bandwidth
that the packet scheduler can guarantee. The video adaptation
scheme ensures that low-frequency wavelet coefficients (which
are crucial for the general definition of the image) are always
forwarded but drops high-frequency parts (that describe image

details) if bandwidth becomes scarce. Our experiments show
that multicast receivers gain up to 15 dB in video quality com-
pared to best-effort forwarding. In addition, the video adapta-
tion algorithm can react within less than 50 ms to network load
fluctuations. Thus, receivers see no disturbing artifacts,
motion-blur, or wrongly coded colors even on networks with
very bursty traffic patterns.

Our future plans include running our architecture on the
switch-based Active Network Node as described in Section II.
Further, we plan to investigate other applications such as sen-
sor data mixing, congestion control for real-time audio, and
application-specific reliable multicast.

ACKNOWLEDGMENTS

We would like to thank Jon Turner for contributing the idea
of using histograms for visualizing packet losses and John
DeHard for helping with the demonstration setup.

REFERENCES

[1] Active Network Encapsulation Protocol, RFC, http://www.cis.up-
enn.edu/~switchware/ANEP/docs/ANEP.txt, July 1997.

[2] D. Alexander, et al., “The SwitchWare Active Network Architecture,”
In IEEE Network Special Issue on Active and Programmable Networks,
May/June 1998.

[3] M. Antonio, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding
using Wavelet Transform,” IEEE Trans. on Image Process., Vol. 1, No.
2, 1992.

[4] S. Bhattacharjee, E. Zegura, K. L. Calvert, “Network Support for Mul-
ticast Video Distribution,” Networking and Telecommunications
Group, Georgia Tech, 1999.

[5] H. Chao, P. Fisher, “An Approach to Fast Integer Reversible Wavelet
Transforms for Image Compression,” Computer and Information Sci-
ence Inc., October 1996.

[6] M. E. Crovella, A. Bestavros, “Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes,” Proceedings of ACM SIGM-
CETRICS’96, May 1996.

[7] M. Dasen, G. Fankhauser, and B. Plattner, “An Error-Tolerant, Scalable
Video Stream Encoding and Compression for Mobile Computing,” in
ACTS Mobile Summit 1996, Granada, Spain, November 1996, Vol. 2,
pp. 762–771.

[8] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, B. Plattner, “A
Scalable, High Performance Active Network Node,” In IEEE Network,
January/February 1999.

[9] D. Decasper. “A Software Architecture for Next Generation Routers,”
Ph.D. Thesis, ETH Zurich, May 1999.

[10] N. Faerber, B. Girod, J. Villasenor, “Extensions of ITU-T Recommen-
dation of H.324 for Error-Resilient Video Transmission,” IEEE Com-
munications Magazine, June, Vol. 36, No 6, pp. 120-128, 1998.

[11] G. Fankhauser, M. Dasen, N. Weiler, B. Plattner, and B. Stiller,
“WaveVideo – An Integrated Approach to Adaptive Wireless Video,”
in ACM Monet, Special Issue on Adaptive Mobile Networking and
Computing, Vol. 4, No. 4, 1999.

[12] J. Hartman, et al., “Joust: A Platform for Liquid Software,” In IEEE Net-
works, July 1998.

[13] D. Hoffman, M. Speer, “Hierarchical Video Distribution over Internet-
style Networks,” IEEE International Conference on Image Processing,
Lausanne, Switzerland, Vol. III, pp. 5-8, 1996.

[14] JPEG homepage, http://www.jpeg.org/public/jpeglinks.htm.
[15] S. McCanne, M. Vetterli, V. Jacobson: “Low-complexity Video Coding

for Receiver-driven Layered Multicast,” IEEE Journal on Selected Ar-
eas in Communications, Vol. 16, No. 6, pp. 983-1001, August 1997.

[16] J. Meierhofer, G. Fankhauser, “Error-Resilient, Tagged Video Stream
Coding with Wireless Data Link Control”, in Proc. of IEEE WPMC'99,

Amsterdam, Netherlands, September 1999, pp. 306-311.
[17] D. Mosberger, “Scout: A Path-based Operating System,” Ph.D. Disser-

tation, Department of Computer Science, University of Arizona, July
1997.

[18] Official MPEG web site at http://drogo.cselt.stet.it/mpeg/
[19] MPEG-4, ISO/IEC JTC1/SC29/WG11 N2725, March 1999.
[20] ITU-T Rec. H.263, Video Codec for Low Bitrate Communication, 1996.
[21] V. Paxon, “Measurements and Analysis of End-to-End Internet Dynam-

ics,” Ph.D. Thesis, University of California, Berkeley, April 1997.
[22] L. A. Rowe, “Continuous Media Applications,” Multipoint Workshop,

ACM Multimedia 94, San Francisco, November 1994.
[23] RTP: A Transport Protocol for Real-Time Applications, RFC 1889, Jan-

uary 1996.
[24] J. M. Shapiro, “Embedded Image Coding Using Zero Trees of Wavelet

Coefficients,” IEEE Transactions on Signal Processing, Vol. 41, No. 12,
pp. 3445-3462, December 1993.

[25] M. Shreedhar, G. Varghese, “Efficient Fair Queuing using Deficit
Round Robin,” SIGCOMM 95 and ACM/IEEE Trans Networking,
1995.

[26] D. Tennenhouse, et al. “A Survey of Active Network Research,” IEEE
Communications, January 1997.

[27] D. Wetherall, et al., “ANTS: A Toolkit for Building and Dynamically
Deploying Network Protocols,” In Proceedings of IEEE OPEN-
ARCH'98, April 1998.

[28] M.V. Wickerhauser, “High Resolution Still Picture Compression,”
Dept. of Mathematics, Washington University St. Louis, April 1992.

[29] N. Yeadon, “Quality of Service Filters for Multimedia Communica-
tions,” Ph.D. Thesis, Lancaster University, Lancaster, May 1996.

	I. Introduction
	II. The Active Router Plugins architecture
	III. Multicast Video distribution using a network of ANNs
	A. Video Encoding Schemes
	B. WaveVideo Encoding
	C. Video Stream Scaling
	D. Implementing Video Scaling

	IV. Evaluation
	A. Test Network Setup
	B. Scaling Performance
	C. Plugin Download Time
	D. Video Quality Measurements
	E. Fast Reaction to Congestion

	V. Related Work
	A. Programmable Router Software Platforms
	B. Video Coding Schemes
	C. Video Scaling

	VI. Conclusions and Future Work

