Statistical Multiplexing

- Circuit switching
 - Dedicated end-to-end connection
 - Resources are reserved along path
 - Guaranteed constant data rate
 - Achieved through multiplexing (TDM, FDM)

- Packet switching
 - Packets are unit of transmission
 - "Best effort" and no guarantees
 - Switches perform "store-and-forward"
 - Statistical multiplexing incurs queuing delays

- Can we quantify queuing delay?
Simple Queuing Example

- Queuing systems are everywhere
 - Line in bookstore (or Blue Wall)
 - Traffic light
 - Your homework assignments

- Key features
 - “Server” has finite capacity (needs time to process)
 » In network terminology, the server is the link
 - Demand for service (“job” arrival) is unpredictable
 » The jobs are the packets

- Questions
 - How long does a job need to wait before being serviced?
 - How many jobs are in the queue?
 - How high is the utilization of the server?

Notation in Queuing Systems

- Notation introduced by Kleinrock
 - \(C_n \) is \(n \)th customer entering system
 » \(\tau_n \) is arrival time for \(C_n \)
 » \(t_n \) is interarrival time \((t_n=\tau_n-\tau_{n-1}) \)
 » \(x_n \) is service time for \(C_n \)
 » \(w_n \) is waiting time for \(C_n \)
 » \(s_n \) is system time (waiting plus queuing) for \(C_n \) \((s_n=w_n+x_n) \)
 - \(N(t) \) is number of customers in system at time \(t \)
 - \(U(t) \) is amount of unfinished work in system at time \(t \)
 - \(\lambda \) is average arrival rate
 » \(E[t_n]=1/\lambda \)
 - \(\mu \) is average service rate
 » \(E[x_n]=1/\mu \)
Basic Queuing Behavior

- $\alpha(t)$ is number of arrivals in $(0,t)$
- $\delta(t)$ is number of departures in $(0,t)$
- Number of customers in system is
 - $N(t) = \alpha(t) - \delta(t)$
- Average system time is
 - Area between $\alpha(t)$ and $\delta(t)$, denoted by $\gamma(t)$
 - $T_t = \gamma(t)/\alpha(t)$

Little’s Law

- Average arrival rate
 - $\lambda_t = \alpha(t)/t$
- Average system time
 - $T_t = \gamma(t)/\alpha(t)$
- Average number of customers
 - $N_t = \gamma(t)/t$
- Substitute $\gamma(t)$ and $\alpha(t)$
 - $N_t = \lambda_t T_t$
- For $t \to \infty$:
 - $N = \lambda T$ (Little’s law)
- Average number of customers in queuing system is average arrival rate times average system time.
Related Results

- Average number of customers in queue
 - \(\bar{N}_q = \lambda W \)

- Relation between waiting and service time
 - \(T = \bar{x} + W \)

- Utilization \(\rho \)
 - \(\rho = \frac{\lambda}{\mu} = \frac{\lambda \bar{x}}{\mu} \)
 - System only stable if \(\rho < 1 \) (why not \(\rho = 1 \)?)
 - Let \(p_0 \) be probability that server idle: \(\rho = 1 - p_0 \)

- So far:
 - Not specific to particular type of queue
 - No quantitative results

Modeling of Queuing Systems

- Any queuing system can be modeled as a “stochastic process”
 - Family of random variables \(X \)
 - \(X(t) \) is indexed by time parameter \(t \in T \)
 - \(X(t) \in S \), where \(S \) is “state space”
 - If \(S \) is discrete, then stochastic is a “chain”

- Each state reflects state of queuing system
 - Probabilities indicate what states are more likely

- Markov chains
 - Probability for any state **only** depends on previous state
 - History of Markov chain is summarized in current state
Discrete Time Markov Chains

- DTMC is defined by
 - \(X_n \) is random variable indicating state in step \(n \)
 - \(p_{ij} \) are transition probabilities between states
 - Probability depends on current state only

- Example:
 - State space \(S=\{0,1\} \)
 - Transition probabilities \(P \)
 - \(S \times S \) matrix
 - \(p_{00}=0.75, \ p_{01}=0.25 \)
 - \(p_{10}=0.5, \ p_{11}=0.5 \)
 - Probability to be in state 0 at step \(n \)
 - \(P[X_n=0] = 0.75 \cdot P[X_{n-1}=0] + 0.5 \cdot P[X_{n-1}=1] \)

Stationary Probability Vector

- What is the probability of being in a particular state?
 - If Markov chain “runs long enough”, initial state irrelevant

- Define \(\pi_i \) as stationary probability of being in state \(i \)
 - \(\pi_i \) is independent of time
 - In matrix form: \(\pi = \pi P \)

- Stationary probability can be solved as set of linear equations:
 - \(\pi_0 = 0.75 \cdot \pi_0 + 0.5 \cdot \pi_1 \)
 - \(\pi_1 = 0.25 \cdot \pi_0 + 0.5 \cdot \pi_1 \)
 - Additional constraint: \(\Sigma \pi_i = 1 \)

- Solution: \(\pi_0=2/3, \ \pi_1=1/3 \)
Continuous Time Markov Chains

- Transition between state may happen at any time
- How should probabilities be represented?
 - Probability for infinitesimally small time steps
 - “Transition rate” is suitable description
- “Infinitesimal generator matrix” Q defines rates
 - \(q_{ij}(t) = \lim_{\Delta t \to 0} \frac{p_{ij}(t, t+\Delta t)}{\Delta t} \) (for \(i \neq j \))
 - \(q_{ii}(t) = -\sum_{j, j \neq i} q_{ij} \)
- Example:

\[
Q = \begin{pmatrix}
-\lambda & \lambda & 0 \\
\mu & -2\mu & \mu \\
\lambda & 0 & -\lambda
\end{pmatrix}
\]

- Time in a state is memoryless
 - Exponential distribution is memoryless

Exponential Distribution

- Exponential distribution has one parameter
 - \(\lambda \) if arrival rate
 - \(\mu \) if service rate
- Mean: \(\bar{X} = \frac{1}{\lambda} \)
- CDF: \(F_X(r) = 1 - e^{-r/\bar{X}} = 1 - e^{-\lambda r} \)
- pdf: \(f_X(r) = \lambda e^{-\lambda r} \)
- Variance: \(\text{var}(X) = \frac{1}{\lambda^2} \)
- Convenient properties:
 - Number of arrivals in interval \(t \) is Poisson distributed
 - Poisson parameter \(\alpha = \lambda t \) and \(P[X = k] = \alpha^k e^{-\alpha}/k! \)
 - Rates are additive
 - Combination of two exp. dist. with \(\lambda_1 \) and \(\lambda_2 \) has \(\lambda = \lambda_1 + \lambda_2 \)
Steady-State Probability Vector

- By definition rate of leaving state is rate of staying
 \[q_i(t) = -\sum_{j \neq i} q_{ij} \]

- Steady state probability vector \(\pi \)
 - In steady state, \(\pi Q = 0 \) or \(\sum_{i \in S} q_{ij} \pi_i = 0 \)
 - Change in probability vector is \(d\pi(t)/dt = \sum_{i \in S} q_{ij} \pi_i(t) \)
 - If steady state, then \(\lim_{t \to \infty} [d\pi(t)/dt] = 0 \)
 - Additional constraint: \(\sum \pi_i = 1 \)

Solution to example:

\[\begin{align*}
-\lambda \pi_0 + \mu \pi_1 - \lambda \pi_2 &= 0 \\
\lambda \pi_0 - 2\mu \pi_1 &= 0 \\
\mu \pi_1 - \lambda \pi_2 &= 0
\end{align*} \]
- Thus, \(\pi_1 = \lambda / \mu \pi_2 \) and \(\pi_0 = 2 \pi_2 \). With constraint, we get
 - \(\pi_0 = 2/(3 + \lambda / \mu) \)
 - \(\pi_1 = \lambda / (3 + \lambda / \mu) = \lambda / (3\mu + \lambda) \)
 - \(\pi_2 = 1 / (3 + \lambda / \mu) \)

Homework

- Read

- SPARK
 - Assessment quiz