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Abstract—This paper presents a novel loss recovery scheme, Active Re-
liable Multicast (ARM), for large-scale reliable multicast. ARM is “active”
in that routers in the multicast tree play an active role in loss recovery. Ad-
ditionally, ARM utilizes soft-state storage within the network to improve
performance and scalability. In the upstream direction, routers suppress
duplicate NACKs from multiple receivers to control the implosion problem.
By suppressing duplicate NACKs, ARM also lessens the traffic that propa-
gates back through the network. In the downstream direction, routers limit
the delivery of repair packets to receivers experiencing loss, thereby reduc-
ing network bandwidth consumption. Finally, to reduce wide-area recovery
latency and to distribute the retransmission load, routers cache multicast
data on a “best-effort” basis. ARM is flexible and robust in that it does not
require all nodes to be active, nor does it require any specific router or re-
ceiver to perform loss recovery. Analysis and simulation results show that
ARM yields significant benefits even when less than half the routers within
the multicast tree can perform ARM processing.

Keywords— Reliable multicast, active networks, soft state, distributed
network algorithms, protocol design and analysis, NACK implosion.

I. INTRODUCTION

Reliable multicast over the Internet is a difficult problem.
Both the sender and the network have a limited capacity for
responding to reports of data loss. Simultaneous retransmis-
sion requests from large numbers of receivers can lead to sender
and network overload, causing the well-known NACK implo-
sion problem. Additionally, receivers in a multicast group may
experience widely different packet loss rates depending on their
locations in the multicast tree. Having the sender retransmit to
the entire group when only a small subset of the receivers ex-
perience losses wastes network bandwidth and degrades overall
performance. In order to scale loss recovery to large multicast
groups, efficient mechanisms are needed to control NACK im-
plosions, to distribute the load for retransmissions, and to limit
the delivery scope of retransmitted packets.

Another challenge in Internet-based reliable multicast con-
cerns the frequent group membership changes due to new
subscriptions, unsubscriptions, and disconnected links. Such
changes make it difficult to designate a subset of the receivers
as proxies for the sender in retransmitting lost packets. A robust
loss recovery scheme must cope with dynamic group member-
ship changes.

Existing schemes provide only partial solutions to the above
problems. SRM [1] provides a good solution for NACK implo-
sion, distributes loss recovery to all members in the group, and
is robust with respect to changes in group membership or topol-
ogy. However, its timer-based implosion control mechanism in-
creases recovery latency, and it has problems with duplicate re-
quests and repairs. Additionally, local recovery is still an open
issue for SRM. Hierarchical approaches such as LBRM, TMTP
and RMTP [2], [3], [4] provide only approximate solutions to
scoped recovery, and they do not always shield bottleneck links
from unnecessary request and repair traffic. Moreover, they are
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less fault-tolerant and robust to topology changes, because they
rely on designated receivers or loggers to perform retransmis-
sions.

In this paper, we present a novel loss recovery scheme, Ac-
tive Reliable Multicast (ARM), for large-scale reliable multi-
cast. ARM utilizes intermediate routers to protect the sender
and network bandwidth from unnecessary feedback and repair
traffic. ARM routers employ three error recovery strategies.
First, they suppress duplicate NACKs to control the implosion
problem. By reducing the number of NACKs, ARM minimizes
the amount of feedback traffic that need to cross the bottleneck
links. Second, a router-based local recovery scheme is used to
reduce the end-to-end wide-area latency and to distribute the
load of retransmissions. More specifically, routers at strate-
gic locations perform “best-effort” caching of multicast data for
possible retransmission; as NACKs traverse upstream towards
the original source of the data packet, any router can perform
retransmission if the request packet is in its cache. Router-based
retransmissions allow receiving end-hosts to recover quickly
from packet losses on a “local” basis without imposing an un-
necessary recovery overhead on the sender or the entire group.
Finally, to reduce network bandwidth consumption, routers use
partial multicasting to limit the scope of retransmitted data.

Most existing end-to-end solutions require multicast mem-
bers to know the group topology or the relative locations of other
receivers within the multicast tree. SRM relies on topology in-
formation to set its timer values, and hierarchical approaches re-
quire receivers to locate their designated representatives. ARM
is robust to group topology changes, since it does not rely on any
particular router or receiver to perform loss recovery. Receivers
are not required to know about the group topology, and they are
not required to buffer data for retransmission. The ultimate re-
sponsibility for retransmission lies with the sender. However,
routers allow ARM to scale by suppressing duplicate NACKs
and by performing “best-effort” local recovery from their soft
state cache.

Our approach is motivated by, but does not depend on, the
recently proposed Active Networks technology [5]. In our net-
work model, active routers perform customized computation
based on multicast data packet types. Further, intermediate
active routers provide “best-effort” soft-state storage. ARM
does not require all routers to be active. It degrades grace-
fully as the network resources available for active processing
decrease. Analysis and simulation results show that, with mod-
erate network-based processing and storage overhead, ARM sig-
nificantly improves end-to-end performance and network effi-
ciency.

In the next section, we present our assumptions about the net-
work model and their impact on ARM. Section III describes the
design of ARM. Section IV describes a prototype implementa-
tion. Section V discusses simulation results that compare ARM
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performance with SRM. The last sections present our conclu-
sions and discuss future directions.

II. THE NETWORK MODEL

Our network model is similar to traditional packet networks
in several aspects. We assume that network resources are multi-
plexed amongst multiple traffic flows, and that the network pro-
vides a “best-effort” service model. In particular, we assume
that the underlying network is unreliable, and that packets can
be lost, duplicated, or delayed. Therefore, end-points must ulti-
mately be responsible for the reliable transport of data packets.

Our network model differs from the traditional one in that
end-points can take advantage of network-based processing and
storage to improve end-to-end performance and scalability for
certain applications. Some intermediate routers, called active
nodes, provide soft-state storage and perform customized com-
putation based on different packet types.

We assume that each active node provides a fixed amount of
“best-effort” soft-state storage. Storage is “best-effort” because
an active node will cache an item for a specified lifetime as long
as the node has enough cache capacity. End points specify the
useful lifetime, or TTL (time-to-live), of cached items, because
this lifetime is most likely application- or protocol-specific. Ac-
tive nodes flush their caches periodically to remove items with
expired lifetimes.

We make no assumptions about how many routers are active
or about the size of the caches at active routers. While ARM
utilizes active nodes to enhance error recovery, it does not rely
on active nodes to guarantee that error recovery occurs. As for
the “soft state” concept introduced by Clark [6], ARM is de-
signed so that state information stored at routers can be flushed
at anytime without permanent disruption of the end-to-end com-
munications process. ARM operates correctly even in the face
of router failures: end points compensate for flushed caches and
router failures by using a combination of timeouts and retrans-
missions.

We assume that the network provides IP-multicast style mul-
ticast routing [7], [8], in which a tree rooted at the sender is
formed to deliver multicast packets. Additionally, for simplic-
ity, we assume that the paths for multicast routing correspond to
the reverse paths for unicast routing. This is because ARM uses
receiver-generated NACKs to set up subscription information
for scoped retransmission; for this to be effective, a NACK trav-
elling upstream towards the source must pass through routers on
the reverse path of the multicast repair packet. This assumption
can be eliminated by routing NACKs back up the multicast tree
instead of by unicast routing.

III. ACTIVE RELIABLE MULTICAST

ARM is a receiver-reliable, NACK-based scheme in which
receivers are responsible for detecting and requesting lost pack-
ets. Each data packet is labeled by a unique sequence num-
ber. Receivers detect losses primarily by sequence gaps in the
data packets. An implication of this loss detection scheme is
that receivers with a shorter latency to the source are likely to
detect losses before receivers farther away. For interactive ap-
plications, periodically generated session or heartbeat messages,
which contain the highest sequence numbers, can be used to help

receivers detect losses quickly. In this case, a receiver may also
detect losses if no data have arrived after the maximum sending
interval has past[2]. We consider a scenario where there is one
sender and multiple receivers in the multicast group.

In ARM, a receiver sends a NACK towards the sender as soon
as it detects a loss. Multiple NACKs from different receivers are
cached and “fused” at active routers along the multicast tree. If
all routers are active and do not flush NACKs from their caches
prematurely, the sender will receive at most a single NACK per
loss; otherwise, the sender may receive more than one NACK.
The sender responds to the first NACK by multicasting a repair
to the group. It then ignores subsequent NACKs for this packet
for a fixed amount of time (e.g., for the estimated RTT to the
farthest receiver in the group).

Since NACKs and repair data may also be lost, a receiver
must resend a NACK if it does not receive the repair within a
certain time limit, which we assume to be at least 1 RTT between
the receiver itself and the original source of the data packet. To
identify new NACKs, each NACK contains a NACK count to
indicate how many times the receiver has requested a lost data
packet. The sender maintains the highest NACK count associ-
ated with each requested repair. If it receives a NACK with a
higher NACK count, it assumes that the previous retransmission
was lost and multicasts the repair to the group again.

We do not make any further assumptions about end-point be-
havior, such as sending rates and timeout schemes, which are
specific to different reliable multicast protocols. The assump-
tions about end-point behavior listed above are the only ones
required to support ARM.

Intermediate routers perform the following actions:
� Data caching for local retransmission. Routers at strate-
gic locations perform best-effort caching of multicast data for
possible retransmission. When a router receives a NACK, indi-
cating that a receiver has detected a packet loss, it retransmits
the requested packet if that packet is in its cache; otherwise, it
considers forwarding the NACK towards the sender.
� NACK fusion/suppression. Routers control implosion by
dropping duplicate NACKs and forwarding only one NACK up-
stream towards the source per multicast subtree.
� Partial multicasting for scoped retransmission. Routers
perform partial multicasting of retransmitted packets so that they
are delivered only to receivers that previously requested them.

These actions are triggered by the receipt of one of three kinds
of ARM packets: multicast data packets, NACK packets, and
retransmitted packets. The following subsections describe how
each of these packets are handled.

A. Caching Data at Routers

ARM caches multicast data packets at routers in the multi-
cast tree for possible retransmission. When a NACK travels up-
stream towards the sender, any router along the path can retrans-
mit the requested packet if it has that packet in its cache. Since
end-to-end latency over a wide-area network can be long, re-
transmissions from intermediate router caches can significantly
reduce the recovery latency for distant receivers. Additionally,
by distributing the load for retransmission to routers along the
multicast tree, ARM protects the sender and bottleneck links
from retransmission requests and repair traffic.
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An ARM multicast data packet has the following fields in its
header: multicast group address, source address, sequence num-
ber, cache TTL t, and NACK count. The cache TTL field spec-
ifies the useful lifetime of a data packet in an active router’s
cache. The NACK count is significant only for repair packets,
which have the same header fields as multicast data packet; it
indicates the number of times a single receiver has requested the
repair. An active router processes a multicast data packet, as
follows; an inactive router simply forwards the packet along the
multicast tree.

Algorithm for data packet DP:
If (cache is available at this node) {
Store DP in cache;
Set DP’s cache TTL to DP.t;

}
For each (outgoing link) {
If (downstream receivers are subscribed

to DP.group) {
Forward DP down link;

}
}

The amount of time a data packet is cached at a router de-
pends on how soon the router expects to receive a NACK for
that packet from the “farthest” receiver downstream. As dis-
cussed above, receivers detect losses from sequence gaps in the
packets or from the expected packet sending rate. In either case,
the amount of time it takes a receiver to detect a loss is a function
of the expected inter-packet (data or session message) sending
rate and the latency between the receiver and the source. There-
fore, the amount of time a fresh data packet should be cached
at a router can be approximated as a function of the inter-packet
sending rate and the max RTT (round trip latency) between the
sender and the “farthest” receiver downstream. If a protocol re-
cycles its data packet sequence numbers, the caching time of a
data packet should also be bounded by the amount of time it
takes the source to send one “cycle” worth of data.

To further reduce storage and processing costs, we recom-
mend caching packets only at routers at “strategic” locations.
Research is currently in progress to determine the optimal lo-
cations at which to cache data. For now, we describe several
factors that influence the placement of these caches.

Caching is particularly valuable when some receivers are con-
nected to the rest of the group over lossy links, such as wire-
less links. Caching data packets immediately before lossy links
can significantly reduce recovery latency. A similar approach
in router-based cached retransmission has been adopted by the
snoopTCP protocol [9] to improve the performance of TCP over
wireless networks.

Caching presents a tradeoff between network-based storage
and bandwidth. Studies on packet loss patterns in the cur-
rent MBone [10] indicate that most packet losses occur at the
“edges” of the network, instead of in the bandwidth-rich back-
bone. By locating caches where bandwidth is scarce (for exam-
ple, where the backbone meets slow-speed access links), ARM
can shield other parts of the network from frequent retransmis-
sion request and repair traffic.

Existing end-to-end approaches to reliable multicast, such as

RMTP, TMTP and LBRM, offload the sender site by having des-
ignated proxies perform retransmissions. However, these ap-
proaches do not protect the proxies’ bottleneck links from being
overloaded. If a proxy is responsible for retransmissions to re-
ceivers that are behind lossy links, frequent repair and request
traffic may eventually cause the proxy’s access links to become
congested also.

B. NACK Suppression and Local Retransmission

ARM processes NACK packets so as to prevent unneces-
sary request traffic from propagating beyond an active node.
NACKs also provide subscription information for repairs, en-
abling routers to determine which outgoing links contain group
members interested in receiving a repair. Finally, NACKs can
trigger local retransmission from an active node that has the re-
quested data in its cache.

ARM caches information in routers’ soft state to support
NACK suppression and scoped, local retransmission. In a tradi-
tional IP multicast network, a router maintains the group, source
address, and membership information for each ongoing multi-
cast session it supports [8]. An active ARM router also caches,
for a short amount of time, the following information for each
loss that it is handling: a NACK record, a REPAIR record, and
possibly the data packet itself. All three items are uniquely iden-
tified by the group address, source address, and sequence num-
ber of the lost data packet.

A NACK record for a data packet contains the highest NACK
count received for that packet and a subscription bitmap indi-
cating the outgoing links on which NACKs for the packet have
arrived. Routers use the NACK record to suppress subsequent
duplicate NACKs, and the subscription bitmap to determine the
outgoing links on which it should forward the subsequent repair
packet.

A REPAIR record for data packet p contains a vector indi-
cating the outgoing links on which the repair for p has already
been forwarded during the time the REPAIR record was cached.
Routers use the REPAIR record mainly to suppress NACKs sent
by receivers before they receive a repair that is in transit. For
each link, the vector indicates the highest NACK count con-
tained in a repair for p already sent down that link.

An ARM NACK packet has the following fields in its header:
address of receiver originating the NACK, address of original
source of the lost data, multicast group address, sequence num-
ber of requested data packet, NACK count, and suggested cache
TTL t for NACK and REPAIR records.

The processing for a NACK packet not only suppresses du-
plicate NACKs, but also makes the necessary preparation for
scoped retransmissions. It first checks to see if the requested re-
pair has just been forwarded down the link on which the NACK
arrived. If so, the router drops the NACK. If not, and the re-
quested repair is in the router’s cache, the router retransmits
the repair. Otherwise the router subscribes the originator of the
NACK to a subsequent transmission of a repair, and it forwards
only the first NACK for this repair to the sender. A NACK
packet with a higher NACK count, sent when a receiver does
not receive an expected repair, overrides the suppression set by
previous NACKs or repairs, which may have been lost. In more
detail, an active router processes a NACK packet as follows; an
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inactive router simply forwards the packet towards the sender.

Algorithm for NACK packet NP arriving on
link k:
Look up unexpired NACK record NR, REPAIR
record RR, and data or repair packet DP
for (NP.group, NP.source, NP.seqNumber);

If (RR found && RR’s NACK count for link k
>= NP.nackCount) {

// Do nothing
} Else If (DP found) {
Set DP’s packet type to REPAIR;
Set DP’s NACK count to NP.nackCount;
Deliver DP down link k;
If (RR not found) {

Create REPAIR record RR for
(DP.group, DP.source, DP.seqNumber);

}
Set RR’s cache TTL to NP.t;
Set RR’s NACK count for link k to

NP.nackCount;
} Else If (NR found &&

NR contains subscribed link &&
NR.nackCount >=

NP.nackCount) {
Subscribe link k to repair packet;

} Else {
If (NR not found) {

Create NACK record NR for
(NP.group, NP.source, NP.seqNumber);

}
Set NR.nackCount to NP.nackCount;
Set NR’s cache TTL to NP.t;
Subscribe link k to repair packet;
Forward NP toward the source;

}

In general, the amount of time a NACK record should be
cached at a router depends on how soon the router expects to
receive the corresponding repair. A repair can come either from
the original source or from routers along the path. Thus, the
NACK record should be cached for at least one RTT from the
router to the original source. The amount of time a router should
cache a REPAIR record should be approximately one RTT from
the router to the farthest receiver downstream. Since we do not
expect a router to always have the estimated RTT value from
itself to end-points, a reasonable caching time for NACK and
REPAIR records can be approximated as a function of the RTT
between the sender and the “farthest” receiver in the group.

C. Scoped Retransmissions

ARM processes repair packets in much the same way as mul-
ticast data packets, which have the same header fields. An im-
portant difference is that active routers scope retransmission of
repair packets to the portions of the multicast group experienc-
ing loss. They do this by looking up the corresponding subscrip-
tion bitmap, which was created and left in the router’s soft-state
cache by previous NACKs. If the relevant subscription infor-

mation is found in the cache, a router forwards a repair only
to subscribed links. If no subscription information is available
(e.g., because a cache was flushed or a route was changed), the
router merely caches the repair. If no cache is available, the
router forwards the repair down all links.

Algorithm for repair packet RP:
Look up unexpired NACK record NR and
REPAIR record RR for
(RP.group, RP.source, RP.seqNumber);

If (cache available at this node) {
Store RP in cache;
Set RP’s cache TTL to RP.t;
If (NR found) {

Forward RP down each subscribed
link in NR;

Remove NR;
}

} Else {
For each (outgoing link) {
If (downstream receivers are subscribed

to RP.group) {
Forward RP down link;

}
}

If (RR not found) {
Create REPAIR record RR for
(RP.group, RP.source, RP.seqNumber);

Set RR’s cache TTL to RP.t;
}
For (each link i on which RP

was forwarded) {
Set NACK count for i in RR to

RP.nackCount;
}

Active routers cache repair packets in order to accommodate
the wide range of possible NACK arrival times from geographi-
cally dispersed multicast group members. If network-based stor-
age is limited, it is more important to cache repair packets than
the original multicast data packets, because a loss is likely to be
experienced by several receivers, whereas many original packets
may not be lost at all.

ARM degrades gracefully even when network-based storage
is not available for caching repairs, but is still available for
caching NACK and REPAIR records. Assuming that the net-
work does not lose the repair itself, and that NACK and REPAIR
records remain cached for the max RTT, ARM in the worst case
multicasts a repair to the entire group, even if multiple receivers
send NACKs for that repair.

IV. IMPLEMENTATION

We have implemented an ARM prototype in Java and have
run it on SPARCs under Solaris 2.5. We built the prototype us-
ing the Active Node Transport System (ANTS) [11], which pro-
vides a set of Java classes on which to base active network appli-
cations. Among other classes, the Capsule class attaches code
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fragments to data packets. ANTS has a flexible code distribu-
tion scheme in which capsule code fragments can be “demand-
loaded” into an active node on a dynamic basis. Thus code for
ARM need not reside permanently in all active nodes, but can
be downloaded as needed. In our prototype, code for ARM
is loaded into an active node during multicast session initial-
ization; each capsule transmitted after the initialization process
contains only the header but not the code fragment.

Different ARM processing is invoked when different ARM
capsule types (i.e., multicast data capsules, NACK capsules, and
repair capsules) arrive at an active node. Each ANTS node also
provides a LRU-based soft-state storage mechanism which al-
lows capsule code to cache transient data items. The cache peri-
odically flushes items with expired lifetimes.

We emulated a multicast environment by creating multiple
ANTS nodes on different workstations in a 100 Mbit Ethernet
LAN. The ANTS nodes communicate with one another through
UDP. Our prototype uses a shortest-path based multicast for-
warding service.

Since we implemented our prototype in a purely interpretive
user-space environment, processing a basic multicast data cap-
sule takes approximately 4 ms on a 167-MHz UltraSparcs with
128 MB of memory. We expect that a more efficient runtime en-
vironment will reduce the time required to process ARM packets
by at least a factor of ten, by using compiled rather than inter-
pretive code, by eliminating user-space/kernel context switches,
and by reducing the number of times packets are copied.

More importantly, our measurements show that NACK sup-
pression and scoped retransmission require at most a 25% in-
crease in processing time over basic multicast routing. Consid-
ering that wide-area latency across the U.S. is 80 - 100 ms, and
assuming that an efficient implementation of ARM adds an over-
head of 200 �s to basic routing, ARM in-network processing
imposes negligible increases in end-to-end wide-area latency.
Additionally, using our approach, a router only performs active
processing, such as NACK suppression and scoped retransmis-
sions, when a group member downstream experienced a loss.
Therefore, in most cases, only a small fraction of the overall
traffic requires active processing. Caching of fresh multicast
data packets may involve a larger fraction of traffic; however,
it is not as important to cache fresh data as it is to cache repairs.

V. SIMULATIONS

We simulated ARM in order to evaluate its performance (with
varying numbers of active routers in the network), to measure
the tradeoffs it provides between router storage/processing and
network bandwidth/latency, and to compare its with that of
SRM. The results show that ARM performs well with respect
to the following metrics.
� Recovery Latency. The end-to-end recovery latency is lower
for ARM than for SRM, even if ARM does not cache multicast
data packets. Most of ARM’s improvement in recovery latency
can be obtained when fewer than 20% of the routers cache fresh
multicast data packets.
� Implosion Control. The maximum number of NACKs that a
single node (either a router or an end-point) must handle during
recovery from a single loss is approximately the same for ARM
and SRM. ARM is able to control implosions when fewer than

50% of the routers are active.
� Bandwidth Consumption. In comparison with SRM, NACK
packets consume less bandwidth in ARM, which performs well
in this respect when fewer than 50% of the routers are active.
Repair packets also consume less bandwidth in ARM, which
provides a local recovery mechanism where SRM does not.
Here again, significant benefits are obtained from scoped re-
transmission and cached repairs when only 40% of the routers
are active.

To compare ARM directly with SRM, we used the same as-
sumptions about the network, as well as the same simulator, as
did LBNL in their analysis of SRM [1], [12]. The LBNL sim-
ulations examine recovery behavior on a per-loss basis; they do
not consider scenarios in which NACKs and repairs are lost in
addition to fresh data packets. In our experiments, we used the
LBNL simulator to construct a bounded degree tree of N nodes
as the underlying network topology (N � ���� and the degree
is 4). The simulator then randomly choosesG of theN nodes as
multicast group members (G varies from 10 to 100 in our experi-
ments), randomly picks a source S from among theG members,
and randomly picks a link as the packet drop point. The simula-
tor assumes that it takes one time unit to traverse each network
link.

For some simulations, we vary the number of nodes in the
multicast tree that are capable of active processing. To gener-
ate a tree in which ��A of the nodes are active, we first allow
the simulator to construct the shortest-path multicast tree rooted
at the source, and we then randomly pick ��A of the non-leaf
nodes in this tree to be active.

A. Recovery Latency
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Fig. 1. ARM vs. SRM worst case recovery delay (random loss, 1000 nodes,
degree 4). ARM results shown when router caches of fresh multicast data
are enabled and disabled. SRM results shown for both non-adaptive and
adaptive algorithms.

Figure 1 compares the loss recovery delay of ARM with that
of SRM. As in [1], [12], the loss recovery delay is the time from
when a receiver first detects a packet loss to when it receives
the first repair for that loss. The data points in Figure 1 show
the worst case recovery delay for all receivers in the multicast
group, measured in multiples of RTT, the round trip time be-
tween the sender and the receiver experiencing the loss. For
each group size ranging from 10 to 100, the graph shows the
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results of 100 experiments. Each experiment involves four sim-
ulations, two for SRM and two for ARM, based on the same
freshly generated network and group topology.

The SRM simulations show the recovery delay for the non-
adaptive and adaptive variants of SRM. Both variants impose
backoff delays on receivers before they issue NACKs or repair
packets. The adaptive algorithm adjusts the delays based on past
performance. Our simulations use the same backoff delays as
used to produce Figure 6 in [12]: the NACK backoff is chosen
randomly between one and two RTT, the repair backoff between
one and two one-way delay times log��G. The backoff delays
for the adaptive algorithm are from the 40th loss recovery round
with a single repeated failure mode for each round.

Because the non-adaptive SRM backoff timers cause re-
ceivers to wait before issuing a NACK, and responders to wait
before sending a repair, the non-adaptive SRM recovery latency
can be long. Figure 1 shows that the median non-adaptive worst-
case recovery latency is approximately 2.5 RTT. The adaptive
algorithm improves the recovery latency, but it is still more than
1.4 RTT.

In ARM, receivers send NACKs towards the sender immedi-
ately upon detecting a loss. Hence the recovery latency is one
RTT when no intermediate routers cache multicast data. When
all intermediate routers cache multicast data, the latency is re-
duced to approximately 0.2 RTT. This is because NACKs trig-
ger a “local” retransmission at the first router upstream from the
failure link.
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Fig. 2. ARM tradeoff between caching of fresh multicast data and latency
(random loss, group size 100, 1000 nodes, degree 4). All non-leaf nodes in
multicast tree are active; caching of repair packets is enabled at all nodes.

Figure 2 presents less obvious data about the incremental ben-
efit of caching of multicast data on the end-to-end recovery la-
tency. The data in that graph were generated from simulations
in which all non-leaf routers were active and performed both
NACK suppression and scoped retransmission. However, the
number of (randomly selected) routers caching fresh data pack-
ets varied from 0% to 100%, with 100 simulations being per-
formed for each percentage. The data show that the average
recovery latency was cut nearly in half when only 20% of the
randomly picked routers cached multicast data. This result sug-
gests that ARM can significantly improve recovery latency by
caching multicast data at a relatively small number of strategi-
cally placed active routers.

B. Implosion Control
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Fig. 3. NACK implosion control (loss near source, 1000 nodes, degree 4). ARM
caches repairs, but not fresh data packets.
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Figures 3 and 4 measure the effectiveness of ARM and SRM
in controlling NACK implosion. Figure 3 shows the maximum
number of NACKs that either a router or an end-point handles
during the recovery from a single loss. Figure 4 shows the total
number of hops NACKs traverse during this recovery. Both fig-
ures also show the performance of ARM varies as the number
of routers performing NACK suppression decreases. The fig-
ures show what happens when a packet is lost near the source,
since the implosion effect is most serious when many receivers
are affected by the loss.

Since the topology used in the simulations is a bounded de-
gree tree, ARM causes nodes to receive at most four (the degree
of the tree) NACKs when every router performs NACK fusion,
and to send at most one NACK towards the sender. The SRM
adaptive algorithm exhibits approximately the same worst case
NACK load, because different receivers can generate duplicate
NACKs. However, SRM multicasts the duplicate NACKs to the
entire group, which consumes extra bandwidth as shown in Fig-
ure 4. Local recovery mechanisms proposed by SRM might re-
duce total bandwidth consumption by using TTLs to limit the
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scope of NACKs and repairs. However, as pointed out in [12],
when the loss impact area is large, multiple local recovery events
may consume more bandwidth than a single global recovery.

The figures show that ARM performs reasonable implosion
control even when only 75% of the (randomly picked) routers
can perform NACK suppression. More interestingly, when
routers at “strategic” locations perform NACK suppression,
ARM can achieve most of its benefits with fewer than 50% of
its nodes active. A simple criterion defines a router location to
be strategic if there are more than two outgoing links to multi-
cast group members. Figure 5 shows the ratio of the number of
strategically placed routers to the total number of non-leaf nodes
in the multicast tree. Note that for group sizes up to 100, fewer
than 50% of the locations in the multicast trees in our simula-
tions are strategic.
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Fig. 5. Ratio of “strategic” nodes to number of non-leaf nodes in multicast tree
(1000 nodes, degree 4).
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Figure 6 compares the performance of ARM when only
strategic nodes are active to the performance of SRM and of
ARM when the active nodes are chosen randomly. It confirms
that strategic placement of active nodes results in performance
close to that achieved when all nodes are active, and in any case
better than that achieved when a larger number of nodes are cho-
sen randomly to be active.

C. Bandwidth Consumption
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Fig. 7. Effectiveness of ARM scoped retransmissions (random loss, 1000 nodes,
group size 100, degree 4). Active nodes scope retransmission and cache
repair packets, but do not cache fresh data packets.

Figure 7 shows the bandwidth consumed by repair packets
during recovery from a single loss, as measured by the total
number of hops traversed by those packets. The baseline case
occurs when no routers are active in ARM. In this case, a repair
is multicast to the entire group, and Figure 7 shows the normal
distribution of the total number of hops in the randomly gener-
ated multicast trees. The other cases show how ARM behaves
when varying numbers of routers perform scoped retransmis-
sion, but none cache fresh multicast data. Although caching
fresh data would reduce repair bandwidth, the data in Figure 7
were obtained without it so as to better assess the impact of
scoped retransmission.

Figure 7 shows that, when all routers perform scoped retrans-
mission, 40% of all losses require the repair packet to traverse
at most 10 hops, and 80% require at most 12 hops. Even when
only 25% of the routers are active, 40% of all losses require the
repair packet to traverse at most 1/3 the hops in the multicast
tree, and 80% require at most 1/2 the hops. The group size in
Figure 7 was fixed at 100.
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Figure 8 shows the effectiveness of scoped retransmission in
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ARM for different group sizes and different numbers of active
nodes in the multicast tree. Here again, the base case shows
the effect of multicasting the repair to the entire group. The
data show that ARM is effective in limiting repair traffic even
when only 50% of the (randomly picked) active routers scope
retransmission. It also shows that SRM’s recovery bandwidth
increases dramatically as the group size increases, because SRM
multicasts repairs to the entire group.
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Fig. 10. Effect of caching repairs in ARM and number of receivers that receive
unnecessary repairs (random loss, 1000 nodes, group size 100, degree 4).
All nodes active. No nodes cache fresh data packets. Nodes that cache
repair packets are picked randomly. Source always caches repairs.

Figures 9 and 10 show the effect of caching repair packets
on recovery bandwidth and the number of receivers that receive
unnecessary repairs. All non-leaf nodes in the multicast tree
are assumed to be active, but the number that have cache ca-
pacity varies. In all cases, the source is always able to cache
the repairs and perform scoping of retransmissions. As Figure
9 shows, most of the benefit of scoped retransmission on band-
width savings can be obtained when only (a randomly selected)
40% of the routers cache repairs. As Figure 10 shows, when all
nodes within the multicast tree have the cache capacity for re-
pairs, ARM achieves “perfect” scoping of repair packets – i.e.,

none of the 100 session members received unnecessary repairs.
When 40% of the (randomly selected) nodes can cache, ARM,
on an average, shields approximately 90% of the affected mem-
bers from unnecessary repairs.

VI. RELATED WORK

Existing work on wide-area reliable multicast loss recovery
falls mainly into two categories. The first category, represented
by Scalable Reliable Multicast (SRM) [1], [12], uses random-
ized backoff to avoid the NACK implosion problem. In SRM,
NACKs are multicast to the group, possibly with a TTL to limit
their delivery scope. Any member that has reliably received
the requested data can respond to the retransmission request.
The second category organizes receivers into hierarchies. Par-
ticular hierarchical approaches include RMTP [4], TMTP [3],
and LBRM[2]. In these approaches, a subset of receivers (or
some other representatives such as loggers) is designated to pro-
vide proxies for the sender in responding to retransmission re-
quests. Receivers are responsible for identifying their desig-
nated “representatives” and for sending feedback messages di-
rectly to them. A representative will either unicast or multicast
the repair to its subgroup if it has the repair.

Neither category of approaches offers a satisfactory solution.
SRM is the more fault-tolerant and flexible of the approaches,
since any member of the group can perform retransmissions.
However, its timer-based implosion control mechanism incurs
an additional cost in recovery latency, and it suffers from dupli-
cate requests and repairs due to its probabilistic nature. Further-
more, local recovery in SRM is still an open issue. Hierarchi-
cal approaches do a better job in localizing the error recovery
process. However, it is difficult to maintain good hierarchies,
especially in the face of frequent membership changes.

There are several recent proposals (e.g., [13] and [14]) to
solve these problems by extending the multicast routing services
to support reliable multicast loss recovery. The general idea is to
have routers deliver NACKs upstream toward the original source
until they reach a “turning point,” where they are forwarded as
multicast packets downstream toward other group members that
might have the requested data packet. One problem is that it is
difficult to decide where optimal “turning points” are located in
the network on a per loss basis. Another is that receivers can
still receive duplicate NACK packets.

In comparison with SRM, ARM has a much lower recovery
latency and provides a specific solution (router-based scoped re-
transmission) to local recovery. ARM is more flexible and ro-
bust than the hierarchical approaches, because any router with
cached multicast data can perform retransmissions, and end
hosts do not have to maintain nor have any knowledge of group
topology. ARM does not require all nodes to be active, and does
not rely on any particular router or receiver to perform loss re-
covery. Our simulation results show that ARM yields good scal-
ing properties even when less than 50% of the nodes are active.

VII. CONCLUSIONS

In this paper, we have shown that network based process-
ing and storage can be used to enhance the performance and
scalability of reliable multicast. Our algorithm, ARM, utilizes
intermediate routers to reduce both NACKs and repair traffic.
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Routers also help distribute the retransmission load by caching
multicast data. ARM is flexible and robust in that it does not
require all routers to be active, nor does it require any specific
router or receiver to perform loss recovery. Additionally, it is
robust with respect to dynamic changes in group membership.

Analysis and simulation results show that ARM performs
well in terms of recovery latency, implosion control, and repair
bandwidth. Whereas SRM trades recovery latency off against
repair bandwidth, ARM utilizes network based processing and
storage to reduce both. ARM’s performance degrades gracefully
as the network resources used for active processing decrease.
Significant benefits are still obtained when only half the routers
within a multicast tree perform ARM processing. Our simula-
tion results suggest that the same benefits can be obtained from a
much smaller set of participating routers placed at strategic loca-
tions. Research is currently in progress to determine the optimal
locations for those routers.
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