Beyond Best Effort

- Long queues delay all packets
- Internet is used by different users / applications
 - Different performance requirements
 - Different classes of service
- Service provided by choosing which packet to send
 - Scheduler determines which packet is next
- Scheduling considerations
 - Level of service / priority
 - Fairness
 - System utilization
- Ultimate goal: traffic isolation
- Requires classification
 - Identification of different classes of traffic
FIFO Queuing

- Simplest case
 - Single queue
 - FIFO queuing

Priority Queuing

- Different priority classes
 - Requires separate queues
Fair Sharing

- Within priority class

Round-Robin Scheduling

- Each queue gets equal opportunity to transmit
 - If queue has packet, send packet
 - Move to next queue
 - Etc.
- Benefits?
 - Traffic isolation
- What is the problem with this approach?
 - Packet size can cause unfairness
Fairness

- What is a fair allocation of resources?
- Max-min fairness
 1. No user receives more than its request.
 2. No other allocation that scheme satisfying condition 1 has a higher minimum allocation.
 3. Condition 2 remains recursively true as we remove the minimal user and reduce the total resource accordingly.

- Alternative formulation
 - A feasible allocation of rates is “max-min fair” if and only if an increase of any rate within the domain of feasible allocations must be at the cost of a decrease of some already smaller rate.

Weights

- Different traffic class can have different weights
 - Different levels of service
 - Different bandwidth needs
 - Aggregate flows
 - Etc.
- Weights w_i indicate proportion of link bandwidth
 - Each flow receives $w_i/(\sum w_j)$ of the link capacity
- Most scheduling algorithms can be extended to consider weights
Bit-wise round robin

- Packet sizes cause unfairness in round robin
- Bit-wise round robin
 - Idealized scheduling
 - Smallest entity is bit
 » Unrealistic for real networks
- For link of capacity C, each of N flows receives C/N
 - Variation between flows at most one bit

Deficit Round Robin

- Round robin scheduler with O(1) complexity
- Each queue has a “deficit counter”
 • “Credit” for how much can be sent
- Steps:
 • Deficit counter incremented by “quantum size”
 • While next packet size in queue is less than deficit
 » Send packet
 » Decrement deficit by packet size
 • Move to next queue
- Packets need to wait until credit has accumulated
 • Fairness
 • No delay guarantees
Fair Queuing

- Need to discretize bit-wise round robin
 - Whole packets
- **Solution:**
 - Emulate bitwise round-robin
 - Determine order of completed packet transmissions
 - Send packets in same order
- **Notation**
 - α – flow id
 - S_i^α – start time of packet i
 - F_i^α – finish time of packet i
 - P_i^α – size of packet i
 - t_i – arrival time of

Start time: $S_i^\alpha = \max(F_{i-1}^\alpha, t_i^\alpha)$

Transmission time T_i^α: P rounds
- One round takes N bit times, $T_i^\alpha = P_i^\alpha \cdot N$

Finish time: $F_i^\alpha = S_i^\alpha + T_i^\alpha$

- Packets are sent in order of finish time
- **What is the complexity of fair queuing?**
 - $O(\log N)$ for each packet
 - Expensive for large number of flows / classes
Queuing Delay

- Delay for different flows
 - Three FTP sources
 - One Telnet source (variable)
- Queuing delay depends on load of source
 - Isolated from other traffic

![Graph showing queuing delay vs throughput](image)

Homework

- Read
- SPARK
 - Assessment quiz