Implementation of protocol stack

- Router process packets at Network Layer
 - Operations specified in RFC 1812
- How can we build an IPv4 router?
Software router

- **Hardware**
 - PC with multiple NICs

- **Software**
 - What functions do we need to implement?

Can we write a user-space IPv4 application?
 - Possible, but inefficient

IPv4 as operating system component
 - OS has better access to hardware resources
 - OS can access packet data without copying

Typical
 - IPv4 processing part of kernel
 - Three steps:
 - Input processing
 - Forwarding
 - Output processing

What are the technical challenges?
OS implementation

Figure from http://www.cs.binghamton.edu/~ghose/CS529/linuxTCP/linux-net.html

OS implementation

Linux Kernel 2.4 Packet handling

Network Drivers (drivers/inet)

Figure from http://linux-ip.net/html/linux-ip.html
Interrupts

- Timing of IPv4 processing is tricky
 - Packet arrivals are asynchronous
- Interrupt triggers processing
 - What is an interrupt?
 - Event signal
 - Hardware interrupts: raised by device
 - Software interrupts: raised by software
 - "Interrupt handler" is called to process interrupt
 - Interrupt Priorities
 - Interrupts have different priorities
- How are interrupt levels allocated?
 - Livelock must be avoided

Interrupt Priorities

Scalability

- What is scalability?
 - A system (design) is scalable if it can easily be extended in “size” and performance
 - More ports
 - Faster links
- Scalability important in system design
 - Design process is expensive
 - Ability to easily extend to new requirements is important
 - Performance requirement increase really fast
 - Moore’s Law
 - Systems will eventually be used in a different context
- Is a software router scalable?
Assignments

- Exam I
 - Prepare for next Tuesday
 - Sample problems listed under “assignments” on course web site
- SPARK
 - Assessment quiz