Hardware-Based Routers

- Structure of hardware-based router:
 - Individual input and output ports with dedicated resources
 - Switch fabric as interconnect
 - Routing processor for control operations (e.g., routing)
Input Ports

- **Processing on input port**
 - Layer 1:
 - Receive data
 - Layer 2:
 - Data link protocol
 - Layer 3:
 - IP address lookup
 - Copy of FIB
 - Forwarding
 - Queuing for switching fabric (NOT output queuing!)

- **Forwarding functions**
 - Check IP header checksum
 - Decrement TTL and adjust checksum

Output Ports

- **Processing on output port**
 - Layer 3:
 - Buffering of packets
 - Scheduling decision which packet to send next
 - Layer 2:
 - Data link protocol
 - Layer 1:
 - Transmit data

- **Complete functionality specified in RFC 1812**
 - All functions that MUST, SHOULD, and MAY be implemented
Switching via Memory

- **Shared memory**
 - Memory interface for each input and each output port
 - Input port writes packet into queue of output port
- **Pros**
 - Simple design
 - Queue memory is shared among all ports
 - Reduces memory requirement
- **Cons**
 - Memory bandwidth at least 2NR (N=number of ports, R=link rate)
 - Memory speed grows at lower rate than link speed

Switching via Bus

- **Bus**
 - Single shared interconnect
 - One packet at a time
 - Bus needs to be fast
- **Pros**
 - Simple design
- **Cons**
 - Bus bandwidth needs to be NR
 - Does not scale due to capacitive loading
 - Requires arbitration if bus bandwidth less than NR
Switching via Crossbar

- **Crossbar**
 - Multiple interconnects that can be configured for each transmission
 - Crossbar controller determines connections
- **Pros**
 - Each connection bandwidth only \(R \)
- **Cons**
 - Requires algorithm to determine configuration
 - Optimal configuration might be difficult to determine quickly

Switching via Multistage Fabrics

- **Several stages of simple switching elements**
 - Switching element
 - Single control bit
 - Delta network
 - Recursive construction
 - Omega network
 - Uniform connections
- **Pros**
 - Each link requires only \(R \) bandwidth
 - Simple switching elements
 - Self-routing property
- **Cons**
 - Multiple stages
 - More complex designs for non-blocking
Output Queuing

- Where should we buffer packets?
- Output queued switch:
 - Inputs send to packets to output
 » Multiple packets may arrive in one cycle
 - Output buffers packets
 » Scheduler decides which to send next
- What’s the catch?
 - Worst case:
 » Port needs NR bandwidth
 » Aggregate bandwidth becomes N^R

Input Queuing

- Input queued switch:
 - Input queues packets
 » Only one packet per cycle is sent to any given output
 » Requires central coordination
 - Output can send packet right out
 » No buffering required
- What’s the catch?
 - Head-of-line blocking
 - Maximum throughput \((2-\sqrt{2})=0.586\) for large \(N\)
Virtual Output Queuing

- How can we avoid HOL blocking?
 - On input port, maintain one queue for each output port

Control algorithm necessary
- Problem can be modeled as bipartite graph
 - Line width indicates edge weight (# of packets)
- “Matching” determines conflict-free transmissions
 - At most one edge from any input
 - At most one edge to any output
 - “Maximum matching” allows most transmissions
iSLIP Algorithm

- Iterative matching algorithm [McKeown, ToN 1999]
- Three steps run repeatedly:
 1. Request: Each input sends a request to every output for which it has a queued cell
 2. Grant: If an output receives any requests, it chooses the one that appears next in a fixed, round-robin schedule of the inputs starting from the highest-priority input. The output notifies each input whether or not its request was granted.
 3. Accept: If an input receives a grant, it accepts the one that appears next in a fixed, round-robin schedule starting from the highest-priority output. The pointer to the highest-priority output is incremented (modulo N) to one location beyond the accepted output. Likewise, the pointer to the highest-priority input is incremented (modulo N) to one location beyond the granted input. The pointers are updated only after the first iteration; subsequent iterations match inputs and outputs that were not matched during earlier iterations.

Comparison of Switch Farbics

- From Business Communication Review 12/1997
- Assumptions
 - Line rate of 2.4 Gbps
 - 16 ports
 - Bus with 4x speedup
Fast-Path vs. Slow-Path

- Router is fine-tuned for fast handling of packets
 - Optimized for common case ("fast path")
 - Some packets require special processing
 » Processed on control processor ("slow path")

- "Unusual" packets
 - IP options
 - IP error handling (ICMP)
 - Packets addressed to router (routing)

Homework

- Read
 - Kurose & Ross: Chapter 4.7 (flooding and spanning tree)
- SPARK
 - Assessment quiz