
IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 19992

ACTIVE NETWORKS:
APPLICATIONS, SECURITY, SAFETY, AND

ARCHITECTURES

raditionally, the function of a network has been to
deliver packets from one endpoint to another. There
was a distinct boundary between what is done within
the network and what is done by the users. Process-

ing within the network was limited basically to routing, con-
gestion control and quality of service (QoS) schemes. This
kind of a network can be regarded as “passive”. Several prob-
lems with “passive” networks have been identified: the diffi-
culty of integrating new technologies and standards into the
shared network infrastructure, poor performance due to
redundant operations at several protocol layers, and difficulty
accommodating new services in the existing architectural
model. An additional shortcoming is that, recently, applica-
tions which sometimes require computations within the net-
work have emerged, such as firewalls, Web proxies, multicast
routers, and mobile proxies. In the absence of architectural
support for doing so, these applications have adopted a vari-
ety of ad hoc services for performing user-driven computa-
tions at nodes within the network. A need was felt to replace
the numerous ad hoc approaches to network-based computa-
tion, with a generic capability that allows the users to pro-
gram their networks. This innovative idea of imparting the
user the ability to program the network is called active net-
working.

Active networks represent a new approach to network

architecture. These networks are “active” in two ways:
routers and switches within the network can perform compu-
tations on user data flowing through them; and users can
“program” the network, by supplying their own programs to
perform these computations [3]. In the extreme case, there
will be no difference between internal nodes and end user
nodes since both will be able, if needed, to perform the same
computations.

The emergence of new technologies supporting encapsula-
tion, transfer, safe and efficient execution, and interposition
of programs and program fragments is one of the reasons
why it is now possible to build active networks. At the same
time, in the fields of operating systems and programming lan-
guages, issues relating to mobility, efficiency, and safety have
been addressed. From all the above one can conclude that
there is a user “pull” and a technology “push” towards a new
way of thinking about the network [1, 4]: the user “pull”
stems from the paradigms that “violate” the traditional prop-
erties of the network while the technology “push” stems from
the fact that until recently it was not technologically possible
to treat programs as a set of encapsulated and moving code
fragments.

The question that arises is whether such a change will
improve the performance of the applications that run through
a network or not. There is no clear answer to that question

KONSTANTINOS PSOUNIS

STANFORD UNIVERSITY

T

ABSTRACT

Active networks represent a new approach to network architecture. Routers can perform
computations on user data, while packets can carry programs to be executed on routers and

possibly change their state. Currently, the research community is divided concerning the
usefulness of active networks. On the one hand, active networks provide a much more
flexible network infrastructure, with increased capabilities. On the other hand, they are

obviously more complex than traditional networks and raise considerable security issues.
The purpose of this article is to provide a broad survey on active networks. The first goal is
to highlight their efficiency in a variety of applications. After presenting some key points on

each application, we discuss some current experimental technologies and assess the usefulness
of active networks in congestion control, multicasting, caching, and network management.
The second goal is to address the security issues that active networks raise: the problem is

defined, and techniques for solving it are presented and elaborated upon with a description of a
specific implementation of a secure environment and related performance measures. Issues
related to the design of a programming language for active networks are also discussed. The
third goal is to classify active network architectures based on their design approach. Thus an

inclusive presentation of currently proposed architectures, which focuses on their design
attributes, capabilities, performance, and security, is given.

S U R V E Y S
I E E E
C O M M U N I C A T I O N S

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 3

yet. The research community is divided on
whether or not active networks are useful. The
argument against active networks is that the
Internet is successful today because of its sim-
plicity; by making the networks “active” things
may get very complicated. The argument for
active networks is that it is a very promising
and innovative idea; a variety of useful net-
work services that involve processing at inter-
mediate nodes will be made possible and the
use of such services is likely to lead to better
end-to-end performance for applications [2].

A reasonable way to judge whether or not
active networks can improve network perfor-
mance is via the end-to-end argument. The
end-to-end argument is a system design princi-
ple intended to help determine where to place
services in a subsystem. The argument states
that a function or service should be placed
“in” the network only if it can be cost-effec-
tively implemented there. The authors in [5]
state that some services can best be supported
or enhanced using information that is only
available inside the network. Since active networks push func-
tions and services “in” the network, these functions and ser-
vices may then easily, timely, and efficiently use the
information available there. Therefore, active networks can
significantly enhance the network performance. Two exam-
ples that are easy to imagine are time and place of conges-
tion and location of packet losses within multicast distribution
trees.

DEFINITIONS

It is helpful to provide some formal definitions of passive
and active networks in order to clarify their differences.

Definition 1 — A passive or traditional network is a net-
work that consists of smart hosts sitting at the edges of the
network that are capable of performing computations up to
the application layer, and simple routers that interconnect
the hosts and can only perform computations up to the net-
work layer.1

Definition 2 — An active network is a network that
allows intermediate routers to perform computations up to
the application layer. In addition, users can program the net-
work by injecting their programs into it. These programs trav-
el inside network packets and are executed in intermediate
nodes resulting in the modification of their state and behav-
ior.

In the extreme case, the packets of an active network can
be regarded as programs. We call these packets active pack-
ets to distinguish them from “traditional” network packets.
Conceptualizing a packet as a moving program inevitably
brings to mind the notion of intelligent agents and, in partic-
ular, of mobile software agents which could be considered a
specific class of the former. A formal definition of a mobile
software agent may be helpful.

Definition 3 — A mobile software agent is a program
that acts on behalf of a user or another program, and is capa-

ble of moving within the network under its own control. The
agent chooses when and to where it will migrate, and may
interrupt its own execution and continue elsewhere on the
network. The agent returns results and messages in an asyn-
chronous fashion [7].

The mobile agent paradigm proposes to treat the network
as multiple agent-friendly environments and the agents as
programmatic entities that move from location to location,
performing tasks for users [8]. The similarity between the two
ideas is obvious. Indeed, many of the active network Archi-
tectures presented later in this article use mobile code tech-
niques that are very close to mobile software agent
technology. However, the idea of active networks is much
more general. Active networks visualize the network as a col-
lection of active nodes that can perform any computations,
and a collection of active packets that carry code and are
indeed programs. Under that viewpoint, a mobile agent may
be regarded as a specific type of an active packet, and a
mobile-agent-compatible node of traditional networks2 could
be regarded as a specific type of an active node since the lat-
ter is secure and allows any kind of computations. A funda-
mental difference between the two ideas is that active
networks use the concept of network layer processing where-
as mobile agent systems run as application programs. An
active network, because it is programmable by each nature,
offers the applications of mobile software agents as “primi-
tive functionality.”

The structure of this article is as follows: in the next sec-
tion we present how active networking can be used to improve
the performance and the efficiency of specific applications.
The first application is network management and three
experimental technologies that seek the advantages of active
networks over network management are presented, along
with general remarks. The second is congestion control, an
important case of network management. The third is multi-
casting, and the fourth is caching, used particularly for Web
browsing and multicasting. Experimental technologies are
also presented for all these applications. The third section
addresses the issue of security that is raised by the increased
flexibility of active networks. The problem is analyzed, solu-

■ Figure 1. Structure of the article.

Network management

Congestion control

Reliable multicasting
Active packets approach

Active nodes approach

Active packets and nodes approach

Programming point of view

Systems point of view

Active caching

Applications
Security

Active
networks

Architectures

1 The seven layers of OSI in ascending order are the Physical layer, the
Data Link layer, the Network layer, the Transport layer, the Session layer,
the Presentation layer, and the Application layer.

2 In a traditional network, mobile agents need special mobile-agent-com-
patible nodes in order to be executed.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 19994

tions are presented, and an implementation of a secure envi-
ronment is described together with some measures of its per-
formance. In this section we also address security issues from
the programming point of view by presenting some pro-
grammability issues and suggesting ways to deal with them. In
the fourth section we present the proposed architectures that
support active networking. Our conclusions are given in the
fifth section. Figure 1 schematically presents the general
structure of this article.

APPLICATIONS

The most important application of active networks stems
directly from their ability to program the network: new proto-
cols and innovative cost-effective technologies can be easily
employed at intermediate nodes. The functions of the nodes
will no longer be rigidly built-in by vendors who must follow
designs dictated by slow and intractable standards commit-
tees. Also, network integrity will not be vulnerable against
various ad hoc approaches toward network programming, as
is the case today. At the same time, active networks can be
very beneficial for a variety of specific applications. In this
section we present why and how this is possible for network
management, congestion control, multicasting, and caching.

NETWORK MANAGEMENT

Currently, network management is achieved by having
management stations routinely poll the managed devices for
data, looking for anomalies. This technique has served us
well in the past. However, due to the increase in the number
and complexity of nodes in the network,3 now it has become
problematic. Management centers become points of implo-
sion, inundated with large amount of information. This infor-
mation is very often redundant, as the packets that arrive
may simply report that there was no change in the state of
the monitored part of the network. Also, in case of a prob-
lem, the round-trip delay that is needed for the information
to reach the management center and the reply to return back
to the affected part of the network, is sometimes significant
and the action undertaken is not up to date any more. It is
essential that network management employs techniques with
more immediate access and better ability to scale.

Active networks are the natural answer to the above prob-
lem. By making the internal nodes of the network active we
can move the management centers right in the “heart” of the
network and thus reduce both delays from responses and
bandwidth utilization for management purposes. Also, we can
inject special code in the packets that can act as “first aid” in
case they encounter a problematic node. This code can be
executed in the affected node and change its state automati-
cally instead of waiting for a reply from a management cen-
ter. Other packets can act as “patrols,” constantly looking for
anomalies as they trace the network. Finally, since a manage-
ment center sends programs to the managed nodes, it can
request real-time tailoring of the information to be returned
in order to meet its current needs. This will reduce the back
traffic and processing time of the information after it is
received by the management center. To sum up, by using
active networking for network management:
• Problems are tracked quickly or are reported automati-

cally without the need of polling.
• Management centers can be in the “heart” of the net-

work, thus delays from responses and bandwidth utiliza-
tion for management purposes are reduced.

• “Patrol” and “first aid” active packets can respectively
track a problem and deal with it at once.

• Information content returned to the management cen-
ters can be tailored to the current interests of the center
so that back traffic and processing time are reduced.

• Management policies can change easily as administrative
requirements change, thanks to the inherent flexibility of
active networks technology.

Experimental Technologies Related to Network Man-
agement — Three projects that apply active network tech-
nology concepts to network management will be discussed
here as a first look at how the previous points translate in
practice. The first is the Smart Packets project [11] held at
BBN Technologies, the second is the Network Management
by Delegation Paradigm [13, 14] of Columbia University, and
the third is the Darwin Project of Carnegie Mellon University
[10, 12].

The Smart Packets project is designed to demonstrate the
benefits of active networks in network management. Tradi-
tional data packets are replaced from smart packets that may
carry programs. Smart Packets programs are written in a
tightly-encoded, safe language specifically designed to sup-
port network management and avoid dangerous constructs
and accesses. A closer look at the architecture of the project
is provided in the section entitled “Architectures.” Smart
packets is designed as a network management tool where the
manager uses smart packets to efficiently manage network
resources. There are four types of packets: program, data,
error, and message packets. Program packets carry the code
to be executed at the appropriate nodes. Data packets carry
the results of the execution back to the originating network
management program. Message packets carry information
messages and error packets return error conditions. The
management of large and complex networks is improved by
moving management decision points closer to the node being
managed, by targeting specific aspects of the node for infor-
mation, and by abstracting the management concepts to lan-
guage constructs.

Network management by delegation is the first application
that moved code to be executed in network elements. Its
underlying principle is that management processing functions
can be delegated dynamically to the network elements and
executed locally rather than centrally. Instead of moving data
from the managed nodes to the management center, one can
move management application code at the network elements
where the data resides. Management by delegation provides a
powerful computational architecture for scalable, decentral-
ized, and automated management. A distributed technology
that supports moving management application code as dele-
gated agents is used to remotely load and execute manage-
ment software. Delegated agents are a special case of mobile
software agents and can be used to deploy functions of arbi-
trary functionality.4 An elastic server provides a portable
operating system extension that supports the execution of
delegated agents. Finally, a delegation protocol is used to
dynamically dispatch delegated agents to an executing elastic
server at a remote system, and to control their execution.
Network management by delegation reduces the network
bandwidth utilization for management purposes and the

3 The Internet is growing exponentially.

4 Delegated agents are also used to deploy functions in intermediate nodes
in the context of Netscript architecture, which is presented in the section
on architectures.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 5

delays due to remote data accessing. In addition, it assists the
developers of management applications in modifying their
management policies as administrative requirements change.
In other words it achieves spatial and temporal distribution
of management functionality. Similar work in the context of
TMN framework5 was done at UCL [15].

The Darwin project introduces the term delegate for code
that is sent by applications or service providers to network
nodes to implement customized management of their data
flows. Delegates are executed on designated routers and can
affect resource management through a control application
programming interface (API). The control API should not be
too restrictive because it will limit the usefulness of delegates,
but should not give too much freedom either, as this may
lead to system inefficiency. The resources are organized in a
resource hierarchy in order to be manageable. The functions
of the API fall into a number of classes. One class of func-
tions allows the delegate to change the structure of the
resource hierarchy by splitting flows, merging flows, changing
the resources given to nodes, etc. A second class allows dele-
gates to affect routing. Finally, a third class allows the dele-
gate to send and receive messages. The delegate can monitor
the network status either by explicitly requesting information
or by asking to be notified about changes. Customization of
resource management is a key requirement for high-quality
value-added services, and active networks as well as other
related tools such as mobile agents provide the framework
and technology to make it possible.

CONGESTION CONTROL

Network congestion is a problem unlikely to disappear in
the near future. Therefore, it is essential to find efficient
algorithms to deal with it. Congestion is a prime candidate
for active networking, since it is an intranetwork event, usual-
ly far removed from the application. Also, it often takes a
considerably long time for congestion notification informa-
tion to propagate from the point of congestion to the user, so
that the latter can self-regulate in order to reduce congestion.
As a result, either there is a period of time during which con-
gestion is augmented — since applications have not learned
about it — or the notification arrives so late that there is no
longer any congestion and self-regulation is not needed.
Since congestion control is a special case of network manage-
ment, all the benefits of active networks presented in the pre-
vious subsection are also valid here.

On a descriptive level, one can find many examples where
the added functionality of active networks can help in dealing
with congestion control. Here are some examples:
• An active node can monitor the available bandwidth and

control the rate of a data flow accordingly. Of course,
buffering is needed in this case, so instead of putting the
buffers in the switch, we can put them in the active
node.

• In case of many data flows with different congestion
requirements, an active node can control the relevant
rate of each flow in addition to the total rate. Also, it is
possible to adapt to dynamic changes of the require-
ments.

• The transformation of data at a congestion point is also
a powerful capability. In fact, applications sometimes
produce data according to the congestion situation if
they are aware of it. Therefore, we can perform the
above transformation right in the place where it is need-
ed and only if it improves the performance. However,
we should expect that from a computational point of
view, a transformation may have a significant cost.

• Selective dropping of units, packets or cells can be held
very efficiently. In case of congestion, we prefer to drop
less important units than more important ones. The
importance of a unit depends on the amount of informa-
tion it carries. A classic example here is the case of
MPEG compressed video where if we lost an I frame,
there is no point in keeping the P and B frames that
depend on the lost I frame.

• Finally, we can have a multi-stream interaction in the
following sense: e.g., if a user is receiving video and
audio and there is a loss in the video, audio units should
receive extra priority to assure that the user will still get
some information.

Experimental Technologies Related to Congestion —
The work done at the Georgia Institute of Technology [16] is
an example of a current experimental technology that focuses
on the benefits of active networking with respect to network
congestion. The approach used is that the network defines a
finite set of functions, which can be computed at an active
network node by the so-called active processor. Also, there is
header information in each packet that specifies which com-
putation is to be performed on it, called active processing
control information (APCI). Backward compatibility with
existing network protocols is achieved because nonactive
nodes need not recognize the APCI in order to switch pack-
ets, and APCI is not required in packets switched by active
nodes.

When a packet arrives at a node, the following steps take
place:
1. The output destination port of the packet is computed

(as usual).
2. If there is an APCI then the packet is sent to the active

processor for further processing. If not, the packet is
transmitted.

3. The function specified in APCI is computed.
4. The packet’s header and APCI are recomputed if the

result of the function is transformed data. Also, the
node’s state is updated as required by the function.

5. The packet is transmitted.
Obviously, in the worst case, the service provided with

active processing should not be worse than the typical service
if the node was not active.

The authors of [16] have tested some of the above ideas in
an experimental configuration consisting of an ATM switch
and four attached Sparcstations, one of which was acting as
an active node. The system was heavily congested on pur-
pose. The first experiment tested the performance of the
unit-level dropping (ULD) function, according to which units
that are meaningful to the application are dropped altogether
if any portion of the unit must be dropped. Without active
processing, approximately 36 percent of the units were prop-
erly received. With ULD, approximately 90 percent of the
units were properly received as long as the buffering size was
at least four times the application unit size. The second
experiment, in which a group of Pictures (GoP) consisted of
an I frame and all the B and P frames that rely on it, involved
MPEG. It was shown that dropping an entire GoP, in case its
I frame is lost, leads to better results than just using plain

5 The telecommunications management network (TMN) framework aims
to support the management of telecommunications networks and services.
Conceptually, the TMN is a separate data network that interfaces to the
telecommunications network for purposes of monitoring and control. The
TMN relies on the OSI management model for the modelling of network
and services resources.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 19996

ULD, particularly if buffer space is limited. Finally, various
multi-stream interaction functions were evaluated and com-
pared to each other.

The model presented above may be considered “conserva-
tive” because it does not use all the capabilities that active
networks offer. The packets only carry the APCI, they do not
carry code to be executed in the nodes. Also, the nodes have
a fixed set of functions instead of infinite ones. The motiva-
tion for such a simple model is that it serves its purpose well
without having to change anything in the rest of the network.
A partial implementation of the architecture of active net-
works can offer some direct benefits and help move the net-
work in the direction of more radical changes. More on the
architectural considerations of this approach will be present-
ed in the “Architectures” section.

In the future, we expect more radical models to emerge,
which will be more powerful but also more complex and less
compatible with non-active technology. One idea is to use the
per-packet programs to allow each packet to make decisions
about how to be routed on the fly. By arriving at a node, a
packet may execute its “routing” code according to the infor-
mation kept in that node. That information may be the result
of the processing of information brought to the node by other
packets. So, each packet acts as a “monitoring” device of the
network and informs each node that traverses about what it
had learned during its “journey.” Thus, upcoming congestions
are tracked and regulation is done automatically before con-
gestion takes place. The above scheme resembles that of a
driver who listens to the traffic reports on the car radio and
makes on the fly decisions on which roads to use, taking into
account his/her own time constraints.

MULTICASTING

The Internet and the next generation of networks will
have to handle a great variety of application traffic such as
audio, video, teleconferencing, etc. Many of them inherently
require multicasting. New techniques are being sought that
will provide the functionality of multicasting in an efficient,
reliable, and scalable way. Applying the ideas of active net-
works in this field may prove useful: active internal nodes can
elegantly solve many current problems such as NACK implo-
sion,6 concentrated load of retransmissions, useless retrans-
missions, duplication of packets and immunity to group
membership changes,7 while existing “passive” schemes pro-
vide only partial solutions to the above problems. Indeed, at
MIT the inventors of a loss recovery scheme that takes
advantage of active networking, called active reliable multi-
cast (ARM) [18], claim that it can solve all the above prob-
lems efficiently.

Active Reliable Multicast and Other Research — ARM
utilizes intermediate routers to protect the sender and net-
work bandwidth from unnecessary acknowledgments and
retransmissions. ARM routers play an active role in loss
recovery. They provide soft-state storage and perform cus-
tomized computation based on different packet types. Stor-

age is soft-state because an active node will cache an item for
a specified time as long as it has enough cache capacity. Not
all nodes need to be active for the scheme to work properly
and efficiently. The percentage of nodes that are active, the
size of the caches, and the lifetime of each cached item are
obviously important parameters of the scheme. Three error
recovery strategies are used by ARM as follows.
• The first action taken by active routers is to cache the

data in order to be able to retransmit it in case of a
retransmission request. This is called local retransmi-
tion. Therefore, as NACKs travel toward the sender,
they may trigger the retransmission of a lost packet by
an intermediate node. By doing so, both latency is and
traffic are reduced. Caching presents a tradeoff between
network-based storage and bandwidth. Therefore, it
makes sense to cache only at routers located at “strate-
gic” points in the network. Studies on packet loss pat-
terns indicate that most packet losses occur at the edge
of the network. Thus, routers that connect stub networks
to the rest of the network or routers immediately before
lossy links such as wireless links are good candidates for
caching. It is interesting to mention that active routers
may also cache the repair packets, which allows them to
accommodate for possible NACKs from distant areas of
the network. Indeed, when storage is limited it is more
important to store repair packets than original ones.

• The second action taken by active routers is the process
of NACKs aiming at suppressing unnecessary request
traffic (NACK suppression) and to get information
about the originators of retransmission requests. Each
multicast packet includes a NACK count field in its
header. Active routers maintain two records: the NACK
record and the REPAIR record. The former contains
the highest NACK count received for that packet —
used for suppressing NACKs — and an indication of the
outgoing links on which NACKs have been received —
used for scoped retransmission. The latter contains a
vector indicating the outgoing links on which a retrans-
mission is on its way, so that future NACKs will be sup-
pressed.

• The third action is the scoped retransmission. When a
repair packet arrives, the router checks the NACK
record. If no indications exist, it forwards the packet to
all outgoing links. However, if there is an indication of
the outgoing links that have asked for retransmission,
the repair packet is forwarded only to those links achiev-
ing scoped retransmission.
Simulation results have shown that ARM has much lower

recovery latency than “passive” schemes and provides a spe-
cific solution to local recovery. Also, it is flexible and robust
because active routers do not have to maintain nor have the
knowledge of group topology to efficiently perform the above
actions. It is important to say that all the above can be
achieved even if less than 50 percent of the routers are
active. Two open issues of the above scheme are the location
and duration of caching. These issues will be addressed sub-
sequently.

Other research on active networks and multicasting is pre-
sented in [17]. The authors have implemented two protocols
for multimedia streams and used them to demonstrate the
usefulness of active networks. The first protocol, called
Robust Multicast Audio, is an example of how the perfor-
mance and efficiency of an existing protocol can be improved
by adding application-specific computational power to inter-
nal nodes of the network. The second, called Layered Multi-
cast Video, demonstrates the quick development of a new
protocol that optimizes bandwidth usage in multicast trees.

6 In case of errors, many receivers send NonAcknowledgement packets
towards the sender. The aggregate of that traffic increases as we approach
the sender, and may reach the capacity of the nearby links.

7 In multicasting, interested users join a group and a multicasting tree is
formed from the sender to these users. Group membership is dynamic in
the sence that new users may join the group any time and old users may
leave the group any time.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 7

The above protocols were implemented using two different
active architectures, ANTS and M0, which are presented in
the “Architectures” section.

Reliable multicasting is still an open issue in the research
community. Based on an assessment of what the research has
shown so far, it is fair to suggest that the use of active tech-
nology is likely to prove even more beneficial in the future as
it deals with a key aspect of multicasting: it allows for deci-
sions to be made inside the network, which is an essential
necessity for loss recovery.

CACHING

A substantial fraction of network traffic in the Internet
comes from applications like the World Wide Web, where
information is retrieved by clients from servers located any-
where in the network. The caching of objects at locations
close to the clients can decrease both the network traffic
and the time needed to retrieve the information. Active net-
works can be used to provide a smart caching scheme
wherein smaller overall storage capacity is needed and high-
er reduction in network traffic and latency can be achieved.
Traditional approaches to network caching place large
caches at specific points in the network. The key point in
these schemes is how to choose these specific points. One
option is to cache at transit8 nodes (transit-only caching).
Since a large fraction of paths in the network have to go
through transit nodes, they are prime candidates for caching.
Another policy is to cache in stub nodes that are connected
to transit nodes because the former have to be traversed in
order for a node inside a stub domain to access the rest of
the network. Therefore, cache nodes can be located near
the edge of the network or at strategic points within the
network organized with a hierarchical scheme wherein
clients are manually configured to access a particular cache
in the hierarchy.

An interesting idea would be to “balance” the hierarchy
by repositioning not only the cached information but also
the cache nodes. In this scheme, each node or a set of
nodes decide whether to cache the information that returns
from the server to the client. Obviously, the effective orga-
nization of the location and the content of the caches is not
trivial. Nodes should be smart enough to cache objects that
nearby clients will request in the future and to coordinate
with each other to avoid caching the objects that are already
cached in neighbor nodes. Active networks technology may
help deploy a mechanism of coordinating the nodes. Also,
because a significant fraction of Web pages are dynamically
computed, active technology may support the storage and
execution of programs that generate these pages in nodes
near the clients.

Self-Organizing Wide-Area Network Caches — Recent
work at the Georgia Institute of Technology considers the
benefits of associating caches with nodes throughout the net-
work, and self-organizing cache contents in an active way.
The proposed scheme, called Self-Organizing Wide-Area
Network Caches [19], yields round-trip latencies that are
smaller than or equal to the more traditional approaches,
while requiring much smaller caches per node. The basic idea
is to obviate the need to decide where to place caches by

considering that all nodes of the network can cache objects
and relying on active technology to maintain a uniform distri-
bution of caches within the network. Nodes make local deci-
sions in a way that resources are used effectively overall.

The first approach described is called modulo caching. A
distance measure, called cache radius, is defined, measured
in transmission hops. The caching policy uses the radius as
follows: on the path from the server to the requesting client,
information is cached in nodes that are cache radius apart.
We therefore end up with a distribution of caches located a
“cache radius” away from each other. The second approach
uses some of the cache space in each node to store locations
of information objects. Each node’s cache is divided into
“levels.” Level 0 contains locally cached objects, level 1 con-
tains objects cached in nodes one hop away, etc. When a
request message for an object is processed, the levels are
searched in sequence beginning with level 0. This approach is
called lookaround algorithm. The number of levels of adja-
cent caches maintained and checked in this algorithm is a
parameter of the policy and, as with the cache radius, might
be set globally, on a per-object basis, or even locally.

Simulation results show that active mechanisms outper-
form traditional methods in case of correlated accesses. By
correlated accesses, we mean that an initial access will cause
future accesses involving the same client and server pair. In
case of uncorrelated accesses, transit-only caching performs a
little better than active mechanisms, but this sort of caching
fails to adapt to correlated accesses.

Active Caching and Reliable Multicasting — The ideas
of active caching can be used in the area of reliable multicas-
ting to determine the duration and location of caching
dynamically. Active technology can be used to assign values
to the lifetime of cached objects according to the nature of
the application and the frequency of NACKs at that specific
time. By using the current structure of the multicasting tree,
nodes may decide on the fly whether they are going to cache
packets or not and for how long. In dense areas of the multi-
casting tree, more caching nodes are needed. In order to
accommodate distant receivers, a caching node should hold
the packets for longer time. As the tree is formed, active
nodes can track the number and distance of their neighbors
and make a nearly optimum decision regarding caching. New
membership information may change not only the multicast-
ing tree but also the distribution of the cached nodes, result-
ing in a more “balanced” hierarchy tailored to the current
state of the tree.

SECURITY AND SAFETY

So far we have explored various fields of networking
where active networks can be useful. In this section we dis-
cuss the security and safety issues that active networks raise.
Since active networks are much more flexible than passive,
the number of safety and security issues that need to be
addressed are tremendously increased. By safety we mean
reducing the risk of mistakes or unintended behavior. By
security we mean the usual concept of protecting privacy,
integrity, and availability in the face of malicious attack. A
packet that carries executable code can potentially change
the state of a node. Nodes (routers, switches, etc.) are public
resources and are essential to the proper and correct running
of many important systems. Therefore, the safety and security
requirements placed upon the computational environment
where the code of packets will be executed must be very
strict.

8 Network can be considered to be a collection of stub and transit
domains. Stub domains reside at the edge of the network and are inter-
connected by transit domains. The former carry traffic addressed to or
from some node in the stub domain and the later carry transit traffic.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 19998

In the current Internet, the only resource consumed by a
packet at a node is the memory needed to temporarily store
it and the CPU cycles necessary to find the correct route. In
such an environment, strict resource control in the intermedi-
ate nodes was considered non-critical. However, an active
packet may consume not only many more resources but also
at a faster rate. Denial of service attacks may easily occur if
there is no resource management. Clearly, in addition to
security and safety, fairness is also an issue.

In an active network, active packets may misuse active
nodes, network resources, and other active packets in various
ways. Also, active nodes may misuse active packets. Previous
work related to the security issues of mobile software agents
is directly applicable here [9]. Some of the possible problems
that may occur are the following:
• Damage: An active packet can destroy or change the

resources or services of a node by reconfiguring, modify-
ing, or erasing them from memory. A node may erase an
active packet before the completion of its job in the
node. Finally, active packets that share the same compu-
tational environment may attack each other.

• Denial of Service: An active packet may overload a
resource or service due to constantly consuming network
connections or using a great portion of the CPU cycles
available. The node cannot function properly under
these circumstances and another active packet cannot be
executed or forwarded.

• Theft: An active packet may access and steal private
information from a node. On the other hand, an active
packet is vulnerable toward the node at any point when
visiting it. Even if it is encrypted, it is not totally safe
because it usually has to be decrypted in order to exe-
cute.

• Compound attack: The biggest actual threat for an active
node is a compound attack aimed toward a goal. For
example, a malicious user may send many active packets
toward a central router and try to bring it down by con-
suming all its bandwidth capacity.
Protecting the nodes and the packets in a flexible environ-

ment such as active networks is not an easy task. Some tech-
niques that may be used to protect the active nodes will be
presented first, followed by a discussion of ways of protecting
the active packets.
• Authentication of Active Packets: Any active packet

should have authenticating credentials produced using
one of a number of algorithms such as a public key sig-
nature algorithm. This do not guarantee that the active
packet will be harmless, or even useful. Credentials only
provide assurance that someone else vouches for the
active packet.

• Monitoring and Control: A reference monitor may be
used to restrict the information, system resources and
services that active packets are allowed to access and
use. The reference monitor consults a security policy to
determine if access is to be granted. Since access-level
monitoring places restrictions directly on what a packet
can do, it is an effective method. However, the decision
of granting permission for using some resources is based
upon some credentials which are not able to guarantee
that a packet is harmless as it is already mentioned.

• Limitation Techniques: Time limits such as the amount
of time an active packet may be allowed to be executed,
range limits such as the total number of nodes the pack-
et is allowed to traverse, as well as duplication limits
(i.e., the number of times that a packet may duplicate
itself), are essential in preventing an active packet from
monopolizing the resources of a node.

• Proof Carrying Code (PCC): PCC [29] is based on the
observation that is often easier to check an answer than
to produce it. For a mobile program, it is the creator of
the program who knows the key reasons it is correct, not
the host (active node) that receives the program. Hence
we could pair the mobile program within each active
packet with a proof of its correctness. The active node
may easily check the proof and then run the program.
The difficult part is the creation of the proof but this is
the job of the program creator.
Two methods are suggested for the protection of the

active packets: fault tolerance techniques and encryption.
Encryption refers to the situation where active packets do not
consist of cleartext code and data.9 Encryption is usually used
for code and data in transit. However, the programs may
even be executed in a non-cleartext form, which leads to the
concept of mobile cryptography [26]. The fault tolerance
techniques are replication, persistence, and redirection.
Replication means that packets replicate at each node. Per-
sistence means that packets are temporarily stored against
node failure so that even if a node crashes, the copy persists
in storage. Redirection means that packets may seek alterna-
tive routes in case their default route fails. Replication and
persistence are unacceptable for the vast majority of network
packets because they consume memory and bandwidth, and
only very “important” active packets should be allowed to do
this (e.g., packets installing a new version of a routing proto-
col in all nodes). Redirection and encryption have broader
applications in packet protection because they basically con-
sume CPU cycles. A combination of fault tolerance tech-
niques and encryption may give very good results in the
problem of protecting active packets. However, because these
techniques are still in their infancy, there is much to be done
before definite results are reached.

Combining all of the above,when a packet containing exe-
cutable code arrives at a node, the system must:
1. Accept the authenticity of the credentials of the packet,
2. Identify the sending network element,
3. Identify the sending user,
4. Authorize access to appropriate resources based on

these identifications and credentials,
5. Allow execution based on the authorizations and securi-

ty policy,
6. Monitor and control access to system resources through-

out the execution,
7. If needed, encrypt the packet to protect its code and

data in transit.
If the packet is not identified properly, then it may be

allowed to execute the code in a restricted environment or it
may not be allowed to execute the code at all. There is a
form of admission control and policing in the above proce-
dure.

SECURE ACTIVE NETWORK ENVIRONMENT

We present here a Secure active network Environment
architecture called SANE [25], along with some measures of
its performance [22]. SANE provides a basis for implement-
ing secure active network technologies and has been under-
taken by researchers at the University of Pennsylvania.

Security has to be addressed at two levels, static and
dynamic. Static concerns are those that only need to be
checked infrequently, as in the case of an active network
bootstrapping from a cold (idle) start into an operational

9 Cleartext data are meaningful to the receiver without deciphering.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 9

state. Dynamic concerns need to be addressed continuously.
The above separation is a guideline for implementing static
and dynamic checks. The former can be costly but very
secure and the later should be cheap enough so as not to
degrade performance. Obviously there is a tradeoff between
cost and level of security. In an active network where packets
can constantly alter the state of nodes, we expect to have a
great deal of dynamic concerns.

Two basic concepts of security are integrity and trust. For
an active network node, a trusted layered architecture can be
constructed by making lower layers trustworthy and ensuring
that higher layers depend on the integrity of the lower ones.
Also, a web of trust between participant network elements is
required because programs carried in packets travel from one
network element to another. Even in that case, a program
from a trusted network element may be damaged during
transmission. Therefore, it is clear that a combination of stat-
ic and dynamic checks is required in the case of active net-
works to ensure security.

SANE is a layered architecture. The lower layers of the
architecture ensure that the system starts in an expected
state. This is done by using a secure bootstrap architecture
called AEGIS [23]. This is a static check and after that,
dynamic checks on a per-user or per-packet basis can be
made. The higher layers of the architecture are responsible
for these checks. The system maintains security in several
ways from this point onwards.
• First, it performs remote authentication, when required,

for node-to-node authentication.
• Second, it provides a restricted execution environment

for the evaluation of the programs received by the net-
work.

• Finally, it uses a novel naming scheme to partition the
node’s service name space between users.
It is important to mention that every user and every active

element own a public/private key pair; these keys are used to
authenticate and authorize actions of those entities.

The dynamic integrity checking and other security issues
of this architecture have been implemented and tested in the
prototype Active Bridge [20]. Also, SANE was implemented
in the SwitchWare environment10 and the performance
implications of providing security in active networks were
studied [22]. The approach used is relatively lightweight
because static checks allow the later dynamic checks to be
faster or even to be eliminated. To provide a measure of the
cost imposed by authentication, the costs of sending an
active ping with and without authentication were compared.
The ping was generated at a source machine, transmitted
over a crossover cable via 100 Mb/s Ethernet to the target
machine, loaded and evaluated, and then send back to the
source machine, where it was again loaded and evaluated.
An unauthenticated ping took an average of 5.085 ms versus
8.052 ms for the authenticated ping. Measurements of the
throughput of authenticated and unauthenticated data trans-
fer were also made. The performance degradation was 28
percent for receiving data packets and 62 percent for send-
ing data packets.

Since there is no other work with measurements on the
performance of securing active networks, there is no way to
judge whether SANE performs well or not. Also, the mea-
surements were made in a “network” of only two nodes.
However, we could claim that the above results are an indica-
tion that active networks can be secure despite the increased
flexibility they offer, with a reasonable performance cost.

SECURITY AND SAFETY FROM THE
PROGRAMMING POINT OF VIEW

So far we have been concerned with security issues from a
systems point of view. However, security issues from a pro-
gramming point of view raise interesting possibilities. For
example, a well designed programming language for active
networks may solve many security problems such as eliminat-
ing run-time checks, and thus improve performance. Also, a
lightweight programming language with purposely restricted
functionality may even eliminate the need for the security of
SANE or another relevant architecture.

The goal of a programming language for active networks
is to provide security and integrity without compromising
high performance. Since the programming language defines
what operations the programmer can perform, by careful
choice or design of a language we can limit some of the
undesirable actions that a programmer might unintentionally
or maliciously perform. Also, we can improve the perfor-
mance because the speed of execution of the active packets
depends highly on the language. Problems that may arise with
their possible solutions are as follows.
• Dereferencing arbitrary areas of memory: weakly typed

languages such as C are inappropriate because of the
above problem. The solution to that is to use strongly
typed languages such as Java.

• Allocating large amount of memory or spawning large
number of sub-processes: the solution to that problem is
to put bounds on the memory and the number of sub-
processes that any process may have.

• Low performance due to run-time checks: implementing
safety and security policies in current computing envi-
ronments requires run-time checks. These run-time
checks add to the overhead in executing a program, and
for functions with strict performance constraints, this
resulting delays may be unacceptable. Defining a lan-
guage which replaces dynamic run-time checks with stat-
ic checks is a solution. Therefore we can claim that a
well designed typed language can remove the require-
ment for run-time checks.

• Low performance due to code execution: since packet for-
warding should be fast, the execution of the code of the
active packets should be as fast as possible. Separating the
forwarding process by the other computations such as heap
allocation is a way to accelerate the forwarding process.

Safetynet — Safetynet is a project on the issue of design-
ing a programming language for active networks that has
been undertaken at the University of Sussex [27, 28]. By com-
bining recent work on semantics of computation with a prag-
matic description of the processes of packet communication,
researchers at Sussex have produced a programming model
that both protects the connectivity of the network and places
specific requirements to ensure security, safety, and fair
resource allocation.

The design of the programming model is based on three
major viewpoints: communication, safety and security, and
programming. The model evolved enables the novel applica-
tions of active networks, while protecting the common
resources of the network from both malicious attacks and
buggy programs. The viewpoints place a number of require-
ments that are obeyed by the programming model. Some of
these requirements are as follows.

Comunication requirements: Given a destination, a pro-
gram should only be able to discover the next hop on the
route to the destination. This is a basic characteristic of the
current way routing works. Another requirement is that the
next active network hop should be transparent to the actual10 Switchware is presented in the Architectures section.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 199910

number of active-network-unaware nodes in between the two
active network nodes. This requirement presumes that some
of the nodes of the Internet will become active network
aware and will form an Abone, exactly in the same manner as
Mbone was formed for multicasting. A third requirement is
that the state installed in a node must be reinstallable or
valid when reappearing after a temporary absence. This is
critical because nodes in the network are subject to arbitrary
reboots and disconnections. In the context of active networks,
their state should not be lost but preserved. Finally, network
condition to any next hop should be available. This require-
ment is needed so that decisions upon possible courses of
action are based on network characteristics estimates.

Safety and Security requirements:
• Bandwidth requirements: The resulting generation of

packets from sending a packet into the network must be
bounded. The number of packets generated per unit time
from a single node must also be bounded. The above two
requirements provide that a program cannot generate a
denial of service attack as far as bandwidth is concerned.

• Processing time requirements: Packet forwarding code
must not be able to enter an infinite loop because it
should be executed as fast as possible. There must be a
bound on the amount of processing time per unit time a
thread11 can consume. There must also be a bound on
the number of timers per unit time a thread can set.

• Memory requirements: Since each thread takes up mem-
ory, there should be a bound on the number of threads
a program can generate. Also, there should be a bound
on the amount of memory a program upon a node can
use. Another requirement is that programs cannot gen-
erate arbitrary references to memory. Because heap
allocation takes time, it is not desirable for packet for-
warding code to allocate heap. Finally, an active net-
work program should not directly manipulate the routing
table of an active node. This requirement avoids discon-
nections in the network but restricts the power of the
active packets. However, it makes much more sense for
active packets to indirectly change the routing table by
calling relevant routines from the routing protocol
instead of directly manipulating its contents.

• Security requirements: The security model of Safetynet is
based around a set of trusted nodes, and trusted code,
which is protected using cryptographic techniques. It must
be possible to trace a chain of trust from a given code to
a trusted node. Also, this chain must not be forgeable.
Programming requirements: The major requirement is the

replacement of run-time checks by static checks. Static checks
are usually more complex but they only have to be carried
out once. The use of a strongly typed programming environ-
ment that embodies policies about safety and security within
the type system, allows to statically prove that a program is
safe. Therefore, a type system that supports the safety and
security concerns of the model is also a requirement.

A language that conforms to all the above requirements
may not be enough to provide security in an active network
environment. However, it will remove the costly run-time
checks that many current languages have. Since performance
is a key issue, this is very important.

PLAN — Programming Language for active networks
(PLAN) [31, 30] is an example of a language specifically

deployed for active networks that tries to address the security
and safety issues from a programming point of view. PLAN is
a new language for programs that form the packets of a pro-
grammable network. These programs replace the packet
headers used in current networks. The basic design choice of
PLAN is to have programs that are lightweight and of restricted
functionality. The limitations on the capabilities of PLAN are
mitigated by allowing PLAN code to call other programming
routines, called service routines, that reside in nodes and are
written in other, more powerful languages. Since PLAN pro-
grams are lightweight, no authentication is used. However,
for the service routines that reside in nodes, authentication is
used when needed. PLAN addresses the issues of safety and
security, performance, and flexibility as follows.
• Safety and Security: the requirements on bandwidth, pro-

cessing time, and memory are addressed in two ways.
First, PLAN programs are guaranteed to terminate. This
is because recursive function calls and unbounded itera-
tions are absent from the language. Second, PLAN pro-
grams have bounds on the amount of resources that they
can consume. Let’s visualize the maximum amount of
resources consumable by a single packet on a single
router as a “resource unit.” Under PLAN, both the num-
ber of resource units that can be produced by a packet
and the size of each resource unit are bounded by coun-
ters. More general requirements on safety and security
are addressed as follows: PLAN is a purely functional
and strongly-typed language. Thus, PLAN programs are
statically type checked before injecting in the network, so
that they don’t have type errors in order to provide safe-
ty. Also, PLAN programs are pointer-safe and concur-
rently executing programs cannot interfere with each
other. Finally, basic error handling is provided along with
some service routines to be used if the former is not
enough. It is interesting to note that the absence of
authentication for PLAN programs is justified by their
restricted functionality and the fact that if they required
authentication or other costly checks before executing,
they would have been prohibitively inefficient to use as
packet programs.

• Performance: a major benefit of keeping PLAN simple is
that its interpretation is lightweight and common tasks
can be done easily and fast.

• Flexibility: PLAN is not completely general but is able to
express programs for network configuration and diagnostics,
and to provide the distributed computing “glue” that con-
nects router resident service routines into larger protocols.
PLAN was used to build a non-trivial network, the PLAN-

et. PLANet is an active internetwork in which all packets are
PLAN programs. Service routines are also supported. More
on the architectural considerations of this approach will be
presented in the “Architectures” section.

Security is still an open issue in the area of active net-
working as well as to other relevant areas of research such as
mobile software agents and concurrent and distributed lan-
guages with encryption and process migration features. Even
if more secure testbeds that conform to the appropriate secu-
rity and safety requirements are built, these testbeds should
be tested in large-scale networks before rigid conclusions can
be drawn regarding their performance and actual security.

ARCHITECTURES

In this section we describe some architectures for active
networks. The architectures are grouped according to their
basic approach toward the realization of active networking: in

11 A thread is a part of a program that can execute independently of other
parts. Operating systems that support multithreading enable programmers
to design programs whose threaded parts can execute concurrently.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 11

some architectures active packets carry executable code, usu-
ally executable on the data of the same packet that carries
the code. Other architectures place the executable code in
active nodes and let packets carry some identifiers to indicate
which code should be executed on behalf of them. Schemes
for distribution and downloading of code are developed so
that not all nodes need to have all the code that they may
use. Finally, some architectures give the user the opportunity
to choose between lightweight code that is carried by active
packets or heavyweight code that resides in the active nodes.
For each architecture presented, the focus will be on its
design attributes, capabilities, performance, and the way it
addresses security and programmability issues.

ACTIVE PACKETS APPROACH

Most of the early active networks architectures follow the
“active packets” approach, which is fundamentally character-
ized by the fact that the code is carried by the packets. The
nodes are also active because they allow computations up to
the application layer to take place, but no active code resides
in them. Therefore, the reason for calling these technologies
“active packets” technologies is that active code is carried by
the packets either to be executed on the data of the same
packet that carries the code, or to be executed in order to
change the state or the behavior of the node. Examples of
such architectures are the Smart Packets project proposed at
BBN Technologies, the Active IP Option proposed at MIT,
and the M0 architecture proposed at the University of Cali-
fornia at Berkeley and at the University of Zurich.

Smart Packets — In the Smart Packets project [11] two
important decisions were made, in an attempt to provide a
rich and flexible programmable environment without over-
loading the computing power of the managed node and with-
out making an environment so complex that it is difficult to
be secure. The first decision is that programs must be com-
pletely self-contained, thus discounting the need for persis-
tent states in a router. Also, programs must fit entirely into
one packet — so they cannot be more than 1 Kbyte long —
and the packet should not be fragmented. The second deci-
sion is that the operating environment must provide safety
and security because packets containing executable code are
extremely dangerous.

A special protocol called active network Encapsulation
Protocol (ANEP) was developed for the DARPA active net-
works program to facilitate portability and interoperability
among different active networks projects [34]. Management
and monitoring programs generate smart packets. Smart
packets are encapsulated within ANEP packets and ANEP
packets are encapsulated within an IP packet. Smart packets
are sent either to an end host or to each router in a hop-by-
hop manner along the path to an end host. In the first case,
the content of the smart packet is executed in the end host
and the results are returned back and in the second case the
content is executed in all the intermediate nodes. An ANEP
demon located in each node is responsible for both injecting
and receiving smart packets and for offering a secure envi-
ronment, called virtual machine, for executing the programs.

The code of smart packets can be written in either Sprock-
et, a high-level language much like C, or Spanner, an assem-
bly language. Sprocket programs are compiled into Spanner
code, which in turn, is assembled into a compact machine-
independent binary encoding that is placed into program
packets. According to the authors, the reason why two new
programming languages are used is that already existing lan-
guages could not encode more than a trivial program in the

space of 1 Kbyte and that none had compact, platform-inde-
pendent encodings.12

As far as security is concerned, smart packets achieve the
correct operation of a router and its configuration by evaluat-
ing programs conservatively (i.e., if a virtual machine does
not know how to handle a situation it quits execution and
sends an error packet back to the source of the program), by
checking whether a program comes from an authorized user,
by checking the data integrity of a program in each node, and
by placing limits on the execution of programs, such as offer-
ing a resource-limited environment.

Smart packets capabilities are indirectly limited by two
reasons: first, the programs must be at most 1 Kbyte long;
second, the functionality provided by the project is limited
and tailored to network management applications. The posi-
tive part is that the performance of the technology should be
good comparing to other active packets approaches. Howev-
er, we are not aware of any results which prove this.

Active IP Option — The Active IP Option [35], describes
an extension to the IP options mechanism that supports the
embedding of program fragments in datagrams and the eval-
uation of these fragments as they traverse the network. The
present day passive packets are replaced by active capsules,
which are miniature programs that are executed as they trav-
el. These capsules can invoke predefined primitives that
interact with the local node environment, and leave informa-
tion behind in a node that they have visited. Subsequent cap-
sules can carry code that depends on this information. The
capsule approach is an “in-band” approach in the sense that
capsules carry the code along with the data on which it operates.

Two options are defined. The first is used to carry pro-
gram fragments, which may be encoded in a variety of lan-
guages. The second is used to query an active router for the
languages it supports. Backward compatibility is automatical-
ly achieved because Internet hosts silently ignore options they
do not recognize. An example of a program fragment togeth-
er with the format of the capsule is shown in Fig. 2.

Active options can perform routing, copying, and merging
functions. The processing environment allows ambient net-
work conditions to be examined, the current datagram to be
dispatched, and additional datagrams to be constructed and
sent. The state of the node may also be modified. Since the
scheme is based in an extension of the IP Options mecha-
nism, the capabilities of the technology are limited (for exam-
ple, arbitrary protocols cannot be deployed). The language
used in the first implementation of the architecture is TCL.
The processing is done by a stripped-down TCL interpreter
resulting in a restricted environment conceptually similar to
that of Safe-TCL. This is the only means by which security
and safety issues are addressed. Finally, the current imple-
mentation is written for functionality rather than perfor-
mance.

M0 Architecture — The messenger [17] in the M0 system
is similar to the capsule or the smart packet. Messengers are
programs exchanged between M0 nodes. There are four ele-
ments inside the M0 node: concurrent messenger threads, a
shared memory area, a simple synchronization mechanism,
and channels toward neighboring nodes.

Each messenger is executed by an independent and anony-
mous thread of control. These threads have their own private
memory space and are fully protected from each other. Mes-

12 Java, an obvious candidate, has programs that are much larger than
smart packets can tolerate.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 199912

senger threads can deposit arbitrary data structures under
self-chosen names so that other threads can access them.
Thread queues are a way to serialize the execution of threads
in order to avoid race conditions. Channels enable messenger
threads to send new messenger packets to neighboring nodes.
The current M0 implementation maps messenger transmis-
sion to UDP, Ethernet, or serial-line communications.

Messenger code is written in the M0 language. M0 is a
high-level language that inherits from PostScript the main
concepts of operand, dictionary, and execution stack, as well
as the main data manipulation and flow control operators.
The M0 interpreter is written in C. M0 has no explicit code
caching or code loading functionality. The code is shipped
with every messenger. This works quite well for small proto-
cols where the code is only a few bytes long. For large code
sizes, messengers implement their own caching method by
storing the code in the shared memory area of a node under
a chosen name. This option allows the deployment of any
protocol, no matter how complex it is. Therefore, the M0
architecture appears to be more powerful than the previous
two architectures.

Each M0 node manages its own resources independently
of other nodes. All resources have price tags which depend
on the node’s actual load for a given resource and also on the
demand from the running threads. Messenger threads are
charged for their activities. When they run out of money they
are silently removed form the system. On arrival, each mes-
senger thread obtains an account with some start money. The
amount is sufficient to do some exploration inside the node
and eventually send out another messenger. There is no
authentication between M0 nodes, nor has a messenger any
identity attached to it that would allow authentication. Safe-
ty-related questions on resource consumption have to be han-
dled by controlling the flow of money. Access control for
node-specific system resources is controlled by some agree-
ment between a messenger and the system. M0 provides
some basic cryptographic operators that can be invoked by a
messenger.

ACTIVE NODES APPROACH

In the active nodes approach, the packets do not carry the
actual code, but instead carry some identifiers or references
to predefined functions that reside in the active nodes. The
packets are active in the sense that they decide which func-
tions are going to be executed on their data, and they provide
the parameters for these functions. However, the actual code

resides in the active nodes, it is not carried by the packets.
This is why we call these technologies “active nodes” tech-
nologies. The motivation for such an architecture is that the
active packets approach suffers from either performance-
related problems because safety and security requirements
are huge, or capability related problems because the only way
to minimize the security and safety issues is by restricting the
programs that are carried in packets (e.g., Smart Packets or
PLAN packets). Examples of “active nodes” architectures are
an architecture proposed at Georgia Institute of Technology,
the DAN architecture proposed at Washington University
and at ETH Zurich, and the ANTS architecture proposed at
MIT.

An Architecture for Active Networks — In this archi-
tecture users control the invocation of predefined network-
based functions through control information in packet
headers [39, 40]. Users can select from an available set of
functions to be computed on their data and can supply
parameters as input to those computations. The available
functions are chosen and implemented by the network service
provider, and support-specific services. Thus, users are able
to influence the computation of a selected function but can-
not define arbitrary functions to be computed. This approach
has some benefits with respect to incremental deployment,
security, and efficiency, however, it seems to be slightly
restrictive because only the functions that have been preload-
ed can be called upon.

Each of the functions that a node supports has a unique
identifier. Each packet has a set of headers, which specify the
identifier of one or more functions to be applied to the pack-
et and parameters to be supplied to those functions. When
the packet is processed, the function identified by each head-
er is applied, resulting in updating of the node’s state and
possibly modification of the rest of the packet. Thus, for each
function f, and each parameter value p, there is a particular
subset of the node’s generic state information that is relevant
to f and parameter p. Functions cannot modify or use parts of
the node state that are not relevant.

The strength of active networking can be realized by
incremental addition of user controllable functions. Each
function is precisely defined and supports a specific service.
The introduction of a new active networking function involves
specification of its identifier, of the parameters associated
with it, and of its semantics. Once a function is specified,
each provider or vendor is free to implement it in a manner
consistent to the specifications.

■ Figure 2. Format of the capsule.

IP header

active:63

Type

(var)

Length

If{[node]==[destination]} {reply_ip ...}code:Tcl

Value

User data

IP options (IPv4/IPv6)

ACTIVE option

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 13

This approach has backward com-
patibility in that not all users have to
be aware of the active functionality in
the network, and not all nodes have
to support the same functions. The
scheme may have low flexibility and
restricted capabilities but it achieves
high performance because security
can be easily addressed.

DAN Architecture — The pack-
ets in Distributed Code Caching for
Active Networks (DAN) architecture
[44] contain a finite sequence of function identifiers, and
parameters for the functions. The functions are daisy-chained
in the sense that one function calls the next according to the
order of the identifiers in the packet. Depending on the type
of node that the packet is processed upon and the packet’s
content, only a subset of the functions may be called. Thus,
the packet may be interpreted as a sequence of function
identifiers fi2...fiN,as shown in Fig. 3, with a distinct set of
parameters P1...PN. The first function is not indicated by any
identifier but is derived from the context in which the packet
processing starts (e.g., a packet received by an Ethernet card
results in the calling of Ethernet input function).

If the node is unable to locate a function, it temporarily
suspends the processing of the packet and calls a “code serv-
er” for the implementation of the function. The code server
is a well known node in the network which provides a library
of functions for different types of operating systems from var-
ious developers. Once the module is downloaded, it is perma-
nently stored locally on the node in order to prevent more
downloads of the same module. Code servers will be put in a
hierarchy for the best possible distribution of active modules.
The option of downloading modules differentiates this tech-
nology from the previous one. DAN is more flexible because
new functionality can be deployed and then just added to the
code servers. If a node needs a new module it can easily
download it. In the previous technology, the network manag-
er should add to each node all the functions that they may
need.

The active modules provided by the code servers are pro-
grammed in a high-level language such as C and compiled
into object code. Once the functions are loaded by the node,
they are in no way different than the ones compiled into the
network at build time. Thus, all functions run at high speed
and the performance is good. However, downloading a func-
tion on demand causes some delay that reduces the overall
performance. A solution is to download the modules before
they are needed.

Security concerns are addressed by using well known code
servers which authenticate themselves and give the node the
possibility to check the module’s sources, and by providing
digitally signed modules from well known developers only.
The security problem is thus reduced to the installation of a
rule which enables the node to choose the right code server,
and a database of public keys to check the developer’s signa-
ture. Also, even if the module sources and the modules are
authenticated, network administrators may restrict the set of
developers they accept modules from.

ANTS — ANTS [37] is an active network toolkit where
arbitrary new protocols are automatically deployed at both
intermediate nodes and end systems by using mobile code
techniques. The network is viewed as a distributed program-
ming system. The architecture introduces three components/
schemes: capsules, active nodes, and code distribution.

Capsules are replacements for a packet. Their function is
to include a reference to the forwarding routine to be used to
process the capsule at each active node. Therefore, refer-
ences and forwarding routines in ANTS is the equivalent to
identifiers and functions in DAN, respectively. Some routines
are “well known” in that they are available at every active
node. Other routines may be application specific. Typically,
they will not reside at every node but will be transferred to a
node by a code distribution mechanism before the capsules of
that type can be processed for the first time. Related capsule
types form a code group. The forwarding routines of a code
group are transferred as a unit by the code distribution sys-
tem. Related code groups form a protocol. Protocols are the
units by which the network as a whole is customized by the
applications. Capsules identify their type and the protocol to
which they belong. When a capsule arrives at a node, a cache
of protocol is checked. If the required code is not all present,
a load request for the missing portion of the capsule type and
protocol is sent to the upstream neighbor and the capsule is
put to “sleep.” When the upstream neighbor receives the
request, it answers immediately (if possible) and sends the
requested code. When the downstream requester receives the
code, it caches it and if all the required code becomes avail-
able, it “wakes” up the sleeping capsule. If requests for code
remain unanswered, sleeping capsules are discarded. On-
demand loading and caching is also used in DAN. However,
while in ANTS loading takes place between neighbor active
nodes, in DAN loading takes place between code servers and
nodes.

The format of the capsule is as shown in Fig. 4. The cap-
sule carries an identifier for its protocol and the particular
capsule type within the protocol. The identifier is based on a
fingerprint of the protocol code in order to reduce the dan-
ger of protocol spoofing and also to allow protocols and cap-
sule types to be allocated quickly and in a decentralized
fashion. The remainder of the capsule has a shared header
that has fields common to all capsules, a type-dependent
header, and a payload. The shared header has the source and
destination addresses and information about resource limits
to be enforced by nodes.

The protocols need to be executed within a restricted
environment that limits their access to shared resources.
Active nodes play this role. During the processing, active
nodes are responsible for the integrity of the network and
handle any errors that may arise. Small tasks are not to be
authenticated, but are to be protected by the safety mecha-
nisms of mobile code technology, whereas use of primitives
that manipulate shared logical resources, e.g., updates to the
routing tables, must be authenticated. Each capsule has a
resource limit that functions as a generalized Time To Live
(TTL) field. This field is decreased by the nodes as resources
are consumed and nodes discard capsules when their limit
reaches zero. Finally, forwarding routines are expected to run
to completion locally and within a short time, and their mem-

■ Figure 3. Datagram (schematically).

fi2 P1 fi3 P2 PN

■ Figure 4. Capsule format.

Protocol identifier/
capsule type Shared header Rest of header... Payload

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 199914

ory and bandwidth consumption is bounded.
A Java-based prototype of ANTS has been created. The

security of the implementation lies in the Java system itself.
The choice of Java has allowed the researchers to evolve
their architecture quickly but at the cost of less control over
resources usage and lower absolute performance.

ACTIVE PACKETS AND NODES APPROACH

It should be clear by now that active packets can carry
code efficiently only when the code is relatively simple and
restricted. On the other hand, active nodes can efficiently
provide any code. However, this code is predefined because it
should reside in the active node or at least to one node from
which it can be downloaded. In the active packets and nodes
approach, active packets carry actual code and other more
complex code resides in active nodes. Therefore, the merits
of the two previous approaches exist in one system. Usually,
such architectures allow users to choose either the one or the
other approach according to the nature of their application.
A typical example is the SwitchWare architecture proposed at
the University of Pennsylvania. NetScript architecture, pro-
posed at Columbia University, follows its own approach
toward programmable networks but will be presented here as
it is relatively similar to the active packets and nodes
approach and fairly general.

SwitchWare Architecture — SwitchWare [36] uses a lay-
ered architecture to provide a range of different flexibility,
safety and security, performance, and usability tradeoffs. The
three layers defined in SwitchWare are Active Packets,
Switchlets, and Active Router Infrastructure. The first layer
realizes what we have called the active packets approach and
the second layer realizes what we have called the active
nodes approach.

In SwitchWare, active packets carry programs consisting
of both code and data, and replace both the header and pay-
load of a conventional packet. The programming language
used is PLAN(Programming Language for active networks)
[31]. As has been discussed,13 PLAN is a lightweight lan-
guage. It allows resource limited computation without the
need for authentication, yet it performs authorized actions
when required. PLAN programs are made secure by greatly
restricting their actions. To compensate for this limitation,
PLAN programs call routines called Switchlets, which can
authenticate or use other more heavyweight mechanisms to

provide security on an as needed basis. A
PLAN program consists of code, plus an
indication of which function should be exe-
cuted first when the program arrives at a
router, plus any data that makes up the
arguments of that function.

Switchlets form the middle layer of the
SwitchWare Architecture. The active pack-
ets were deliberately limited in power for
speed, but active packets combined with
switchlets can implement arbitrary proto-
cols or functionality. Switchlets can be
dynamically loaded across the network, but
they execute entirely on a particular
router. Thus they are base functionality or
dynamic extensions rather than “mobile
code.” In the current implementation,
switchlets are written in Caml. Switchlets

can be subjected to heavier-weight security checks than
active packets can. They are statically type-checked on
arrival at a router and some may even carry cryptographic
signatures. Switchlets can be given more latitude because of
heavier checking and can access facilities in the router that
active packets cannot. Thus, they can create or change the
state of the router and they have direct access to the routers’
network interfaces.

The active router infrastructure is the solid base upon
which active packets and switchlets are build. The security of
the SwitchWare architecture as a whole is granted in this
layer. Below that layer is SANE, an architecture which pro-
vides a minimal set of trust assumptions, the ability to secure-
ly bootstrap the remainder of the system when the trust
assumptions are met, and authentication and naming service
for code that is loaded.14

The key point of the SwitchWare Architecture is the lay-
ered architecture with functionality partitioned between lay-
ers based on the flexibility and security tradeoffs required at
each layer. Higher layers of the system provide more restrict-
ed functionality, in exchange for less security risk and very
good performance. Lower layers provide arbitrary functional-
ity but, due to the increased security issues, they are not very
fast. Overall, there is a good tradeoff among security, flexibil-
ity, and performance.

NetScript Architecture — The NetScript Project [42] con-
centrates on the right paradigm to program networks effi-
ciently. It provides an architecture for programming networks,
an architecture of a dynamically programmable network
device/node, and a language called NetScript for building net-
work software on a programmable network. NetScript uses
delegated agents to program and control the functions of
intermediate network devices/nodes.

NetScript views a network as a collection of virtual net-
work engines (VNEs) interconnected by virtual links (VLs).
VNEs can be programmed by NetScript agents to process
packet streams and relay these streams over VLs to other
VNEs. The collection of VNEs and VLs define a NetScript
virtual network (NVN). NetScript provides a language to
program the NVN. A physical node may be executing many
VNEs and a VL may correspond to a collection of physical
links and nodes that interconnect VNEs. A VL can also
interconnect any number of VNEs to handle broadcast
links.

The architecture of the VNE is shown in Fig. 5. The

■ Figure 5. Architecture of a programmable virtual network engine.

Physical links

Virtual links

Connectivity
services

Agent
services

Resource
management

NetScript agents

13 PLAN is described in the third section of this article. 14 Refer to the section “Security” for more details.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 1999 15

Agent Services layer provides a multi-threaded execution
environment to support delegation, execution, and control of
agent programs. It also supports message communication ser-
vices among agents. The Connectivity Services module is
responsible for interacting with the underlying physical envi-
ronment to allocate and maintain VLs to neighboring VNEs.
It provides a library of primitives used by NetScript programs
to control the allocation of VL resources, and the scheduling
and transmission of packets over VLs. Packets contain a min-
imal NetScript encapsulation header that identifies the
stream to which they belong. When a packet arrives at a
VNE, this header is used by the run-time environment to
pass it to the respective programs which process this stream.
The active packets of the scheme are the NetScript packets
and the active nodes are the VNEs.Communication services
provided by the VNE are entirely local and permit interac-
tion with neighboring VNEs only.

NetScript language is a dynamic dataflow language
designed specifically for communications-based tasks. It can
operate on streams of packets. It is based on simple object-
oriented principles, so that programmers can override default
operators with customized versions of their own. A NetScript
program consists of a pool of communicating threads. These
threads communicate through message streams that connect
inputs to outputs of executing programs. Communicating pro-
grams can be geographically distributed. NetScript provides a
universal abstraction of a programmable networking device
because constructs hide the heterogeneity of networking
devices behind simple abstractions.

The main difference between NetScript and other archi-
tectures is the focus on the programmability of networks.
Here, the main assumption is that a single language based on
the right model can greatly simplify protocol construction and
allow flexibility in experimenting with appropriate program-
ming features. Another difference is that NetScript treats the
network as a single programmable abstraction rather than an
heterogeneous collection of programmable intermediate
nodes and end-nodes.

COMPARISON

The active packets approach suffers from performance-
related problems because safety and security requirements
are huge. In an effort to reduce the security burden and thus
increase performance, some researchers have decided to
restrict the functionality of the programs carried by the
active packets, resulting in architectures with decreased
capabilities. M0 is the only architecture within the active
packet approach that can provide arbitrary functionality,
thanks to its novel caching technique.

The active nodes approach has good performance
because security issues are much less than in the previous
approach. However, the flexibility of the relevant architec-
tures is limited. In an effort to increase flexibility, DAN and
ANTS architectures have adopted a scheme where code is
downloaded on demand and is cached for future use. As a
result, these two technologies can easily deploy any new
arbitrary protocol. Nevertheless, downloading code on
demand causes some delay that reduces the overall perfor-
mance.

The combination of both approaches seems to be very
appealing. SwitchWare architecture realizes this idea by the
use of a layered architecture, and manages to provide a
range of different flexibility, safety and security, perfor-
mance, and usability tradeoffs. Finally, NetScript architec-
ture proposes a novel viewpoint where the network is treated
as a single programmable abstraction.

CONCLUSIONS

We have indicated various applications where active net-
works can be beneficial. Network management, congestion
control, reliable and efficient multicasting, and active caching
are some of them. Current research in applying active net-
works in the above application domains, as well as proposed
architectures that support them, assist the examination of
active networks usefulness, applicability, and efficiency. In
this article we presented: Network Management by Delega-
tion, Darwin Project (an experimental technology related to
congestion control), ARM, Self-Organizing Wide-Area Net-
work Caches, Secure active network Environment, SafetyNet,
PLAN, Smart Packets, Active IP Option, M0 architecture,
Distributed Code Caching for active networks, ANTS, Switch-
Ware Architecture, and NetScript Architecture. Finally, we
have addressed the problem of security of such a flexible
infrastructure as well as programmability issues that stem
from the need for security without compromising high perfor-
mance.

Active networking is undoubtedly an exciting step in net-
work design. It has the potential for solving many of the
problems identified in current “passive” networks, and has a
wide application range. However, the implementations that
have been built at the various research sites so far have not
been tested in large-scale networks. It is not directly clear
how the limited data that are available would generalize to a
large-scale network like the Internet. Before attempting any
cogent conclusions, it would be necessary to deploy an
Abone, analogous to the Mbone deployed for multicasting,
and test active network technologies in real conditions.15 Last
but not least, two tradeoffs exist in active networking: a
tradeoff between security levels and performance, and a
tradeoff between usability/flexibility and complexity. A lot
more can be done to address the security and programmabili-
ty issues and it is very difficult at the moment to draw the
line where the security-performance tradeoff can be opti-
mized. “Conservative” approaches toward active networks
may yield satisfactory results, particularly in combination with
the mobile software agent technology that is currently emerg-
ing. The usability/flexibility of such active networks would be
somehow compromised, but complexity would be manage-
able. The optimal line of the flexibility–complexity tradeoff is
also hard to draw. Abone may be used to find optimum solu-
tions for both tradeoffs.

Irrespective of anyone’s thoughts and concerns, research
on active networking is already on its way. Its success would
mean that intermediate node functions may be programmed
and deployed through simple, open, and rapid processes
requiring no standards committees’ or vendors’ resources.
Success will furthermore mean the possibility for automatic
upgrade of network protocols. Given these two features, it is
well worth trying. In any case, perhaps the problem is not
whether networks should be programmable or not, but decid-
ing on paradigms that will program them efficiently.

ACKNOWLEDGEMENTS

I would like to express my thanks to the anonymous
reviewers for their insightful and helpful comments. I would
also like to thank Eleutheria Psouni for helping me in proof-

15 Recently, several active network technologies have been deployed at dif-
ferent cites to form the DARPA-sponsored Abone, an experimental active
network in which nodes communicate by tunneling through the Internet
using UDP.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys • First Quarter 199916

reading the final draft. Finally, I wish to acknowledge Lab-
hesh Patel for his input and discussions regarding active net-
work architectures.

REFERENCES
[1] David L. Tennenhouse and David J. Wetherall, Towards an Active Net-

work Architecture, in Multimedia Computing and Networking (MMCN
‘96), 1996, San Jose, CA.

[2] Ulana Legedza, David Wetherall, and John Guttag, Improving the Per-
formance of Distributed Applications Using Active Networks, Proc. IEEE
INFOCOM ‘98, San Francisco, CA, 29 March–2 April 1998.

[3] D. L. Tennenhouse et al, From Internet to ActiveNet, request for com-
ments, Jan. 1996.

[4] D. L. Tennenhouse et al., A Survey of Active Network Research, IEEE
Commun. Mag., vol. 35, no. 1, 1997.

[5] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura, Active
Networking and the End-to-End Argument, Proc. ICNP ‘97, Atlanta,
GA, Oct. 1997.

[6] Samrat Bhattacharjee et al., Commentaries on “Active Networking and
End-to-End Arguments,” IEEE Network, special issue on Active and Pro-
grammable Networks, May/June 1998, vol. 12, no. 3.

[7] Ahmed Karmouch, Mobile Software Agents for Telecommunications.
Guest Editorial for IEEE Commun. Mag., July 1998 vol. 36 no. 7.

[8] Vu Anh Pham and Ahmed Karmouch, Mobile Software Agents: An
Overview, IEEE Commun. Mag., July 1998, vol. 36, no. 7.

[9] Michael S. Greenberg, Jennifer C. Byington, and David G. Harper,
Mobile Agents and Security. IEEE Commun. Mag., July 1998, vol. 36,
no. 7.

[10] Prashant Chandra et al., Darwin: Customizable Resource Management
for Value-Added Network Services, Proc. Sixth IEEE Int’l Conf. on Net-
work Protocols (ICNP ‘98), Austin, Oct. 1998.

[11] Beverly Schwartz, Wenyi Zhou, and Alden W. Jackson, Smart Packets
for Active Networks, BBN Technologies, Jan. 1998.

[12] Prashant Chandra et al., Network Support for ApplicationOriented
QoS, Sixth IEEE/IFIP International Workshop on Quality of Service,
Napa, May 98.

[13] Y. Yemini, G. Goldszmidt, and S. Yemini, Network Management by
Delegation, Integrated Network Management II, I. Krishnan and W.
Zimmer, Eds., pp. 95–107, North-Holland, 1991.

[14] G. Goldszmidt and Y. Yemini, Delegeted Agents for Network Manage-
ment, IEEE Commun. Mag., March 1998, vol. 36, no. 3, pp. 66–70.

[15] A. Vassila, G. Pavlou, and G. Knight, Active Objects in TMN, Integrat-
ed Network Management V, A. Lazar, R. Saracco, R. Stadler, Eds., pp.
139–150, Chapman & Hall, 1997.

[16] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura, On
Active Networking and Congestion. Technical Report GIT-CC-96/02.

[17] Albert Banchs et al., Multicasting Multimedia Streams with Active
Networks, ICSI technical report 97-050.

[18] Li-wei H. Lehman, Stephen J. Garland, and D.L. Tennenhouse, Active
Reliable Multicast, Proc. IEEE INFOCOM ‘98, San Francisco, CA, 29
March–2 April 1998.

[19] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura, Self-
Organizing Wide-Area Network Caches, Proc. IEEE INFOCOM ‘98, San
Francisco, CA, 29 March–2 April 1998.

[20] D. Scott Alexander et al., Active Bridging, Proc. ACM SIGCOMM ‘97,
Cannes, France.

[21] Christian F. Tschudin, Active Network Overlay Network (ANON), RFC
Draft, December 1997.

[22] D. Scott et al., Performance Implications of Securing Active Networks,
Technical Report MS-CIS-98-02.

[23] William A. Arbaugh et al., Automated Recovery in a Secure Bootstrap
Process, Network and Distributed System Security Symposium, Internet
Society, March 1998.

[24] Garl A. Gunter and Trevor Jim, Design of an Application-Level Security
Infrastructure, DIMACS Workshop on Design and Formal Verification of
Security Protocols, Sept. 3–5, 1997.

[25] D. Scott et al., A Secure Active Network Environment Architecture,
IEEE Network, special issue on Active and Programmable Networks,
May/June 1998, vol. 12, no. 3.

[26] Tomas Sander and Christian F. Tschudin, Towards Mobile Cryptogra-
phy, ICSI technical report 97-049.

[27] Allan Jeffrey and Ian Wakeman, A Survey on Semantic Techniques for
Active Networks, http://www.cogs.susx.ac.uk/projects/safetynet

[28] Ian Wakeman et al . , Designing a Programming Language for
Active Networks, http://www.cogs.susx.ac.uk/projects/safetynet,
submitted to Hipparch special issue of Network and ISDN Systems,
Jan. 1999.

[29] George C. Necula, Proof-Carrying Code, Proc. 24th Annual ACM SIG-
PLAN-SIGACT Symp. on Principles of Programming Languages, ACM
Press, 1997.

[30] M.Hicks et al., PLANet: An Active Network Testbed, http://www.cis.
upenn.edu/switchware/papers/planet.ps

[31] M.Hicks et al., PLAN: A Programming Language for Active Networks,
http://www.cis.upenn.edu/ switchware/papers/plan.ps, submitted to
ICFP ‘98.

[32] John Hartman et al., Liquid Software: A new Paradigm for Networked
Systems, Technical Report TR96-11, Department of Computer Science,
University of Arizona, 1996.

[33] David Wetherall, Chris Lindblad, and Henry Hough, Active Pages:
Intelligent Nodes on the World Wide Web, Proc. 1994 World Wide
Web Conf., Geneva, Switzerland, May 1994.

[34] D. Scott Alexander et al., Active Network Encapsulation Protocol
(ANEP), RFC Draft, July 1997.

[35] David J. Wetherall and David L. Tennenhouse, The ACTIVE_IP option,
In the 7th ACM SIGOPS European Workshop.

[36] C. A. Gunter, S. M. Nettles, and J. M. Smith, The SwitchWare Active
Network Architecture, IEEE Network, special issue on Active and Pro-
grammable Networks, May/June 1998, vol. 12, no. 3.

[37] D. J.Wetherall, J. V. Guttag, and D. L.Tennenhouse, ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols, Proc. IEEE
OPENARCH ‘98, April 1998.

[38] A. B. Kulkarni et al., An Active Network Architecture for ATM WANs,
presented at the Mobile Multimedia Commun. Conference at Prince-
ton, NJ, Sept. 25–27, 1996.

[39] S. Bhattacharjee, K. L.Calvert, and E. W.Zequra, Implementation of an
Active Networking Architecture, Technical Report, Georgia Institute of
Technology, July 1996.

[40] S. Bhattacharjee, K. L.Calvert, and E W.Zequra, An Architecture for
Active Networking, Proc. IEEE INFOCOM ‘97, April 1997.

[41] D. S. Alexander, A Generalized Computing Model of Active Networks,
thesis report, University of Pennsylvania.

[42] Y. Yemini and Sushil da Silva, Towards Programmable Networks, Proc.
IFIP/IEEE Int’l Workshop on Distributed Systems, Operations, and Man-
agement, L’Aquila, Italy, 1996.

[43] C. Partridge, T. Mendez, and W. Milliken, Host Anycasting Service,
RFC 1546, Nov. 1993.

[44] Dan Decasper and Bernhard Plattner, DAN: Distributed Code Cashing
for Active Networks, Proc. IEEE INFOCOM ‘98, San Francisco, CA, 29
March–2 April 1998.

BIOGRAPHY

KONSTANTINOS PSOUNIS (kpsounis@leland.stanford.edu) was graduated from
the Electrical Engineering and Computer Science Department of National
Technical University of Athens, Greece, in June 1997. He received an M.S.
in electrical engineering from Stanford University, California, in December
1998, as a Stanford Graduate Fellow. His research interests are in the area
of computer networks.

