Routing algorithms

- Representation of network as graph
 - Routers as nodes
 - Links as edges
 - Link weights determine cost
- Routing problem as graph problem
 - Find the least cost path from \(u \) to \(z \)
Distance vector algorithm

- **Features**
 - Distributed
 - Iterative
 - Asynchronous
- **Each node reports local view**
 - Cost to neighbors
 - Routes to others via neighbors
- **Each node picks the best option**
 - Bellman-Ford equation: \(d_x(y) = \min_v \{ c(x,v) + d_v(y) \} \)
- **Information is exchanged as “distance vector”**
 - Shortest distance to all nodes as seen locally
- **With enough exchanges, routing converges**

Distance vector example

Example:

- **Node x table**
 - \(\begin{array}{c|ccc}
 \text{from} & x & y & z \\
 \hline
 x & 0 & 7 & - \\
 y & - & 3 & - \\
 z & - & - & 2 \\
 \end{array} \)

- **Node y table**
 - \(\begin{array}{c|ccc}
 \text{from} & x & y & z \\
 \hline
 x & 2 & - & 7 \\
 y & 0 & 2 & - \\
 z & - & 2 & 0 \\
 \end{array} \)

- **Node z table**
 - \(\begin{array}{c|ccc}
 \text{from} & x & y & z \\
 \hline
 x & - & - & 1 \\
 y & 2 & - & 3 \\
 z & 3 & 1 & - \\
 \end{array} \)
Worksheet

- Try yourself:

Distance vector problem

- Good news travels fast
 - \(y \) can reach \(x \) in 1
 - \(z \) can reach \(x \) in 2

- Bad news travels slowly
 - \(y \) can reach \(x \) in 6 (via \(z \))
 - \(z \) can reach \(x \) in 7 (via \(y \))
 - ...

- “Count-to-infinity” problem
 - Fix: “poisoned reverse”
Routing in the Internet

- How many nodes do we have in the Internet?
- How many links do we have in the Internet?
 - At least as many

Autonomous Systems

- Scalability becomes a problem
 - Number of nodes/links in algorithm
 - Adding/removing machine could cause global routing update
- Internet is clustered into autonomous systems (AS)
 - Single administrative entity (e.g., company, university)
- Inside an AS (“local” routing):
 - Intra-AS routing protocol
- Between ASs (“global” routing):
 - Gateway routers connect ASs
 - Inter-AS routing protocol
- Combination of routing algorithm determines forwarding table
Intra-AS routing: RIP

- **Routing Information Protocol**
 - Originally distributed in 1982 BSD UNIX
 - RFC 2453

- **Distance vector protocol**
 - “Hop” count as metric
 - Maximum hop count is 15

- **Routing updates**
 - Every 30 seconds
 - “RIP advertisement”
 - Up to 25 destination subnets

- Link considered down if no update in 180 seconds

Intra-AS routing: RIP

- **RIP implementation**
 - RIP uses UDP packets to exchange data

- **Why transport layer for network layer routing?**
 - “routed” is routing daemon in OS
Intra-AS routing: OSPF

- Open Shortest Path First
 - "Open" as in "not proprietary"
 - RFC 2328
 - Designed as successor to RIP

- Link-state protocol
 - Routers have full graph of network
 - Dijkstra’s algorithm for shortest path
 - Link weights set by administrator
 - Difficult to achieve operational goals

- Routing updates
 - HELLO messages every 10 seconds (check if link is alive)
 - Flooding of link-state information
 - Routers send link-state info to all other routers
 - Route update at least once every 30 minutes

Intra-AS routing: OSPF

- Advanced OSPF features
 - Security: MD5 authentication
 - Multiple same-cost paths
 - Unicast and multicast support
 - Support for hierarchy in single domain

- OSPF areas
 - Details within area not visible to outside
 - Simplifies administration of larger networks
Inter-AS routing: BGP

- Border Gateway Protocol
 - De-facto standard for inter-AS routing in Internet
 - RFC 1771
- Advertisement of reachability
 “A subnet screams "I exist and I am here," and BGP makes sure that all the ASs in the Internet know about the subnet and how to get there. If it weren’t for BGP, each subnet would be isolated – alone and unknown by the rest of the Internet.”
- BGP provides
 - Information on subnet reachability from neighboring ASs
 » Propagated to each internal router of AS
 - Means to determine “good” routes to subnets
 » Based on reachability and AS policy

BGP sessions
- Connection between routers to exchange BGP information
- External BGP (eBGP) session
 » Session spanning two ASs
- Internal BGP (iBGP) session
 » Session within one AS

Reachability information
- Reachable subnet (CIDR prefix)
- BGP attributes
 » AS-PATH: path to subnet (ASs traversed)
 » Next-HOP: IP address of advertising router

Path vector protocol
- Information to avoid loop or other ASs (import policy)
Inter-AS routing: BGP

- Route selection:
 - Often multiple routes available
 - Elimination procedure:
 1. Local preference value set by administrator
 2. Shortest AS-PATH (=DV with AS hop metric)
 3. Closest NEXT-HOP router (determined by intra-AS routing)
 - "Hot potato routing"
 4. BGP identifiers

- Example
 - Y is "stub" network
 - X is "multihomed" network
 - X is customer network
 - X should not forward data between B and C
 - X advertise as if stub domain (e.g., not XCY to B)
 - B might not want to advertise path to A or W to C

- Peering agreements between ASs often confidential
 - Administrators are careful what to advertise
 - Avoid free riding of traffic from other ISPs

- BGP issues
 - BGP not always stable
 - Route flapping can cause further instability
 - Router might get overloaded by BGP messages
 - If router can't keep up, it might be considered down
 - Various heuristic fixes
 - Route dampening
Assignments

- Read
 - Kurose & Ross: Chapter 3.6 & 3.7
- SPARK
 - Assessment quiz