Birth-Death Processes

- Solving general Markov chain can be difficult
- Simpler, constrained version: birth-death process
 - Transitions are only allowed between neighboring states
 - Transition rates: birth rate λ_k and death rate μ_k

Birth-death process:

- Matrix form:

\[
Q = \begin{bmatrix}
-\lambda_0 & \lambda_0 & 0 & 0 & \cdots \\
\mu_1 & -\lambda_1 & \lambda_1 & 0 & \cdots \\
0 & \mu_2 & -\lambda_2 & \lambda_2 & \cdots \\
0 & 0 & \mu_3 & -\lambda_3 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]
Steady State of Birth-Death Processes

- Steady state equations:
 \[0 = -\pi_0 \lambda_0 + \pi_1 \mu_1 \]
 \[0 = -\pi_k (\lambda_k + \mu_k) + \pi_{k-1} \lambda_{k-1} + \pi_{k+1} \mu_{k+1} \]
 \[Q = \begin{pmatrix} -\lambda_0 & \lambda_1 & 0 & 0 & \cdots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_2 & 0 & \cdots \\ & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \]

- Solving for \(\pi \):
 \[\pi_i = \lambda_i / \mu_1 \pi_0 \]
 \[\pi_2 = \lambda_0 \lambda_1 / (\mu_1 \mu_2) \pi_0 \]

- In general: \(\pi_i = \pi_0 \prod_{j=0}^{k-1} \frac{\lambda_j}{\mu_{i+1}} \), \(k \geq 1 \)

- What about \(\pi_0 \)?
 \[\pi_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \frac{\lambda_k}{\mu_k}} = \frac{1}{1 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu} \right)^k} = \frac{1}{1 + \frac{1}{1 - \frac{\lambda}{\mu}}} = 1 - \frac{\lambda}{\mu} \]

- Convergence criterion: \(\exists k_0, \forall k > k_0: \lambda_k / \mu_k < 1 \)

Birth-Death Process Example

- Simplest example
 \- All birth rates are the same (=\(\lambda \))
 \- All death rates are the same (=\(\mu \))

- Solve \(\pi_0 \):
 \[\pi_0 = \frac{1}{1 + \sum_{k=0}^{\infty} \frac{\lambda}{\mu}^k} = \frac{1}{1 + \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu} \right)^k} = \frac{1}{1 + \frac{1}{1 - \frac{\lambda}{\mu}}} = 1 - \frac{\lambda}{\mu} \]

- Then \(\pi_k \):
 \[\pi_k = \pi_0 \cdot \left(\frac{\lambda}{\mu} \right)^k \]

- Represent utilization \(\rho = \lambda / \mu \)
 \- \(\pi_k = (1 - \rho) \rho^k \)

- Geometric distribution (with parameter \(p = (1 - \rho) \))
Birth-Death Process Example

- Mean number of customers in system:
 \[\bar{N} = \sum_{k=1}^{\infty} k \cdot \pi_k = \sum_{k=1}^{\infty} k \cdot (1 - \rho) \rho^k = \frac{\rho}{1 - \rho} \]

- With Little’s law:
 - \(T = \frac{N}{\lambda} = \frac{1}{\mu} (1 - \rho) \)
 - \(Q = \frac{\rho^2}{(1 - \rho)} \)

- So, finally:
 - With increasing load, queue length and waiting time increase

Kendall’s Notation

- There are many different queuing systems
- Notation indicates type of arrival and service
 - M – Exponential distribution (memoryless)
 - D – Deterministic distribution
 - G – General distribution
 - …
- Queuing discipline indicates
 - Arrival process
 - Service process
 - Number of servers
- E.g.: M/M/1
 - Simplest case (previous example)
M/M/1 queuing model

- M/M/1 results:
 - Birth-death process with λ and μ
 - $\pi_k = (1-\rho)^k$
 - $\pi_0 = 1 - \rho$
 - Average number of jobs in system
 - $K = \rho / (1 - \rho)$
 - Average response time
 - $T = \frac{N}{\lambda} = \frac{1}{\mu \cdot (1 - \rho)}$
 - Mean queue length
 - $Q = \rho^2 / (1 - \rho)$

- What are the assumptions?
 - Exponentially distributed interarrival and service times

M/G/1 queuing model

- Service time is not exponentially distributed
 - What does packet transmission time depend on?
 - Packet size
 - Link speed (constant)

- We need different model
 - "Generalized" distribution for service time

- How can we model such a service time?
 - From point of view of arriving job
 - Waiting time depends on
 - Remaining service time of current job (W_0)
 - Sum of mean service times of jobs in queue ($Q \cdot E[X]$)
 - Thus, $W = W_0 + Q \cdot E[X]$
M/G/1 queuing model

- Expected service time is independently distributed
 - Use Little’s law
 » \(W=W_0+Q\cdot E[X] = W_0+\lambda\cdot W\cdot E[X] \)
 - With \(E[X]=1/\mu \)
 » \(W=W_0+p\cdot W \)
 - Solve for \(W \)
 » \(W=W_0/(1-p) \)
- What is value of \(W_0 \)?
 - Depends if server is busy or not
 » \(W_0=P[\text{busy}]\cdot R+P[\text{not busy}]\cdot 0 \)
- How can we determine “mean residual life” \(R \)?
 - Result from Kleinrock
 » \(R=1/2\cdot E[X^2]/E[X]=1/2\cdot E[X](1+c_X^2) \)
 - \(c_X \), where \(c \) is coefficient of variation
 - \(c_X=\sigma_X/E[X] \) (normalized standard deviation)

Total waiting time:
- \(W=W_0/(1-p)=\rho/(1-\rho)\cdot 1/2\cdot E[X](1+c_X^2) \)
- With Little’s law (\(Q=\lambda\cdot W \)) and \(E[X]=1/\mu \):
 \[Q = \frac{\rho^2}{(1-\rho)^2} \cdot \frac{1+c_X^2}{2} \cdot \frac{1}{(1-\rho)} \cdot \frac{E[X^2]}{E[X]^2} \]
 - Pollaczek-Khintchine formula

Sanity check:
- Exponential distribution for \(G \)
 » \(\sigma_X^2=1/\lambda^2, E[X]=1/\lambda, c_X=\sigma_X/E[X]=1 \)
 » \(Q=\rho^2/(1-\rho) \)
M/D/1 queuing model

- Deterministic service time
- Examples
 - Service of “requests”
 » Web page
 » DNS lookup
 - Memory access
- Coefficient of variation $c_x^2 = 0$
- Queuing time
 - $Q = \frac{1}{2} \cdot \frac{\rho^2}{1 - \rho}$

M/G/1 – M/M/1 comparison

- How much do M/G/1 and M/M/1 differ?
 - Assume network traffic
 - M/M/1
 » Service time exponentially distributed
 - M/G/1
 » Service time proportional to packet size
- Queue length
 - M/G/1 queue shorter if $\frac{\rho^2}{(1 - \rho)} \cdot \frac{1 + c_x^2}{2} < \frac{\rho^2}{(1 - \rho)}$
 - Need c_x^2 for packets
- What is the distribution of packet lengths?
Packet length distribution

- From NLANR:
 - $E[X]=354$
 - $E[X^2]=357355$
 - $\sigma_X=598$
 - $c_X=1.687$
 - $c_X^2=2.844$

- Thus
 $$\frac{(1+c_X^2)}{2} = \frac{(1+2.844)}{2} > 1$$

- M/M/1 is too optimistic

Homework

- Read

- SPARK
 - Assessment quiz